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Abstract

We consider a setting where each player of a normal-form game privately

designs an information structure before playing the game. One of these de-

signs is chosen at random to determine the distribution of the private messages

that players receive. These messages allow players to correlate their actions;

however, private information design implies a push from correlated to Nash

equilibria. Indeed, the sequential equilibrium payoffs of the private information

design extensive-form game are correlated equilibrium payoffs of the underly-

ing normal-form game, but not all correlated equilibrium payoffs are sequential

equilibrium payoffs. In generic 2-player games, the latter are specific convex

combinations of two Nash equilibrium payoffs. In any 2-player game, imposing

optimal beliefs from private information design implies that mutual knowledge

of rationality alone is a sufficient epistemic condition for Nash equilibrium.
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1 Introduction

Information matters for economic outcomes; thus, it is likely that individuals will try

to design the information structure in an optimal way. This idea has motivated a

large number of papers since the influential work of Kamenica and Gentzkow (2011),

in which one party designs an information structure to persuade another. But in

strategic settings, individuals typically provide information to each other and have

conflicting incentives over the information they receive. For example, highlighting

the importance of persuasion as an economic activity, McCloskey and Klamer (1995)

write, “portfolio managers talk full-time to decide on buying or selling. Stockbrokers

talk to clients and to each other.” In general, different portfolio managers and stock-

brokers have conflicting interests and may try to hide or relay misleading information

about the activities of the market. Thus, in strategic interactions, information de-

sign should take into account the possibility that individuals may covertly attempt to

learn about and manipulate the information of others as well as choosing their own

information in an optimal way.

We consider the simple case where information is provided before the play of a

complete information normal-form game. In general, any correlated equilibrium pay-

off can be achieved, thus often improving the welfare of all participants in comparison

to what they can achieve in Nash equilibrium. Achieving correlated equilibrium pay-

offs requires lotteries over a set of messages that are privately observed by the players

and which can be thought of as being chosen by an outside mediator or generated by

some randomization device agreed upon and/or designed by the players themselves.

Our motivation is that any such mechanism can be manipulated: different players

may attempt to bribe the mediator to make certain recommendations or secretly

tamper with the randomization device.

In contrast to the case where an impartial mediator controls the provision of

information, we show that the players’ ability to privately (i.e. secretly) manipu-

late the information structure implies that not all correlated equilibrium payoffs are

achievable. In 2-player games with a unique Nash equilibrium, only the payoff of the
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unique Nash equilibrium can be achieved when the players design their information

optimally. In generic 2-player games, the only achievable payoffs are specific con-

vex combinations of two Nash equilibrium payoffs. In this sense, private information

design provides a justification for Nash equilibrium.

Our characterization of the outcomes of private information design can also be

used to provide sufficient epistemic conditions for Nash equilibrium that require only

knowledge of a strong form of rationality—roughly requiring that if players’ types re-

flect a common prior and their private information, then rational types of each player

design information optimally—but no knowledge of players’ actions or conjectures.

This is appealing because players often do not know the actions of others in strategic

situations.

Our model of private information design is guided by the observation that there

are many actions that players can take to influence the information structure: for

example, one player may anticipate that another will tamper with the randomization

device and respond by including additional safeguards. The other may anticipate

this and secretly hide backdoors in the device. It is difficult to model explicitly each

possible manipulation and its effect on the resulting information structure. On the

other hand, we do not wish to rule out any kind of manipulation by assumption.

Thus, our aim is to provide a reduced form model that captures the idea that players

are able to manipulate the information structure in any way they desire, and we

characterize the equilibrium outcomes when all such manipulations are allowed.

Specifically, we introduce a setting without payoff uncertainty in which each player

in a normal-form game privately designs an information structure before playing the

normal-form game. Thus, each player chooses a set of message profiles, where each

message profile contains one message for each player, and a probability distribution

on the chosen set of messages profiles; the choice of such an information structure

is not observed by the other players. This gives rises to an information structure

chosen by each player; the prevailing information structure that actually determines

the message each player receives is then chosen randomly and privately (i.e. no player

is informed about it) from those chosen by the players, with each of them having a
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strictly positive probability of being chosen. After privately receiving a message, each

player chooses an action of the normal-form game. By augmenting the normal-form

game with a pre-play private information design stage, we create an extensive-form

game that aims to captures, in a simple way, the idea that each player can attempt to

manipulate the information structure however he wishes and with positive probability

he is successful. In Section 2, we motivate our formulation with a simple example

and in Section 6, we discuss conceptual issues surrounding our model in detail.1

If information is provided by an explicit designer who is not a player (and who

cannot be manipulated), then any correlated equilibrium payoff of the normal-form

game can be achieved as shown by Aumann (1987). In contrast, when information

is designed by the players allowing for the possibility of covert manipulations, not all

correlated equilibrium payoffs can be achieved but only those that rely on a correlation

device in which each player sends optimal messages from his point of view. Indeed,

this follows because sequential equilibrium outcomes of the private information design

extensive-form game are characterized by the optimality of the actions each player

plays after receiving a message and of the messages he sends with strictly positive

probability in the information structure he designs.

The reduction on achievable payoffs is particularly striking for generic 2-player

games: In such games, the equilibrium payoffs of the information-design extensive-

form are convex combinations of two Nash equilibrium payoffs of the underlying

normal-form game, one preferred by each player, with the weight of the Nash equi-

librium preferred by player 1 (resp. 2) being equal to the probability that player 1’s

(resp. player 2’s) information structure is chosen. In particular, in 2-player normal-

form games with a unique Nash equilibrium, the information-design extensive-form

has a unique equilibrium payoff equal to the payoff of the unique Nash equilibrium of

the underlying normal-form game.

This conclusion bears some similarity to the rationalistic interpretation of Nash

equilibrium in Nash (1950) and we use it as a starting point to obtain two epistemic

1See also Carmona and Laohakunakorn (2023) for a discussion on how our framework can be

applied to repeated games to capture some features of real-world cartels.
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results for Nash equilibrium. Following Aumann and Brandenburger’s (1995) inter-

pretation of the common prior assumption, according to which each player’s theory

about the others reflects a common prior and additional information that he receives,

we consider interactive belief systems for normal-form games where each player’s types

correspond to messages received. We introduce the idea of endogenous information

in interactive belief systems by specifying that (a) the common prior is the (convex)

combination of individual players’ probability distributions over message profiles and

(b) the messages each player sends with strictly positive probability are optimal for

him whenever he is rational in the standard sense. This yields a strong notion of

rationality and a rationalistic formalization of endogenous information in the context

of interactive belief systems which we use to obtain sufficient epistemic conditions for

Nash equilibrium that require no (mutual or common) knowledge of players’ actions

or conjectures.

Indeed, we show that common knowledge of our strong form of rationality implies

that the action distribution is that of the unique Nash equilibrium. In fact, the profile

formed with each player’s conjecture about the play of his opponent is, at each state,

equal to the unique Nash equilibrium. If we further refine our notion of endogenous

information in interactive belief systems by imposing a lexicographic preference for

simplicity—so that when comparing two information designs with the same expected

payoff, the one with fewer messages is preferred—then we obtain a local epistemic

condition for any 2-player normal-form game (not necessarily with a unique Nash

equilibrium): If at some state of an interactive belief system incorporating this re-

finement of endogenous information, it is mutually known that players are rational,

then the action profile at that state is a Nash equilibrium of the game.

Summing up, regardless of whether one focuses on epistemic conditions or on

characterizations of equilibrium outcomes and payoffs, this paper shows that when

information is designed optimally by the individuals involved in a strategic situation,

there is a push from correlated to Nash equilibria.

The paper is organized as follows. Section 2 contains a motivating example and

a discussion of some conceptual issues surrounding our formalization. Section 3 in-
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troduces our model of private information design and characterizes the sequential

equilibrium outcomes of the information design extensive form game. Section 4 spe-

cializes our characterization result to the case of 2-player games, and Section 5 con-

tains our epistemic results. Related literature is discussed in Section 6, along with

some concluding remarks. Proofs of our results and further examples can be found

in the Appendix.

2 Motivating example

We motivate our model of private information design and discuss some conceptual

issues in the context of the following game of “chicken”:

1\2 A B

A 6, 6 1, 7

B 7, 1 0, 0

The Nash equilibria are (A,B), (B,A) and (1
2
1A+

1
2
1B,

1
2
1A+

1
2
1B) giving payoffs (7, 1),

(1, 7) and (7
2
, 7
2
) respectively. It is well-known that there are correlated equilibria

with payoffs outside the convex hull of the Nash equilibrium payoffs. The usual

story why such correlated equilibria might be played is that there is a mediator who

makes private action recommendations to each player. For example, if the action

profiles (A,A), (A,B) and (B,A) are recommended, each with probability 1
3
, then

each player will find it optimal to follow the recommendation and the outcome is

a correlated equilibrium with payoffs (42
3
, 42

3
). According to this story, each player

receives a private signal (action recommendation) mi ∈ {A,B}; the profile of signals

m = (m1,m2) is drawn from an information structure ϕ ∈ ∆({A,B}×{A,B}) chosen

by the mediator.

Consider a player who has received recommendation A. He finds it optimal to

play A because he believes that his opponent has received recommendations A and

B with equal probability. But if he could acquire some additional information about

the message of his opponent, then he will find it optimal to play B after receiving any
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information that increases his belief that his opponent has received a recommendation

to play A. Moreover, each player may wish to influence the mediator so that the

recommendation for himself to play B is sent more often; and if, instead of a mediator,

the recommendations are generated by a randomization device designed by the players

themselves, each player may wish to tamper with it. In other words, players may have

incentives (i) to acquire information beyond that received from the mediator and (ii)

to influence the recommendations of the mediator or tamper with the randomization

device. Thus, it is natural to consider a richer signal spaceMi ⊇ {A,B} and ask what

happens when players can manipulate the information structure ϕ ∈ ∆(M1 ×M2).

More generally, we may ask why a mediator would send action recommendations

according to some given distribution. Where does the information structure come

from? Our view is that the information structure is something that the players

must design themselves. Thus, each player chooses an information structure ϕ ∈

∆(M1 ×M2). Since for any given distribution of signals, players may wish to acquire

additional information about the signal of the other player, we should specify a rich

enough signal space for this to be possible. We can achieve this by letting the set of

possible signals for each player be Mi = N. We also do not wish to restrict the type

of information each player can choose to receive, and thus we let each player choose

any information structure ϕ ∈ ∆(N × N); the only restriction we impose is that ϕ

must be finitely supported.

One issue with the above formulation is that there will be in general two distribu-

tions, ϕ1 and ϕ2 (one chosen by each player), over the message space M1 ×M2 = N2,

but a message profile cannot be drawn from two distributions at once. If players

agree in the sense that ϕ1 = ϕ2, then each can effectively take the role of the media-

tor and send private messages according to his own distribution; when they disagree,

then each player should be able to impact the distribution of messages. These two

properties are satisfied by specifying that the message profiles are determined by

the distribution β1ϕ1 + β2ϕ2 for some β1 > 0 and β2 > 0 such that β1 + β2 = 1.

One interpretation is that each player chooses an information structure and nature

chooses the one that is realized, with player i’s information structure being chosen

7



with probability βi. More concretely, this situation can arise if each player proposes a

randomization device to an outside mediator, who being indifferent between the two

proposals then picks player i’s proposal with probability βi; it can also arise if βi de-

notes the probability of player i being the last one to tamper with the randomization

device.

Another feature we want to capture is the ability of players to privately manipulate

the information structure. We achieve this property by specifying that the players’

choices are private in the sense that player i observes only ϕi andmi, but not ϕ−i, m−i

or the realized information structure βiϕi+β−iϕ−i. On the other hand, the assumption

that ϕi is finitely supported on N × N gives each player the option of choosing an

information structure that puts positive probability on message profiles that arise

with zero probability from the information structure chosen by the other player. We

view this as a simple way of allowing the players to learn whose information structure

was chosen if they wish to do so.

Thus, according to our formulation, each player chooses (ϕi, πi), where ϕi ∈ S is

i’s information design and πi :Mi×S → ∆{A,B} is i’s choice of action as a function

of the message that he receives and his own information design, and where S denotes

the set of finitely supported probability measures on M1 × M2. This gives rise to

an extensive-form game, and our results imply that the set of sequential equilibrium

payoffs is:

{
(7, 1), (1, 7), (7

2
, 7
2
), β1(7, 1) + β2(1, 7), β1(7, 1) + β2(

7
2
, 7
2
), β1(

7
2
, 7
2
) + β2(1, 7)

}
.

In particular, (42
3
, 42

3
) is not a sequential equilibrium payoff and the action distribu-

tion 1
3
1(A,A)+

1
3
1(A,B)+

1
3
1(B,A) is not the action distribution of a sequential equilibrium

of the information design extensive-form game. This payoff profile and action distri-

bution could be obtained with ϕ1 = ϕ2 = 1
3
1(1,1) +

1
3
1(1,2) +

1
3
1(2,1) and πi(1, ϕi) = A

and πi(2, ϕi) = B for each i. But then player 1 would gain by deviating to ϕ′
1 = 1(2,1)

thereby increasing the probability that his preferred action profile, (B,A), is played.

In contrast, the payoff profile β1(7, 1)+β2(1, 7) and action distribution β11(B,A)+

β21(A,B) can be obtained in sequential equilibrium, namely with ϕ1 = 1(1,1), ϕ2 = 1(2,2),
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π1(1, ϕ1) = B, π1(2, ϕ1) = A, π2(1, ϕ2) = A and π2(2, ϕ2) = B. In this equilibrium,

each player, prior to his choice of action, knows (in the sense of probability 1 belief)

whose information design was chosen and the message that the other player received.

The key feature of our framework is, however, that players cannot always detect

deviations; for instance, if player 2 deviates to ϕ′
2 = 1(1,2) and m = (1, 2) realizes,

player 1 still thinks that his information design has been chosen and that player 2

will play her action after designing ϕ2 and observing m2 = 1.

Correlated equilibrium is justified in Aumann (1987) as the result of Bayesian

rationality—each player is maximizing his utility given his information. But where

does this information come from? If the information is chosen optimally by players

who have the ability to privately manipulate the information structure, then only a

very specific subset of the convex hull of Nash payoffs can be achieved in the chicken

game.

3 Information design without payoff uncertainty

Consider a normal-form game G = (Ai, ui)i∈N where the set N of players is finite

and, for each i ∈ N , Ai is a finite set of player i’s actions and ui : A→ R is player i’s

payoff function, where A =
∏

i∈N Ai. Let N(G) denote the set of Nash equilibria of

G and C(G) the set of correlated equilibria of G.

In the information design problems we consider, a designer sends messages to

the players (who then choose actions). The set of messages each player i ∈ N can

potentially receive is Mi = N. An information design consists of (i) a finite subset Ki

of Mi for each i ∈ N and (ii) ϕ ∈ ∆(K), where K =
∏

i∈N Ki.
2 We dispense with the

message sets (Ki)i∈N from our notation since these can be obtained from ϕ by letting

Ki = supp(ϕMi
) for each i ∈ N . Let S be the set of finitely supported probability

measures on M =
∏

i∈N Mi = Nn, where n = |N |. Assuming that the support of ϕ

2Given a metric space X, ∆(X) denotes the set of Borel probability measures on X. For each

µ ∈ ∆(X), supp(µ) denotes the support of µ. When X =
∏

j∈J Xj for some finite set J , µXj denotes

the marginal of µ on Xj for each j ∈ J .
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is finite avoids unnecessary technical complications without imposing a bound on its

elements and, in particular, on their number.

Consider first the case of an explicit information designer who chooses ϕ ∈ S.

Assume that each player i ∈ N observes the choice of ϕ by the designer and the

realization of his own message mi and then chooses an action ai ∈ Ai. Each ϕ defines

a incomplete-information game G(ϕ); as Bergemann and Morris (2016) have shown,

the set of equilibrium payoffs in the incomplete-information games obtained by ϕ ∈ S

equals the set of correlated equilibrium payoffs of G:

{u ∈ Rn : u is an equilibrium payoff of G(ϕ) for some ϕ ∈ S} = u(C(G)).

We will contrast the above case of an explicit information designer with the case

of private information design, which is the focus of this paper. The setting with

private information design is as follows. Each player i ∈ N is a designer and, thus,

chooses an information design. The resulting n information designs, ϕ1, . . . , ϕn, are

then aggregated into a single information design ϕ =
∑

i βiϕi that determines the

messages that players receive, where βi > 0 for each i ∈ N and
∑

i βi = 1; one

interpretation is that the information design of each i ∈ N is chosen with probability

βi. The information design is private in the sense that (i) it is done by the players,

(ii) each player’s choice of information design is his own private information and (iii)

no player observes the aggregate information design—the choice of the aggregate

information design is made by nature and is nature’s private information.

More generally, we allow for βi = 0 for some i ∈ N , in which case only the

players in supp(β) = {i ∈ N : βi > 0} choose an information design ϕi ∈ S. The

players’ interaction is then described by the following extensive-form game Gid. At

the beginning of the game, each player i ∈ supp(β) chooses an information design

ϕi ∈ S. After all players in supp(β) have chosen their information design, a profile of

signals m ∈M is realized according to ϕ ∈ ∆(M) defined by setting, for each m ∈M ,

ϕ[m] =
∑

i∈supp(β)

βiϕi[m].

