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1 Introduction

There are many examples where an anonymous mechanism is used to allocate goods

or services to a large number of individuals. For instance, consider the allocation of

school seats for children living in a city, the election of a parliament in a country,

and so on. The presence of a large number of individuals often facilitates the analysis

of anonymous mechanisms and, more importantly, implies that the mechanism has

desirable incentive properties. This has been shown by Córdoba and Hammond (1998),

Jackson and Kremer (2007), McLean and Postlewaite (2015), Hashimoto (2018) and

Azevedo and Budish (2019) among others, who constructed mechanisms in which

individuals have an incentive to truthfully reveal their private information and do

not envy the allocation of others in an approximate sense (i.e. are approximately

strategy-proof and approximately envy-free) when the number of participants is large.

Specifically, Azevedo and Budish (2019) argue that the mechanisms that are successful

in practice are the ones that are strategy-proof in the large, i.e. satisfy a particular

notion of approximate strategy-proofness.

A motivation for considering approximate versions of strategy-proofness and envy-

freeness comes from several impossibility results, each stating that a certain desired

property cannot hold in strategy-proof or envy-free mechanisms. In fact, as shown in

the above mentioned papers, these impossibility results do not hold for mechanisms

that are merely approximately strategy-proof and approximately envy-free.

This paper casts the relationship between the exact and approximate versions of

strategy-proofness and envy-freeness in a different light. Indeed, we show that, for

generic preferences with private values and for anonymous mechanisms satisfying a

continuity property, approximate versions of strategy-proofness and envy-freeness can

be strengthened at virtually no cost to exact ones when the number of participants

is large. Thus, any desirable property that holds in a sufficiently large mechanism

which is approximately strategy-proof (resp. approximately envy-free) will hold ap-

proximately in a strategy-proof (resp. envy-free) mechanism. Furthermore, when a

sequence of approximately strategy-proof mechanisms is generic in a sense to be
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made precise, then each of these mechanisms is strategy-proof and envy-free when

the number of participants is large. These results thus suggest that the difference be-

tween exact and approximate version of strategy-proofness and envy-freeness is small

and, therefore, that strategy-proofness and envy-freeness are not restrictive properties

after all.

The above results imply that, in the generic case, one only needs to check that an

approximate version of strategy-proofness (e.g. strategy-proofness in the large) holds

for a sequence of anonymous mechanisms to be strategy-proof when the number of

participants is large. Since the requirements of the former are easier to demonstrate

than the latter, this makes any such approximate notion of strategy-proofness a useful

concept even when the focus is on strategy-proof mechanisms. This also identifies a

way in which a sequence of anonymous mechanisms may fail to be strategy-proof,

namely that the sequence may fail to be generic. In this case, a small perturbation of

the sequence of mechanisms is enough to restore strategy-proofness. Similar consid-

erations apply regarding envy-freeness.

The important concept for our results is the notion of a reduced mechanism which

is a function that specifies the distribution of outcomes that results from the action of

a player given the distribution of actions of the other players. Thus, it represents how

a player can impact the distribution of outcomes through the choice of his own action

given an action distribution of the other players. Formally, this notion corresponds

to that of a large-market limit mechanism of Azevedo and Budish (2019) and defines

a semi-anonymous game as in Kalai (2004); the key observation in our approach is

that, in each finite-player anonymous mechanism, there is a reduced mechanism which

equals the marginal distribution of outcomes for each player. That one such reduced

mechanism is enough as opposed to one for each player is a consequence of anonymity,

which also implies that only the distribution of actions of the other players matters

for such marginal distribution of outcomes.

The observation that, for each finite-player anonymous mechanism, there is a

reduced mechanism that equals the marginal distribution of outcomes for each player

implies that finite-player anonymous mechanisms can be represented in the same space
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where limit mechanisms lie. This common space will be detailed below, the important

point here being that it allows us to use a reduced mechanism as a reference point

from which properties of finite-player mechanisms are derived. This is in contrast to

many asymptotic results (such as those in Azevedo and Budish (2019)) which are

obtained by focusing exclusively on the case of finitely many individuals.

This approach is conceptually the same as in Hashimoto (2018) who “constructs

finite-market mechanisms from an infinite-market one.” While our setting does not

feature information aggregation,1 in contrast to Hashimoto (2018), we present general

results in terms of the underlying economic problem and anonymous mechanism used,

i.e. they are not restricted to his generalized random priority mechanisms and his

specific allocation problem.2

The space in which mechanisms are represented is the space of reduced mecha-

nisms. Our results are for the continuous case and, thus, the space of reduced mech-

anisms is formally the space of continuous functions that specify a distribution of

outcomes for each action and distribution of actions. Finite-player anonymous mech-

anisms are represented by a reduced mechanism which is only defined for the finitely

many distributions of actions that can arise from the choices of the other players; in

contrast, in the limit as the number of players increases to infinity, reduced mecha-

nisms are defined for each distribution of actions. Thus, to compare both cases, we

identify each reduced mechanism with its graph and endow the resulting space with

the Hausdorff metric topology. We consider sequences of anonymous mechanisms and

we focus on such sequences that converge to a reduced mechanism. We then show

that:

1. When there are at least three outcomes and for generic preferences (e.g. in an

open and dense subset of preferences), each mechanism in a sequence of finite-

player anonymous mechanisms converging to a generic strategy-proof reduced

1Information aggregation plays an important role in his setting due to the attempt of the players

to learn the state of nature by aggregating their information. In contrast, states of nature are absent

from our setting.
2See Section 5.2 for a more detailed discussion of Hashimoto’s (2018) approach.
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mechanism (i.e. in an open and dense subset of such mechanisms) is, eventually,

strictly strategy-proof and strictly envy-free.

2. When there are at least three outcomes and for generic preferences, each se-

quence of anonymous mechanisms converging to a (not necessarily generic)

strategy-proof reduced mechanism can be slightly changed in an ex-ante sense

to obtain a sequence of anonymous mechanisms whose elements are, eventually,

strictly strategy-proof and strictly envy-free.

These results apply to, for example, sequences of anonymous mechanisms that are

strategy-proof in the large since, as we show, the limits of such sequences are strategy-

proof reduced mechanisms.

The requirement that a sequence of anonymous mechanisms converges is not de-

manding; it simply requires that the mechanisms change little when the number of its

participants exceed a certain (large) bound. The substantive restriction in our setting

comes from the requirement that the limit reduced mechanism is continuous. While

we aim to extend our results in future work to cover some discontinuous mechanisms,

we stress here that the point of this paper is to argue that the difference between

exact and approximate versions of strategy-proofness and envy-freeness may amount

to nothing, and this has been established by the above results in the continuous case.

The analytical convenience of the continuous case allows us to make this point in a

(relatively) simple and transparent way. Several examples discuss these issues.

The paper is organized as follows. Section 2 contains a brief literature review.

Our framework is in Section 3 and includes several examples. Our main results are

in Section 4. We provide a discussion of their relationship to the recent work of

Hashimoto (2018) and Azevedo and Budish (2019) in Section 5, where we also discuss

our continuity assumption. The proofs of our results are in the appendix, Section A.

5



2 Literature review

A large literature has demonstrated that strategy-proofness is a desirable but re-

strictive objective of market design. Strategy-proof mechanisms satisfy an important

robustness property: truthful revelation is optimal regardless of participants’ beliefs.3

Nevertheless, strategy-proofness can be restrictive in markets with finitely many play-

ers. For example, several papers have demonstrated that strategy-proofness can be

incompatible with efficiency in a variety of settings.4 On the other hand, strategy-

proofness may appear to become less restrictive in large markets. To take a specific

example, even though there does not exist a strategy-proof mechanism that imple-

ments competitive equilibrium outcomes in a finite-player exchange economy, the

Walrasian mechanism is exactly strategy-proof when there is a continuum of agents

and approximately so when the number of players is large but finite.5

Given the above, many papers have attempted to construct specific finite-player

mechanisms that approximate limit mechanisms with desirable properties, the goal

being that the finite-player mechanisms will also satisfy the properties in an ap-

proximate sense. For example, in the context of an exchange economy, Córdoba and

Hammond (1998) and Kovalenkov (2002) construct strategy-proof mechanisms whose

outcomes converge to those of a competitive equilibrium, and Hashimoto (2018) (dis-

cussed further in Section 5.2) introduces a strategy-proof mechanism that can ap-

proximate many limit mechanisms of interest. In contrast to these papers, we are less

concerned with properties of specific mechanisms, but rather provide general results

about sequences of approximating mechanisms. In particular, our Theorem 1 implies

3The argument that this property is desirable originates from Wilson (1987); Bergemann and

Morris (2005) show that only strategy-proof mechanisms satisfy this property. As well as being

robust, Azevedo and Budish (2019) note that strategy-proof mechanisms are strategically simple

(Fudenberg and Tirole (1991) and Roth (2008)), fair (Friedman (1991), Pathak and Sönmez (2008)

and Abdulkadiroğlu, Pathak, Roth, and Sönmez (2006)) and generate useful information about the

true preferences of its participants (Roth (2008) and Abdulkadiroğlu, Agarwal, and Pathak (2017)).
4See Hurwicz (1972), Abdulkadiroğlu, Pathak, and Roth (2009), Papai (2001), Ehlers and Klaus

(2003), Hatfield (2009), Zhou (1990) and Bogomolnaia and Moulin (2001).
5See, respectively, Hammond (1979) and Roberts and Postlewaite (1976).
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that, in the generic case, any mechanism in a sequence of anonymous mechanisms

that converges to a strategy-proof mechanism is itself eventually strategy-proof.

An alternative approach is to replace strategy-proofness with a weaker criterion.

For example, Azevedo and Budish (2019) introduce the notion of strategy-proofness

in the large, which is an approximate and asymptotic form of strategy-proofness.6

They consider a number of existing mechanisms and argue that the mechanisms that

perform well in practice are precisely those that are strategy-proof in the large. We

provide an alternative perspective by showing that mechanisms that are strategy-

proof in the large, since they converge to a limit mechanism that is strategy proof (by

Theorem 3), can in fact be made strategy-proof at virtually no cost (by Theorem 2).

On a technical level, Azevedo and Budish (2019) focus on the case of finitely many

individuals and establish their results using asymptotic methods such as the Dvoret-

zky, Kiefer, and Wolfowitz’s (1956) inequality. In contrast, our approach consists in,

first, representing finite-player anonymous mechanisms in a space, the space of re-

duced mechanisms, that also contains their limits and, second, using the properties

of such limits to obtain properties of large finite-player mechanisms. We have used

this approach in the context of normal-form games in Carmona and Podczeck (2020),

Carmona and Podczeck (2021) and Carmona and Podczeck (2022).7 As in here, the

contribution of these papers consists in dropping the “approximate” qualifier generi-

cally from results in Rashid (1983), Khan and Sun (1999), Kalai (2004), Carmona and

Podczeck (2009), Carmona and Podczeck (2012), and Deb and Kalai (2015) showing

that sufficiently large finite-player games have pure strategy approximate equilibria.8

Besides strategy-proofness, another desirable robustness property of a mechanism

6For a survey of other notions of approximate strategy-proofness that have been used in the

literature, see footnote 12 in Azevedo and Budish (2019).
7See also Greinecker and Kah (2021), who used this approach in the context of one-to-one match-

ing.
8Here “pure strategy approximate equilibrium” means a strategy profile such that for some num-

bers ε > 0 and 0 ≤ η < 1, players which make up a fraction of at least 1 − η cannot deviate so

that payoffs increase more than ε (in Kalai (2004) and some of the results of Carmona and Pod-

czeck (2009) the number η is zero), and “sufficiently large” means that these numbers can be made

arbitrarily small if one takes the number of players to be large enough.
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is full implementation, i.e. the requirement that the intended outcome is implemented

by every equilibrium. Sinander and Escudé (2020) point out that strictly strategy-

proof mechanisms satisfy both robustness criteria and show that, in the canonical

auction environment, every strategy-proof mechanism can be made strict by an arbi-

trarily small modification. In our setting, Theorem 2 establishes an analogous result

for sequences of anonymous mechanisms that converge to a strategy-proof mechanism

and thus shows that a designer who wishes to implement the outcome of a mechanism

from the tail of such a sequence can achieve full implementation at a small cost.

3 Model

3.1 Preferences

Individuals have preferences that depend on their type and on which outcome occurs.

Specifically, there is a common finite type space T and a finite set of outcomes X0.

There is a payoff function u : T × X0 → R that is common to all individuals, with

u(t, x0) being each individual’s payoff when he is of type t and the outcome is x0.

Thus, preferences are private values since an individual’s payoff depends only on

his type and outcome. Let X = M(X0) be the set of probability distributions over

outcomes and we extend the common payoff function from T×X0 to T×X by setting

u(t, x) =
∑

x0∈X0
x(x0)u(t, x0) for each t ∈ T and x ∈ X.9

The common payoff function u : T × X0 → R is identified with an element of

R|T ||X0|. We say that a subset U of R|T ||X0| is generic if the closure of its complement

has Lebesgue measure zero in R|T ||X0|.

3.2 Anonymous mechanisms

An anonymous mechanism is defined by a finite set I = {1, . . . , n} of players, a set

Yn ⊆ Xn
0 of feasible outcomes, a finite action set A and a function Φn : An →M(Yn)

9More generally, if Z is a finite set, then M(Z) denotes the set of probability distributions over

Z. For each σ ∈M(Z), supp(σ) = {z ∈ Z : σ(z) > 0} denotes the support of σ.
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such that

Φn(a1, . . . , an)(x1, . . . , xn) = Φn(ak(1), . . . , ak(n))(xk(1), . . . , xk(n))

for each (a1, . . . , an) ∈ An, (x1, . . . , xn) ∈ Xn
0 and bijection k mapping {1, . . . , n} onto

itself. The interpretation is that Φn maps action profiles to probability distributions

over feasible outcomes. An anonymous mechanism is direct if A = T . This concludes

the definition of an anonymous mechanism and, thus, we write (I, Yn, A,Φn) for the

anonymous mechanism just defined; in the case of a direct mechanism, we simply

write (I, Yn,Φn).