Each player i ∈ N observes mi ∈Mi and, if i ∈ supp(β), his choice ϕi ∈ S, and then

chooses an action ai ∈ Ai. Player i’s payoff is then ui(a1, . . . , an).
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A (behavioral) strategy for player i ∈ supp(β) is πi = (π1
i , π

2
i ) such that π1

i ∈ ∆(S)

and π2
i :Mi × S → ∆(Ai) is measurable;3 and, for i ∈ N \ supp(β), it is πi = π2

i with

π2
i : Mi → ∆(Ai). A strategy is π = (π1, . . . , πn). The set S is convex and, hence,

there is no point in allowing players to mix in the choice of ϕi. For this reason, let Π

be the set of strategies π such that π1
i ∈ S (i.e. π1

i is pure) for each i ∈ supp(β) and

we focus on π ∈ Π.

For strategies π ∈ Π and for each i ∈ N , mi ∈ Mi and ϕi ∈ S, we often write

ϕ∗
i = π1

i , πi(mi, ϕi) = π2
i (mi, ϕi) and πi(mi) = π2

i (mi, ϕ
∗
i ) if i ∈ supp(β). For π ∈

Π, we also write ui(π) =
∑

m∈M ϕ∗[m]ui(π(m)) for each i ∈ N , where ϕ∗[m] =∑
i∈supp(β) βiϕ

∗
i [m], π(m) ∈ ∆(A) is defined by π(m)[a] =

∏
i∈N πi(mi)[ai] for each

a ∈ A and, for each σ ∈ ∆(A), ui(σ) =
∑

a∈A σ[a]ui(a). We sometimes abuse

notation and also let π(m) = (π1(m1), . . . , πn(mn)).

Let n′ = |supp(β)| and, for each strategy π, m ∈M and ϕ ∈ Sn′
, we let π2(m,ϕ)

be defined by π2
i (m,ϕ) = π2

i (mi, ϕi) if i ∈ supp(β) and π2
i (m,ϕ) = π2

i (mi) if i ∈ N \

supp(β); we also write π(m,ϕ) for π2(m,ϕ) and use π2
−i(m−i, ϕ−i) and π−i(m−i, ϕ−i)

for the vector of mixed actions π(m,ϕ) without the ith coordinate.

We use sequential equilibrium as solution concept, defined analogously to Myer-

son and Reny (2020) (MR henceforth). Formally, a strategy π ∈ Π is a sequential

equilibrium if it is a perfect conditional ε-equilibrium for each ε > 0.

For each strategy π ∈ Π, the action distribution of π is σπ ∈ ∆(A) such that, for

each a ∈ A,

σπ[a] =
∑

m∈M∗

ϕ∗[m]π(m)[a].

Let

U(G) = {u(π) : π ∈ Π is a sequential equilibrium of Gid}

be the set of sequential equilibrium payoffs of Gid. Theorem 1 states that each se-

quential equilibrium payoff of the private information design game Gid is the payoff

of a correlated equilibrium of G. Indeed, private or otherwise, all that information

design does in our setting is to allow players to reach correlated equilibrium payoffs.

3The set S is endowed with the topology of the weak convergence of probability measures.
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Theorem 1. For each n-player game G, if π ∈ Π is a sequential equilibrium of Gid,

then σπ ∈ C(G). Thus, U(G) ⊆ u(C(G)).

Recall that u(C(G)) is the set of payoffs that players can reach when the infor-

mation design is made by an explicit designer. With private information design there

will, in general, be a reduction on the payoffs that the players can reach. The reason

is that the messages m ∈ supp(ϕ∗
i ) that each player i ∈ supp(β) sends must be opti-

mal for player i. This is established in Theorem 2 which fully characterizes the set of

sequential equilibrium outcomes of Gid.

The following notation is used in the statement of Theorem 2. The outcome

of a strategy π ∈ Π is
(
(ϕ∗

i )i∈supp(β),
(
(πi(mi))mi∈supp(ϕ∗

Mi
)

)
i∈N

)
; it consists of the

information design for each player in supp(β) and, for each player and each message

that he may receive with strictly positive probability, the action he will choose in

response. Let M∗ =
∏

i∈N supp(ϕ∗
Mi
) be the product of the set of messages that each

player may receive with strictly positive probability. We use the convention that

supp(ϕ∗
i ) = ∅ for each i ̸∈ supp(β) and let, for each i ∈ N , supp(β−i) = supp(β)\{i}.

For each i ∈ N and δ ∈ ∆(A−i), let vi(δ) = maxα∈∆(Ai) ui(α, δ) and BRi(δ) = {α ∈

∆(Ai) : ui(α, δ) = vi(δ)} be, respectively, player i’s value function and best-reply

correspondence.

Theorem 2. For each n-player game G,
(
(ϕ∗

i )i∈supp(β),
(
(πi(mi))mi∈supp(ϕ∗

Mi
)

)
i∈N

)
is

the outcome of a sequential equilibrium of Gid if and only if, for each i ∈ N ,

vi(π−i(m−i)) = max
m′

−i∈M∗
−i

vi(π−i(m
′
−i)) and πi(mi) ∈ BRi(π−i(m−i)) (1)

for each m ∈ supp(ϕ∗
i ), and

πi(mi) solves max
αi∈∆(Ai)

∑
m−i

∑
j∈supp(β−i)

βjϕ
∗
j [mi,m−i]∑

j∈supp(β−i)
βjϕ∗

j,Mi
[mi]

ui(αi, π−i(m−i)) (2)

for each mi ∈ ∪j∈supp(β−i)supp(ϕ
∗
j,Mi

).

Theorem 2 shows that sequential equilibrium outcomes of the private informa-

tion design game are characterized by the optimality of the actions that each player

chooses and, for each player in supp(β), of the messages he sends. Each player’s
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messages are optimal in the sense that the payoff of the action profile it induces

is the highest amongst the action profiles belonging to the outcome. The opti-

mality of the actions chosen by each player i ∈ N consists of πi(mi) maximizing

his expected payoff conditional on his information design not being chosen when

mi is a message that he receives with strictly positive probability from the infor-

mation design of the other players. The two optimality conditions imply that, for

each player i ∈ supp(β), πi(mi) maximizes his expected payoff conditional on his

information design being chosen when mi ∈ supp(ϕ∗
i,Mi

) \ ∪j∈supp(β−i)supp(ϕ
∗
j,Mi

) and

maximizes his expected payoff conditional on his information design not being cho-

sen when mi ∈ ∪j∈supp(β−i)supp(ϕ
∗
j,Mi

) \ supp(ϕ∗
i,Mi

); indeed, in the former case,

player i can only have received message mi if ϕ
∗
i has been chosen and, in the lat-

ter case, only if ϕ∗
i has not been chosen. Furthermore, in the remaining case where

mi ∈ supp(ϕ∗
i,Mi

)∩ (∪j∈supp(β−i)supp(ϕ
∗
j,Mi

)), it turns out that πi(mi) must satisfy the

two criteria. Briefly, this happens because player i can always make sure that the

message he sends to himself is different from the ones he may receive from the other

players (we will elaborate on conditions (1) and (2) in the proof of the necessity part

of Theorem 2 in Section A.1.2). Since each player i ∈ N \ supp(β) does not design

information, the optimality of his actions means that πi(mi) maximizes his expected

payoff given the information design chosen by the players in supp(β).

An easy consequence of Theorem 2 is that u(N(G)) ⊆ U(G) for each n-player game

G. Indeed, for each Nash equilibrium σ of G, set ϕ∗
i = 1(1,...,1) for each i ∈ supp(β)

and πi(1) = σi for each i ∈ N to see that conditions (1) and (2) in Theorem 2 hold.

Corollary 1. For each n-player game G, if σ ∈ N(G), then there is a sequential

equilibrium π ∈ Π of Gid such that σπ = σ. Thus, u(N(G)) ⊆ U(G).

The following example further illustrates Theorem 2.

Example 1. Consider the following game, Example 2.5 in Aumann (1974), where

player 1 chooses the row, player 2 chooses the column, and player 3 chooses the matrix

(A3 = {L,M,R}):
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1\2 A B

A 0, 0, 3 0, 0, 0

B 1, 0, 0 0, 0, 0

1\2 A B

A 2, 2, 2 0, 0, 0

B 0, 0, 0 2, 2, 2

1\2 A B

A 0, 0, 0 0, 0, 0

B 0, 1, 0 0, 0, 3

Assume first that supp(β) = N . We will show that when min{2β1, 2β2} ≥ β3, (1−

β3)(2, 2, 2)+β3(0, 0, 3) is a sequential equilibrium payoff, even though ui ≤ 1 for each

u ∈ u(N(G)). Thus, correlation of players’ actions through private information design

can still significantly improve the payoff to everybody relative to Nash equilibrium

payoffs. However, not all correlated equilibrium payoffs can be achieved.

The latter claim can be easily seen by considering (2, 2, 2) ∈ u(C(G)); if (2, 2, 2) ∈

U(G), then, for some sequential equilibrium π ∈ Π,

(2, 2, 2) =
∑

m∈supp(ϕ∗)

ϕ∗[m]u(π(m))

and, thus, π(m) = (A,A,M) or π(m) = (B,B,M) for each m ∈ supp(ϕ∗). But then,

for each m ∈ supp(ϕ∗
3), π3(m3) is not a best-reply against π−3(m−3), contradicting

Theorem 2.4

We now establish the former claim. Let ϕ∗
1 = ϕ∗

2 = 1
2
1(m′

1,m
′
2,m̂3) +

1
2
1(m′′

1 ,m
′′
2 ,m̂3),

ϕ∗
3 =

1
2
1(m′

1,m
′
2,m̂

′
3)
+ 1

2
1(m′′

1 ,m
′′
2 ,m̂

′′
3 )

and

π1(m
′
1) = A, π1(m

′′
1) = B,

π2(m
′
2) = A, π2(m

′′
2) = B,

π3(m̂3) =M,π3(m̂
′
3) = L and π3(m̂

′′
3) = R.

Thus, π(m′
1,m

′
2, m̂3) = (A,A,M), π(m′′

1,m
′′
2, m̂3) = (B,B,M), π(m′

1,m
′
2, m̂

′
3) =

(A,A,L) and π(m′′
1,m

′′
2, m̂

′′
3) = (B,B,R). As we show in Appendix A.2, the con-

ditions in Theorem 2 are satisfied if min{2β1, 2β2} ≥ β3 and, thus, it follows that

(1− β3)(2, 2, 2) + β3(0, 0, 3) is a sequential equilibrium payoff.

4In contrast to the results in Ben-Porath (1998), (2, 2, 2) ∈ u(C(G)) cannot be approximated

by u ∈ U(G). Indeed, to get close to (2, 2, 2), ϕ∗ must put small probability on m such that

π(m) ̸∈ {(A,A,M), (B,B,M)}. Thus, ϕ∗
3 must also put small probability on such m. But then

there exists m′ ∈ supp(ϕ∗
3) such that π(m′) ∈ {(A,A,M), (B,B,M)}, which contradicts Theorem

2.
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We also use Example 1 to compare our setting to the one surveyed in Bergemann

and Morris (2019), in which there is a unique (explicit or metaphorical) designer. We

let player 3 be the designer and, thus, let β3 = 1. For each ϕ3 ∈ S, let Π∗(ϕ3) be the

set of (π(m))m∈supp(ϕ3) such that, for each i ∈ N and mi ∈ supp(ϕ3,Mi
), πi(mi) solves

maxαi∈∆(Ai)

∑
m−i

ϕ3[mi,m−i]
ϕ3,Mi

[mi]
ui(αi, π−i(m−i)). Bergemann and Morris (2019) focus on

outcomes
(
ϕ∗
3, (π(m))m∈supp(ϕ∗

3)

)
such that (π(m))m∈supp(ϕ∗

3)
∈ Π∗(ϕ∗

3) and ϕ
∗
3 solves

max
ϕ3∈S

max
(π(m))m∈supp(ϕ3)

∈Π∗(ϕ3)

∑
m∈supp(ϕ3)

ϕ3[m]u3(π(m)). (3)

It follows by Bergemann and Morris (2019, Proposition 4) that the value of (3) is

equal to maxσ∈C(G) u3(σ). However, as we show in Appendix A.2, player 3 cannot

obtain a payoff of maxσ∈C(G) u3(σ) in Gid.

4 2-player games

The characterization of equilibrium outcomes in Theorem 2 implies that, in general,

not all correlated equilibrium payoffs of G can be achieved in Gid when information

is designed privately. This point is more striking in 2-person games; indeed, in such

games, equilibrium payoffs of Gid form a particular subset of the convex hull of the

Nash equilibrium payoffs of G.

Theorem 3. For each 2-player game G,

U(G) =

{
β1u

1 + β2u
2 : ∀i ∈ supp(β), there exists Li, (α

i,l)Li
l=1, (σ

i,l)Li
l=1 such that

ui =

Li∑
l=1

αi,lu(σi,l), αi ≥ 0,

Li∑
l=1

αi,l = 1,

σi,l ∈ N(G) and ui(σ
i,k) = ui(σ

i,l) ≥ ui(σ
j,r)

∀k, l ∈ {1, . . . , Li}, j ∈ supp(β−i) and r ∈ {1, . . . , Lj}
}
.

Theorem 3 characterizes the equilibrium payoffs of Gid for 2-player games. It

shows that when player i’s information design is chosen, then the resulting payoff

ui is a convex combination of payoffs of Nash equilibria of G, all of which give the
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same payoff uii to player i. Furthermore, this common payoff uii is no less than the

payoff player i obtains in each of the Nash equilibria of G used to obtain uj when j

also belongs to supp(β). In other words, player i prefers (weakly at least) any Nash

equilibria of G used to obtain ui to any of them used to obtain uj.

For the battle of the sexes,

1\2 A B

A 2, 1 0, 0

B 0, 0 1, 2

Theorem 3 implies that U(G) = u(N(G)) ∪ {β1(2, 1) + β2(1, 2)}.

Example 1 shows that the conclusion of Theorem 3 does not extend beyond 2-

player games. The reason why there is a sharper characterization of equilibrium pay-

offs in 2-player games is that, in such games, the maximization problem in condition

(2) becomes

max
αi∈∆(Ai)

∑
mj

ϕ∗
j [mi,mj]

ϕ∗
j,Mi

[mi]
ui(αi, πj(mj)) = max

αi∈∆(Ai)
ui

αi,
∑
mj

ϕ∗
j [mi,mj]

ϕ∗
j,Mi

[mi]
πj(mj)


with i ∈ N and j ̸= i and

∑
mj

ϕ∗
j [mi,mj ]

ϕ∗
j,Mi

[mi]
πj(mj) is a mixed strategy of player j.

The characterization of U(G) is simpler in generic games, such as the battle of

the sexes, since then the payoff resulting after each information design is chosen is

that of a Nash equilibrium. Let G be the set of games such that, for each Nash

equilibria σ and σ′ of G, if ui(σ) = ui(σ
′) for some i ∈ N , then uj(σ) = uj(σ

′) for

j ̸= i (equivalently, if ui(σ) ̸= ui(σ
′) for some i ∈ N then uj(σ) ̸= uj(σ

′) for j ̸= i).

We regard G as a subset of R2|A|. A subset B of an Euclidean space is generic if the

closure of its complement has Lebesgue measure zero.

Corollary 2. The set G is generic and, for each 2-player game G ∈ G,

U(G) = {β1u(σ) + β2u(σ
′) : σ, σ′ ∈ N(G), u1(σ) ≥ u1(σ

′), u2(σ
′) ≥ u2(σ)}.

The proof of Corollary 2 actually shows that the set of games such that ui(σ) ̸=

ui(σ
′) for each i ∈ N and σ, σ′ ∈ N(G) such that σ ̸= σ′ is generic. This set is
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contained in G and contains all games with a unique equilibrium as well as both

the battle of the sexes and the game of chicken. It is clear from Corollary 2 that

U(G) = u(N(G)) for each 2-player game G with a unique Nash equilibrium.

5 Epistemic conditions for Nash equilibrium

Theorem 3 implies that, for 2-player games G with a unique Nash equilibrium, only

the payoff of that Nash equilibrium can be achieved in the private information design

game Gid. In this section we build on this result by operationalizing the intuition that,

when players’ information is endogenously determined via private information design,

no knowledge of players’ actions or conjectures is needed for epistemic conditions that

are sufficient for Nash equilibrium in 2-player games with a unique Nash equilibrium.

This is so because endogenous information embeds a stronger notion of rationality

than that of e.g. Aumann and Brandenburger (1995).

The starting point of the analysis of this section is the notion of an interactive

belief system introduced by Aumann and Brandenburger (1995). An interactive belief

system for G with a common prior ϕ∗ consists of, for each player i ∈ N , a finite set

M∗
i of types or messages and, for each mi ∈ M∗

i , a mixed action πi(mi) ∈ ∆(Ai)

and a theory about other players’ messages ϕ∗(·|mi) such that ϕ∗ ∈ ∆(
∏

j∈N M
∗
j ) and

M∗
i = supp(ϕ∗

M∗
i
). This notion differs from the one in Aumann and Brandenburger

(1995) just because we assume that the game G is common knowledge, which is done

for simplicity.5

The goal is to impose conditions on interactive belief systems so that it may

intuitively reflect that players’ information is endogenous. In general, as Aumann

(1987, Section 4 (e)) as pointed out, it is not easy to distinguish between endogenous

and exogenous information; on this, we follow Aumann and Brandenburger’s (1995, p.

1163) motivation for the common prior assumption, namely, we consider a situation

“in which the players had the same information and probability assessment, and then

5Aumann and Brandenburger (1995) focus on the case where πi(mi) is pure but also allow it to

be mixed. They also consider interactive belief systems where there is no common prior.
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got different information.” In our setting, we think of the players starting with no

information, then each designing an information structure ϕ∗
i and finally receiving a

message mi drawn from ϕ∗ =
∑

i∈N βiϕ
∗
i , which serves as the common prior.

The above setting is only apparently more specific than the one in the definition

of an interactive belief system since no distinction arises between the two when ϕ∗
i

can be an arbitrary information structure for each i ∈ N . Our goal is precisely

to impose conditions on ϕ∗
i for each i ∈ N that reflect the idea that each player

designs ϕ∗
i optimally by only sending messages that are optimal for him whenever

he is rational in the standard sense. The conditions of Theorem 2 give a sense of

what such optimality may mean and we impose them on each player’s probability

distribution ϕ∗
i .

To summarize, our motivation in this section is to operationalize a notion of en-

dogenous information in interactive belief systems that matters for epistemic condi-

tions that are sufficient for Nash equilibrium. In particular, inspired by Aumann and

Brandenburger (1995, Section 7 d), we aim in this way to find a situation of economic

interest where there is enough knowledge about a strong form of players’ rationality

to imply that a Nash equilibrium must be played. The results of this section show

that if each player designs information optimally when he is rational then knowledge

about players’ rationality alone is enough to lead to Nash equilibrium.

Let G = (Ai, ui)i∈N be a normal-form game and E be an interactive belief system

for G. For each i ∈ N , let

Ri =

{
mi ∈M∗

i : πi(mi) solves max
αi∈∆(Ai)

∑
m−i

ϕ∗[mi,m−i]

ϕ∗
M∗

i
[mi]

ui(αi, π−i(m−i))

}
be the set of messagesmi at which player i is rational. We say that E is an endogenous

interactive belief system for G if, for each i ∈ N , there is ϕ∗
i ∈ ∆(M∗) and βi > 0

such that ϕ∗ =
∑

i∈N βiϕ
∗
i ,
∑

i∈N βi = 1,

vi(π−i(m−i)) = max
m′

−i∈M∗
−i

vi(π−i(m
′
−i)) and πi(mi) ∈ BRi(π−i(m−i)) (4)

for each m ∈ supp(ϕ∗
i ) ∩ (Ri ×M∗

−i) and

πi(mi) solves max
αi∈∆(Ai)

∑
m−i

∑
j ̸=i βjϕ

∗
j [mi,m−i]∑

j ̸=i βjϕ
∗
j,Mi

[mi]
ui(αi, π−i(m−i)) (5)
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for each mi ∈ supp(ϕ∗
i,M∗

i
) ∩
(
∪j ̸=isupp(ϕ

∗
j,M∗

i
)
)
∩Ri.

As noted, this notion of an endogenous interactive belief system for G captures

the idea that, whenever a player i is rational, his information design is optimal for

him in the sense that it only sends messages that are optimal for him. Interactive

belief systems are useful, in particular, to analyse (implications of) how players think

about their opponents. In endogenous interactive belief systems, we want to capture

that players reason about what extra properties must be satisfied by the action and

message of a player who sent a particular message. Given a message m ∈ supp(ϕ∗
i )

that player i sends with strictly positive probability, if player i is rational at m, then

i and his opponents can reason that m must be optimal for i since otherwise he would

not have sent it. Thus, (4) should hold for each m ∈ supp(ϕ∗
i ) ∩ (Ri ×M∗

−i) and (5)

for each mi ∈ supp(ϕ∗
i,M∗

i
)∩
(
∪j ̸=isupp(ϕ

∗
j,M∗

i
)
)
∩Ri. On the other hand, it is unclear

why the message m ∈ supp(ϕ∗
i ) must be optimal when player i is irrational at m;

thus, we do not require (4) and (5) when mi ̸∈ Ri.

It turns out that all the results in this section hold if condition (4) is weakened to

πi(mi) ∈ BRi(π−i(m−i)) for each m ∈ supp(ϕ∗
i )∩(Ri×M∗

−i). We nevertheless impose

(4) in the definition of an endogenous interactive belief system as it is (4) rather than

its weakening that is part of the optimality of information we seek to capture.6

There is another weakening of the notion of endogenous interactive belief systems

for which our results hold. Consider the 2-player case and let

S = {m ∈M∗ : (4) holds for each i ∈ {1, 2} such that m ∈ supp(ϕ∗
i )},

T = {m ∈M∗ : (5) holds for each i ∈ {1, 2} such that

mi ∈ supp(ϕ∗
1,M∗

i
) ∩ supp(ϕ∗

2,M∗
i
)}

and R = R1 × R2. If E is an endogenous interactive belief system for G then E

is an interactive belief system for G with a common prior ϕ∗ = β1ϕ
∗
1 + β2ϕ

∗
2 and

6For each theorem in this section, we will provide examples showing that none of the epistemic

conditions we impose in addition to the assumption of endogenous interactive belief system can

be dropped. Thus, imposing the strong version of (4) also has the advantage of making these

counter-examples to extensions of our results stronger.
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R ⊆ S ∩ T . The condition R ⊆ S ∩ T requires that message profiles at which

all players are rational must be optimal for those players that send it; it is thus

weaker than the requirement present in the definition of an endogenous interactive

belief system, according to which message profiles at which the sender is rational

must be optimal for him. While the latter is more intuitive, the former clarifies the

sense in which rationality in a endogenous interactive belief system corresponds to

a stronger form of rationality in an interactive belief system. Indeed, (common or

mutual) knowledge that players are rational (i.e. of R) in the above weaker form of

an endogenous interactive belief system is equivalent to knowledge of R∩S ∩T in an

interactive belief system.

The action distribution of an endogenous interactive belief system E for G is

µ ∈ ∆(A) such that, for each a ∈ A,

µ[a] =
∑

m∈M∗

ϕ∗[m]π(m)[a],

where π(m)[a] =
∏

i∈N πi(mi)[ai]. For each m ∈ supp(ϕ∗), each player is rational at

m if m ∈
∏

i∈N Ri. If G is a 2-player game and i ∈ {1, 2}, player i’s conjecture about

j ̸= i at m is

ξi(m) =
∑

mj∈supp(ϕ∗
Mj

)

ϕ∗[mi,mj]

ϕ∗
Mi
[mi]

πj(mj).

Theorem 4 states that rationality at each message profile implies that the action

distribution is a Nash equilibrium of G in 2-player games with a unique equilibrium.

In fact, in this case, players’ profile of conjectures (ξ2(m), ξ1(m)) at each message

profile m equals the Nash equilibrium of the game.

Theorem 4. Let G be a 2-player game with a unique Nash equilibrium σ and E

be an endogenous interactive belief system for G. If each player is rational at each

m ∈ supp(ϕ∗), then the action distribution of E is σ and (ξ2(m), ξ1(m)) = σ for each

m ∈ supp(ϕ∗).

Theorem 4 is analogous to the main theorem of Aumann (1987) which states that

if each player is rational at each state of the world, then the action distribution is
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a correlated equilibrium of G.7 Theorem 4 strengthens the conclusion by replacing

correlated equilibrium with Nash equilibrium in 2-player games with a unique Nash

equilibrium whenever the players’ information is endogenously designed in an optimal

way.8

Theorem 4 is also related to Theorem A of Aumann and Brandenburger (1995).

In fact, if a 2-player game with a unique Nash equilibrium and the rationality of

players are commonly known and the players’ information is endogenously designed

in an optimal way, then players’ conjectures are also commonly known since they

equal the unique Nash equilibrium each state. Thus, the assumptions of Theorem A

of Aumann and Brandenburger (1995) hold at each state.

There is a similarity between Theorem 4 and Nash’s (1950) rationalistic interpre-

tation of Nash equilibrium since both require uniqueness of equilibrium. To the best

of our knowledge, this requirement features in no epistemic result for Nash equilibrium

other than Theorem 4 and, as Example 5 in Appendix A.4 shows, the assumption of

a unique Nash equilibrium cannot be dropped from Theorem 4.9

Both Theorem 4 and the main theorem of Aumann (1987) have a global view-

point since its assumptions and conclusions pertain to the entire state space. As the

following example shows, the assumption that each player is rational at each state

cannot be dropped from Theorem 4.

Example 2. Consider the following game G:

1\2 L R

T 4, 2 2, 1

B 3, 4 1, 3

Then T is a dominant strategy for player 1 and L is a dominant strategy for player

2. For this game, consider M∗
1 = {t, b}, M∗

2 = {l}, ϕ∗
1 = 1(t,l), ϕ

∗
2 = 1(b,l), π1(t) = T ,

7Elements of M∗ are, as in Aumann and Brandenburger (1995), called states of the world or just

states.
8In Appendix A.3, we provide an example of a 2-player game with a unique Nash equilibrium

but a continuum of correlated equilibria.
9We also provide in Appendix A.4 examples showing that the requirement of endogenous infor-

mation cannot be dropped from Theorem 4.
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π1(b) = B and π2(l) = L and the resulting interactive belief system depicted below

as in Aumann and Brandenburger (1995):

1\2 l

t 1, β1

b 1, β2

Then both players are rational at m = (t, l) but (ξ2(m), ξ1(m)) = (β11T + β21B, L)

which is not a Nash equilibrium of G.

In contrast to Theorem 4 and the main theorem of Aumann (1987), Theorem A

in Aumann and Brandenburger (1995) has a local viewpoint by providing sufficient

epistemic conditions for Nash equilibrium at any state at which they hold. While

the above example shows that players’ rationality at a state does not imply that

players’ conjectures are a Nash equilibrium of the game, it illustrates the case where

players’ action profiles are a Nash equilibrium in each state where both players are

rational. As Theorem 5 below shows, this conclusion holds for “simple” interactive

belief systems for any 2-player game at states where there is mutual knowledge of

players’ rationality.

The notion of simplicity we use is analogous to the one in Abreu and Rubinstein

(1988) and consists of adding a lexicographic preference for smaller messages spaces

in the information design game Gid. We then use the resulting characterization of

equilibrium outcomes to define more stringent endogenous interactive belief systems

as follows.

Let G be a normal-form game and Gid be as in Section 3. We say that π ∈ Π is a

sequential equilibrium with complexity costs of Gid if (i) π is a sequential equilibrium

of Gid and (ii) for each i ∈ N , there does not exist ϕi ∈ S such that |supp(ϕi)| <

|supp(ϕ∗
i )| and

∑
m(ϕi, ϕ

∗
−i)[m]ui(πi(mi, ϕi), π−i(m−i)) =

∑
m ϕ

∗[m]ui(π(m)). Since

all messages of each player i yield the same payoff to him, it follows that outcomes

of sequential equilibria with complexity costs of Gid are characterized, in addition to

(1) and (2), by |supp(ϕ∗
i )| = 1 for each i ∈ N .

The above then yields a refined notion of an endogenous interactive belief system

as follows. We say that E is an endogenous interactive belief system with complexity
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costs if E is an endogenous interactive belief system and |(Ri ×M∗
−i)∩ supp(ϕ∗

i )| ≤ 1

for each i ∈ N .10 For each m ∈ supp(ϕ∗), it is mutually known that the players are

rational at m if mi ∈ Ri and ϕ∗[{mi}×R−i]
ϕ∗[mi]

= 1 for each i ∈ N . Theorem 5 shows

that if it is mutually known that players are rational in some state of an endogenous

interactive belief system with complexity costs for a 2-player game (not necessarily

with an unique Nash equilibrium), then the action profile at that state is a Nash

equilibrium.

Theorem 5. Let G be a 2-player game and E be an endogenous interactive belief

system with complexity costs for G. If it is mutually known that the players are

rational at some m ∈ supp(ϕ∗), then π(m) is a Nash equilibrium of G.

The striking feature of Theorem 5 is that mutual knowledge of rationality alone

at some state is enough imply that the (mixed) action profile is a Nash equilibrium

at that state. This is in contrast to the preliminary observation in Aumann and

Brandenburger (1995) which requires that the action profile is mutually known. That

the latter need not hold under the assumptions of Theorem 5 is illustrated in the

following example.

Example 3. Consider the game of chicken in Section 2 and let M∗
1 = {b, α}, M∗

2 =

{a, b}, ϕ∗
1 = 1(b,a), ϕ

∗
2 =

1
2
1(α,a)+

1
2
1(α,b), π1(b) = B, π1(α) = α1A+(1−α)1B, π2(a) = A

and π2(b) = B with 0 < α < 1
2
. The corresponding interactive belief system is:

1\2 a b

b 1, 2β1

1+β1
0, 0

α 1
2
, 1−β1

1+β1

1
2
, 1

We have that R1 =M∗
1 and R2 = {a}.11 Thus, it is mutually known that the players

are rational at m = (b, a). The conditions for an endogenous interactive belief system

10Theorem 5 also holds under the weaker condition |R ∩ supp(ϕ∗
i )| ≤ 1 for each i ∈ N .

11To see this, note that π1(b) = B ∈ BR1(A) = BR1

(∑
m2

ϕ∗[b,m2]
ϕ∗
M∗

1
[b] π2(m2)

)
, π1(α) =

α1A + (1 − α)1B ∈ BR1

(
1
21A + 1

21B
)

= BR1

(∑
m2

ϕ∗[α,m2]
ϕ∗
M∗

1
[α] π2(m2)

)
, π2(a) = A ∈

BR2

(
α(1−β1)
1+β1

1A +
(
1− α(1−β1)

1+β1

)
1B

)
= BR2

(∑
m1

ϕ∗[m1,a]
ϕ∗
M∗

2
[a] π1(m1)

)
, and π2(b) = B ̸∈ BR2(α1A+

(1− α)1B) = BR2

(∑
m1

ϕ∗[m1,b]
ϕ∗
M∗

2
[b] π1(m1)

)
.
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with complexity costs are satisfied. Regarding player 1, we have that supp(ϕ∗
1,M∗

1
) ∩

supp(ϕ∗
2,M∗

1
) = ∅, supp(ϕ∗

1) = {(b, a)}, π1(b) = B ∈ BR1(A) = BR1(π2(a)) and

v1(π2(a)) = 7 > 1 = v1(π2(b)). As for player 2, supp(ϕ∗
2) ∩ (M∗

1 × R2) = {(α, a)},

π2(a) = A ∈ BR2(α1A + (1 − α)1B) = BR2(π1(α)) and v2(π1(α)) = 1 + 5α > 1 =

v2(π1(b)). Furthermore, supp(ϕ∗
1,M∗

2
) ∩ supp(ϕ∗

2,M∗
2
) = {a} and π2(a) = A solves

max
a2∈A2

∑
m1

ϕ∗
1[m1, a]

ϕ∗
1,M∗

2
[a]

u2(π1(m1), a2) = max
a2∈A2

u2(B, a2).

However, π1(b) ̸= π1(α), hence, player 2 does not know the action profile at

m = (b, a) since β2 > 0 ⇔ β1 < 1.

Example 3 shows that both players may know that the other is rational at some

state, and thus the action profile must be a Nash equilibrium at that state, but the

players need not know the action profile. It also shows that players’ rationality need

not be commonly known: indeed, player 2 is irrational at m2 = b, assigns strictly

positive probability that player 1 is of type m1 = α, which in turn assigns strictly

positive probability that player 2 is irrational.12 The reason why we can dispense

with the requirement of the mutual knowledge of the action profile from Aumann

and Brandenburger’s (1995) preliminary observation is that our notion of rationality

is stronger than theirs since it requires not only that each player best-replies against

his conjecture of his opponent’s action but also that the messages that he sends with

strictly positive probability are optimal for him in the sense of (4) and (5).

Finally, Example 3 shows that the assumption of mutual knowledge of rationality

cannot be weakened to require only rationality: when m = (α, a) ∈ R1 × R2, both

players are rational but π(m) = (α1A + (1− α)1B, A) is not a Nash equilibrium.

12More formally, common knowledge of rationality fails because K2(R1 × R2) = ∅ (see Aumann

and Brandenburger (1995) for the definition of the knowledge operator K and its iterates such as

K2).
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6 Discussion

Many papers have considered whether correlated equilibrium payoffs can be sustained

as the outcome of an extended-form game where players can take “cheap” pre-play

actions. For 2-player games, we find that only a very restricted set of outcomes is

achievable when each player has the ability to influence and manipulate the infor-

mation structure in a general way. The distinguishing feature of our model is that

we allow each player to choose any information structure he desires, and with some

probability the information structure he chooses is the one that actually determines

the joint distribution of the messages of all players. This section provides a discussion

of these features and how they relate with alternative formalizations in the literature.

(a) Aggregation of information designs. Our specification that the information

structure is a convex combination of those chosen by the players is, as pointed out,

a simple way of obtaining that both players can manipulate it without imposing any

restrictions on the kinds of manipulations that are allowed (in the sense that each

player has the chance to choose whichever information structure he desires, and with

positive probability this information structure is realized). A more general way of

combining the two information designs is to postulate an abstract aggregation func-

tion α : S2 → S such that if player 1 chooses information structure ϕ1 ∈ S and player

2 chooses information structure ϕ2 ∈ S, then the realized information structure is

α(ϕ1, ϕ2) ∈ S. Alternative formulations of information design in a setting without an

explicit designer can then be obtained by specifying alternative aggregation functions

α.