In the above notation, n stands for the cardinality of the set I of players. We

often consider sequences 〈(In, Yn,Φn)〉n∈N of anonymous direct mechanisms where

In = {1, . . . , n} so that the sequence is indexed by the number of players. In this

case, we simply omit In, thus writing such sequence as 〈(Yn,Φn)〉n∈N.

The following is a key lemma in the analysis of anonymous mechanisms. Let

Mn−1(A) = {π ∈M(A) : π =
∑n−1

j=1 1aj/(n− 1) for some a1, . . . , an−1 ∈ A} be the set

of action distributions that n − 1 players can induce and Φn
i be the marginal of Φn

on the ith coordinate of Xn
0 , where i ∈ {1, . . . , n}.

Lemma 1. If Φn is anonymous, then there exists γn : A×Mn−1(A)→ X such that

Φn
i (a1, . . . , an) = γn(ai,

∑
j 6=i

1aj/(n− 1))

for each i ∈ {1, . . . , n} and (a1, . . . , an) ∈ An.

Lemma 1 allows us to express each player’s payoff function as a function U of his

type, his choice and the distribution of the choices of all other players. The function

U : T × A × Mn−1(A) → R is defined by setting, for each t ∈ T , a ∈ A and

π ∈Mn−1(A),

U(t, a, π) = u(t, γn(a, π)).

The focus is on direct mechanisms and on strategy-proofness. Formally, the direct

mechanism (I, Yn,Φn) is strategy-proof if U(t, t, π) ≥ U(t, t′, π) for each t, t′ ∈ T and

π ∈Mn−1(T ); it is strictly strategy-proof if all these inequalities hold strictly.
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We also consider envy-freeness. A direct mechanism (I, Yn,Φn) is envy-free if, for

each i, j ∈ I and t ∈ T n, u(ti,Φ
n
i (t)) ≥ u(ti,Φ

n
j (t)). Using Lemma 1, this inequality

can be written as

u(ti, γn(ti,
∑
k 6=i

1tk/(n− 1))) ≥ u(ti, γn(tj,
∑
k 6=j

1tk/(n− 1))).

Since
∑

k 6=j 1tk/(n− 1) =
∑

k 6=i 1tk/(n− 1) + (1ti − 1tj)/(n− 1), the envy-freeness of

(I, Yn,Φn) can be stated as follows: for each t, t′ ∈ T and π ∈Mn−1(T ) with π(t′) > 0,

u(t, γn(t, π)) ≥ u(t, γn(t′, π + (1t − 1t′)/(n− 1))).

We say that (I, Yn,Φn) is strictly envy-free if all these inequalities hold strictly.

3.3 Space of reduced mechanisms

For fixed preferences, described by the function u, the relevant feature of an anony-

mous mechanism is the function γn, which describes the marginal distribution over

outcomes of each individual. This provides a reduced-form description of the mecha-

nism, which proves to be useful in the analysis of large mechanisms.

Our results require some assumptions on reduced mechanisms and a convergence

notion. In this paper, we focus on a convenient case from a technical viewpoint,

namely on reduced mechanisms that are continuous, and on a uniform convergence

notion. We focus on direct mechanisms, i.e. set A = T for the remainder of this paper.

Let M denote the space of all continuous functions γ : T × C → X where C is a

nonempty closed subset of M(T ). This is the space of mechanisms that we consider.

A direct reduced mechanism is γ ∈M.

For example, the function γn in Lemma 1 with A = T belongs to M with C =

Mn−1(T ). The case where C = M(T ) arises in the limit when the number of players

goes to infinity. The reason is that the relevant set of distributions induced by players

other than some fixed player is then M(T ). Accordingly, we let L ⊆M be the space

of all continuous functions γ : T ×M(T )→ X.

A direct reduced mechanism γ ∈ L is strategy-proof if u(t, γ(t, π)) ≥ u(t, γ(t′, π))

for each t, t′ ∈ T and π ∈ M(T ). Let S denote the set of γ ∈ L that are strategy-
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proof. The set S is nonempty since it contains constant reduced mechanisms (i.e.

γ ∈ S whenever γ(t, π) = γ(t′, π′) for each t, t′ ∈ T and π, π′ ∈M(T )).

Our results are for sequences of anonymous direct mechanisms that converge ac-

cording to the following convergence notion. Each γ ∈M is identified with its graph,

graph(γ), which is a nonempty and compact subset of T ×M(T ) × X. We endow

the space of nonempty and compact subsets of T ×M(T ) × X with the Hausdorff

metric topology and obtain in this way a topology onM; L is then endowed with the

resulting relative topology. In particular, a sequence 〈γn〉n inM converges to γ ∈M,

which we write as γn → γ, if graph(γn)→ graph(γ) in the Hausdorff metric topology

of the space of nonempty and compact subsets of T ×M(T )×X.10 Furthermore, we

say that a sequence 〈(In, Yn,Φn)〉n∈N of anonymous direct mechanisms converges to

γ ∈M if γn → γ where, for each n ∈ N, γn corresponds to (In, Yn,Φn) via Lemma 1.

One of our main results considers sequences of anonymous direct mechanisms that

converge to a generic strategy-proof direct reduced mechanism. We say that a subset

S of S is generic if S is open and dense in S.

3.4 Examples

The following examples illustrate the notion of a reduced mechanism and the conver-

gence notion we use. We consider the Boston mechanism with a single round as in

Azevedo and Budish (2019), the random priority mechanism as in Hashimoto (2018)

and an auction. The latter is an example where the continuity of the reduced mech-

anism fails, but we show that there is a small perturbation of the auction that yields

a continuous reduced mechanism.

3.4.1 Boston mechanism with a single round

This example is based on Azevedo and Budish (2019, Section E.1). Consider a set

of students who apply to a finite set S of schools. Each school can accommodate a

proportion qs ∈ (0, 1) of the market. Specifically, if there are n students, then school s

10We often let d(γ, γ′) stand for the Hausdoff distance between graph(γ) and graph(γ′) whenever

γ, γ′ ∈M.
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can accommodate bqsnc students, where bxc is the greatest integer less than or equal

to x. It is possible that some students are not allocated to any school, an outcome

denoted by ∅. Thus, the set of outcomes is X0 = S ∪ {∅}. Each student chooses a

school, thus, A = S. The set of types is also the set of schools: T = S. Preferences

are such that u(s, s) > u(s, s′) > 0 = u(s, ∅) for each s, s′ ∈ S such that s 6= s′; thus,

each student’s type indicates his favorite school and not being allocated to a school

is the worst outcome.

Let L be the set of orders ≺ on {1, . . . , n} (thus, |L| = n!) with j ≺ i meaning that

j comes before (or has priority over) i according to ≺. For each possible order ≺∈ L

and school s, the first ns = bqsnc students according to ≺ amongst those who choose

s are allocated to school s, while the remaining ones who choose s are allocated to ∅.

For each (s1, . . . , sn) ∈ Sn, (x1, . . . , xn) ∈ Xn
0 and s ∈ S, let

I(s) = {i ∈ I : si = s},

I(s, s) = {i ∈ I : si = s and xi = s} and

I(s, ∅) = {i ∈ I : si = s and xi = ∅}.

Then (x1, . . . , xn) ∈ supp(Φn(s1, . . . , sn)) if and only if, for each s ∈ S,

|I(s)| = |I(s, s)|+ |I(s, ∅)|,

|I(s, s)| ≤ ns, and

|I(s, ∅)| > 0 only if |I(s, s)| = ns.

Furthermore, for each (x1, . . . , xn) ∈ supp(Φn(s1, . . . , sn)),

Φn(s1, . . . , sn)(x1, . . . , xn) =
1

n!
|{≺∈ L : for each s ∈ S,

j ≺ i for each j ∈ I(s, s) and i ∈ I(s, ∅)}|.
(1)

The marginal distribution γn of Φn is then as follows: Let s ∈ S and π ∈ Mn−1(T ),

with the interpretation that s is the school choice of a given student – student 1 for

concreteness – and π is the distribution of the choices of the other students. Then

(n− 1)π(s) is the number of other students who choose s and 1 + (n− 1)π(s) is the

total number of students who choose s. Thus, if 1 + (n− 1)π(s) ≤ ns, then student 1
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is allocated to school s. If, instead, 1 + (n− 1)π(s) > ns, then student 1 is allocated

to school s if and only if he is one of the first ns students according to ≺ amongst

those 1 + (n− 1)π(s) students who choose s. The number of orders where student 1

is the lth student amongst those k = 1 + (n− 1)π(s) students who choose s is

n!

k!(n− k)!
(k − 1)!(n− k)! =

n!

k
=

n!

1 + (n− 1)π(s)

since there are Cn
k = n!

k!(n−k)!
ways of taking k elements out of n, i.e. of ordering I(s)

and I \ I(s) by determining whether each of the n positions is occupied by someone

from I(s) or from I \ I(s), and, for each such ordering, there are (k − 1)! ways of

ordering those in I(s) such that player 1 is the lth student amongst them and (n−k)!

ways of ordering those in I \ I(s). Thus, the probability of student 1 being the lth

student amongst those in I(s) is

n!

1 + (n− 1)π(s)

1

n!
=

1

1 + (n− 1)π(s)

and the probability of him being one of the ns first students in I(s) is

ns
1 + (n− 1)π(s)

.

Thus, for each s ∈ S and π ∈Mn−1(S),

γn(s, π) = 1s min

{
bqsnc

1 + (n− 1)π(s)
, 1

}
+ 1∅

(
1−min

{
bqsnc

1 + (n− 1)π(s)
, 1

})
.

Define for each s ∈ S and π ∈M(S),

(2) γ(s, π) = 1s min

{
qs
π(s)

, 1

}
+ 1∅

(
1−min

{
qs
π(s)

, 1

})
.

Then γ is continuous and, thus, γ is a reduced mechanism. Furthermore, γn → γ; this

can easily be shown using

γn(s, π) = 1s min

{
bqsnc/n

1/n+ (1− 1/n)π(s)
, 1

}
+1∅

(
1−min

{
bqsnc/n

1/n+ (1− 1/n)π(s)
, 1

})
and bqsnc/n→ qs.

Furthermore, γ is strategy-proof provided that

u(s, s)

u(s, s′)
≥

min
{

qs′
π(s′)

, 1
}

min
{

qs
π(s)

, 1
}
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for each s, s′ ∈ S such that s 6= s′ and π ∈ M(S). Since the right-hand side of this

inequality is maximized when π is such that π(s) = 1 (hence, π(s′) = 0), it follows

that γ is strategy-proof if and only if qsu(s, s) ≥ u(s, s′) for each s, s′ ∈ S such that

s 6= s′. Furthermore, γ is strictly strategy-proof if and only if qsu(s, s) > u(s, s′) for

each s, s′ ∈ S such that s 6= s′.

3.4.2 A random priority mechanism

The Boston mechanism considered in the previous example is an example of a random

priority mechanism in the sense that the allocation that each individual gets depends

on an ordering of the set of individuals which is randomly selected. Here we consider

the random priority mechanism in a private values version of the illustrating example

in Hashimoto (2018).

There are bqnc identical objects to be allocated to n individuals, with q ∈ (0, 1).

Each individual is allocated at most one object and, if he receives one of them, then

he makes a payment 0 < p < 1. The set of outcomes is then X0 = {0, 1}×{0, p}. The

set of T types is contained in [0, 1] and t ∈ T represents the valuation of the good.

Thus, preferences are described by u(t, y, z) = ty − z for each t ∈ T and (y, z) ∈ X0.

Let L be the set of orders ≺ on {1, . . . , n} with j ≺ i meaning that j has priority

over i according to ≺. For each possible order ≺∈ L, the first bqnc individuals accord-

ing to ≺ amongst those who reported t > p are allocated one unit and pay p, while

the remaining ones are allocated zero units and pay 0. For each (t1, . . . , tn) ∈ T n and

(x1, . . . , xn) ∈ Xn
0 , let

I+ = {i ∈ I : ti > p},

I− = I \ I+,

I+(1) = {i ∈ I+ : xi = (1, p)} and

I+(0) = {i ∈ I+ : xi = (0, 0)}.
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Then (x1, . . . , xn) ∈ supp(Φn(t1, . . . , tn)) if and only if

xi = (0, 0) for each i ∈ I−,

|I+| = |I+(1)|+ |I+(0)|,

|I+(1)| ≤ bqnc, and

|I+(0)| > 0 only if |I+(1)| = bqnc.

Furthermore, for each (x1, . . . , xn) ∈ supp(Φn(t1, . . . , tn)),

Φn(t1, . . . , tn)(x1, . . . , xn) =
1

n!
|{≺∈ L : j ≺ i for each j ∈ I+(1) and i ∈ I+(0)}|.

The marginal distribution γn of Φn is then obtained in an analogous way to the Boston

mechanism. Thus, for each t ∈ T and π ∈Mn−1(T ),

γn(t, π) =


1(0,0) if t ≤ p,

1(1,p) min
{

bqnc
1+(n−1)

∑
s>p π(s)

, 1
}

+1(0,0)

(
1−min

{
bqnc

1+(n−1)
∑
s>p π(s)

, 1
})

otherwise.

Define for each t ∈ T and π ∈M(T ),

γ(t, π) = 1(1,p) min

{
q∑

s>p π(s)
, 1

}
+ 1(0,0)

(
1−min

{
q∑

s>p π(s)
, 1

})
.

Then γ is continuous and, thus, γ is a reduced mechanism. Furthermore, γn → γ.

We have that γ is strategy-proof. Indeed, for each t, t′ ∈ T and π ∈ M(T ) such

that t 6= t′,

u(t, γ(t, π))− u(t, γ(t′, π)) =



0 if t ≤ p and t′ ≤ p,

−min
{

q∑
s>p π(s)

, 1
}

(t− p) if t ≤ p and t′ > p,

0 if t > p and t′ > p,

min
{

q∑
s>p π(s)

, 1
}

(t− p) if t > p and t′ ≤ p.