One such alternative is for each player i ∈ {1, 2} to choose ϕi ∈ S and then

assume that each i receives two messages m1
i and m2

i , where m
1 = (m1

1,m
1
2) and

m2 = (m2
1,m

2
2) are independently drawn from ϕ1 and ϕ2 respectively. We note that

this formulation can be embedded in our framework under an alternative aggregation

function α. Indeed, let ψ : N2 × N2 → N2 be a bijection and let α(ϕ1, ϕ2) = (ϕ1 ×

ϕ2) ◦ ψ−1. If we additionally impose the restriction that players are only allowed

to choose ϕi such that ϕi[m
i
1,m

i
2] = 0 whenever mi

1 ̸= mi
2, then this formulation
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captures exactly the model of Aumann and Hart (2003) when cheap talk is restricted

to take place over a single period—we discuss this relationship further in the next

subsection. According to this formulation, note that player i has no ability to influence

the distribution of m−i. On the other hand, our specification of α does not restrict

players from learning about or influencing any aspect of the information structure.

To what extent do our results extend to a more general class of aggregation functions?

We leave this question for future research.

(b) Cheap talk. In contrast to our results, the literature has found that specific

communication protocols can greatly expand the set of equilibrium outcomes. For

example, for 2-player games, Aumann and Hart’s (2003) results imply that any payoff

in the convex hull of the Nash equilibrium payoffs can be achieved as the outcome

of an extended game where players talk for as long as they like before playing the

game. In Aumann and Hart (2003), messages are common knowledge so there is

no possibility of getting payoffs outside of the convex hull, but cheap talk is enough

for players to reach any outcome achievable using publicly observed lotteries. On

the other hand, in our model, there are privately observed lotteries but nevertheless

players can only get payoffs in co(u(N(G))) and not even all of those (even if we were

to vary β).

To understand the relationship between our model and cheap talk, consider the

version of Aumann and Hart’s (2003) model specialised to complete information and

assume that talk takes place over a single period only. This can be captured in our

framework using the alternative aggregation function proposed in (a) above. For each

i ∈ {1, 2}, let mi = (m1
i ,m

2
i ) and restrict each player’s choice of ϕi to distributions

over mi = (mi
1,m

i
2) such that ϕi[m

i
1,m

i
2] = 0 whenever mi

1 ̸= mi
2. Recall that m

1 and

m2 are independently drawn from ϕ1 and ϕ2 respectively. Thus, the message mi
i just

reveals to i the message he sends to j, and mi can be identified with the message sent

by player i in Aumann and Hart (2003).

The key difference between our β specification and the setting of Aumann and Hart

(2003) is that each player in the latter is sure that his opponent receives the message

he sends, he knows what this message is, and his opponent cannot do anything to
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influence this message. On the other hand, according to our β specification, there is

always a possibility that each player gets to determine the messages of both players.

Even in the context of cheap talk where it seems natural that each player can say

what he likes and knows what he says, one can imagine situations where players can

take actions that influence the meaning of the words that are spoken. If we interpret

the message received by each player as his understanding of the words spoken by his

opponent, then players may be uncertain of the messages they send. Moreover, if

player 2 benefits from player 1 sending some message m̄1, then player 2 may want to

take certain (unmodelled) actions that increase the likelihood that player 1 will send

message m̄1. In the broader context of information provision, such manipulations

seem even more natural but are ruled out by aggregation functions where each player

can only influence one dimension of the message profile. Our model with the β

aggregation function captures the idea that players can affect, to some degree, every

dimension of the message profile.

(c) Communication protocols. Beyond Aumann and Hart (2003), the literature

has focused on whether players can communicate in a more sophisticated manner

to achieve correlated equilibrium payoffs. For instance, Ben-Porath (1998) shows

that each correlated equilibrium can be approximated by the action distribution of

a sequential equilibrium in a specific information design extensive-form game that

includes the possibility of credibly revealing messages and (in the case of two players)

ball and urns.13 However, the specification of such extensive form games rules out

the possibility of certain manipulations by assumption. In contrast, our results imply

that when players can secretly manipulate the information structure in a general way,

then in 2-player games, only specific convex combinations of Nash equilibria can be

supported as sequential equilibrium outcomes of the information design extensive-

form game.

For example, consider once again the chicken game from Section 2. In Ben-Porath

(1998), the correlated equilibrium ϕ = 1
3
1(A,A) +

1
3
1(A,B) +

1
3
1(B,A) is close to the

13Gerardi (2004) obtains a stronger result for games with at least five players. See also Urbano

and Vila (2002) for 2-player games where players are boundedly rational.
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action distribution of a sequential equilibrium of his information design extensive-

form, which works as follows. Player 2 lets player 1 choose a ball from an urn U1

and the ball which player 1 draws from U1 determines an action a1; the induced

distribution of player 1’s action is ϕA1 =
2
3
1A + 1

3
1B. Player 1 then gives player 2 an

urn U2(a1) inducing on A2 the distribution 1
2
1A + 1

2
1B if a1 = A and 1A if a1 = B.

After this has occurred, and without going into too much detail about Ben-Porath’s

(1998) information design extensive-form game, there is a sufficiently high probability

that the contents of the urns U1 and U2(a1) are revealed as well as the ball that was

chosen by player 1 from U1. Our point is that there is a (unmodelled) possibility of

manipulation by one player in this extensive-form. Specifically, player 1 can send urn

U2(B) to player 2 when the ball he draws from U1 indicates that he should play A; in

addition, he could take all the balls from U1 and put them all inside again, except one

ball indicating that he should play B. In this way, he obtains a payoff of 7 instead of

42
3
.

(d) Manipulability. Ben-Porath (1998) is motivated by the idea that a reliable

mediator who is immune to manipulation by the players is not always available, and

he asks whether it is possible to achieve correlated equilibrium payoffs without us-

ing a mediator. However, players may wish to manipulate the information structure

regardless of whether it is the result of some procedure designed by the players them-

selves or if it comes from a mediator. As the previous example shows, if players

are able to manipulate the communication protocol, then they will do so as well,

i.e. Ben-Porath’s (1998) results require that certain manipulations are ruled out by

assumption. Our model is a reduced form attempt to capture the idea that players

can manipulate the information structure however they wish by specifying that with

probability βi, player i can choose any information structure he desires, but with

probability (1− βi), he can do nothing.

(e) Privacy. An alternative to our assumption that the information design choices

are made privately is to assume that information design is public so that, for example,

each player observes the information structure β1ϕ1 + β2ϕ2 chosen by nature. To

model this, we can let, for each player i, i’s action be a function of the message that
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he receives, his own information design and the information structure β1ϕ1 + β2ϕ2,

i.e. πi : Mi × S × S → ∆({A,B}). Under this assumption, the payoff (42
3
, 42

3
)

can be achieved by specifying that ϕ1 = ϕ2 = ϕ∗ = 1
3
1(A,B) +

1
3
1(B,A) +

1
3
1(A,A),

πi(mi, ϕi, ϕ
∗) = mi for each ϕi ∈ S and mi ∈ supp(ϕ∗

Mi
); and πi(mi, ϕi, ϕ̂) =

1
2
1A +

1
2
1B for each ϕi ∈ S, ϕ̂ ̸= ϕ∗ and mi ∈ supp(ϕ̂Mi

). Intuitively, deviations from ϕ∗

can be deterred by the threat of reverting to the mixed strategy Nash equilibrium

whenever some alternative information structure is realized. The reason we assume

that information design is private is because we are interested in how the ability to

manipulate the information structure affects the outcomes of the game. When the

choice of information is observed, certain information structures can be sustained

by the threat of punishment. Our aim is instead to ask which outcomes can arise

abstracting away from the possibility of such threats.

(f) Information design literature. Our formalization follows closely the one used

in recent information design papers. Bergemann and Morris (2019) provide a unified

perspective on them with a general framework which features payoff uncertainty and

underlying private information. Our setting contains none of these features but, in

contrast, allows for multiple designers and for the designer to be a player of the game

played after the information has been designed. In particular, if in some papers in the

information design literature, one shuts down payoff uncertainty, underlying private

information or both, then one obtains a particular case of the setting of those papers

which can also be represented as a particular case of our framework.14

A more interesting exercise consists in extending our framework to include payoff

14For instance, the setting in Crawford and Sobel (1982) without private information is obtained

by specifying, e.g., β1 = 1 so that only player 1 (the sender) designs information and that both

players’ payoff functions be independent of player 1’s action so that only the action of player 2

(the receiver) matters. This particular case of our framework is also a special case of the setting

in Kamenica and Gentzkow (2011), namely one in which there is no payoff uncertainty. Without

payoff uncertainty, a similar conclusion holds in the case where there are multiple senders as in

Gentzkow and Kamenica (2017), formalized in our setting as follows: Letting now player 1 denote

the receiver, we would have supp(β) = N \{1} and ui(a1, a−1) = ui(a1, a
′
−1) for each i ∈ N , a1 ∈ A1

and a−1, a
′
−1 ∈ A−1.
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uncertainty and underlying private information. To see what can be gained by such

extension, consider the question of what combinations of consumer and producer

surplus can arise in a monopolistic market where the buyer’s valuation is random.

If the buyer is fully informed and the seller observes a signal about the valuation,

Bergemann, Brooks, and Morris (2015) characterize the outcomes that can arise under

some information structure for the seller. On the other hand, if the buyer is not

fully informed, then she must learn about her own valuation. Under the assumption

that the buyer (but not the seller) observes a signal about the valuation, Roesler

and Szentes (2017) characterize the outcomes that can arise under some information

structure for the buyer; and in particular, they identify an information structure that

is optimal for the buyer. However, the seller may also have incentives to learn about

and/or influence the signals received by the buyer. If both the buyer and seller are

able to manipulate the information structure, what will be the resulting information

structure? We address this question in another paper.

(g) Endogenous information in interactive belief systems. It is not obvious how

the notion of endogenous information should be defined in interactive belief systems

and, as Aumann (1987, Section 4 (e)) pointed out, it is not easy to distinguish be-

tween endogenous and exogenous information. For Aumann’s (1987) main result that

common knowledge of rationality implies correlated equilibrium, this distinction does

not matter; the point of this paper is that it matters for its converse. This has been

established in the most transparent way for 2-player games via Theorem 3 and Corol-

laries 2 and 3, the latter in Appendix A.5, through a characterization of the sequential

equilibrium payoffs of the information design extensive-form. These results build on

the characterization of sequential equilibrium outcomes provided by Theorem 2 which

reveal what properties must the messages that each player sends with strictly positive

probability satisfy.

Our epistemic analysis takes place in an interim stage, after the information de-

sign has been made but before the messages have been received by the players. Our

formalization of endogenous information then uses those properties of messages that

each player sends with strictly positive probability as the defining feature of endoge-
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nous information. Very roughly, the idea is that the messages that define players’

types in the interactive belief system are not arbitrary but rather designed in an

optimal way by each player and, thus, must satisfy those properties whenever the

player is rational. As with other aspects of the model, this definition of endogenous

information should not be taken literally. We view it as a way to make the point

that endogenous information matters for epistemic conditions; our goal is to make

this point in the strongest possible (but still in a non-trivial) form. Now that this

point has been made, one can think about more “realistic” ways of adding endogenous

information to interactive belief systems.

A Appendix

A.1 Proofs

We start by noting the properties that sequential equilibrium imposes on the equilib-

rium outcome. Namely, for each sequential equilibrium π ∈ Π,∑
m

ϕ∗[m]ui(π(m)) ≥
∑
m

(ϕ′
i, ϕ

∗
−i)[m]ui(π

′
i(mi, ϕ

′
i), π−i(m−i)), (6)

for each i ∈ supp(β), ϕ′
i ∈ S and π′

i : Mi × S → ∆(Ai), where (ϕ′
i, ϕ

∗
−i) = βiϕ

′
i +∑

j∈supp(β)\{i} βjϕ
∗
j , and∑
m−i

ϕ∗[m]

ϕ∗
Mi
[mi]

ui(π(m)) ≥
∑
m−i

ϕ∗[m]

ϕ∗
Mi
[mi]

ui(ai, π−i(m−i)) (7)

for each i ∈ N , mi ∈ supp(ϕ∗
Mi
) and ai ∈ Ai.

A.1.1 Proof of Theorem 1

Let π ∈ Π be a sequential equilibrium of Gid, σ = σπ, i ∈ N and a∗i , a
′
i ∈ Ai. We will

show that
∑

a−i
σ[a∗i , a−i]

(
ui(a

∗
i , a−i)− ui(a

′
i, a−i)

)
≥ 0.

We may assume that a∗i ∈ supp(σAi
). Thus, there exists mi ∈ supp(ϕ∗

Mi
) such

that a∗i ∈ supp(πi(mi, ϕ
∗
i )). The optimality of a∗i , i.e. (7), implies that∑

m−i,a−i

ϕ∗[m]π(m,ϕ∗)[a∗i , a−i]
(
ui(a

∗
i , a−i)− ui(a

′
i, a−i)

)
≥ 0.
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This inequality holds for each mi satisfying the property that mi ∈ supp(ϕ∗
Mi
) and

a∗i ∈ supp(πi(mi, ϕ
∗
i )). It also holds for each mi such that this property does not hold.

Thus, ∑
m,a−i

ϕ∗[m]π(m,ϕ∗)[a∗i , a−i]
(
ui(a

∗
i , a−i)− ui(a

′
i, a−i)

)
≥ 0.

Since ∑
m,a−i

ϕ∗[m]π(m,ϕ∗)[a∗i , a−i]
(
ui(a

∗
i , a−i)− ui(a

′
i, a−i)

)
=∑

a−i

(
ui(a

∗
i , a−i)− ui(a

′
i, a−i)

)∑
m

ϕ∗[m]π(m,ϕ∗)[a∗i , a−i] =∑
a−i

(
ui(a

∗
i , a−i)− ui(a

′
i, a−i)

)
σ[a∗i , a−i],

it follows that
∑

a−i
σ[a∗i , a−i]

(
ui(a

∗
i , a−i)− ui(a

′
i, a−i)

)
≥ 0. Thus, σ ∈ C(G).

A.1.2 Proof of the necessity part of Theorem 2

In each sequential equilibrium of Gid, any player i ∈ supp(β) must send optimal

messages m in the sense that they induce an action profile π(m) that maximizes i’s

payoff function. This is stated in Lemma 1 which is a preliminary result for condition

(1).

Lemma 1. If G is an n-player game and π is a sequential equilibrium of Gid, then

supp(ϕ∗
i ) ⊆ {m ∈M : ui(π(m)) = supm′∈M ui(π(m

′))} for each i ∈ supp(β).

Proof. Suppose not; then there is i ∈ supp(β), m′ ∈ supp(ϕ∗
i ) and m

∗ ∈M such

that ui(π(m
∗)) > ui(π(m

′)). Define ϕ′
i by setting, for each m ∈ supp(ϕ∗

i ),

ϕ′
i[m] =


0 if m = m′,

ϕ∗
i [m

∗] + ϕ∗
i [m

′] if m = m∗,

ϕ∗
i [m] otherwise,

and let π′
i : Mi × S → ∆(Ai) be such that π′

i(mi, ϕ
′
i) = πi(mi, ϕ

∗
i ) for each mi ∈ Mi.
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Then ∑
m

(ϕ′
i, ϕ

∗
−i)[m]ui(π

′
i(mi, ϕ

′
i), π−i(m−i))−

∑
m

ϕ∗[m]ui(π(m))

=
∑
m

(ϕ′
i, ϕ

∗
−i)[m]ui(π(m))−

∑
m

ϕ∗[m]ui(π(m))

=
∑
m

βi (ϕ
′
i[m]− ϕ∗

i [m])ui(π(m))

= βiϕ
∗
i [m

′]
(
ui(π(m

∗))− ui(π(m
′))
)
> 0.

But this is a contradiction to (6) since π is a sequential equilibrium of Gid.

The conclusion of Lemma 1 can be strengthened: for a message m to be opti-

mal, ui(π(m)) must achieve maxm′
−i
vi(π−i(m

′
−i)) and, thus, πi(mi) be a best-reply to

π−i(m−i).

Lemma 2. If G is an n-player game and π is a sequential equilibrium of Gid, then

supp(ϕ∗
i ) ⊆ {m ∈M : vi(π−i(m−i)) = sup

m′
−i∈M−i

vi(π−i(m
′
−i))

and πi(mi) ∈ BRi(π−i(m−i))}

for each i ∈ supp(β).

Proof. Suppose not; then there is i ∈ supp(β), m′ ∈ supp(ϕ∗
i ) and m

∗ ∈M such

that (i) vi(π−i(m
∗
−i)) > vi(π−i(m

′
−i)) or (ii) vi(π−i(m

′
−i)) = supm̂−i∈M−i

vi(π−i(m̂−i))

and πi(m
′
i) ̸∈ BRi(π−i(m

′
−i)); in case (ii), let m∗ = m′. Let a∗i ∈ BRi(π−i(m

∗
−i)),

m̄i ̸∈ supp(ϕ∗
Mi
), ϕ′

i = 1(m̄i,m∗
−i)

and π′
i :Mi×S → ∆(Ai) be such that π′

i(m̄i, ϕ
′
i) = a∗i

and π′
i(mi, ϕ

′
i) = πi(mi, ϕ

∗
i ) for each mi ̸= m̄i. Then∑

m

(ϕ′
i, ϕ

∗
−i)[m]ui(π

′
i(mi, ϕ

′
i), π−i(m−i))−

∑
m

ϕ∗[m]ui(π(m))

=
∑
m

βiϕ
′
i[m]ui(π

′
i(mi, ϕ

′
i), π−i(m−i))−

∑
m

βiϕ
∗
i [m]ui(π(m))

= βi

(
ui(a

∗
i , π−i(m

∗
−i))−

∑
m∈supp(ϕ∗

i )

ϕ∗
i [m]ui(π(m))

)
= βi

(
vi(π−i(m

∗
−i))− ui(π(m

′))
)

because ui(π(m)) = ui(π(m
′)) for each m ∈ supp(ϕ∗

i ) by Lemma 1 as m′ ∈ supp(ϕ∗
i ).

Thus, if vi(π−i(m
∗
−i)) > vi(π−i(m

′
−i)), then vi(π−i(m

∗
−i))−ui(π(m′)) ≥ vi(π−i(m

∗
−i))−
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vi(π−i(m
′
−i)) > 0; if vi(π−i(m

∗
−i)) = vi(π−i(m

′
−i)), then πi(m

′
i) ̸∈ BRi(π−i(m

′
−i)) and

vi(π−i(m
∗
−i))−ui(π(m′)) > vi(π−i(m

∗
−i))−vi(π−i(m

′
−i)) ≥ 0. In either case, it follows

that
∑

m(ϕ
′
i, ϕ

∗
−i)[m]ui(π

′
i(mi, ϕ

′
i), π−i(m−i)) −

∑
m ϕ

∗[m]ui(π(m)) > 0. But this is a

contradiction to (6) since π is a sequential equilibrium.

Lemma 2 implies that πi(mi) is a best-reply against π−i(m−i) whenever m ∈

supp(ϕ∗
i ) and i ∈ supp(β). We will now show that if, in addition,

mi ∈ ∪j∈supp(β−i)supp(ϕ
∗
j,Mi

),

then πi(mi) solves

max
αi∈∆(Ai)

∑
m−i

∑
j∈supp(β−i)

βjϕ
∗
j [mi,m−i]∑

j∈supp(β−i)
βjϕ∗

j,Mi
[mi]

ui(αi, π−i(m−i)).

Thus, whenever mi ∈ supp(ϕ∗
i ) ∩ (∪j∈supp(β−i)supp(ϕ

∗
j,Mi

)), πi(mi) solves player i’s

expected payoff conditional on his information design ϕ∗
i being chosen and also con-

ditional on it not being chosen. The reason for this is that player i can always

differentiate the messages he receives from himself from those that he receives from

the other players: if m ∈ supp(ϕ∗
i ) is such that πi(mi) does not maximize i’s expected

payoff conditional on his information design ϕ∗
i not being chosen, then player i would

gain by deviating from ϕ∗
i by simply sending a message (m̄i,m−i) with probability

one for some m̄i ̸∈ supp(ϕ∗
Mi
). If he receives message mi, then he can be sure that his

information design has not been chosen and can choose a solution to that problem

in response to mi; if he receives message m̄i, then the can be sure that his informa-

tion design has been chosen and choose πi(mi), which is a best-reply against m−i, in

response to m̄i.

Lemma 3. If G is an n-player game and π is a sequential equilibrium of Gid, then

supp(ϕ∗
i ) ⊆

{
m ∈M : mi ̸∈ ∪j∈supp(β−i)supp(ϕ

∗
j,Mi

) or πi(mi) solves

max
αi∈∆(Ai)

∑
m−i

∑
j∈supp(β−i)

βjϕ
∗
j [mi,m−i]∑

j∈supp(β−i)
βjϕ∗

j,Mi
[mi]

ui(αi, π−i(m−i))
}

for each i ∈ supp(β).
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Proof. Suppose not; then there is i ∈ supp(β) and m′ ∈ supp(ϕ∗
i ) such that

m′
i ∈ ∪j∈supp(β−i)supp(ϕ

∗
j,Mi

) and πi(m
′
i) does not solve

max
αi∈∆(Ai)

∑
m−i

∑
j∈supp(β−i)

βjϕ
∗
j [m

′
i,m−i]∑

j∈supp(β−i)
βjϕ∗

j,Mi
[m′

i]
ui(αi, π−i(m−i)). (8)

Let a∗i be a solution to problem (8), m̄i ̸∈ supp(ϕ∗
Mi
), ϕ′

i = 1(m̄i,m′
−i)

and π′
i :Mi×S →

∆(Ai) be such that

π′
i(mi, ϕ

′
i) =


a∗i if mi = m′

i,

πi(m
′
i) if mi = m̄i,

πi(mi) otherwise.

Then ∑
m

(ϕ′
i, ϕ

∗
−i)[m]ui(π

′
i(mi, ϕ

′
i), π−i(m−i))−

∑
m

ϕ∗[m]ui(π(m))

= βi

(
ui(π(m

′))−
∑

m∈supp(ϕ∗
i )

ϕ∗
i [m]ui(π(m))

)
+

∑
j∈supp(β−i)

βj
∑
m−i

ϕ∗
j [m

′
i,m−i]

(
ui(a

∗
i , π−i(m−i))− ui(πi(m

′
i), π−i(m−i))

)
=

∑
j∈supp(β−i)

βj
∑
m−i

ϕ∗
j [m

′
i,m−i]

(
ui(a

∗
i , π−i(m−i))− ui(πi(m

′
i), π−i(m−i))

)
where the last equality follows by Lemma 1 since m′ ∈ supp(ϕ∗

i ). Since πi(m
′
i) does

not solve problem (8) but a∗i does, it follows that∑
m−i

∑
j∈supp(β−i)

βjϕ
∗
j [m

′
i,m−i]∑

j∈supp(β−i)
βjϕ∗

j,Mi
[m′

i]

(
ui(a

∗
i , π−i(m−i))− ui(πi(m

′
i), π−i(m−i))

)
> 0

and, since m′
i ∈ ∪j∈supp(β−i)supp(ϕ

∗
j,Mi

),∑
j∈supp(β−i)

βj
∑
m−i

ϕ∗
j [m

′
i,m−i]

(
ui(a

∗
i , π−i(m−i))− ui(πi(m

′
i), π−i(m−i))

)
> 0.

Hence,
∑

m(ϕ
′
i, ϕ

∗
−i)[m]ui(π

′
i(mi, ϕ

′
i), π−i(m−i))−

∑
m ϕ

∗[m]ui(π(m)) > 0. But this is

a contradiction to (6) since π is a sequential equilibrium of Gid.

It follows by Lemmas 2 and 3 that, for each sequential equilibrium outcome, i ∈ N

and m ∈ supp(ϕ∗
i ), condition (1) in Theorem 2 holds and πi(mi) solves

max
αi∈∆(Ai)

∑
m−i

∑
j∈supp(β−i)

βjϕ
∗
j [mi,m−i]∑

j∈supp(β−i)
βjϕ∗

j,Mi
[mi]

ui(αi, π−i(m−i))
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whenever mi ∈ ∪j∈supp(β−i)supp(ϕ
∗
j,Mi

) and, hence,

mi ∈ supp(ϕ∗
i ) ∩ (∪j∈supp(β−i)supp(ϕ

∗
j,Mi

)).

In fact, regarding (1), note that if i ∈ supp(β) and m ∈ supp(ϕ∗
i ), then mj ∈

supp(ϕ∗
Mj

) for each j ∈ N and, thus, m ∈M∗. Hence,

vi(π−i(m−i)) ≤ max
m′

−i∈M∗
−i

vi(π−i(m
′
−i)) ≤ sup

m′
−i∈M−i

vi(π−i(m
′
−i)) = vi(π−i(m−i)).

Condition (7) implies that, for each i ∈ N , πi(mi) solves

max
αi∈∆(Ai)

∑
m−i

∑
j∈supp(β−i)

βjϕ
∗
j [mi,m−i]∑

j∈supp(β−i)
βjϕ∗

j,Mi
[mi]

ui(αi, π−i(m−i))

whenever mi ∈ ∪j∈supp(β−i)supp(ϕ
∗
j,Mi

) \ supp(ϕ∗
i ). This, together with what has been

shown in the previous paragraph, shows that condition (2) in Theorem 2 holds.

A.1.3 Proof of the sufficiency part of Theorem 2

Let
(
(ϕ∗

i )i∈supp(β),
(
(πi(mi))mi∈supp(ϕ∗

Mi
)

)
i∈N

)
be such that conditions (1) and (2) in

Theorem 2 hold; we will show that it is the outcome of a sequential equilibrium.

We will construct a sequential equilibrium π with the desired outcome. To this

end, consider {πα, pα}α defined as follows: The index set consists of α = (k, F, F̂ )

such that k ∈ N, F is a finite subset of N and F̂ is a finite subset of S; this set is

partially ordered by defining (k′, F ′, F̂ ′) ≥ (k, F, F̂ ) if k′ ≥ k, F ⊆ F ′ and F̂ ⊆ F̂ ′. If

X is a finite set, let υX ∈ ∆(X) be uniform on X. For each i ∈ N , let

m̄i ∈

supp(ϕ∗
i,Mi

) if i ∈ supp(β),

supp(ϕ∗
Mi
) if i ̸∈ supp(β),

q̄i[m−i] =


ϕ∗
i [m̄i,m−i]

ϕ∗
i,Mi

[m̄i]
if i ∈ supp(β)∑

j∈supp(β) βjϕ
∗
j [m̄i,m−i]∑

j∈supp(β) βjϕ∗
j,Mi

[m̄i]
if i ̸∈ supp(β),
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for each m−i ∈M−i, and for each α = (k, F, F̂ ), let

ταi =

∑
l∈F∪(∪ϕ∈F̂ supp(ϕMi

)) 2
−l1l∑

l∈F∪(∪ϕ∈F̂ supp(ϕMi
)) 2

−l
,

qαi = ταi × q̄i,

τα =
∏
j∈N

ταj ,

qα = (n′)−1
∑

j∈supp(β)

qαj ,

q̂α = n−1
∑
j∈N

qαj ,

µα = (1− k−1 − k−2)qα + k−1q̂α + k−2τα, and

pα(ϕ) = (1− k−1)
∑

j∈supp(β)

βjϕj + k−1µα.

For each mi ̸∈ supp(ϕ∗
Mi
), set πi(mi, ϕ

∗
i ) = πi(m̄i) if i ∈ supp(β) and πi(mi) =

πi(m̄i) if i ̸∈ supp(β); hence, πi(mi) is defined for each i ∈ N and mi ∈Mi.

For each i ∈ supp(β), mi ∈Mi and ϕi ̸= ϕ∗
i such that

βiϕi,Mi
[mi] +

∑
j∈supp(β−i)

βjϕ
∗
j,Mi

[mi] = 0,

let πi(mi, ϕi) = πi(m̄i).

For each i ∈ supp(β), mi ∈Mi and ϕi ̸= ϕ∗
i such that

βiϕi,Mi
[mi] +

∑
j∈supp(β−i)

βjϕ
∗
j,Mi

[mi] > 0,

let πi(mi, ϕi) be a best-reply against∑
m−i

βiϕi[mi,m−i] +
∑

j∈supp(β−i)
βjϕ

∗
j [mi,m−i]

βiϕi,Mi
[mi] +

∑
j∈supp(β−i)

βjϕ∗
j,Mi

[mi]
π−i(m−i).

We may assume that πi :Mi×S → ∆(Ai) is measurable. Note first thatMi×S =

∪3
r=1Br with

B1 = {(mi, ϕi) : ϕi = ϕ∗
i },

B2 = {(mi, ϕi) : ϕi ̸= ϕ∗
i and βiϕi,Mi

[mi] +
∑

j∈supp(β−i)

βjϕ
∗
j,Mi

[mi] = 0} and

B3 = {(mi, ϕi) : ϕi ̸= ϕ∗
i and βiϕi,Mi

[mi] +
∑

j∈supp(β−i)

βjϕ
∗
j,Mi

[mi] > 0}.
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For each r ∈ {1, 2, 3}, Br is measurable. Indeed, B1 is closed, B2 is the intersec-

tion of an open set, {(mi, ϕi) : ϕi ̸= ϕ∗
i }, with a closed set, {(mi, ϕi) : βiϕi,Mi

[mi] +∑
j∈supp(β−i)

βjϕ
∗
j,Mi

[mi] = 0}, and B3 is open. Then, for each measurable B ⊆ ∆(Ai),

π−1
i (B) ∩ B1 is measurable since π−1

i (B) ∩ B1 is countable. Regarding π−1
i (B) ∩ B3:

Let f : Mi × S → ∆(A−i) be defined by setting, for each (mi, ϕi) ∈ B3, f(mi, ϕi) =∑
m−i

βiϕi[mi,m−i]+
∑

j∈supp(β−i)
βjϕ

∗
j [mi,m−i]

βiϕi,Mi
[mi]+

∑
j∈supp(β−i)

βjϕ∗
j,Mi

[mi]
π−i(m−i). Letting BRi : ∆(A−i) ⇒ ∆(Ai) be

player i’s best-reply correspondence in G, define Ψ :Mi × S ⇒ ∆(Ai) by setting, for

each (mi, ϕi) ∈ B3, Ψ(mi, ϕi) = BRi(f(mi, ϕi)). Since ∆(Ai) is compact, f is con-

tinuous and BRi is upper hemicontinuous, it follows that Ψ is upper hemicontinuous

and, hence, measurable (and, thus, weakly measurable). Hence, Ψ has a measurable

selection by the Kuratowski-Ryll-Nardzewski Selection Theorem (e.g. Aliprantis and

Border (2006, Theorem 18.13, p. 600)). Finally, for each measurable B ⊆ ∆(Ai),

π−1
i (B) = B2 if πi(m̄i) ∈ B and π−1

i (B) = ∅ otherwise; thus π−1
i (B) ∩ B2 is measur-

able.

Furthermore, let

π1,α
i = (1− k−3)1ϕ∗

i
+ k−3υF̂ and π2,α

i (mi, ϕi) = (1− k−1)πi(mi, ϕi) + k−1υAi

if i ∈ supp(β). For each i ̸∈ supp(β), let

π2,α
i (mi) = (1− k−1)πi(mi) + k−1υAi

.

Let ε > 0. We have that the following conditions in the definition of perfect

conditional ε-equilibrium hold by construction:

1. For each α, πα is a strategy and pα : Sn′ → ∆(M) is measurable,

2. For each i ∈ supp(β), supB∈B(S) |π
1,α
i [B]− 1ϕ∗

i
[B]| → 0 and

sup
(mi,ϕi)∈Mi×S,ai∈Ai

|π2,α
i (mi, ϕi)[ai]− πi(mi, ϕi)[ai]| → 0, 15

3. For each i ∈ supp(β), mi ∈ Mi, ϕi ∈ S and ai ∈ Ai, there is ᾱ such that

π1,α
i [ϕi] > 0 and π2,α

i (mi, ϕi)[ai] > 0 for each α ≥ ᾱ,

15We let B(S) denote the class of Borel measurable subsets of S and, for each ϕ ∈ S, 1ϕ denote

the probability measure on S degenerate at ϕ.
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4. For each i ∈ N \ supp(β), supmi∈Mi,ai∈Ai
|π2,α

i (mi)[ai]− πi(mi)[ai]| → 0,

5. For each i ∈ N \ supp(β), mi ∈ Mi and ai ∈ Ai, there is ᾱ such that

π2,α
i (mi)[ai] > 0 for each α ≥ ᾱ,

6. supϕ∈Sn′ ,B⊆M |pα(ϕ)[B]−
∑

i∈supp(β) βiϕi[B]| → 0, and

7. For each ϕ ∈ Sn′
and m ∈M , there is ᾱ such that pα(ϕ)[m] > 0 for each α ≥ ᾱ.

Note also that, for each α, supp(π1,α) and supp(pα) are finite. We define

Si(F, F̂ ) =
((
F ∪ (∪ϕ∈F̂ supp(ϕMi

)) ∪ (∪j∈supp(β−i)supp(ϕ
∗
j,Mi

))
)
× F̂

)
∪
((
F ∪ (∪ϕ∈F̂ supp(ϕMi

)) ∪ (∪j∈supp(β)supp(ϕ
∗
j,Mi

))
)
× {ϕ∗

i }
)

for each i ∈ supp(β) and

Si(F, F̂ ) = F ∪ (∪ϕ∈F̂ supp(ϕMi
)) ∪ (∪j∈supp(β)supp(ϕ

∗
j,Mi

))

for each i ∈ N \ supp(β). If (m,ϕ) ∈ Nn × Sn′
is such that π1,α[ϕ] > 0 and∑

ϕ′∈supp(π1,α) p
α(ϕ′)[m] > 0, then (mi, ϕi) ∈ Si(F, F̂ ) for each i ∈ supp(β) and

mi ∈ Si(F, F̂ ) for each i ∈ N \ supp(β).