3.4.3 An auction

We consider in this section a version of the gth-price auction when there are g units

of an object to be allocated. The main distinction to the usual gth-price auction is
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that instead of setting the price of the good deterministically to gth highest bid and

rationing stochastically among agents who are indifferent between buying at that

price or not, we propose randomizing the price each potential winner pays between

the gth highest bid and the (gth highest bid + 1) such that as the excess demand at

the gth highest bid goes to zero, the probability that the price is equal to the gth

highest bid goes to one.11

There are n ∈ N single-unit-demand bidders and bqnc goods, where q ∈ (0, 1).

The set of agent types is finite and ordered, T = {1, . . . ,m}. The utility of an agent

depends on whether they get the good y ∈ {0, 1}, their type t ∈ T , and how much they

pay p ∈ T∪{0}: u(t, y, p) = ty−p. The set of outcomes is then X0 = {0, 1}×(T∪{0}).

Consider the following auction Φn,g to allocate g units of the good to n individ-

uals; we will then focus on the case where g = bqnc but this slightly more general

description will be useful in Section 3.4.4 below. For each n ∈ N and π ∈M(T ), let

pn,g(π) = min

{
t ∈ T :

g

n
≥
∑
t′≥t

π(t′)

}
and

αn,g(π) =

g
n
−
∑

t≥pn,g(π) π(t)

π(pn,g(π)− 1)
.

Note that the definition of pn,g implies that π(pn,g(π)− 1) > g
n
−
∑

t≥pn,g(π) π(t). For

each t̂ ∈ T n, let

π =
1

n

∑
j∈I

1t̂j ,

I+ = {i ∈ I : t̂i ≥ pn,g(π)},

I− = {i ∈ I : t̂i = pn,g(π)− 1}, and

I0 = I \ (I+ ∪ I−).

If g
n

=
∑

t≥pn,g(π) π(t), then each i ∈ I+ gets outcome (1, pn,g(π)) whereas each

i /∈ I \I+ gets outcome (0, 0). In this case, for each i ∈ I, let xi = (1, pn,g(π)) if i ∈ I+

11When there is excess demand at the gth highest bid, the gth highest bid corresponds to pn,g(π)−1

as defined in this section and excess demand is proportional to 1 − αn,g(π), which will be the

probability weight on pn,g(π). When the gth highest bid exactly clears the market, the gth highest

bid is equal to pn,g(π) and in this case αn,g(π) = 0.
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and xi = (0, 0) if i ∈ I \ I+, and

Φn,g(t̂1, . . . , t̂n)(x1, . . . , xn) = 1.

If g
n
>
∑

t≥pn,g(π) π(t), then those in I+ get the good with probability one but

pay pn,g(π) with probability (1 − αn,g(π)) and pn,g(π) − 1 with probability αn,g(π).

Moreover, the first g−n
∑

t≥pn,g(π) π(t) individuals in I− according to ≺ get outcome

(1, pn,g(π)− 1). The remaining individuals get outcome (0, 0). In this case, let

I+(0) = {i ∈ I+ : xi = (1, pn,g(π))},

I+(−1) = {i ∈ I+ : xi = (1, pn,g(π)− 1)},

I−(1) = {i ∈ I− : xi = (1, pn,g(π)− 1)} and

I−(0) = {i ∈ I− : xi = (0, 0)}.

Then (x1, . . . , xn) ∈ supp(Φn,g(t̂1, . . . , t̂n)) if and only if

xi = (0, 0) for each i ∈ I0,

|I−(1)| = g − n
∑

t≥pn(π)

π(t),

|I−(0)| = |I−| − |I−(1)|, and

|I+| = |I+(0)|+ |I+(−1)|.

Furthermore, let L be the set of orders ≺ on I− with j ≺ i meaning that j has priority

over i according to ≺. Let ν ∈M({−1, 0}) be such that ν(−1) = αn(π) and

ν+ = ν ⊗ · · · ⊗ ν︸ ︷︷ ︸
|I+| times

.

Then let, for each (x1, . . . , xn) ∈ supp(Φn,g(t̂1, . . . , t̂n)),

Φn,g(t̂1, . . . , t̂n)(x1, . . . , xn) =
1

|I−|!
|{≺∈ L : j ≺ i for each j ∈ I−(1) and i ∈ I−(0)}|

× ν+({z ∈ {−1, 0}|I+| : zi = −1 for each i ∈ I+(−1) and

zi = 0 for each i ∈ I+(0)}).

17



The marginal distribution γn,g of Φn,g is then as follows. Let t ∈ T and π ∈

Mn−1(T ). The distribution of reports is then π̂ = 1
n
1t +

(
1− 1

n

)
π and

γn,g(t, π) =


(1− αn,g(π̂))1(1,pn,g(π̂)) + αn,g(π̂)1(1,pn,g(π̂)−1) if t ≥ pn,g(π̂),

(1− αn,g(π̂))1(0,0) + αn,g(π̂)1(1,pn,g(π̂)−1) if t = pn,g(π̂)− 1,

1(0,0) otherwise.

We focus on the case where g = bqnc and let Φn = Φn,bqnc and γn = γn,bqnc. Define,

for each t ∈ T and π ∈M(T ),

γ(t, π) =


(1− α(π))1(1,p(π)) + α(π)1(1,p(π)−1) if t ≥ p(π),

(1− α(π))1(0,0) + α(π)1(1,p(π)−1) if t = p(π)− 1,

1(0,0) otherwise,

where

p(π) = min

{
t ∈ T : q ≥

∑
t′≥t

π(t′)

}
and

α(π) =
q −

∑
t≥p(π) π(t)

π(p(π)− 1)
.

This is an example of a reduced mechanism that fails to be continuous. Indeed,

if q = 1/2, T = {1, 2, 3, 4}, π = (1/2, 0, 1/4, 1/4) and 〈πk〉k∈N is such that πk =

(1/2 − 2/k, 1/k, 1/4 + 1/k, 1/4) for each k ∈ N, it follows that p(πk) = 4 for each

k ∈ N and p(π) = 2. Furthermore, α(πk) = 1/2−1/4
1/4+1/k

= 1
1+4/k

for each k ∈ N and

α(π) = 0. Then γ(4, πk) = (1− α(πk))1(1,4) + α(πk)1(1,3) → 1(1,3) but γ(4, π) = 1(1,2).

Finally, we have that γ is strategy-proof. Indeed, for each t, t′ ∈ T and π ∈M(T )

such that t 6= t′,

u(t, γ(t, π))− u(t, γ(t′, π)) =



0 if t ≥ p(π) and t′ ≥ p(π),

(1− α(π)(t− p(π)) if t ≥ p(π) and t′ = p(π)− 1,

t− p(π) + α(π) if t ≥ p(π) and t′ < p(π)− 1,

−(t− p(π) + α(π)) if t < p(π) and t′ ≥ p(π),

−α(π)(t− p(π) + 1) if t < p(π) and t′ = p(π)− 1,

0 if t < p(π) and t′ < p(π)− 1
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and, whenever t < p(π), we have that t ≤ p(π) − 1, hence, t − p(π) + α(π) ≤

t− p(π) + 1 ≤ 0.

3.4.4 A continuous auction

The auction in the previous section can be made continuous via a slight perturbation.

Indeed, its reduced mechanism γ fails to be continuous only at distributions π in the

boundary of M(T ), i.e. when π(t) = 0 for some t ∈ T . One way of avoiding this case

is by adding, for each t ∈ T , “fake” individuals to the mechanism who always report

t as we detail in what follows.

We consider the allocation of bqnc goods between n people and the mechanism

we will use consists in adding mbδnc fake individuals, where δ > 0, to the auction of

Section 3.4.3; these individuals are fake in the sense that units of the good allocated

to them are effectively not allocated (e.g. remain with the auctioneer). In addition, for

each t ∈ T , there are bδnc fake individuals reporting t. Thus, the perturbed auction

Φn we consider is defined as follows. Let n ∈ N, (t̂1, . . . , t̂n) ∈ T n, (x1, . . . , xn) ∈ Xn
0

and t̃ = (

bδnc times︷ ︸︸ ︷
1, . . . , 1, . . . ,

bδnc times︷ ︸︸ ︷
m, . . . ,m). Then

Φn(t̂1, . . . , t̂n)(x1, . . . , xn) =
∑

x̃∈Xmbδnc
0

Φn+mbδnc,bqnc(t̂1, . . . , t̂n, t̃)(x1, . . . , xn, x̃),

where Φn+mbδnc,bqnc is as in Section 3.4.3. Note that from reports (t̂1, . . . , t̂n) by n

individuals, we obtain n+mbδnc reports (t̂1, . . . , t̂n, t̃). Hence, the distribution of all

reports, including those from fake individuals, is

1

n+mbδnc

(
n∑
i=1

1t̂i + bδnc
∑
t∈T

1t

)
=

n

n+mbδnc
1

n

n∑
i=1

1t̂i +
mbδnc

n+mbδnc
χ,

where χ = (1/m, . . . , 1/m) is the uniform distribution on T .

The advantage of this perturbation is that we can obtain each of its marginal

distributions from γn,g. Let t ∈ T and π ∈Mn−1(T ). The distribution of all reports of

the non-fake individuals is then π̂ = 1
n
1t +

(
1− 1

n

)
π. The distribution of all reports,

including the fake individuals is then

π̄n =
n

n+mbδnc

(
1

n
1t +

(
1− 1

n

)
π

)
+

mbδnc
n+mbδnc

χ
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Writing pn(t, π) instead of pn+mbδnc,bqnc(π̄n), αn(t, π) instead of αn+mbδnc,bqnc(π̄n) and

qn = bqnc/n, we have that

pn(t, π) = min

t̂ ∈ T : qn ≥
∑
t′≥t̂

π̄n(t′)

 and

αn(t, π) =
qn −

∑
t̂≥pn(t,π) π̄n(t̂)

π̄n(pn(t, π)− 1)
.

Then

γn(t, π) =


(1− αn(t, π))1(1,pn(t,π)) + αn(t, π)1(1,pn(t,π)−1) if t ≥ pn(t, π),

(1− αn(t, π))1(0,0) + αn(t, π)1(1,pn(t,π)−1) if t = pn(t, π)− 1,

1(0,0) otherwise.

For each π ∈M(T ), let

π̄ =
1

1 +mδ
π +

mδ

1 +mδ
χ,

p(π) = min

{
t ∈ T : q ≥

∑
t′≥t

π̄(t′)

}
, and

α(π) =
q −

∑
t≥p(π) π̄(t)

π̄(p(π)− 1)
.

Finally, define γ by setting, for each (t, π) ∈ T ×M(T ),

γ(t, π) =


(1− α(π))1(1,p(π)) + α(π)1(1,p(π)−1) if t ≥ p(π),

(1− α(π))1(0,0) + α(π)1(1,p(π)−1) if t = p(π)− 1,

1(0,0) otherwise.

We have that γ is strategy-proof by the same argument as in Section 3.4.3.

In Section A.2, we show that γ is continuous (Claim 1) and that γn → γ (Claim 2)

using the fact that, for each π ∈M(T ) and t ∈ T , π̄(t) > 0. To see how this property

is used to establish the continuity of γ, note first that one difficulty with the auctions

we have defined is that we only have limk p(πk) ≥ p(π) whenever πk → π ∈ M(T ).

More importantly, we may have limk p(πk) − p(π) > 1 in the case of the auction in

Section 3.4.3. This cannot happen in the auction of this section since, as we show,

limk p(π̄k)− p(π̄) ≤ 1. This property together with the definition of γ will then allow

us to establish the continuity of γ and the convergence of 〈γn〉n∈N to γ.
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4 Results

4.1 Generic asymptotic strategy-proofness

As we have discussed, several authors have pointed out that several known mech-

anisms are, asymptotically and approximately, strategy-proof. It is often the case

that the notion of approximate strategy-proofness is such that the limit point of a

sequence of anonymous direct mechanisms that satisfy it is strategy-proof — see e.g.

Theorem 3 below showing that this conclusion holds when the notion of approximate

strategy-proofness is Azevedo and Budish’s (2019) strategy-proof in the large.

We complement the above result by showing that when the limit point of a se-

quence of anonymous direct mechanisms is generic (i.e. it belongs to an open and

dense subset of the set of strategy-proof mechanisms), then any mechanism in the

sequence is strategy-proof provided that the number of its participants is sufficiently

large. Thus, in the generic case and with a large number of participants, any approx-

imate notion of strategy-proofness can be strengthened to strategy-proofness at no

cost.

The above conclusion requires that there are at least three outcomes and that

preferences are generic. The latter is needed to guarantee that there is a reduced

mechanism which is independent of the type distribution and is strictly strategy-

proof, as the following lemma states.

Lemma 2. If |X0| ≥ 3, then there is a generic subset U of R|T ||X0| such that, for each

u ∈ U and each distinct elements x1, x2, x3 of X0, there exists σ : T → X such that

u(t, σ(t)) > u(t, σ(t′)) and supp(σ(t)) ⊆ {x1, x2, x3} for each t, t′ ∈ T .

For the remainder of the paper, let U be the generic subset of R|T ||X0| such that

the conclusion of Lemma 2 holds.

Theorem 1. Suppose that |X0| ≥ 3. Then, for each u ∈ U , there is a generic subset

S∗ of S such that if γ ∈ S∗ and 〈(Yn,Φn)〉n∈N is a sequence of anonymous direct

mechanisms converging to γ, then there is N ∈ N such that (Yn,Φn) is strictly strategy-

proof and strictly envy-free whenever n ≥ N .
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Our proof of Theorem 1 uses for S∗ the set of strictly strategy-proof reduced mech-

anisms. Lemma 2 shows that S∗ is nonempty and then we show that this set is generic

in S. Moreover, we show that mechanisms in a sequence of direct anonymous mecha-

nisms that converges to a strictly strategy-proof reduced mechanism must eventually

be strictly strategy-proof and strictly envy-free.