Thus, to show that π is a perfect conditional ε-equilibrium, it remains to show

that

8. for each α,

(a) For each i ∈ supp(β) and ϕ′
i ∈ S,

∑
ϕ∈supp(π1,α)

π1,α[ϕ]

(∑
m

pα(ϕ)[m]ui(π
2,α(m,ϕ))

)
≥

∑
ϕ∈supp(1ϕ′

i
×π1,α

−i )

(1ϕ′
i
× π1,α

−i )[ϕ]

(∑
m

pα(ϕ)[m]ui(π
2,α(m,ϕ))

)
− ε,

where π1,α =
∏

i∈supp(β) π
1,α
i and 1ϕ′

i
× π1,α

−i = 1ϕ′
i
×
∏

j∈supp(β)\{i} π
1,α
j ,

(b) For each i ∈ supp(β), (mi, ϕi) ∈Mi × S such that

π1,α
i [ϕi]

∑
ϕ−i∈supp(π1,α

−i )

π1,α
−i [ϕ−i]p

α
Mi
(ϕi, ϕ−i)[mi] > 0
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and ai ∈ Ai,∑
ϕ−i∈supp(π1,α

−i ) π
1,α
−i [ϕ−i]

(∑
m−i

pα(ϕi, ϕ−i)[mi,m−i]ui(π
2,α(m,ϕ))

)
∑

ϕ−i∈supp(π1,α
−i ) π

1,α
−i [ϕ−i]pαMi

(ϕi, ϕ−i)[mi]
≥

∑
ϕ−i∈supp(π1,α

−i ) π
1,α
−i [ϕ−i]

(∑
m−i

pα(ϕi, ϕ−i)[mi,m−i]ui(ai, π
2,α
−i (m−i, ϕ−i))

)
∑

ϕ−i∈supp(π1,α
−i ) π

1,α
−i [ϕ−i]pαMi

(ϕi, ϕ−i)[mi]

− ε,

(c) For each i ∈ N \ supp(β), mi ∈Mi such that∑
ϕ∈supp(π1,α)

π1,α[ϕ]pαMi
(ϕ)[mi] > 0

and ai ∈ Ai,∑
ϕ∈supp(π1,α) π

1,α[ϕ]
(∑

m−i
pα(ϕ)[mi,m−i]ui(π

2,α(m,ϕ))
)

∑
ϕ∈supp(π1,α) π

1,α[ϕ]pαMi
(ϕ)[mi]

≥

∑
ϕ∈supp(π1,α) π

1,α[ϕ]
(∑

m−i
pα(ϕ)[mi,m−i]ui(ai, π

2,α
−i (m−i, ϕ−i))

)
∑

ϕ∈supp(π1,α) π
1,α[ϕ]pαMi

(ϕ)[mi]
− ε.

We will show that condition 8 holds for some subnet of {πα, pα}α. Recall that α =

(k, F, F̂ ). In what follows, we will often fix F and F̂ and take limits as k → ∞.

Regarding condition 8 (a), let i ∈ supp(β) and ϕ′
i ∈ S. We have that, for each

finite subsets F and F̂ of N and S, respectively,

lim
k

∑
ϕ∈supp(π1,α)

π1,α[ϕ]

(∑
m

pα(ϕ)[m]ui(π
2,α(m,ϕ))

)
=
∑
m

ϕ∗[m]ui(π(m))

and that

lim
k

∑
ϕ∈supp(1ϕ′

i
×π1,α

−i )

(1ϕ′
i
× π1,α

−i )[ϕ]

(∑
m

pα(ϕ)[m]ui(π
2,α(m,ϕ))

)
=

∑
m

(ϕ′
i, ϕ

∗
−i)[m]ui(πi(mi, ϕ

′
i), π−i(m−i)).

Hence, by considering α such that k ≥ k0 for some k0 ∈ N, it is enough to show that∑
m

ϕ∗[m]ui(π(m)) ≥
∑
m

(ϕ′
i, ϕ

∗
−i)[m]ui(πi(mi, ϕ

′
i), π−i(m−i)),
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which is equivalent to∑
m

ϕ∗
i [m]ui(π(m)) ≥

∑
m

ϕ′
i[m]ui(πi(mi, ϕ

′
i), π−i(m−i)). (9)

For each j ∈ N and mj ∈ Mj, πj(mj) ∈ {πj(m′
j) : m

′
j ∈ supp(ϕ∗

Mj
)} since πj(mj) =

πj(m̄j) whenever mj ̸∈ supp(ϕ∗
Mj

). Thus, by (1),∑
m

ϕ′
i[m]ui(πi(mi, ϕ

′
i), π−i(m−i)) ≤

∑
m

ϕ′
i[m]vi(π−i(m−i))

≤ max
m−i∈M∗

−i

vi(π−i(m−i)) =
∑
m

ϕ∗
i [m]ui(π(m))

and, hence, (9) holds. It then follows that condition 8 (a) also holds.

Consider condition 8 (b) and (c). For each i ∈ supp(β), finite subset F of N, finite

subset F̂ of S, (mi, ϕi) ∈ Si(F, F̂ ) and γi ∈ ∆(Ai), we have that

lim
k

∑
ϕ−i∈supp(π1,α

−i ) π
1,α
−i [ϕ−i]

(∑
m−i

pα(ϕi, ϕ−i)[mi,m−i]ui(γi, π
2,α
−i (m−i, ϕ−i))

)
∑

ϕ−i∈supp(π1,α
−i ) π

1,α
−i [ϕ−i]pαMi

(ϕi, ϕ−i)[mi]

=
∑
m−i

ϕ∗
i [m̄i,m−i]

ϕ∗
i,Mi

[m̄i]
ui(γi, π−i(m−i))

if βiϕi,Mi
[mi] +

∑
j∈supp(β−i)

βjϕ
∗
j,Mi

[mi] = 0, and

lim
k

∑
ϕ−i∈supp(π1,α

−i ) π
1,α
−i [ϕ−i]

(∑
m−i

pα(ϕi, ϕ−i)[mi,m−i]ui(γi, π
2,α
−i (m−i, ϕ−i))

)
∑

ϕ−i∈supp(π1,α
−i ) π

1,α
−i [ϕ−i]pαMi

(ϕi, ϕ−i)[mi]
=

∑
m−i

βiϕi[mi,m−i] +
∑

j∈supp(β−i)
βjϕ

∗
j [mi,m−i]

βiϕi,Mi
[mi] +

∑
j∈supp(β−i)

βjϕ∗
j,Mi

[mi]
ui(γi, π−i(m−i))

if βiϕi,Mi
[mi] +

∑
j∈supp(β−i)

βjϕ
∗
j,Mi

[mi] > 0. The latter case is clear since all terms

in the denominator of the fraction converge to zero except the one that converges to

βiϕi,Mi
[mi] +

∑
j∈supp(β−i)

βjϕ
∗
j,Mi

[mi] and similarly regarding the numerator.

In the former case, both the numerator and the denominator converge to zero

since βiϕi,Mi
[mi]+

∑
j∈supp(β−i)

βjϕ
∗
j,Mi

[mi] = 0. Multiplying each by k, it follows that

all terms converge to zero except the ones corresponding to the case where π1,α
j = ϕ∗

j

for each j ̸= i and pα(ϕi, ϕ
∗
−i) = qα. Furthermore, for each m−i ∈M−i,

qα[mi,m−i] = (n′)−1(qαi [mi,m−i] +
∑

j∈supp(β)\{i}

qαj [mi,m−i]),

qαi [mi,m−i] = ταi [mi]q̄i[m−i] and

qαj [mi,m−i] = 0 for each j ∈ supp(β) \ {i},
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the latter since mi ̸∈ supp(ϕ∗
j,Mi

). Hence, qα[mi,m−i] = (n′)−1ταi [mi]q̄i[m−i] and

qαMi
[mi] = (n′)−1ταi [mi]. Thus,

qα[mi,m−i]

qαMi
[mi]

= q̄i[m−i] =
ϕ∗
i [m̄i,m−i]

ϕ∗
i,Mi

[m̄i]
.

Similarly, for each i ̸∈ supp(β), finite subset F of N, finite subset F̂ of S, mi ∈

Si(F, F̂ ) and γi ∈ ∆(Ai), we have that

lim
k

∑
ϕ∈supp(π1,α) π

1,α[ϕ]
(∑

m−i
pα(ϕ)[mi,m−i]ui(γi, π

2,α
−i (m−i, ϕ−i))

)
∑

ϕ∈supp(π1,α) π
1,α[ϕ]pαMi

(ϕ)[mi]
=

∑
m−i

∑
j∈supp(β) βjϕ

∗
j [m̄i,m−i]∑

j∈supp(β) βjϕ
∗
j,Mi

[m̄i]
ui(γi, π−i(m−i))

if
∑

j∈supp(β) βjϕ
∗
j,Mi

[mi] = 0, and

lim
k

∑
ϕ∈supp(π1,α) π

1,α[ϕ]
(∑

m−i
pα(ϕ)[mi,m−i]ui(γi, π

2,α
−i (m−i, ϕ−i))

)
∑

ϕ∈supp(π1,α) π
1,α[ϕ]pαMi

(ϕ)[mi]
=

∑
m−i

∑
j∈supp(β) βjϕ

∗
j [mi,m−i]∑

j∈supp(β) βjϕ
∗
j,Mi

[mi]
ui(γi, π−i(m−i))

if
∑

j∈supp(β) βjϕ
∗
j,Mi

[mi] > 0. The latter case is as in the case i ∈ supp(β). In

the former case, both the numerator and the denominator converge to zero since∑
j∈supp(β) βjϕ

∗
j,Mi

[mi] = 0; furthermore, qαMi
[mi] = 0 for the same reason. Multiplying

each by k2, it follows that all terms converge to zero except the ones corresponding

to the case where π1,α
j = ϕ∗

j for each j ̸= i and pα(ϕi, ϕ
∗
−i) = q̂α. Furthermore, for

each m−i ∈M−i,

q̂α[mi,m−i] = n−1(qαi [mi,m−i] +
∑
j∈N

qαj [mi,m−i]),

qαi [mi,m−i] = ταi [mi]q̄i[m−i] and

qαj [mi,m−i] = 0 for each j ̸= i,

the latter since mi ̸∈ supp(ϕ∗
Mi
). Thus,

q̂α[mi,m−i]

q̂αMi
[mi]

= q̄i[m−i] =

∑
j∈supp(β) βjϕ

∗
j [m̄i,m−i]∑

j∈supp(β) βjϕ
∗
j,Mi

[m̄i]
.
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We will next show that πi(mi, ϕi) solves

max
γi∈∆(Ai)

lim
k

∑
ϕ−i∈supp(π1,α

−i ) π
1,α
−i [ϕ−i]

(∑
m−i

pα(ϕi, ϕ−i)[mi,m−i]ui(γi, π
2,α
−i (m−i, ϕ−i))

)
∑

ϕ−i∈supp(π1,α
−i ) π

1,α
−i [ϕ−i]pαMi

(ϕi, ϕ−i)[mi]

(10)

for each i ∈ supp(β), mi ∈Mi, ϕi ∈ S, and πi(mi) solves

max
γi∈∆(Ai)

lim
k

∑
ϕ∈supp(π1,α) π

1,α[ϕ]
(∑

m−i
pα(ϕ)[mi,m−i]ui(γi, π

2,α
−i (m−i, ϕ−i))

)
∑

ϕ∈supp(π1,α) π
1,α[ϕ]pαMi

(ϕ)[mi]
(11)

for each i ̸∈ supp(β) and mi ∈Mi.

We first establish (10). If βiϕi,Mi
[mi] +

∑
j∈supp(β−i)

βjϕ
∗
j,Mi

[mi] = 0, then

lim
k

∑
ϕ−i∈supp(π1,α

−i ) π
1,α
−i [ϕ−i]

(∑
m−i

pα(ϕi, ϕ−i)[mi,m−i]ui(γi, π
2,α
−i (m−i, ϕ−i))

)
∑

ϕ−i∈supp(π1,α
−i ) π

1,α
−i [ϕ−i]pαMi

(ϕi, ϕ−i)[mi]

=
∑
m−i

ϕ∗
i [m̄i,m−i]

ϕ∗
i,Mi

[m̄i]
ui(γi, π−i(m−i)).

Since πi(mi, ϕi) = πi(m̄i) and πi(m̄i) ∈ BRi(π−i(m−i)) for each m−i ∈M−i such that

(m̄i,m−i) ∈ supp(ϕ∗
i ) by (1), it follows that (10) holds in this case.

If βiϕi,Mi
[mi] +

∑
j∈supp(β−i)

βjϕ
∗
j,Mi

[mi] > 0 and ϕi ̸= ϕ∗
i , then

lim
k

∑
ϕ−i∈supp(π1,α

−i ) π
1,α
−i [ϕ−i]

(∑
m−i

pα(ϕi, ϕ−i)[mi,m−i]ui(γi, π
2,α
−i (m−i, ϕ−i))

)
∑

ϕ−i∈supp(π1,α
−i ) π

1,α
−i [ϕ−i]pαMi

(ϕi, ϕ−i)[mi]

=
∑
m−i

βiϕi[mi,m−i] +
∑

j∈supp(β−i)
βjϕ

∗
j [mi,m−i]

βiϕi,Mi
[mi] +

∑
j∈supp(β−i)

βjϕ∗
j,Mi

[mi]
ui(γi, π−i(m−i))

= ui

γi,∑
m−i

βiϕi[mi,m−i] +
∑

j∈supp(β−i)
βjϕ

∗
j [mi,m−i]

βiϕi,Mi
[mi] +

∑
j∈supp(β−i)

βjϕ∗
j,Mi

[mi]
π−i(m−i)

 .

Since πi(mi, ϕi) is optimal against
∑

m−i

βiϕi[mi,m−i]+
∑

j∈supp(β−i)
βjϕ

∗
j [mi,m−i]

βiϕi,Mi
[mi]+

∑
j∈supp(β−i)

βjϕ∗
j,Mi

[mi]
π−i(m−i), it

follows that (10) holds in this case.

Finally, consider the case where ϕi = ϕ∗
i and

βiϕi,Mi
[mi] +

∑
j∈supp(β−i)

βjϕ
∗
j,Mi

[mi] > 0.
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Note that it is enough to show that∑
m−i

ϕ∗[m]
(
ui(π(m))− ui(ai, π−i(m−i))

)
≥ 0 (12)

for each ai ∈ Ai and that∑
m−i

ϕ∗[m]
(
ui(π(m))− ui(ai, π−i(m−i))

)
=
∑
m−i

βiϕ
∗
i [m]

(
ui(π(m))− ui(ai, π−i(m−i))

)
+
∑
m−i

∑
j∈supp(β−i)

βjϕ
∗
j [m]

(
ui(π(m))− ui(ai, π−i(m−i))

)
.

We have that ui(π(m)) ≥ ui(ai, π−i(m−i)) for each m−i such that ϕ∗
i [m] > 0 by (1);

moreover, for each m−i such that ϕ∗
j [m] > 0 for some j ∈ supp(β−i), then

mi ∈ ∪j∈supp(β−i)supp(ϕ
∗
j,Mi

)

and, hence,
∑

m−i

∑
j∈supp(β−i)

βjϕ
∗
j [m]

(
ui(π(m))−ui(ai, π−i(m−i))

)
≥ 0 by (2). Thus,

(12) holds and so does (10).

We next establish (11). If
∑

j∈supp(β) βjϕ
∗
j,Mi

[mi] = 0, then it follows that

lim
k

∑
ϕ∈supp(π1,α) π

1,α[ϕ]
(∑

m−i
pα(ϕ)[mi,m−i]ui(ai, π

2,α
−i (m−i, ϕ−i))

)
∑

ϕ∈supp(π1,α) π
1,α[ϕ]pαMi

(ϕ)[mi]

=
∑
m−i

∑
j∈supp(β) βjϕ

∗
j [m̄i,m−i]∑

j∈supp(β) βjϕ
∗
j,Mi

[m̄i]
ui(ai, π−i(m−i)).

Since πi(mi) = πi(m̄i), it follows by (2) that (11) holds in this case.

If
∑

j∈supp(β) βjϕ
∗
j,Mi

[mi] > 0, then it is enough to establish (12). For each ai ∈ Ai,

we have that ∑
m−i

ϕ∗[m]
(
ui(π(m))− ui(ai, π−i(m−i))

)
=
∑
m−i

∑
j∈supp(β)

βjϕ
∗
j [m]

(
ui(π(m))− ui(ai, π−i(m−i))

)
≥ 0

by (2). Thus, (12) holds and so does (11).

The above arguments show that, for each finite subsets F of N and F̂ of S,

condition 8 holds whenever k is sufficiently high. Specifically, condition 8 (a) holds
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for each i ∈ N whenever k ≥ k0. For each i ∈ supp(β) and (mi, ϕi) ∈ Si(F, F̂ ),

there is k(mi, ϕi) such that condition 8 (b) holds whenever k ≥ k(mi, ϕi). For each

i ∈ N \ supp(β) and mi ∈ Si(F, F̂ ), there is k(mi) such that condition 8 (c) holds

whenever k ≥ k(mi). Thus, let

k(F, F̂ ) = max

{
k0, max

i∈supp(β)
max

(mi,ϕi)∈Si(F,F̂ )
k(mi, ϕi), max

i∈N\supp(β)
max

mi∈Si(F,F̂ )
k(mi)

}
.

Since condition 8 (b) is trivially satisfied when

π1,α
i [ϕi]

∑
ϕ−i∈supp(π1,α

−i )

π1,α
−i [ϕ−i]p

α
Mi
(ϕi, ϕ−i)[mi] = 0,

i.e. when i ∈ supp(β) and (mi, ϕi) ̸∈ Si(F, F̂ ), and that condition 8 (c) is trivially

satisfied when
∑

ϕ∈supp(π1,α) π
1,α[ϕ]pαMi

(ϕ)[mi] = 0, i.e. when i ∈ N \ supp(β) and

mi ̸∈ Si(F, F̂ ), it follows that condition 8 holds whenever k ≥ k(F, F̂ ). This allows us

to define the following subnet {πφ(η), pφ(η)}η of {πα, pα}α such that condition 8 holds.

The index set of the subnet {πφ(η), pφ(η)}η is the same as the one in the net

{πα, pα}α. The function φ : η 7→ α is defined by setting, for each η = (k, F, F̂ ),

φ(η) =
(
max

{
k, k(F, F̂ )

}
, F, F̂

)
.

It is then clear that condition 8 holds and that, as required by the definition of a

subnet, for each α0, there exists η0, e.g. η0 = α0, such that φ(η) ≥ α0 for each η ≥ η0.

A.1.4 Proof of Theorem 3

Let U be the set in the right-hand side of the equality in the statement of the theorem.