While our proof of Theorem 1 lets S∗ be the set of strictly strategy-proof reduced

mechanisms, we remark that this is just a convenient set for our argument. Indeed,

let S∗∗ be the set of γ ∈ S such that the conclusion of Theorem 1 holds, i.e. for

each sequence 〈(Yn,Φn)〉n∈N of anonymous direct mechanisms converging to γ, there

is N ∈ N such that (Yn,Φn) is strictly strategy-proof and strictly envy-free whenever

n ≥ N . Since S∗ is open and dense and the conclusion of Theorem 1 holds for any

γ ∈ S∗, it follows that S∗ ⊆ S∗∗, S∗ = int(S∗) ⊆ int(S∗∗) and, hence, int(S∗∗) is open

and dense. Thus, int(S∗∗) is the largest open and dense subset of S such that the

conclusion of Theorem 1 holds. Furthermore, S∗∗ is, by definition, the largest subset

of S such that the conclusion of Theorem 1 holds and contains a generic set.

Theorem 1 is strong because its conclusion applies to every sequence of anony-

mous direct mechanisms (converging to some element of S∗). It is also strong since

its conclusion holds for both strategy-proofness and envy-freeness and their strict ver-

sions. The former, i.e. the fact that the conclusion of Theorem 1 applies to every

sequence of anonymous direct mechanisms converging to some element of S∗, is im-

portant when the goal is to argue that a specific sequence 〈(Yn,Φn)〉n∈N of anonymous

direct mechanisms is strategy-proof simply by studying its limit γ.

Alternatively, one may want to focus on the limit case of an infinite population

and focus on elements of S. In this case, it may be enough to ask whether a direct

reduced mechanism γ ∈ S can be justified by a sequence 〈(Yn,Φn)〉n∈N of anonymous

direct mechanisms with finitely many players. Indeed, if 〈(Yn,Φn)〉n∈N converges to γ

and (Yn,Φn) is strategy-proof for each n ≥ N , then γ is also the limit of strategy-proof

anonymous direct mechanisms with finitely many players and, thus, not an artifact of

an infinite population. Clearly, Theorem 1 implies that, if |X0| ≥ 3 and u ∈ U , there
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is a generic subset of S such that this conclusion holds.12

The notion of genericity in Theorem 1 can be strengthened in some specific cases.

We illustrate this in the context of the Boston mechanism of Section 3.4.1. Let u be

given as in Section 3.4.1. Each q = (qs)s∈S defines a reduced Boston mechanism γq

by (2) and γq ∈ S if q ∈ Q = {q ∈ R|S| : qs ≥ maxs′∈S\{s}
u(s,s′)
u(s,s)

for each s ∈ S}.

The set Q∗ = {q ∈ R|S| : qs > maxs′∈S\{s}
u(s,s′)
u(s,s)

for each s ∈ S} is generic in Q in

the sense that the closure of Q\Q∗ has Lebesgue measure zero in R|S|. Furthermore,

γq ∈ S∗ if q ∈ Q∗, where, as above, S∗ is the set of strictly strategy-proof reduced

mechanisms.13 Thus, these arguments together with Theorem 1 imply the following:

for each u as in Section 3.4.1, there is a generic subset Q∗ of Q such that if q ∈ Q∗

and 〈(Yn,Φn)〉n∈N is the sequence of Boston mechanisms defined by q via (1) (thus,

converging to γq), then there is N ∈ N such that (Yn,Φn) is strictly strategy-proof

and strictly envy-free whenever n ≥ N .

The notion of genericity in Theorem 1 is already strong enough to imply that any

strategy-proof direct reduced mechanism can be arbitrarily well approximated by γ ∈

S∗ (since S∗ is dense). This suggests that any sequence 〈(Yn,Φn)〉n∈N of anonymous

direct mechanisms converging to a strategy-proof direct reduced mechanism can be

arbitrarily well approximated by a sequence of anonymous direct mechanisms whose

elements are eventually strictly strategy-proof and strictly envy-free. We will indeed

establish a result along these lines below.

Lemma 2 is key to the existence of arbitrarily close approximations in the above

sense and is also the harder and more novel part of the proof of Theorem 1. In

its proof, we consider for each distinct elements x1, x2, x3 of X0 the set Ux1,x2,x3 of

u ∈ R|T ||X0| such that

(a) u(t, x) 6= u(t, x′) for each t ∈ T and x, x′ ∈ {x1, x2, x3} with x 6= x′, and

12Indeed, let S∗∗∗ be the set of γ ∈ S such that there is a sequence 〈(Yn,Φn)〉n∈N of anonymous

direct mechanisms converging to γ and N ∈ N such that (Yn,Φn) is strategy-proof whenever n ≥ N .

Then S∗ ⊆ S∗∗∗, S∗ = int(S∗) ⊆ int(S∗∗∗) and, hence, int(S∗∗∗) is open and dense.
13Note that Q∗ 6= ∅ and, hence, S∗ 6= ∅ in this application. Thus, there is no need to require

|X0| ≥ 3 or that u ∈ U since these conditions are needed only to guarantee that S∗ 6= ∅ in the

general context of Theorem 1.
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(b) u(t,x′)−u(t,x)
u(t,x)−u(t,x̂)

6= u(t′,x′)−u(t′,x)
u(t′,x)−u(t′,x̂)

for each t, t′ ∈ T with t 6= t′ and x, x′, x̂ ∈ {x1, x2, x3}

with x 6= x′, x 6= x̂ and x′ 6= x̂.14

As a concrete example to illustrate the definition of Ux1,x2,x3 , consider the case where

X0 = {0, 1} × F and F is a finite subset of [0, 1], with the interpretation that the

first coordinate of x0 = (y, z) ∈ X0 indicates an individual’s consumption of a good

and the second consists of his payment. Let θ, τ ∈ F be such that θ 6= τ , θ 6∈ T and

τ 6∈ T , i.e. assume that F is such that θ and τ exist, as well as 0 ∈ F . If payoffs are

such that u(t, x0) = ty − z, then u belongs to Ux1,x2,x3 for x1 = (1, θ), x2 = (1, τ) and

x3 = (0, 0).15

We let U = ∩(x1,x2,x3)∈ZUx1,x2,x3 , where Z is the set of distinct elements x1, x2, x3

of X0. The proof of Lemma 2 then shows that the complement of U is closed and has

Lebesgue measure zero. It also constructs σ satisfying the properties in the statement

of the lemma.16

4.2 Approximation by strategy-proof mechanisms

Theorem 1 describes the case where a sequence of anonymous direct mechanisms

converges to a generic strategy-proof reduced mechanism. For instance, this happens

when the limit mechanism is strictly strategy-proof (whose general existence is guar-

anteed by Lemma 2) but, as we have pointed out, there are other examples.

Nevertheless, one may be interested in some particular sequence of anonymous

direct mechanisms that e.g. are typically used in practice and whose limit may not

(be easily shown to) be generic. Theorem 1 and Lemma 2 are still useful in this

case as they allow us to obtain another sequence of anonymous direct mechanisms,

arbitrarily close to the original one, and such that all of the mechanisms in it are

eventually strictly strategy-proof and strictly envy-free. Thus, for sequences of di-

14In Section A.5 we illustrate how Lemma 2 can fail when there are only two outcomes.
15Indeed, u(t, x1) − u(t, x2) = θ − τ , u(t, x1) − u(t, x3) = t − θ, u(t, x2) − u(t, x3) = t −

τ , u(t,x2)−u(t,x1)
u(t,x1)−u(t,x3)

= τ−θ
t−θ , u(t,x3)−u(t,x1)

u(t,x1)−u(t,x2)
= t−θ

τ−θ , u(t,x1)−u(t,x2)
u(t,x2)−u(t,x3)

= θ−τ
t−τ , u(t,x3)−u(t,x2)

u(t,x2)−u(t,x1)
= t−τ

θ−τ ,

u(t,x1)−u(t,x3)
u(t,x3)−u(t,x2)

= t−θ
τ−t and u(t,x2)−u(t,x3)

u(t,x3)−u(t,x1)
= τ−t

t−θ .
16See Section A.3 for a brief outline of the proof of Lemma 2.

24



rect anonymous mechanisms converging to a (not necessarily generic) strategy-proof

reduced mechanism, strategy-proofness can be obtained at a small cost.

Recall that U is the generic subset of R|T ||X0| such that the conclusion of Lemma

2 holds.

Theorem 2. Suppose that |X0| ≥ 3. Then, for each u ∈ U , ε > 0, γ ∈ S and

sequence 〈Yn,Φn〉n∈N of anonymous direct mechanisms converging to γ such that, for

each n ∈ N, there is x̄0 ∈ X0 such that

(a) (x̄0, . . . , x̄0) ∈ Yn and

(b) there are at least two elements x0 ∈ X0 \{x̄0} such that, for each i ∈ {1, . . . , n},

y ∈ Yn if yi = x0 and yj = x̄0 for each j 6= i,

there is N ∈ N and 〈Φ′n〉∞n=N such that Φ′n : T n → M(Yn), ||Φn − Φ′n|| < ε and Φ′n is

strictly strategy-proof and strictly envy-free for each n ≥ N .

Conditions (a) and (b) on Yn are satisfied in several examples. The easiest one is

when Yn = Xn
0 , which could arise when X0 = {0, 1} × F , where F is a finite subset

of R+, with the interpretation that if x0 = (y, z), then y denotes access to a public

good and z a payment to the provider of such public good. Another similar example

with m units of a private good would have X0 = {0, . . . ,m} × F with 0, 1, 2 ∈ F

and Yn such that ((0, 0), . . . , (0, 0)) ∈ Yn and, say, for each i ∈ {1, . . . , n}, y ∈ Yn if

yi ∈ {(1, 1), (1, 2)} and yj = (0, 0) for each j 6= i. In this example, it is then feasible

that no one gets any unit of the good and no one pays. Furthermore, it is also feasible

that only one individuals gets one unit of the good by either paying a price of 1 or a

price of 2.

We illustrate Theorem 2 using the continuous auction of Section 3.4.4. In this

example, |X0| > 3 and u belongs to U .17 The sequence 〈Yn,Φn〉n∈N with

Yn = {(x1, . . . , xn) ∈ Xn
0 : |{i ∈ I : xi ∈ {1} × (T ∪ {0})}| ≤ bqnc}

17The latter can be seen by letting x1 = (0, 0), x2 = (0, p) and x3 = (1, 0) with p ∈ T (thus, p > 0).

Indeed, u(t, x1) − u(t, x2) = p, u(t, x1) − u(t, x3) = −t, u(t, x2) − u(t, x3) = t + p, u(t,x2)−u(t,x1)
u(t,x1)−u(t,x3)

=

p
t ,

u(t,x3)−u(t,x1)
u(t,x1)−u(t,x2)

= t
p , u(t,x1)−u(t,x2)

u(t,x2)−u(t,x3)
= − p

t+p , u(t,x3)−u(t,x2)
u(t,x2)−u(t,x1)

= − t+pp , u(t,x1)−u(t,x3)
u(t,x3)−u(t,x2)

= − t
t+p and

u(t,x2)−u(t,x3)
u(t,x3)−u(t,x1)

= − t+pt .
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converges to γ and γ ∈ S. The final assumption of Theorem 2 is also satisfied, for

instance, by letting n be such that bqnc ≥ 1, x̄0 = (0, 0) and noting that y ∈ Yn if p ∈

T , yi ∈ {(1, 0), (1, p)} and yj = 0 for each i, j ∈ {1, . . . , n} with i 6= j. Thus, Theorem

2 applies and, for each ε > 0, yields a sequence 〈Yn,Φ′n〉n=N of strictly strategy-proof

and strictly envy-free anonymous direct mechanisms such that ||Φ′n − Φn|| < ε for

each n ≥ N . Thus, a small modification of Φn yields an anonymous direct mechanism

in which each player strictly prefers to truthfully reveal his type and strictly prefers

his allocation to that of any of the other players.

The conclusion of Theorem 2 holds for a variation of the auction of Section 3.4.3

even though its reduced mechanism is discontinuous; we discuss this in Section 5.3

below. We also illustrate Theorem 2 using the random priority mechanism of Section

3.4.2 in Section 5.2 below, where we discuss Hashimoto’s (2018) work.

5 Discussion

In this section we establish formal relationships between our setting and results with

those of Azevedo and Budish (2019) and Hashimoto (2018). We also comment on the

continuity assumption we make on reduced mechanisms.

5.1 Relationship with Azevedo and Budish (2019)

Our results apply to any sequence of anonymous direct mechanisms whose marginal

distributions converge to a strategy-proof reduced mechanism and, as we show, this

happens when such sequence satisfies the asymptotic notion of strategy-proofness in

Azevedo and Budish (2019).

Such asymptotic notion of strategy-proofness is as follows. Let (Yn,Φn) be an

anonymous mechanism and let γn correspond to (Yn,Φn) via Lemma 1. Define en−1 :

An−1 →Mn−1(A) by setting, for each an−1 ∈ An−1,

en−1(an−1) =
n−1∑
j=1

1aj/(n− 1);
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en−1(an−1) is the empirical distribution of a profile of actions an−1 = (a1, . . . , an−1).

Let M0(A) = {π ∈ M(A) : π(a) > 0 for all a ∈ A} be the set of distributions on

A with full support. Define φn : A × M(A) → X by setting, for each a ∈ A and

m ∈M(A),

φn(a,m) =
∑

an−1∈An−1

mn−1(an−1)γn(a, en−1(an−1)),

where mn−1(an−1) =
∏n−1

j=1 m(aj) and an−1 = (a1, . . . , an−1).

A sequence 〈(Yn,Φn)〉n∈N of anonymous direct mechanisms is strategy-proof in the

large if, for each m ∈M0(T ) and ε > 0, there exists N ∈ N such that

u(t, φn(t,m)) ≥ u(t, φn(t′,m))− ε

for each t, t′ ∈ T and n ≥ N .

Theorem 3 shows that whenever a sequence of anonymous direct mechanisms

that is strategy-proof in the large converges to a reduced mechanism, then this limit

reduced mechanism is strategy-proof.

Theorem 3. If γ ∈ L and 〈(Yn,Φn)〉n∈N is a sequence of anonymous direct mecha-

nisms that is strategy-proof in the large and converges to γ, then γ is strategy-proof.

This result uses some ideas that are familiar to the literature on large games (e.g.

Kalai (2004)) and others already used in Azevedo and Budish (2019). Nevertheless,

it does not use the notion of a large-market limit φ∞ of 〈(Yn,Φn)〉n∈N that the latter

consider and which satisfied, by definition, φ∞(t,m) = limn φn(t,m) for each t ∈ T

and m ∈ M(T ). In contrast, we focus on the sequence of marginal distributions

〈γn〉n∈N and conclude from γn → γ and 〈(Yn,Φn)〉n∈N being strategy-proof in the

large that u(t, γ(t, π)) ≥ u(t, γ(t′, π)) for each t, t′ ∈ T and π ∈ M(T ). Part of the

argument consists in showing that φn in the definition of strategy-proof in the large

can be replaced by γn provided that γn(t, π) is close to γn(t, π′) whenever n is large and

π is close to π′; more precisely, under the latter condition, we show that 〈(Yn,Φn)〉n∈N
is envy-free in the large using a result on the concentration of probability measures,

which is a standard tool in the analysis of large games since at least Kalai (2004).18

18See Section A.8 or Azevedo and Budish (2019) for a definition of envy-free in the large.
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Since the requirement that γn(t, π) be close to γn(t, π′) whenever n is large and π

is close to π′ is satisfied when γn → γ and γ is continuous, the remainder of the

argument consists in showing that 〈(Yn,Φn)〉n∈N being envy-free in the large implies

that γ is strategy-proof.

5.2 Relationship with Hashimoto (2018)

An important difference between our setting and that of Hashimoto (2018) concerns

information aggregation, which is absent in ours and is the source of common values

in his. In the case where there is no state of nature to learn from individual types or

signals, then Hashimoto’s (2018) setting can be accommodated in ours (modulo some

technical assumptions) and we use his motivating example to illustrate Theorem 2.

The setting in Hashimoto (2018) is described by a set T of types or signals, a

set Θ of states of nature, a vector q ∈ NL describing the total supply of goods, with

L ∈ N, a finite consumption set C and a function v such that individuals’ payoffs are

v(t, y, θ)− z

where y ∈ C is the consumption bundle, z ∈ R+ is the payment, t is the type or

signal and θ is the state of nature. There are two additional elements, namely, the

density (t, θ) 7→ f(t, θ) of t ∈ T given θ and the density θ 7→ f(θ) of θ.

The presence of states of nature is, in Hashimoto (2018), the source of common

values since individuals use the (truthful) profile of reported types to infer the state of

nature, through the probability distribution over states of nature conditional on the

type profile. In contrast, our framework does not feature states of nature; once Θ is

absent from Hashimoto’s (2018) model, one obtains a private values setting which can

be accommodated in our framework as follows. Let T be the set of types, X0 = C×F ,

where F ⊆ R+, and

u(t, y, z) = v(t, y)− z.

Given the absence of Θ, there is only one relevant density, namely t 7→ f(t) which

plays no role in our framework due to the focus on ex-post properties.
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We use the example in Section 3.4.2 to illustrate Theorem 2 in a particular instance

of Hashimoto’s (2018) setting. The assumptions of Theorem 2 hold in this example

for the same reasons as in the continuous auction (see Section 4.2). Thus, Theorem

2 applies and, for each ε > 0, yields a sequence 〈Yn,Φ′n〉n=N of strictly strategy-proof

and strictly envy-free anonymous direct mechanisms such that ||Φ′n − Φn|| < ε for

each n ≥ N .

The random priority mechanism (Yn,Φn) in Section 3.4.2 is strategy-proof and

envy-free, hence the gain from the above application of Theorem 2 is that both prop-

erties hold strictly. In general, Hashimoto’s (2018) results yield envy-freeness only

asymptotically (i.e. the amount of envy converges to zero) whereas Theorem 2 im-

plies that it eventually holds in a strict way.

5.3 Continuity

We have focused on reduced mechanisms that are continuous and this allowed us to

establish our results in a relatively simple and transparent way. Nevertheless, it may

be possible to extend our results to a more general class of mechanisms.

Extending Theorem 1 requires finding conditions weaker than continuity that are

nevertheless sufficient for its conclusions. The literature on discontinuous games, sur-

veyed in Carmona (2013), has been successful in extending results from continuous

to discontinuous payoff functions and the same may happen here. The problem con-

sidered in this paper is nevertheless different from the ones considered in the discon-

tinuous games literature and, hence, such an extension is not merely the application

of known results from the latter.

It is still possible to extend Theorem 2 without extending Theorem 1 but this

requires analysing the case of finitely many participants. This is illustrated by the

following variation of the auction of Section 3.4.3.

Let Φn be like the auction of Section 3.4.3 except that those in I+ pay pn(π)− 1,

where π = 1
n

∑n
i=1 1t̂i . Hence, its marginal distribution γn is as follows. For each t ∈ T
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and π ∈Mn−1(T ), let π̂ = 1
n
1t +

(
1− 1

n

)
π and

γn(t, π) =


1(1,pn(π̂)−1) if t ≥ pn(π̂),

(1− αn(π̂))1(0,0) + αn(π̂)1(1,pn(π̂)−1) if t = pn(π̂)− 1,

1(0,0) otherwise .

It follows that Φn is strategy-proof (see Section A.10). Thus, the argument of the

proof of Theorem 2 applies; namely, by combining Φn with a strictly strategy-proof

mechanism, whose reduced mechanism is provided by Lemma 2, yields the following

conclusion: There is N ∈ N and 〈Φ′n〉∞n=N such that Φ′n : T n →M(Yn), ||Φn−Φ′n|| < ε

and Φ′n is strictly strategy-proof for each n ≥ N .19

The lack of continuity of γ prevents us from applying Theorem 2 to obtain the

above conclusion. While the argument of its proof still holds, the strictly strategy-

proofness of Φ′n is no longer a consequence of the strictly strategy-proofness of its

reduced mechanism. Instead, it is now the consequence of the strategy-proofness of Φn.

Thus, the analysis of discontinuous mechanisms may require the explicit analysis of

the case with a large finite number of participants; in contrast, continuous mechanisms

require only the analysis of, the often much simpler, limit case. This also accounts for

the technical convenience of focusing on continuous mechanisms.

A Appendix

A.1 Proof of Lemma 1

Let n ∈ N and i ∈ {1, . . . , n} be given. Let (a1, . . . , an), (a′1, . . . , a
′
n) ∈ An be such

that ai = a′i and
∑

j 6=i 1aj/(n − 1) =
∑

j 6=i 1a′j/(n − 1). Then there exists a bijection

k : {1, . . . , n} \ {i} → {1, . . . , n} \ {i} such that

(a′1, . . . , a
′
i−1, a

′
i, a
′
i+1, . . . , a

′
n) = (ak(1), . . . , ak(i−1), ai, ak(i+1), . . . , ak(n)).

19Recall that Yn = {(x1, . . . , xn) ∈ Xn
0 : |{i ∈ I : xi ∈ {1} × (T ∪ {0})}| ≤ bqnc} and that u ∈ U .
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Let k(i) = i. Thus, for each (x′1, . . . , x
′
n), defining (x1, . . . , xn) such that xi = x′i and

xk(j) = x′j for each j 6= i, it follows that

Φn(a′1, . . . , a
′
n)(x′1, . . . , x

′
n) = Φn(ak(1), . . . , ak(n))(xk(1), . . . , xk(n))

= Φn(a1, . . . , an)(x1, . . . , xn) = Φn(a1, . . . , an)(x′k−1(1), . . . , x
′
k−1(n)).

The function x′−i 7→ x−i mapping Xn−1
0 into itself and defined (as above) by xk(j) = x′j

for each j 6= i is a bijection. Hence, for each x′i ∈ X0,

Φn
i (a′1, . . . , a

′
n)(x′i) =

∑
x′−i∈X

n−1
0

Φn(a′1, . . . , a
′
n)(x′1, . . . , x

′
n)

=
∑

x−i∈Xn−1
0

Φn(a1, . . . , an)(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn) = Φn

i (a1, . . . , an)(x′i).

Thus, there exists γni : A×Mn−1(A)→ X such that

Φn
i (a1, . . . , an) = γni (ai,

∑
j 6=i

1aj/(n− 1))

for each i ∈ {1, . . . , n} and (a1, . . . , an) ∈ An.

In addition, by considering k such that k(i) = 1, k(1) = i and k(j) = j for each

j 6∈ {1, i}, it follows that γni (a, π) = γn1 (a, π) for each i ∈ {1, . . . , n}, a ∈ A and

π ∈ Mn−1(A). Indeed, for each i 6= 1, a ∈ A and π ∈ Mn−1(A), let ai = a and

a−i ∈ Xn−1
0 be such that

∑
j 6=i 1aj/(n− 1) = π. Then, for each xi ∈ X0,

γni (a, π)(xi) =
∑

x−i∈Xn−1
0

Φn(a1, . . . , an)(x1, . . . , xn)

=
∑

x−i∈Xn−1
0

Φn(ai, a2, . . . , ai−1, a1, ai+1, . . . , an)(xi, x2, . . . , xi−1, x1, xi+1, . . . , xn)

= γn1 (a, π)(xi).

Thus, let γn = γn1 .

A.2 Details for the continuous auction example

For each n ∈ N, let Φn, γn and γ be as in Section 3.4.4.

Claim 1. γ is continuous.
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Proof. Let t ∈ T , π ∈M(T ) and πk be a sequence converging to π. Then

π̄k :=
1

1 +mδ
πk +

mδ

1 +mδ
χ→ π̄.

Case I:
∑

t≥p(π) π̄(t) < q <
∑

t≥p(π)−1 π̄(t).

As π̄k → π̄, there exists K ∈ N such that
∑

t≥p(πk) π̄
k(t) < q <

∑
t≥p(πk)−1 π̄

k(t)

for all k ≥ K. Hence, p(πk) = p(π) and α(πk) = α(π). Therefore, for all k ≥ K, we

have that

γ(t, πk) = γ(t, π) =


(1− α(π))1(1,p(π)) + α(π)1(1,p(π)−1) if t ≥ p(π),

(1− α(π))1(0,0) + α(π)1(1,p(π)−1) if t = p(π)− 1,

1(0,0) otherwise.

Case II: q =
∑

t≥p(π) π̄(t) <
∑

t≥p(π)−1 π̄(t).

We divide the sequence {πk}∞k=1 in three subsequences: (i) where q =
∑

t≥p(π) π̄
k0(t);

(ii) where q >
∑

t≥p(π) π̄
k+(t); and (iii) where

∑
t≥p(π) π̄

k−(t) < q. We then show that

in all such subsequences γ(t, πk
l
)→ γ(t, π), l ∈ {0,+,−}.

Consider first the subsequence k0 such that q =
∑

t≥p(π) π̄
k0(t). Then, p(πk

0
) =

p(π). Hence,

γ(t, πk
0

) = γ(t, π) =

1(1,p(π)) if t ≥ p(π),

1(0,0) otherwise

for all k0.

Consider next the subsequence k+ such that q >
∑

t≥p(π) π̄
k+(t). There exists

K+ ∈ N such that p(πk
+

) = p(π) for all k+ ≥ K+. Therefore, for all k+ ≥ K+,

α(πk
+

) =
q −

∑
t≥p(π) π̄

k+(t)

π̄k+(p(π)− 1)
and

γ(t, πk
+

) =


(1− α(πk

+
))1(1,p(π)) + α(πk

+
)1(1,p(π)−1) if t ≥ p(π),

(1− α(πk
+

))1(0,0) + α(πk
+

)1(1,p(π)−1) if t = p(π)− 1,

1(0,0) otherwise.
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Since α(πk
+

) → 0 due to
∑

t≥p(π) π̄
k+(t) →

∑
t≥p(π) π̄(t) = q and π̄k

+
(p(π) − 1) →

π̄(p(π)− 1) > 0, it follows that

γ(t, πk
+

)→ γ(t, π) =

1(1,p(π)) if t ≥ p(π),

1(0,0) otherwise.

Finally, consider the subsequence k− such that q <
∑

t≥p(π) π̄
k−(t). There exists

K− ∈ N such that p(πk
−

) = p(π)+1 for all k− ≥ K−. This follows because π̄(p(π)) >

0, hence ∑
t≥p(π)+1

π̄(t) =
∑
t≥p(π)

π̄(t)− π̄(p(π)) = q − π̄(p(π)) < q;

thus,
∑

t≥p(π)+1 π̄
k−(t) < q for all k− sufficiently large. Therefore, for all k− ≥ K−,

α(πk
−

) =
q −

∑
t≥p(π)+1 π̄

k−(t)

π̄k−(p(π))
and

γ(t, πk
−

) =


(1− α(πk

−
))1(1,p(π)+1) + α(πk

−
)1(1,p(π)) if t ≥ p(π) + 1,

(1− α(πk
−

))1(0,0) + α(πk
−

)1(1,p(π)) if t = p(π),

1(0,0) otherwise.

Since α(t, πk
−

)→ 1 as
∑

t≥p(π)+1 π̄
k−(t)→

∑
t≥p(π)+1 π̄(t) = q−π̄(p(π)) and π̄k

−
(p(π))→

π̄(p(π)) > 0, it follows that

γ(t, πk
−

)→ γ(t, π) =

1(1,p(π)) if t ≥ p(π),

1(0,0) otherwise.

Claim 2. γn → γ.