We start by showing that U(G) ⊆ U .

Let i, j ∈ N , i ̸= j and i ∈ supp(β). We then have that, for eachmj ∈ supp(ϕ∗
i,Mj

),(∑
mi

ϕ∗
i [mi,mj]

ϕ∗
i,Mj

[mj]
πi(mi), πj(mj)

)
is a Nash equilibrium of G.

Indeed, it follows by (2) that πj(mj) ∈ BRj

(∑
mi

ϕ∗
i [mi,mj ]

ϕ∗
i,Mj

[mj ]
πi(mi)

)
. Furthermore,

for each mi ∈ Mi such that (mi,mj) ∈ supp(ϕ∗
i ) and ai ∈ Ai, ui(πi(mi), πj(mj)) ≥
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ui(ai, πj(mj)) by (1). Thus,∑
mi

ϕ∗
i [mi,mj]

ϕ∗
i,Mj

[mj]
ui(πi(mi), πj(mj)) ≥

∑
mi

ϕ∗
i [mi,mj]

ϕ∗
i,Mj

[mj]
ui(ai, πj(mj)), i.e.

ui

(∑
mi

ϕ∗
i [mi,mj]

ϕ∗
i,Mj

[mj]
πi(mi), πj(mj)

)
≥ ui(ai, πj(mj)).

We have that

u(π) = β1
∑

m∈supp(ϕ∗
1)

ϕ∗
1[m]u(π(m)) + β2

∑
m∈supp(ϕ∗

2)

ϕ∗
2[m]u(π(m)).

Hence, we compute ui :=
∑

m∈supp(ϕ∗
i )
ϕ∗
i [m]u(π(m)) for each i ∈ supp(β). Let i, k ∈

N . Then

uik =
∑
mj

ϕ∗
i,Mj

[mj]
∑
mi

ϕ∗
i [mi,mj]

ϕ∗
i,Mj

[mj]
uk(πi(mi), πj(mj))

=
∑
mj

ϕ∗
i,Mj

[mj]uk

(∑
mi

ϕ∗
i [mi,mj]

ϕ∗
i,Mj

[mj]
πi(mi), πj(mj)

)
.

Thus,

ui =
∑
mj

ϕ∗
i,Mj

[mj]u

(∑
mi

ϕ∗
i [mi,mj]

ϕ∗
i,Mj

[mj]
πi(mi), πj(mj)

)
.

Hence, for each mj ∈ supp(ϕ∗
i,Mj

), there is a Nash equilibrium

σi,mj =

(∑
mi

ϕ∗
i [mi,mj]

ϕ∗
i,Mj

[mj]
πi(mi), πj(mj)

)

of G such that ui =
∑

mj
αi,mju(σi,mj) with αi,mj = ϕ∗

i,Mj
[mj]. Then let Li =

|supp(ϕ∗
i,Mj

)| and, writing supp(ϕ∗
i,Mj

) = {m1
j , . . . ,m

Li
j }, let αi,l = ϕ∗

i,Mj
[ml

j] and

σi,l = σi,ml
j for each l ∈ {1, . . . , Li}.

For each mj ∈ supp(ϕ∗
i,Mj

), it follows by (1) that

ui(σ
i,mj) =

∑
m′

i

ϕ∗
i [m

′
i,mj]

ϕ∗
i,Mj

[mj]
ui(πi(m

′
i), πj(mj)) = max

m∗∈M
ui(π(m

∗)).

Thus, ui(σ
i,mj) = ui(σ

i,m′
j) for each m′

j ∈ supp(ϕ∗
i,Mj

). If j ∈ supp(β), it then follows

that, for each mi ∈ supp(ϕ∗
j,Mi

),

ui(σ
j,mi) =

∑
m′

j

ϕ∗
j [mi,m

′
j]

ϕ∗
j,Mi

[mi]
ui(πi(mi), πj(m

′
j)) ≤ max

m∗∈M
ui(π(m

∗));
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thus, ui(σ
i,mj) ≥ ui(σ

j,mi). This completes the proof that U(G) ⊆ U .

We now show that U ⊆ U(G). Let u ∈ U . Assume first that supp(β) = N and

let u = β1u
1 + β2u

2 with ui =
∑Li

l=1 α
i,lu(σi,l),

∑Li

l=1 α
i,l = 1, αi,l ≥ 0, σi,l ∈ N(G),

ui(σ
i,l) = ui(σ

i,k) ≥ uj(σ
j,r) for each i, j ∈ N with i ̸= j, l, k ∈ {1, . . . , Li} and

r ∈ {1, . . . , Lj}.

For each i ∈ N , l ∈ {1, . . . , L1} and k ∈ {1, . . . , L2}, pick m1,l
i and m2,k

i in Mi

such that m1,l
i ̸= m1,r

i , m2,k
i ̸= m2,s

i and m1,l
i ̸= m2,k

i for each l, r ∈ {1, . . . , L1} and

k, s ∈ {1, . . . , L2}. Set ϕ∗
1 =

∑L1

l=1 α
1,l1m1,l , ϕ∗

2 =
∑L2

l=1 α
2,l1m2,l and, for each i ∈ N ,

j ∈ N and l ∈ {1, . . . , Lj}, πi(mj,l
i ) = σj,l

i .

Fix i ∈ N and let j ̸= i. For each mj ∈M∗
j , πj(mj) = σk,l

j for some k ∈ {i, j} and

l ∈ {1, . . . , Lk}. Since vi(σ
i,l
j ) = ui(σ

i,l) ≥ ui(σ
j,r) = vi(σ

j,r
j ) for each l ∈ {1, . . . , Li}

and r ∈ {1, . . . , Lj}, it follows that maxmj∈M∗
j
vi(πj(mj)) = ui(σ

i,l) for each l ∈

{1, . . . , Li}. Since, for each m ∈ supp(ϕ∗
i ), there exists l ∈ {1, . . . , Li} such that

πi(mi) = σi,l
i and πj(mj) = σi,l

j , it follows that supp(ϕ∗
i ) ⊆ {m ∈ M : vi(π−i(m−i)) =

maxm′
−i∈M−i

vi(π−i(m
′
−i)) and πi(mi) ∈ BRi(π−i(m−i))}. Thus, (1) holds.

Moreover, for each mi ∈ supp(ϕ∗
j,Mi

), mi = mj,l
i for some l ∈ {1, . . . , Lj} and hence

πi(mi) = σj,l
i solves

max
αi∈∆(Ai)

∑
mj

ϕ∗
j [mi,mj]

ϕ∗
j,Mi

[mi]
ui(αi, πj(mj)) = max

αi∈∆(Ai)
ui(αi, σ

j,l
j ).

Thus, (2) holds. It then follows by Theorem 2 that (ϕ∗
i , (πi(mi))mi∈supp(ϕ∗

Mi
))i∈N is the

outcome of a sequential equilibrium of Gid and, thus, that u ∈ U(G).

If supp(β) ̸= N , let i ∈ supp(β) and pick ml
j ∈ Mj such that ml

j ̸= mr
j for each

j ∈ N and l, r ∈ {1, . . . , Li}. Define ϕ∗
i =

∑Li

l=1 α
i,l1ml and, for each j ∈ N and

l ∈ {1, . . . , Li}, πj(ml
j) = σi,l

j . The remainder of the argument is now analogous to

the one above.

A.1.5 Proof of Corollary 2

The characterization of U(G) follows from the definition of G and Theorem 3.

Standard results (e.g. Theorems 2.5.5 and 2.6.1 in van Damme (1991) and their

proofs) imply that there is an open set O of R2|A| such that its complement has
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Lebesgue measure zero and, for each u ∈ O, there is an open neighborhood Vu of u

and |N(u)| continuous functions, fk : Vu → ∆(A1)×∆(A2) with k ∈ {1, . . . , |N(u)|}

such that, for each u′ ∈ Vu, N(u′) =
{
fk(u

′) : k ∈ {1, . . . , |N(u)|}
}
and fk(u) ̸= fl(u)

for each k, l ∈ {1, . . . , |N(u)|} with k ̸= l.16 Shrinking Vu if needed, we may assume

that, for each a ∈ A, k, l ∈ {1, . . . , |N(u)|} and u′ ∈ Vu, fk(u
′)[a] ̸= fl(u

′)[a] if

fk(u)[a] ̸= fl(u)[a].

We have that R2|A| is separable, hence, there is a countable collection {Vuj
}∞j=1

such that O = ∪∞
j=1Vuj

. Define, for each j ∈ N, Ij = {1, . . . , |N(uj)|} and

Oj = ∩(i,k,l)∈N×I2j :k ̸=l{u ∈ Vuj
: ui(fk(u)) ̸= ui(fl(u))}.

Then Oj is open and ∪∞
j=1Oj ⊆ G. It thus suffices to show that Cj,i,k,l = {u ∈ Vuj

:

ui(fk(u)) = ui(fl(u))} has Lebesgue measure zero for each j ∈ N and (i, k, l) ∈ N×I2j
such that k ̸= l.

Let j ∈ N and (i, k, l) ∈ N × I2j be such that k ̸= l. Since fk(uj) ̸= fl(uj), let

a ∈ A be such that fk(u)[a] ̸= fl(u)[a] for each u ∈ Vuj
. Then

Cj,i,k,l ⊆

{
u ∈ Vuj

: ui(a) =

∑
a′ ̸=a ui(a

′)
(
fl(u)[a

′]− fk(u)[a
′]
)

fk(u)[a]− fl(u)[a]

}
.

It then follows by Tonelli’s Theorem (e.g. Wheeden and Zygmund (1977, Theorem

6.10, p. 92)) that Cj,i,k,l has Lesbegue measure zero.

A.1.6 Proof of Theorem 4

Note first that R1 × R2 = M∗. Let i, j ∈ N be such that i ̸= j. As in the proof of

Theorem 3, we have that, for each mj ∈ supp(ϕ∗
i,Mj

),(∑
mi

ϕ∗
i [mi,mj]

ϕ∗
i,Mj

[mj]
πi(mi), πj(mj)

)
is a Nash equilibrium of G.

Indeed, if mj ̸∈ supp(ϕ∗
j,Mj

), it follows by rationality of j that

πj(mj) ∈ BRj

(∑
mi

ϕ∗
i [mi,mj]

ϕ∗
i,Mj

[mj]
πi(mi)

)
.

16The set N(u) denotes the set of Nash equilibria of the game with payoff function u.
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It follows by the definition of E that this conclusion also holds if mj ∈ supp(ϕ∗
j,Mj

)

(recall that mj ∈ supp(ϕ∗
i,Mj

)) and that ui(πi(mi), πj(mj)) ≥ ui(ai, πj(mj)) for each

mi ∈ Mi such that (mi,mj) ∈ supp(ϕ∗
i ) and ai ∈ Ai. Thus, the claim follows as in

the proof of Theorem 3.

It then follows that, for each mj ∈ supp(ϕ∗
i,Mj

),(∑
mi

ϕ∗
i [mi,mj]

ϕ∗
i,Mj

[mj]
πi(mi), πj(mj)

)
= (σi, σj)

since G has a unique Nash equilibrium.

We have that, for each a ∈ A,

µ[a] = β1
∑

m∈supp(ϕ∗
1)

ϕ∗
1[m]π(m)[a] + β2

∑
m∈supp(ϕ∗

2)

ϕ∗
2[m]π(m)[a]

and, for each i ∈ N ,∑
m∈supp(ϕ∗

i )

ϕ∗
i [m]π(m)[a] =

∑
mj

ϕ∗
i,Mj

[mj]
∑
mi

ϕ∗
i [mi,mj]

ϕ∗
i,Mj

[mj]
πi(mi)[ai]πj(mj)[aj]

=
∑
mj

ϕ∗
i,Mj

[mj]

(
πj(mj)[aj]

∑
mi

ϕ∗
i [mi,mj]

ϕ∗
i,Mj

[mj]
πi(mi)[ai]

)
= σi[ai]σj[aj].

Thus, µ = σ.

Furthermore, for each m ∈ supp(ϕ∗) and player j,

ξj(m) =
∑
m′

i

ϕ∗[m′
i,mj]

ϕ∗
Mj

[mj]
πi(m

′
i)

=
βiϕ

∗
i,Mj

[mj]
∑

m′
i

ϕ∗
i [m

′
i,mj ]

ϕ∗
i,Mj

[mj ]
πi(m

′
i) + βj

∑
m′

i
ϕ∗
j [m

′
i,mj]πi(m

′
i)

ϕ∗
Mj

[mj]

= σi

since mj ∈ supp(ϕ∗
i,Mj

) implies that
∑

m′
i

ϕ∗
i [m

′
i,mj ]

ϕ∗
i,Mj

[mj ]
πi(m

′
i) = σi and m

′
i ∈ supp(ϕ∗

j,Mi
)

implies that πi(m
′
i) = σi.

A.1.7 Proof of Theorem 5

Let m ∈ supp(ϕ∗) be such that it is mutually known that the players are rational at

m. Thus, m ∈ R1 × R2. Let i ∈ N be such that m ∈ supp(ϕ∗
i ) and j ̸= i. Then

49



πi(mi) ∈ BRi(πj(mj)) by the definition of E. Furthermore,

πj(mj) ∈ BRj

∑
m′

i

ϕ∗
i [m

′
i,mj]

ϕ∗
i,Mj

[mj]
πi(m

′
i)

 ;

indeed, this follows by the rationality of player j at m if mj ̸∈ supp(ϕ∗
j,Mj

) and

by the definition of E if mj ∈ supp(ϕ∗
j,Mj

) (recall that mj ∈ supp(ϕ∗
i,Mj

)). Since

m ∈ supp(ϕ∗
i )∩ (Ri×M∗

j ) and |supp(ϕ∗
i )∩ (Ri×M∗

j )| ≤ 1, it follows that supp(ϕ∗
i )∩

(Ri × M∗
j ) = {m}. Since player i’s rationality is known by player j at m, we

have ϕ∗[m′
i,mj] = 0 for each m′

i ̸∈ Ri and, therefore,
∑

m′
i∈M∗

i

ϕ∗
i [m

′
i,mj ]

ϕ∗
i,Mj

[mj ]
πi(m

′
i) =∑

m′
i∈Ri

ϕ∗
i [m

′
i,mj ]

ϕ∗
i,Mj

[mj ]
πi(m

′
i) = πi(mi). Thus, πj(mj) ∈ BRj(πi(mi)) which, in addition to

πi(mi) ∈ BRi(πj(mj)), shows that π(m) = (πi(mi), πj(mj)) is a Nash equilibrium of

G.

A.2 Details for Example 1

In this section we provide the details for Example 1. We first conclude the argument

showing that (1 − β3)(2, 2, 2) + β3(0, 0, 3) is a sequential equilibrium payoff when

min{2β1, 2β2} ≥ β3.

Let i ∈ {1, 2} and m ∈ supp(ϕ∗
i ). Then πi(mi) = A and π−i(m−i) = (A,M) or

πi(mi) = B and π−i(m−i) = (B,M). In either case, πi(mi) ∈ BRi(π−i(m−i)) and

vi(π−i(m−i)) = 2 ≥ vi(π−i(m
′
−i)) for each m

′
−i ∈M∗

−i.

Furthermore, for each mi ∈ ∪j∈supp(β−i)supp(ϕ
∗
j,Mi

) = {m′
i,m

′′
i }, πi(mi) solves

max
ai∈Ai

∑
m−i

∑
j ̸=i βjϕ

∗
j [mi,m−i]∑

j ̸=i βjϕ
∗
j,Mi

[mi]
ui(ai, π−i(m−i)).

Indeed, if mi = m′
i, then πi(mi) = A and, letting j ∈ {1, 2} with j ̸= i, the maxi-

mization problem is

max
ai∈Ai

βjui(ai, (A,M)) + β3ui(ai, (A,L))

βj + β3
;

if i = 1, ai = A yields 2β2

β2+β3
whereas ai = B yields β3

β2+β3
; thus, π1(m

′
1) solves the

maximization problem since 2β2 ≥ β3; if i = 2, then ai = A yields 2β1

β1+β3
whereas
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ai = B yields 0; thus, π2(m
′
2) solves the maximization problem. If mi = m′′

i , the

maximization problem is

max
ai∈Ai

βjui(ai, (B,M)) + β3ui(ai, (B,R))

βj + β3
;

if i = 1, ai = πi(m
′′
i ) = B yields 2β2

β2+β3
whereas ai = A yields 0; thus πi(m

′′
i ) solves the

maximization problem; if i = 2, then ai = πi(m
′′
i ) = B yields 2β1

β1+β3
whereas ai = A

yields β3

β1+β3
; thus πi(m

′′
i ) solves the maximization problem since 2β1 ≥ β3.

Consider next m ∈ supp(ϕ∗
3). Then π3(m3) = L and π−3(m−3) = (A,A) or

π3(m3) = R and π−3(m−3) = (B,B). In either case, π3(m3) ∈ BR3(π−3(m−3)) and

v3(π−3(m−3)) = 3 ≥ v3(π−3(m
′
−3)) for each m

′
−3 ∈M∗

−3. It follows that condition (1)

in Theorem 2 is satisfied.

Finally, note that ∪j∈supp(β−3)supp(ϕ
∗
j,M3

) = {m̂3} and that π3(m̂3) =M solves

max
a3∈A3

∑
m−3

∑
j ̸=3 βjϕ

∗
j [m̂3,m−3]∑

j ̸=3 βjϕ
∗
j,M3

[m̂3]
u3(a3, π−3(m−3))

= max
a3∈A3

u3(A,A, a3) + u3(B,B, a3)

2
.