Proof. Note that it suffices to show that Ls(graph(γn)) ⊆ graph(γ) ⊆ Li(graph(γn))

by Hildenbrand (1974, Theorem 1, p. 17) or Aliprantis and Border (2006, Theorem

3.93, p. 121). Recall that (t, π, g) ∈ Li(graph(γn)) if and only if there is n̄ ∈ N

and {πn}∞n=1 such that πn ∈ Mn−1(T ) for each n ≥ n̄ and limn(πn, γn(t, πn)) =

(π, g); furthermore, (t, π, g) ∈ Ls(graph(γn)) if and only if there is a subsequence
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{graph(γnk)}∞k=1 of {graph(γn)}∞n=1 and πnk ∈ Mnk−1(T ) for each k ∈ N such that

limk(πnk , γnk(t, πnk)) = (π, g) (see Hildenbrand (1974, p. 15)).

We start by showing that Ls(graph(γn)) ⊆ graph(γ). Let (t, π, g) ∈ Ls(graph(γn)),

{graph(γnk)}∞k=1 be a subsequence of {graph(γn)}∞n=1 and πnk ∈ Mnk−1(T ) for each

k ∈ N be such that limk(πnk , γnk(t, πnk)) = (π, g). We will show that γnk(t, πnk) →

γ(t, π), from which it follows that g = γ(t, π), i.e. (t, π, g) ∈ graph(γ).

By the definition of p(π), we have that
∑

t≥p(π) π̄(t) ≤ q <
∑

t≥(p(π)−1) π̄(t). We

then divide the proof in two cases, analogously to the proof of Claim 1.

Case I:
∑

t≥p(π) π̄(t) < q <
∑

t≥p(π)−1 π̄(t).

Then there exists K ∈ N such that, for each k ≥ K,∑
t≥p(π)

π̄nk(t) < qnk <
∑

t≥p(π)−1

π̄nk(t).

Hence, for all k ≥ K, pnk(t, πnk) = p(π) and

αnk(t, πnk) =
qn −

∑
t̂≥p(π) π̄nk(t̂)

π̄nk(p(π)− 1)
→

q −
∑

t̂≥p(π) π̄(t̂)

π̄(p(π)− 1)
= α(π).

Therefore, γnk(t, πnk)→ γ(t, π).

Case II:
∑

t≥p(π) π̄(t) = q <
∑

t≥p(π)−1 π̄(t).

Then there exists K ∈ N such that, for each k ≥ K,

qnk <
∑

t≥p(π)−1

π̄nk(t).

We divide the sequence {πnk}∞k=K in three subsequences: (i) where qn0
k

=
∑

t≥p(π) π̄n0
k
(t);

(ii) where qn+
k
>
∑

t≥p(π) π̄n+
k

(t); and (iii) where
∑

t≥p(π) π̄n−k
(t) < qn−k

. We then show

that in all such subsequences γnlk(t, πnlk)→ γ(t, π), l ∈ {0,+,−}.

Consider first the subsequence n0
k such that qn0

k
=
∑

t≥p(π) π̄n0
k
(t). Then pn0

k
(t, πn0

k
) =

p(π) and

γn0
k
(t, πn0

k
) = γ(t, π) =

1(1,p(π)) if t ≥ p(π),

1(0,0) otherwise

for each n0
k. Hence, γn0

k
(t, πn0

k
)→ γ(t, π).
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Consider next the subsequence n+
k such that qn+

k
>
∑

t≥p(π) π̄nk+ (t). Hence, there

exists N+
k ∈ N such that pn+

k
(t, π) = p(π) for all n+

k ≥ N+
k . Therefore, for all n+

k ≥ N+
k ,

αn+
k

(t, πn+
k

) =
qn+

k
−
∑

t̂≥p(π) π̄n+
k

(t̂)

π̄n+
k

(p(π)− 1)
and

γn+
k

(t, πn+
k

) =


(1− αn+

k
(t, πn+

k
))1(1,p(π)) + αn+

k
(t, πn+

k
)1(1,p(π)−1) if t ≥ p(π),

(1− αn+
k

(t, πn+
k

))1(0,0) + αn+
k

(t, πn+
k

)1(1,p(π)−1) if t = p(π)− 1,

1(0,0) otherwise.

Note that qn+
k
→ q (since qn → q), αn+

k
(t, πn+

k
)→ 0 and

γn+
k

(t, πn+
k

)→ γ(t, π) =

1(1,p(π)) if t ≥ p(π),

1(0,0) otherwise.

Finally, consider the subsequence nk− such that qn−k
<
∑

t≥p(π) π̄n−k
(t). Hence, there

exists N−k ∈ N such that pn−k
(t, π) = p(π) + 1 for all n−k ≥ N−k .20 Therefore, for all

n−k ≥ N−k ,

αn−k
(t, πn−k

) =
qn−k
−
∑

t̂≥p(π)+1 π̄n−k
(t̂)

π̄n−k
(p(π))

and

γn−k
(t, πn−k

) =


(1− αn−k (t, πn−k

))1(1,p(π)+1) + αn−k
(t, πn−k

)1(1,p(π)) if t ≥ p(π) + 1,

(1− αn−k (t, πn−k
))1(0,0) + αn−k

(t, πn−k
)1(1,p(π)) if t = p(π),

1(0,0) otherwise.

Note that qn−k
→ q (since qn → q), αn−k

(t, πn−k
)→ 1 and

γn−k
(t, πn−k

)→ γ(t, π) =

1(1,p(π)) if t ≥ p(π),

1(0,0) otherwise.

We next show that graph(γ) ⊆ Li(graph(γ)). Let (t, π) ∈ T × M(T ) and let

{πn}∞n=1 be such that πn ∈Mn−1(T ) for each n ∈ N and πn → π; simply set, for each

20This follows as in the proof of Claim 1. We have that
∑
t≥p(π)+1 π̄(t) =

∑
t≥p(π) π̄(t)− π̄(p(π)) =

q − π̄(p(π)) < q since because π̄(p(π)) > 0. Thus,
∑
t≥p(π)+1 π̄nk

(t) < q for all k sufficiently large.
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n ∈ N and t ∈ T \ {m}, πn(t) = b(n− 1)π(t)c/(n− 1) and πn(m) = 1−
∑

t<m πn(t).

The same argument used above shows that γn(t, πn)→ γ(t, π), from which it follows

that (t, π, γ(t, π)) ∈ Li(graph(γ)).

A.3 Outline of the proof of Lemma 2

The proof of Lemma 2 considers the set Ux1,x2,x3 as defined in the body of the paper,

where x1, x2 and x3 are three distinct elements of X0. It shows that shows that the

complement of Ux1,x2,x3 is closed and has a dimension lower than |T ||X0|, hence, has

Lebesgue measure zero. We then let U = ∩(x1,x2,x3)∈ZUx1,x2,x3 , where Z is the set of

distinct elements x1, x2, x3 of X0.

It then constructs σ as follows. Part (a) of the definition of Ux1,x2,x3 implies that

T = ∪i,j:i 6=jT ij, where, for each i, j ∈ {1, 2, 3} with i 6= j, T ij = {t ∈ T : u(t, xi) >

u(t, xj) > u(t, xl), l ∈ {1, 2, 3} \ {i, j}} is the set of types that rank xi above xj and

xj above xl. We start by considering σ′ : T → X such that σ′(t) = (1 − ε)1xi + ε1xj

if t ∈ T ij for some i, j ∈ {1, 2, 3} with i 6= j and where ε > 0. Thus, type t ∈ T ij

strictly prefers σ′(t) to σ′(t′) whenever t′ 6∈ T ij. The problem is that σ′(t) = σ′(t′) if

t, t′ ∈ T ij. To deal with this problem, we define σ by slightly changing σ′ as follows.

Let η > 0 and, for each i, j ∈ {1, 2, 3} with i 6= j and α, β ∈ [0, η], define

σij(α, β) = (1− ε+ α)1xi + (ε− α− β)1xj + β1xl ,

where l ∈ {1, 2, 3} \ {i, j}. We then choose η > 0 and (αt, βt) ∈ [0, η]2 for each t ∈ T

and set σ(t) = σij(αt, βt) whenever t ∈ Tij.

We choose η > 0 sufficiently small such that u(t, σij(α, β)) > u(t, σkm(α′, β′))

whenever t ∈ T ij, k 6= i, m 6= k and α, β, α′, β′ ∈ [0, η]; this is possible since σij(0, 0) =

σ′(t). Thus, no matter how we choose (αt, βt), a type t ∈ T ij strictly prefers σ(t) to

σ(t′) whenever t′ 6∈ T ij. The key argument is to show we can choose 〈(αt, βt)〉t∈T in

such a way that a type t ∈ T ij strictly prefers σ(t) to σ(t′) even when t′ ∈ T ij. This

is where part (b) of the definition of Ux1,x2,x3 is used, as we explore the differences

across types in T ij in their willingness to substitute between the three outcomes x1,

x2 and x3.
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A.4 Proof of Lemma 2

For each distinct elements x1, x2, x3 of X0, let Ux1,x2,x3 be the set of u ∈ R|T ||X0| such

that

(a) u(t, x) 6= u(t, x′) for each t ∈ T and x, x′ ∈ {x1, x2, x3} with x 6= x′, and

(b) u(t,x′)−u(t,x)
u(t,x)−u(t,x̂)

6= u(t′,x′)−u(t′,x)
u(t′,x)−u(t′,x̂)

for each t, t′ ∈ T with t 6= t′ and x, x′, x̂ ∈ {x1, x2, x3}

with x 6= x′, x 6= x̂ and x′ 6= x̂.

We first note that Ux1,x2,x3 is generic. To see this, let D = {(t, t′) ∈ T 2 : t 6= t′},

D2 = {(x, x′) ∈ {x1, x2, x3}2 : x 6= x′}, D3 = {(x, x′, x̂) ∈ {x1, x2, x3}3 : x 6=

x′, x 6= x̂ and x′ 6= x̂}, V = ∪(t,x,x′)∈T×D2{u ∈ R|T ||X0| : u(t, x) = u(t, x′)} and

W =
(
∪(t,t′,x,x′,x̂)∈D×D3 W (t, t′, x, x′, x̂)

)
∩ V c, where

W (t, t′, x, x′, x̂) =

{
u ∈ R|T ||X0| : u(t, x′) = u(t, x) +

u(t, x)− u(t, x̂)

u(t′, x)− u(t′, x̂)

(
u(t′, x′)− u(t′, x)

)}
.

Then V ∪W is the complement of Ux1,x2,x3 , is closed and has Lebesgue measure zero

by Tonelli’s Theorem since both V and W have dimension lower than |T ||X0|.

Let Z = {(x1, x2, x3) ∈ X3
0 : x1 6= x2, x2 6= x3 and x1 6= x3}. Then let U =

∩(x1,x2,x3)∈ZUx1,x2,x3 and note that U is generic since Z is finite, U is open (it is the

intersection of finitely many open sets) and its complement has Lebesgue measure

zero (it equals ∪(x1,x2,x3)∈ZU cx1,x2,x3 , hence it is the union of null sets).

Let u ∈ U and distinct elements x1, x2, x3 of X0 be given. Then u ∈ Ux1,x2,x3 . For

each i, j ∈ {1, 2, 3} with i 6= j, let T ij = {t ∈ T : u(t, xi) > u(t, xj) > u(t, xl), l ∈

{1, 2, 3} \ {i, j}}. Since u ∈ Ux1,x2,x3 , T = ∪i,j:i 6=jT ij. Define σ′ : T → X by σ′(t) =

(1− ε)1xi + ε1xj if t ∈ T ij for some i, j ∈ {1, 2, 3} with i 6= j and where ε > 0. Note

that if 0 < ε < 1/3, then u(t, σ′(t)) > u(t, σ′(t′)) whenever t ∈ T ij and t′ 6∈ T ij.

Indeed, if t′ ∈ T il, then

u(t, σ′(t))− u(t, σ′(t′)) = ε(u(t, xj)− u(t, xl)) > 0;
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if t′ ∈ T km with k ∈ {j, l} and m 6= k, then

u(t, σ′(t))− u(t, σ′(t′)) = (1− ε)(u(t, xi)− u(t, xk)) + ε(u(t, xj)− u(t, xm))

≥ (1− ε)(u(t, xi)− u(t, xj)) + ε(u(t, xj)− u(t, xi))

= (1− 2ε)(u(t, xi)− u(t, xj)) > 0.

Of course, σ′(t) = σ′(t′) if t, t′ ∈ T ij; we will now define σ by slightly changing σ′.

Let η > 0 and, for each i, j ∈ {1, 2, 3} with i 6= j and α, β ∈ [0, η], define

σij(α, β) = (1− ε+ α)1xi + (ε− α− β)1xj + β1xl ,

where l ∈ {1, 2, 3}\{i, j}. Then there is η > 0 sufficiently small such that u(t, σij(α, β)) >

u(t, σkm(α′, β′)) whenever t ∈ T ij, k 6= i, m 6= k and α, β, α′, β′ ∈ [0, η] since

σij(0, 0) = σ′(t).

Fix i, j ∈ {1, 2, 3} with i 6= j and let t ∈ T ij. For each α, β ∈ [0, η], let

It(α, β) (Lt(α, β) and Ut(α, β) respectively) be the set of (α′, β′) ∈ (0, η)2 such that

u(t, σij(α
′, β′)) = u(t, σij(α, β)) (u(t, σij(α

′, β′)) < u(t, σij(α, β)) and u(t, σij(α
′, β′)) >

u(t, σij(α, β)) respectively). Let also

st =
u(t, xj)− u(t, xl)

u(t, xi)− u(t, xj)
and

θt(α, β) =
u(t, σij(α, β))− u(t, σij(0, 0))

u(t, xi)− u(t, xj)
= α− βst.

Then

It(α, β) =
{

(α′, β′) ∈ (0, η)2 : α′ = β′st + θt(α, β)
}

Lt(α, β) =
{

(α′, β′) ∈ (0, η)2 : α′ < β′st + θt(α, β)
}

Ut(α, β) =
{

(α′, β′) ∈ (0, η)2 : α′ > β′st + θt(α, β)
}
.

Let m = |T ij| and order the elements of T ij so that T ij = {t1, . . . , tm} and

u(t1, xj)− u(t1, xl)

u(t1, xi)− u(t1, xj)
< · · · < u(tm, xj)− u(tm, xl)

u(tm, xi)− u(tm, xj)
;

this is possible because u ∈ Ux1,x2,x3 . For convenience, let sk = stk and θk = θtk for

each 1 ≤ k ≤ m. In addition, let sm+1 > sm and

Itm+1(0, 0) =
{

(α′, β′) ∈ (0, η)2 : α′ = β′sm+1

}
.
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Let (α1, β1) ∈ It2(0, 0). Assuming that (α1, β1), . . . , (αk−1, βk−1) have been defined,

let

(αk, βk) ∈ Itk+1
(0, 0) ∩ Ltk−1

(αk−1, βk−1).

That such (αk, βk) exists can be seen as follows. First, note that (αk−1, βk−1) ∈

Itk(0, 0) ⊆ Utk−1
(0, 0) by (5); hence,

u(tk−1, σij(αk−1, βk−1)) > u(tk−1, σij(0, 0)) and

θk−1(αk−1, βk−1) =
u(tk−1, σij(αk−1, βk−1))− u(tk−1, σij(0, 0))

u(tk−1, xi)− u(tk−1, xj)
> 0.

Next, let (ᾱ, β̄) be such that {(ᾱ, β̄)} = Itk+1
(0, 0) ∩ Itk−1

(αk−1, βk−1); thus,

β̄sk+1 = β̄sk−1 + θk−1(αk−1, βk−1)⇔ β̄ =
θk−1(αk−1, βk−1)

sk+1 − sk−1

> 0.

Hence, each (α, β) such that β ∈ (0, β̄) and α = βsk+1 belong to Itk+1
(0, 0) ∩

Ltk−1
(αk−1, βk−1). Indeed, it is clear that (α, β) ∈ Itk+1

(0, 0); in addition,

α = βsk+1 = β̄sk+1 − (β̄ − β)sk+1 = β̄sk−1 + θk−1(αk−1, βk−1)− (β̄ − β)sk+1

< β̄sk−1 + θk−1(αk−1, βk−1)− (β̄ − β)sk−1 = βsk−1 + θk−1(αk−1, βk−1),

implying that (α, β) ∈ Ltk−1
(αk−1, βk−1).

We then obtain that, for each k, r ∈ {1, . . . ,m} with k 6= r,

(3) u(tk, σij(αk, βk)) > u(tk, σij(αr, βr)).

To see (3), consider first the case r < k. We have that, whenever r < k,

Itr(0, 0) ⊆ Ltk(0, 0) and(4)

Itk(0, 0) ⊆ Utr(0, 0).(5)

Indeed, if (α, β) ∈ Itr(0, 0), then α = βsr < βsk and, hence, (α, β) ∈ Ltk(0, 0); this

shows (4). If (α, β) ∈ Itk(0, 0), then α = βsk > βsr and, hence, (α, β) ∈ Utr(0, 0); this

shows (5).

Then (αk, βk) ∈ Itk+1
(0, 0) ⊆ Utk(0, 0), (αk−1, βk−1) ∈ Itk(0, 0) and (αh, βh) ∈

Ith+1
(0, 0) ⊆ Ltk(0, 0) for each h < k − 1 imply that

u(tk, σij(αk, βk)) > u(tk, σij(0, 0)) ≥ u(tk, σij(αr, βr)).
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Next, consider the case r > k. To establish (3) in this case, we first show that

βk < βk−1 for each k = 2, . . . ,m. Indeed, αk = βksk+1, αk−1 = βk−1sk and, recalling

that θk−1(αk−1, βk−1) = αk−1 − βk−1sk−1, αk < βksk−1 + αk−1 − βk−1sk−1. From this

we obtain that

βksk+1 − βksk−1 < βk−1sk − βk−1sk−1 ⇔ βk <
sk − sk−1

sk+1 − sk−1

βk−1.

Since sk−sk−1

sk+1−sk−1
< 1, it follows that βk < βk−1.

We now claim that (αr, βr) ∈ Ltk(αk, βk) for each r > k. This holds for r =

k + 1 since (αk+1, βk+1) ∈ Ltk(αk, βk) by construction. Suppose next that (αr, βr) ∈

Ltk(αk, βk), i.e. αr < βrsk + αk − βksk; we will show that (αr+1, βr+1) ∈ Ltk(αk, βk).

To see this, note first that since βr+1 < βr,

βr+1sr + βrsk − βrsr < βr+1sk.

Since (αr+1, βr+1) ∈ Ltr(αr, βr), it follows that

αr+1 < βr+1sr + αr − βrsr

< βr+1sr + βrsk + αk − βksk − βrsr

< βr+1sk + αk − βksk.

Hence, (αr+1, βr+1) ∈ Ltk(αk, βk) as claimed.

To conclude the proof, for each t ∈ T ij, let (αt, βt) = (αk, βk) if t = tk. Then define

σ by setting σ(t) = σij(αt, βt) if t ∈ T ij.

A.5 On the assumption |X0| ≥ 3

This section illustrates the difficulties with |X0| = 2. Let X0 = {x0, x1}, T 0 = {t ∈ T :

u(t, x0) > u(t, x1)}, T 1 = {t ∈ T : u(t, x1) > u(t, x0)} and assume that T = T 0 ∪ T 1.

If γ is strategy-proof, then γ(t, π) = γ(t′, π) and γ(t, π)(xi) ≥ γ(t̂, π)(xj) for each

i ∈ {0, 1}, t, t′ ∈ T i, t̂ ∈ T j, j 6= i and π ∈M(T ). The case of |X0| = 2 adds a strong

requirement on strategy-proofness, namely that γ(t, π) = γ(t′, π) whenever t, t′ ∈ T i.

For this reason, there is no strict strategy-proof mechanisms whenever |T i| > 1 for

some i ∈ {0, 1}.
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Likewise, a sequence 〈(Yn,Φn)〉n of direct mechanisms that are strategy-proof in

the large will, in general, fail to be such that (Yn,Φn) is strategy-proof whenever n

is sufficiently large. Indeed, this will hold provided that γn(t, π) 6= γn(t′, π) for some

π ∈Mn−1(T ), t, t′ ∈ T i and i ∈ {0, 1}.

A.6 Proof of Theorem 1

(a) Let S∗ be the subset of S consisting of those γ such that u(t, γ(t, π)) > u(t, γ(t′, π))

for each t, t′ ∈ T and π ∈M(T ).

(b) S∗ is an open subset of S. Let γ ∈ S∗ and

ε(γ) = min
π∈M(T ),t,t′∈T,t6=t′

[u(t, γ(t, π))− u(t, γ(t′, π))].

Because M(T ) × {(t, t′) ∈ T 2 : t 6= t′} is compact and γ is continuous, the mininum

is achieved; as γ ∈ S∗, ε(γ) > 0.

We have that the mapping γ̂ 7→ ε(γ̂) is continuous. It then follows that, for some

δ > 0, the open ball of radius δ of γ is contained in S∗.

(c) S∗ is dense in S. Let γ ∈ S and ε > 0. Moreover, by Lemma 2, let σ : T →

M(X) be such that u(t, σ(t)) > u(t, σ(t′)) for all t, t′ ∈ T . Define ψ by setting, for

each t ∈ T and π ∈M(T ), ψ(t, π) = (1− ε)γ(t, π) + εσ(t). Then ψ is continuous and,

for each t, t′ ∈ T and π ∈M(T ),

u(t, ψ(t, π))− u(t, ψ(t′, π)) =

(1− ε)(u(t, γ(t, π))− u(t, γ(t′, π))) + ε(u(t, σ(t))− u(t, σ(t′))) > 0.

Thus, ψ ∈ S∗. By making ε small enough, ψ is as close to γ as desired.

(d) Let γ ∈ S∗ and let 〈(Yn,Φn)〉n∈N be a sequence of anonymous direct mecha-

nisms such that γn → γ. Let ε > 0 be such that 3ε < ε(γ), η > 0 be such that

sup{|u(t, x)− u(t, x′)| : t ∈ T, x, x′ ∈ X, ||x− x′|| ≤ η} < ε

and 0 < δ < η be such that ||γ(t, π′) − γ(t, π)|| < η whenever t ∈ T , π, π′ ∈ M(T )

and ||π−π′|| < 3δ. Thus, whenever n is such that d(γn, γ) < δ, we have that, for each
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t, t′ ∈ T and π̃ ∈ Mn−1(T ), there is π, π′ ∈ M(T ) such that ||γn(t, π̃) − γ(t, π)|| < δ,

||γn(t′, π̃)− γ(t′, π′)|| < δ, ||π − π̃|| < δ and ||π′ − π̃|| < δ. Thus,

|u(t, γn(t, π̃))− u(t, γ(t, π))| < ε,

|u(t, γn(t′, π̃))− u(t, γ(t′, π′))| < ε and

|u(t, γ(t′, π))− u(t, γ(t′, π′))| < ε.

Therefore,

u(t, γn(t, π̃))− u(t, γn(t′, π̃)) > u(t, γ(t, π))− u(t, γ(t′, π′))− 2ε

> u(t, γ(t, π))− u(t, γ(t′, π))− 3ε ≥ ε(γ)− 3ε > 0.

since γ ∈ S∗. It follows that (Yn,Φn) is strictly strategy-proof.

We next show that there is N ∈ N such that (Yn,Φn) is strictly strategy-proof for

each n ≥ N . Let N ∈ N be such that, for each n ≥ N , d(γn, γ) < δ and 1/(n−1) < δ.

Thus, for each t, t′ ∈ T and π̃ ∈ Mn−1(T ) with π̃(t′) > 0, there is π, π′ ∈ M(T ) such

that ||γn(t, π̃)−γ(t, π)|| < δ, ||γn(t′, π̃+(1t−1t′)/(n−1))−γ(t′, π′)|| < δ, ||π− π̃|| < δ

and ||π′ − (π̃ + (1t − 1t′)/(n− 1))|| < δ. Thus,

||π − π′|| ≤ ||π − π̃||+ ||π̃ − (π̃ + (1t − 1t′)/(n− 1))||+ ||π̃ + (1t − 1t′)/(n− 1)− π′|| < 3δ,

|u(t, γn(t, π̃))− u(t, γ(t, π))| < ε,

|u(t, γn(t′, π̃ + (1t − 1t′)/(n− 1)))− u(t, γ(t′, π′))| < ε and

|u(t, γ(t′, π))− u(t, γ(t′, π′))| < ε.

Therefore,

u(t, γn(t, π̃))− u(t, γn(t′, π̃ + (1t − 1t′)/(n− 1))) > u(t, γ(t, π))− u(t, γ(t′, π′))− 2ε

> u(t, γ(t, π))− u(t, γ(t′, π))− 3ε ≥ ε(γ)− 3ε > 0.

since γ ∈ S∗. It follows that (Yn,Φn) is strictly envy-free.

A.7 Proof of Theorem 2

Let X̃0 consist of x̄0 and the two elements of X0\{x̄0} given by condition (b). Writing

X̃0 = {x̄0, x1, x2}, then let σ be as in Lemma 2, i.e. σ is strictly strategy-proof and

σ(t) is supported on X̃0 for each t ∈ T .
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Claim 3. There exists σ∗ ∈ S∗ such that supp(σ∗(t)) ⊆ X̃0 for each t ∈ T and,

for each n ∈ N, Ψn : T n → M(Yn) such that Ψn is anonymous and its marginal

distributions equal σ∗.

Proof. LetM = maxτ∈Tn
∑n

i=1

∑
x0 6=x̄0 σ(τi)(x0). ThenM > 0 since otherwise σ(t)(x̄0) =

1 for each t ∈ T and, hence, σ is not strictly strategy-proof. For each t ∈ T , define

σ∗(t) by setting, for each x0 ∈ X0

σ∗(t)(x0) =


σ(t)(x0)
M

if x0 6= x̄0,

1−
∑

x0 6=x̄0
σ(t)(x0)
M

if x0 = x̄0.

It follows that supp(σ∗(t)) ⊆ X̃0 for each t ∈ T . Furthermore, σ∗ ∈ S∗ since, for each

t, t′ ∈ T ,

u(t, σ∗(t))− u(t, σ∗(t′)) =
1

M

∑
x0 6=x̄0

(
u(t, x0)− u(t, x̄0)

)(
σ(t)(x0)− σ(t′)(x0)

)
=

1

M

(
u(t, σ(t))− u(t, σ(t′))

)
> 0.

For each n ∈ N, define Ψn by setting, for each (t1, . . . , tn) ∈ T n and (x1, . . . , xn) ∈

Xn
0 ,

Ψn(t1, . . . , tn)(x1, . . . , xn) =


1−

∑n
j=1

∑
x0 6=x̄0 σ

∗(tj)(x0) if xi = x̄0 for all i,

σ∗(ti)(xi) if xi 6= x̄0 and xj = x̄0 for all j 6= i,

0 otherwise.

Then each marginal of Ψn equals σ∗. Indeed, for each x0 6= x̄0,∑
y:y1=x0

Ψn(t1, . . . , tn)(y) = Ψn(t1, . . . , tn)(x0, x̄0, . . . , x̄0) = σ∗(t1)(x0).

Furthermore, Ψn is feasible since, letting y(i, x0) ∈ Yn be such that y(i, x0)i = x0

and y(i, x0)j = x̄0 for each j 6= i,∑
y∈Yn

Ψn(t1, . . . , tn)(y) = Ψ(t1, . . . , tn)(x̄0, . . . , x̄0) +
n∑
j=1

∑
x0 6=x̄0

Φ(t1, . . . , tn)(y(i, x0))

= 1−
n∑
j=1

∑
x0 6=x̄0

σ∗(tj)(x0) +
n∑
j=1

∑
x0 6=x̄0

σ∗(tj)(x0) = 1.
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Finally, note that Ψn is anonymous. Indeed, let k : {1, . . . , n} → {1, . . . , n} be

a bijection. If (x1, . . . , xn) = (x̄0, . . . , x̄0), then Ψn(tk(1), . . . , tk(n))(xk(1), . . . , xk(n)) =

1 −
∑n

j=1

∑
x0 6=x̄0 σ

∗(tj)(x0) = Ψn(t1, . . . , tn)(x1, . . . , xn). If (x1, . . . , xn) is such that

xi 6= x̄0 and xj = x̄0 for all j 6= i, then, letting τ = (tk(1), . . . , tk(n)) and y =

(xk(1), . . . , xk(n)), we have that yk−1(i) = xi 6= x̄0 and tk−1(i) = ti. Thus,

Ψn(tk(1), . . . , tk(n))(xk(1), . . . , xk(n)) = σ∗(ti)(xi) = Ψn(t1, . . . , tn)(x1, . . . , xn).