Thus, condition (2) in Theorem 2 is also satisfied. Hence, it follows by Theorem 2 that

(1−β3)(2, 2, 2)+β3(0, 0, 3) is a sequential equilibrium payoff when min{2β1, 2β2} ≥ β3.

We conclude this section by showing that player 3 cannot obtain a payoff of

maxσ∈C(G) u3(σ) in Gid when β3 = 1. First note (we will show this below) that

maxσ∈C(G) u3(σ) = 8/3 and that σ ∈ C(G) is a solution to this problem if and only

if σ(A,B,L) = σ(B,B,L) = σ(A,B,M) = σ(B,A,M) = σ(A,A,R) = σ(A,B,R) =

σ(B,A, L) = σ(B,A,R) = 0,

σ(A,A,L) = 2σ(A,A,M),

σ(B,B,R) = 2σ(B,B,M),

σ(B,B,M)

2
≤ σ(A,A,M) ≤ 2σ(B,B,M), and

σ(A,A,M) + σ(B,B,M) =
1

3
.

We use the above to show that player 3 cannot obtain the payoff maxσ∈C(G) u3(σ) =

8/3 in Gid. Indeed, suppose that there is a sequential equilibrium π ∈ Π of Gid such
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that u3(π) = 8/3. Since σπ ∈ C(G) by Theorem 1 and u(π) = u(σπ), it follows that

σπ solves maxσ∈C(G) u3(σ) = 8/3. It follows by the above characterization of the cor-

related equilibria of G that achieve a payoff of 8/3 to player 3 that (i) σπ(A,A,M) > 0

and (ii) σπ({a ∈ A : a1 = a2}) = 1. The latter implies that, for each m ∈ supp(ϕ∗
3),

(π1(m1), π2(m2)) ∈ {(A,A), (B,B)}. Since π3(m3) ∈ BR3((π1(m1), π2(m2))) by The-

orem 2, it follows that π3(m3) ∈ {L,R}. In particular, π3(m3)[M ] = 0 for each

m3 ∈ supp(ϕ∗
3,M3

) and, thus, σπ(A,A,M) = 0. But this contradicts (i).

We finally show that maxσ∈C(G) u3(σ) = 8/3 and characterize the solutions to this

problem. The maximization problem is:

max
σ∈∆(A)

2σ(A,A,M) + 2σ(B,B,M) + 3σ(A,A,L) + 3σ(B,B,R) (13)

subject to 2σ(A,A,M) ≥ σ(A,A,L) + 2σ(A,B,M) (14)

σ(B,A, L) + 2σ(B,B,M) ≥ 2σ(B,A,M) (15)

2σ(B,B,M) ≥ σ(B,B,R) + 2σ(A,B,M) (16)

σ(B,A,R) + 2σ(A,A,M) ≥ 2σ(B,A,M) (17)

σ(A,A,L) ≥ 2σ(B,B,L) (18)

2σ(B,B,M) ≥ σ(A,A,M) (19)

2σ(A,A,M) ≥ σ(B,B,M) (20)

σ(B,B,R) ≥ 2σ(A,A,R). (21)

These expressions consist of the payoff of player 3, followed by the following obedience

conditions for action ai of player i, denoted (i, ai) : (1, A), (1, B), (2, B), (2, A), (3, L)

(this is only (18) and consists of a deviation toM since for a deviation to R not to be

profitable requires σ(A,A,L) ≥ σ(B,B,L) which is implied by (18)), (3,M) (this is

(19) and (20) consisting of deviations to L and R respectively) and (3, R) (this is only

(21) and consists of a deviation to M since for a deviation to L not to be profitable

requires σ(B,B,R) ≥ σ(A,A,R) which is implied by (21)).
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The solution has

σ(A,B,L) = σ(B,B,L) = σ(A,B,M) = σ(B,A,M)

= σ(A,A,R) = σ(A,B,R) = 0

since these variables appear neither in the objective function nor on the left-hand side

of the inequalities. Then (15), (17), (18) and (21) are satisfied and, thus,

σ(B,A, L) = σ(B,A,R) = 0

since these variables appear neither in the objective function nor on the left-hand side

of the remaining inequalities.

Letting A′ = {(A,A,M), (B,B,M), (A,A,L), (B,B,R)}, the problem reduces to

max
σ∈∆(A′)

2σ(A,A,M) + 2σ(B,B,M) + 3σ(A,A,L) + 3σ(B,B,R) (22)

subject to 2σ(A,A,M) ≥ σ(A,A,L) (23)

2σ(B,B,M) ≥ σ(B,B,R) (24)

2σ(B,B,M) ≥ σ(A,A,M) (25)

2σ(A,A,M) ≥ σ(B,B,M). (26)

Conditions (25) and (26) are equivalent to

σ(B,B,M)

2
≤ σ(A,A,M) ≤ 2σ(B,B,M).

We claim that (23) and (24) are satisfied with equality if σ is a solution to this

problem. Suppose not; then 2σ(A,A,M) > σ(A,A,L) or 2σ(B,B,M) > σ(B,B,R);

for concreteness, assume the former case. Define

σ′(A,A,M) = λσ(A,A,M),

σ′(B,B,M) = λσ(B,B,M),

σ′(B,B,R) = λσ(B,B,R) and

σ′(A,A,L) = 1− σ′(A,A,M)− σ′(B,B,M)− σ′(B,B,R)
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for some λ ∈ (0, 1) sufficiently close to 1 such that 2σ′(A,A,M) ≥ σ′(A,A,L). Thus,

σ′ ∈ ∆(A′) and satisfies (23)–(26). Furthermore,

2σ(A,A,M) + 2σ(B,B,M) + 3σ(A,A,L) + 3σ(B,B,R) =

3− σ(A,A,M)− σ(B,B,M) < 3− σ′(A,A,M)− σ′(B,B,M) =

2σ′(A,A,M) + 2σ′(B,B,M) + 3σ′(A,A,L) + 3σ′(B,B,R),

contradicting the assumption that σ is a solution to this problem. This shows that

σ(A,A,L) = 2σ(A,A,M) and σ(B,B,R) = 2σ(B,B,M).

Then
∑

a σ(a) = 1 is equivalent to

σ(A,A,M) + σ(B,B,M) =
1

3
.

Finally, (22) is equal to

8(σ(A,A,M) + σ(B,B,M)) =
8

3
.

A.3 A 2-player game with unique Nash but multiple corre-

lated equilibria

In this section, we show that the following game has a unique Nash but multiple

correlated equilibria.

1\2 H T R

H 1,−1 −1, 1 −1,−1

T −1, 1 1,−1 1,−1

B 2, 0 −3, 0 −3, 1

Consider the action distribution that puts the following probabilities on each ac-

tion profile:

1\2 H T R

H α α 0

T α α 0

B β 0 0
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where 4α + β = 1.

It is easy to see that the obedience conditions hold for player 1 and, after recom-

mendation T , for player 2. After recommendation H, player 2 is indifferent between

H and T . Thus, this is a correlated equilibrium as long as player 2 prefers H to R,

which is the case if 0 ≥ −2α + β, or equivalently β ≤ 2α. E.g. α = 1
6
and β = 1

3
is a

correlated equilibrium distribution.

On the other hand, α = 1
4
and β = 0 is the unique Nash equilibrium distribution.

To see this, first note that Player 1 cannot play a pure strategy in equilibrium. Now

suppose that player 1 plays H and B with positive probability in equilibrium. Let q

be the probability that player 2 plays H. For player 1 to be indifferent between H

and B, we need q = 2
3
, in which case player 1 gets 1

3
from playing either H or B. Also

in this case, player 1’s payoff from playing T is −1
3
and so player 1 must play T with

zero probability (this argument also implies that there is no equilibrium where player

1 plays all three actions with positive probability). But if player 1 does not play T ,

H becomes strictly dominated (by a mixture of T and R) for player 2, so player 2

must play H with zero probability, contradicting q = 2
3
.

Next suppose that player 1 plays T and B with positive probability in equilibrium.

In this case, we must have q = 4
7
and player 1 gets payoff −1

7
from either playing T

and B. But when q = 4
7
, player 1 gets payoff 1

7
from playing H, a contradiction to T

and B being played with positive probability.

Thus, Player 1 must play H and T with positive probability in any equilibrium.

In this case, q = 1
2
, which implies that player 1 must play B with zero probability.

Thus, R becomes strictly dominated for player 2 and P (H) = P (T ) = 1
2
. For player

2 to be indifferent between H and T , we must also have P (H) = P (T ) = 1
2
for player

1, giving us the unique Nash equilibrium.

A.4 Tightness of the Epistemic Results

We show that none of the assumptions of Theorems 4 and 5 can be dropped. Example

2 in Section 5 already showed this for the assumption in Theorem 4 that each player

is rational at each state, and Example 3 in Section 5 showed that the assumption of
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mutual knowledge of rationality in Theorem 5 cannot be weakened.

The following example shows that the assumption of endogenous information can-

not be dropped from Theorem 4.

Example 4. Consider the example in Section A.3 with M∗
1 = {h, t, b}, M∗

2 = {h, t},

π1(h) = H, π1(t) = T , π1(b) = B, π2(h) = H, π2(t) = T , ϕ∗ given as in the following

table and with 1
6
< α < 1

4
:

1\2 h t

h α α

t α α

b β 0

Then β > 0 and the corresponding interactive belief system is:

1\2 h t

h 1
2
, α
2α+β

1
2
, 1
2

t 1
2
, α
2α+β

1
2
, 1
2

b 1, β
2α+β

0, 0

Then players are rational at each state but, for each m1, players’ conjectures at states

(m1, h) are not equal to the Nash equilibrium of game.

The next example shows that the assumption of uniqueness of Nash equilibrium

cannot be dropped from Theorem 4.

Example 5. Consider the game of chicken in Section 2 and let M∗
1 = {a, b}, M∗

2 =

{1
2
, b}, ϕ∗

1 =
1
2
1(a, 1

2
)+

1
2
1(b, 1

2
), ϕ

∗
2 = 1(a,b) and πi(mi) be the action corresponding to the

messagemi for eachmi ∈M∗
i and i ∈ {1, 2}: π1(a) = A, π1(b) = B, π2(

1
2
) = 1

2
1A+

1
2
1B

and π2(b) = B. The corresponding interactive belief system is:

1\2 1
2

b

a β1

β1+2β2
, 1
2

2β2

β1+2β2
, 1

b 1, 1
2

0, 0
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Players are rational at each state: Player 1, at m1 = a, assigns probability β1

β1+2β2

1
2
+(

1− β1

β1+2β2

)
0 < 1

2
to player 2 playing A and, thus, π1(a) = A is optimal; at m1 = b,

player 1 assigns probability 1
2
to player 2 playing A and, thus, π1(b) = B is optimal.

Player 2 assigns probability 1
2
(resp. 1) to player 1 playing A at m2 = 1

2
(resp.

m2 = b), hence π2(
1
2
) = 1

2
1A + 1

2
1B (resp. π2(b) = B) is optimal.

The conditions for an endogenous interactive belief system are satisfied. In-

deed, supp(ϕ∗
1) = {(a, 1

2
), (b, 1

2
)}, π1(a), π1(b) ∈ BR1(π2(

1
2
)) and v1(π2(

1
2
)) = 7

2
>

1 = v1(π2(b)). Furthermore, supp(ϕ∗
1,M∗

1
) ∩ supp(ϕ∗

2,M∗
1
) = {a} and π1(a) = A

solves maxa1∈A1

∑
m2

ϕ∗
2[a,m2]

ϕ∗
2,M∗

1
[a]
u1(a1, π2(m2)) = maxa1∈A1 u1(a1, B). Regarding player

2, supp(ϕ∗
1,M∗

2
) ∩ supp(ϕ∗

2,M∗
2
) = ∅, supp(ϕ∗

2) = {(a, b)}, π2(b) ∈ BR2(π1(a)) and

v2(π1(a)) = 7 > 1 = v2(π1(b)).

However, when m = (a, b),

(ξ2(m), ξ1(m)) =

(
A,

β1
2β1 + 4β2

1A +

(
1− β1

2β1 + 4β2

)
1B

)
is not a Nash equilibrium.

Example 5 also shows that the assumption that E is such that |(Ri × M∗
−i) ∩

supp(ϕ∗
i )| ≤ 1 for each i ∈ N cannot be dropped from Theorem 5. Indeed, E is an

endogenous belief system and players are rational at each state but, when m = (b, 1
2
),

π(m) = (B, 1
2
1A + 1

2
1B) is not a Nash equilibrium of the game.

The following example shows that the requirement that E be an endogenous belief

system cannot be dropped from Theorem 5.

Example 6. Consider the game of chicken in Section 2 (or matching pennies) and

let M∗
1 = {1

2
}, M∗

2 = {a, b}, ϕ∗
1 = 1( 1

2
,a), ϕ

∗
2 = 1( 1

2
,b), π1(

1
2
) = 1

2
1A + 1

2
1B, π2(a) = A,

π2(b) = B and β1 =
1
2
. The corresponding interactive belief system is:

1\2 a b

1
2

1
2
, 1 1

2
, 1

Then players are rational at each state and |(Ri × M∗
−i) ∩ supp(ϕ∗

i )| ≤ 1 for each

i ∈ {1, 2} holds. But, for each m ∈M∗, π(m) is not a Nash equilibrium.
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A.5 Equilibrium payoffs with complexity costs

We consider the set Uc(G) of payoffs of sequential equilibria with complexity costs

of Gid for a given normal-form game G. In general, Uc(G) ⊆ U(G) since every out-

come of a sequential equilibrium with complexity costs is the outcome of a sequential

equilibrium (without complexity costs).

For 2-player games G, using the restriction that each player uses only one message

in the proof of Theorem 3, we obtain:

Corollary 3. For each 2-player game G,

Uc(G) = {β1u(σ) + β2u(σ
′) : σ, σ′ ∈ N(G), u1(σ) ≥ u1(σ

′), u2(σ
′) ≥ u2(σ)}.

In particular, Uc(G) = U(G) for any 2-player game G ∈ G.

When there are more than two players, the relationship Uc(G) ⊆ U(G), together

with the example in Section 3, implies that not all correlated equilibrium payoffs

can be achieved, i.e. u(C(G)) \ Uc(G) ̸= ∅ is possible. It is also still the case that

Uc(G) \ u(N(G)) ̸= ∅. The latter conclusion is established by the following example,

analogous to Example 2.5 in Aumann (1974). As before, player 1 chooses the row,

player 2 chooses the column, and player 3 chooses the matrix (A3 = {L,M,R}):

1\2 A B

A 0, 0, 3 0, 0, 0

B 0, 0, 0 0, 0, 0

1\2 A B

A 2, 2, 2 0, 0, 0

B 0, 0, 0 2, 2, 2

1\2 A B

A 0, 0, 0 0, 0, 0

B 0, 0, 0 0, 0, 3

We have that if u ∈ u(N(G)), then u = (1, 1, 1) (corresponding to the Nash

equilibrium where player 3 plays M and each of the remaining players plays each of

his actions with probability equal to 1/2) or u1 = u2 = 0 (corresponding to the Nash

equilibria where player 3 plays M with zero probability e.g. (A,A,A)). We will show

that when β2

2
≤ β1 ≤ 2β2, (1 − β3)(2, 2, 2) + β3(0, 0, 3) is the payoff of a sequential

equilibrium with complexity costs.
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To see the above, let ϕ∗
1 = 1(m′

1,m
′
2,m̂3), ϕ

∗
2 = 1(m′′

1 ,m
′′
2 ,m̂3), ϕ

∗
3 = 1(m̃1,m̃2,m̃3) and

π1(m
′
1) = π1(m̃1) = A, π1(m

′′
1) = B,

π2(m
′
2) = π2(m̃2) = A, π2(m

′′
2) = B,

π3(m̂3) =M and π3(m̃3) = L.

Thus, π(m′
1,m

′
2, m̂3) = (A,A,M), π(m′′

1,m
′′
2, m̂3) = (B,B,M) and π(m̃1, m̃2, m̃3) =

(A,A,L). Clearly, |supp(ϕ∗
i )| = 1 for each i ∈ N . We now show that the conditions in

Theorem 2 are satisfied. We have that ui(π(m)) = maxa∈A ui(a) for each i ∈ N and

m ∈ supp(ϕ∗
i ). If i ∈ {1, 2} and mi ∈ ∪j ̸=isupp(ϕ

∗
j,Mi

), then πi(mi) ∈ BRi(π−i(m−i))

where m−i is the unique m̄−i such that (mi, m̄−i) ∈ ∪j ̸=isupp(ϕ
∗
j) and, for each

αi ∈ ∆(Ai), ∑
m̄−i

∑
j ̸=i βjϕ

∗
j [mi, m̄−i]∑

j ̸=i βjϕ
∗
j,Mi

[mi]
ui(αi, π−i(m̄−i)) = ui(αi, π−i(m−i)).

Finally, if i = 3 and m3 ∈ ∪j ̸=3supp(ϕ
∗
j,M3

), then m3 = m̂3 and π3(m̂3) =M solves

max
α3∈∆(A3)

∑
m̄−3

∑
j ̸=3 βjϕ

∗
j [m̂3, m̄−i]∑

j ̸=3 βjϕ
∗
j,M3

[m̂3]
u3(α3, π−3(m̄−3))

= max
α3∈∆(A3)

β1u3(α3, A,A) + β2u3(α3, B,B)

β1 + β2

since β2

2
≤ β1 ≤ 2β2.
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