For each n ∈ N, define Φ′n = (1 − ε)Φn + εΨn. Let, for each n ∈ N, γn is the

marginal of Φn described in Lemma 1 and define γ′n = (1 − ε)γn + εσ. Then the

following claims hold: (a) Φ′n are anonymous, (b) the marginal of Φ′n is γ′n and (c)

limn γ
′
n = (1− ε)γ + εσ. Since γ ∈ S, it follows (1− ε)γ + εσ ∈ S∗. It then follows by

Theorem 1 that Φ′n is strictly strategy-proof and strictly envy-free for all n sufficiently

large. Finally, we clearly have that ||Φn − Φ′n|| < ε.

A.8 A lemma

In this section we show that, under a continuity condition, strategy-proof in the large

implies envy-free in the large. This result, which will be used in the proof of Theorem

3, has some independent interest as it provides a converse to Theorem 1 in Azevedo

and Budish (2019).

A sequence 〈(Yn,Φn)〉n∈N of direct mechanism is envy-free in the large if, for each

ε > 0 and m ∈M0(T ), there exists N ∈ N and δ > 0 such that

u(t, γn(t, π)) ≥ u(t, γn(t′, π + (1t − 1t′)/(n− 1)))− ε.

for each n ≥ N , t, t′ ∈ T and π ∈ Mn−1(T ) with π(t′) > 0 and ||π − m|| ≤ δ. The

difference between envy-free and envy-free in the large is that, in the latter, (1) its

requirement is only for sufficiently large n, (2) the utility from own allocation must

exceeds the utility from the allocation of other agent minus ε and (3) the distribution

of reports must be close to a distribution with full support.
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For each x = (x1, . . . , xn) ∈ Rn, ||x|| = max1≤i≤n |xi|. Define, for each ε > 0,

ω̃n(ε) = sup{||γn(t, π)− γn(t, π′)|| : t ∈ T, π, π′ ∈Mn−1(T ) and ||π − π′|| ≤ ε} and

ωn(ε) = sup{|u(t, x)− u(t, x′)| : t ∈ T, x, x′ ∈ X and ||x− x′|| ≤ ω̃n(ε)}.

We consider the case where limε→0 supn ω̃n(ε) = 0; the interpretation of this condition

is that the effect of an action of any single agent on the outcome of any agent is

negligible. Since u is continuous, it follows that limε→0 supn ω̃n(ε) = 0 implies that

limε→0 supn ωn(ε) = 0.

Lemma 3. If 〈(Yn,Φn)〉n∈N is strategy-proof in the large and limε→0 supn ω̃n(ε) = 0,

then 〈(Yn,Φn)〉n∈N is envy-free in the large.

Proof. Let 〈(Yn,Φn)〉n∈N be strategy-proof in the large and consider ε > 0 and m ∈

M0(T ). Let α = 1/4 and δ > 0 be such that δ < mint∈T m(t), in which case ||π−m|| ≤

δ implies that π(t) > 0 for each t ∈ T , and

2 sup
n
ωn(2δ) < αε.

Fix t, t′ ∈ T . We have that

u(t, φn(t′,m))− u(t, φn(t,m)) =∑
π∈Mn−1(T )\Bδ(m)

mn−1 ◦ e−1
n−1(π)

(
u(t, γn(t′, π))− u(t, γn(t, π))

)
+

∑
π∈Mn−1(T )∩Bδ(m)

mn−1 ◦ e−1
n−1(π)

(
u(t, γn(t′, π + (1t − 1t′)/(n− 1)))− u(t, γn(t, π))

)
+

∑
π∈Mn−1(T )∩Bδ(m)

mn−1 ◦ e−1
n−1(π)

(
u(t, γn(t′, π))− u(t, γn(t′, π + (1t − 1t′)/(n− 1)))

)
.

Lemma 4 in Kalai (2004) implies that

mn−1 ◦ e−1
n−1(Mn−1(T ) \Bδ(m)) ≤ 2|T |e−2δ2n,

where Bδ(m) = {π ∈ Mn−1(T ) : ||π −m|| ≤ δ} is the closed ball of radius δ around

m. Thus, ∑
π∈Mn−1(T )∩Bδ(m)

mn−1 ◦ e−1
n−1(π)

(
u(t, γn(t′, π + (1t − 1t′)/(n− 1)))− u(t, γn(t, π))

)
<

u(t, φn(t′,m))− u(t, φn(t,m)) + ωn(1/(n− 1)) + 4 max
t̃∈T,x0∈X0

|u(t̃, x0)||T |e−2δ2n.
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Since 〈(Yn,Φn)〉n∈N is strategy-proof in the large, ωn(1/(n− 1))→ 0 and e−2δ2n → 0,

there is N1 ∈ N such that∑
π∈Mn−1(T )∩Bδ(m)

mn−1◦e−1
n−1(π)

(
u(t, γn(t′, π+(1t−1t′)/(n−1)))−u(t, γn(t, π))

)
< αε.

For each n ≥ N1, let πn ∈ Bδ(m) and

en = u(t, γn(t′, πn + (1t − 1t′)/(n− 1)))− u(t, γn(t, πn)).

Then

enm
n−1 ◦ e−1

n−1(Bδ(m)) =∑
π∈Mn−1(T )∩Bδ(m)

mn−1 ◦ e−1
n−1(π)

(
en − u(t, γn(t′, π + (1t − 1t′)/(n− 1))) + u(t, γn(t, π))

)
+

∑
π∈Mn−1(T )∩Bδ(m)

mn−1 ◦ e−1
n−1(π)

(
u(t, γn(t′, π + (1t − 1t′)/(n− 1)))− u(t, γn(t, π))

)
<

2ωn(2δ) + αε < 2αε.

Hence,

en <
2αε

mn−1 ◦ e−1
n−1(Bε(m))

≤ 2αε

1− 2|T |e−2ε2n
.

Thus, there is N2 ∈ N such that N2 > N1 and en < 3αε for each n ≥ N2.

Finally, for each n ≥ N2 and π ∈Mn−1(T ) ∩Bδ(m),

u(t, γn(t′, π + (1t − 1t′)/(n− 1)))− u(t, γn(t, π)) ≤ en + 2ωn(2δ) < 4αε = ε.

Thus, 〈(Yn,Φn)〉n∈N is envy-free in the large.

A.9 Proof of Theorem 3

The proof of Theorem 3 requires the following lemma.

Lemma 4. If γn → γ and γ ∈ L then limε→0 supn ω̃n(ε) = 0.

Proof. Note first that it is enough to show that, for each η > 0, there exists ε̄ > 0 and

N ∈ N such that supn≥N ω̃n(ε) < η for each 0 < ε ≤ ε̄. Indeed, let ε∗ = min{ε̄, 1
N
} > 0.

Thus, for each ε ≤ ε∗ and n < N ,

||π − π′|| ≥ 1

n− 1
>

1

N − 1
> ε∗ ≥ ε
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for each π, π′ ∈ Mn−1(T ) with π 6= π′, implying that ω̃n(ε) = 0. Thus, for each

0 < ε ≤ ε∗, supn ω̃n(ε) = supn≥N ω̃n(ε) < η.

Let η > 0 be given. Since γ is continuous, let ε′ > 0 be such that ε′ < η and

||γ(t, π)−γ(t, π′)|| < η/2 whenever t ∈ T and π, π′ ∈M(T ) are such that ||π−π′|| < ε′.

Let ε̄ = ε′/2, N ∈ N be such that d(graph(γn), graph(γ)) < ε′/4 for each n ≥ N ,

0 < ε ≤ ε̄ and n ≥ N .

Let t ∈ T and π, π′ ∈Mn−1(T ) be such that ||π − π′|| ≤ ε ≤ ε̄ = ε′/2. Then there

are π̃ and π̃′, both in M(T ), such that ||π − π̃|| < ε′/4, ||π′ − π̃′|| < ε′/4, ||γn(t, π)−

γ(t, π̃)|| < ε′/4 and ||γn(t, π′) − γ(t, π̃′)|| < ε′/4. Thus, ||π̃ − π̃′|| < ε′/2 + 2ε′/4 = ε′

and, hence, ||γ(t, π̃)− γ(t, π̃′)|| < η/2. This then implies that

||γn(t, π)− γn(t, π′)|| < 2ε′

4
+
η

2
.

Thus, supn≥N ω̃n(ε) ≤ ε′+η
2

< η.

We now turn to the proof of Theorem 3. Let γ, 〈γn〉n∈N and 〈(Yn,Φn)〉n∈N be as in

the statement of the theorem and let t, t′ ∈ T and π ∈M0(T ) be given. By Lemmas 3

and 4, it follows that 〈(Yn,Φn)〉n∈N is envy-free in the large. Fix ε > 0 and let N ∈ N

and δ > 0 be given as in the definition of envy-free in the large; we may assume that

δ < 2ε, ||γ(t′, π̃) − γ(t′, π)|| < ε whenever ||π − π̃|| < 3δ and δ < mint∈T π(t), the

latter implying that mint∈T π
′(t) > 0 for each π′ ∈M(T ) with ||π′ − π|| ≤ δ.

Let N ′ ∈ N be such that N ′ ≥ N , 1/(n−1) < δ and d(graph(γn), graph(γ)) < δ for

each n ≥ N ′. Thus, for each n ≥ N ′, there exists π′ ∈ Mn−1(T ) and π̃ ∈ M(T ) such

that ||π−π′|| < δ, ||π′+ 1t−1t′
n−1
−π̃|| < δ, ||γn(t, π′)−γ(t, π)|| < δ and ||γn(t′, π′+

1t−1t′
n−1

)−

γ(t′, π̃)|| < δ. Then ||π− π̃|| < 2δ + 1
n−1

< 3δ and, therefore, ||γ(t′, π̃)− γ(t′, π)|| < ε.

Thus, ∥∥∥∥γn(t′, π′ + 1t − 1t′

n− 1

)
− γ(t′, π)

∥∥∥∥ < ε+ δ < 2ε

Letting n ≥ N ′ and, for each η > 0,

ω(η) = sup{|u(t̂, m)− u(t̂, m′)| : t̂ ∈ T,m,m′ ∈ X such that ||m−m′|| ≤ η},
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it follows that,

u(t, γ(t, π)) ≥ u(t, γn(t, π′))− ω(δ) ≥

u

(
t, γn

(
t′, π′ +

1t − 1t′

n− 1

))
− ε− ω(δ) ≥ u(t, γ(t′, π))− ε− 2ω(2ε).

Letting ε→ 0, it follows that u (t, γ (t, π)) ≥ u (t, γ (t′, π)).

Finally, for each t, t′ ∈ T and π ∈M(T ), there exists πk → π such that πk ∈M0(T )

for each k ∈ N. The above argument implies that u (t, γ (t, πk)) ≥ u (t, γ (t′, πk)) for

each k ∈ N and, hence, we obtain from the continuity of γ that u (t, γ (t, π)) ≥

u (t, γ (t′, π)). Thus, γ is strategy-proof.

A.10 Details for Section 5.3

Let Γn be the auction in Section 5.3 and γn be its marginal. We show that Φn is

strategy-proof.

Let π̂ = 1
n
1t +

(
1− 1

n

)
π, π̃ = 1

n
1t′ +

(
1− 1

n

)
π, p = pn(t̂), α = αn(π̂), p′ = pn(t̃)

and α′ = αn(π̃). Note that π̃ = π̂ + 1
n
(1t′ − 1t).

Suppose first that t′ > t. If t ≥ p, then
∑

t̂≥p π̃(t̂) =
∑

t̂≥p π̂(t̂) and π̃(p − 1) =

π̂(p− 1); hence p = p′ and α = α′. Thus, u(t, γn(t, π)) = u(t, γn(t′, π)).

If t < p, then u(t, γn(t, π)) = 0, p′ ≥ p and u(t, γn(t′, π)) ≤ 0.

Suppose next that t′ < t. If t < p, then u(t, γn(t, π)) = 0 = u(t, γn(t′, π)). If t ≥ p

and t′ ≥ p, then
∑

t̂≥p π̃(t̂) =
∑

t̂≥p π̂(t̂) and π̃(p − 1) = π̂(p − 1); hence p = p′ and

α = α′. Thus, u(t, γn(t, π)) = u(t, γn(t′, π)).

Thus, consider t′ < p ≤ t. For each θ ∈ T such that t′ < θ < t, we have

that qn <
∑

t̂≥θ π̂(t̂) by the definition of p and
∑

t̂≥θ π̃(t̂) =
∑

t̂≥θ π̂(t̂) − 1
n

since

π̃ = π̂ + 1
n
(1t′ − 1t). Furthermore,

∑
t̂≥t′ π̃(t̂) =

∑
t̂≥t′ π̂(t̂) > qn. Thus, t′ < p′ ≤ p.

Thus u(t, γn(t′, π)) = 0 ≤ u(t, γn(t, π)) unless t′ = p′ − 1 and qn >
∑

t̂≥p′ π̃(t̂).

Thus, assume that t′ = p′ − 1 and qn >
∑

t̂≥p′ π̃(t̂).

If p′ < p, then

qn −
∑
t̂≥p′

π̃(t̂) = qn −
∑
t̂≥p′

π̂(t̂) +
1

n
<

1

n
.
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This, together with nqn ∈ N and n
∑

t̂≥p′ π̃(t̂) ∈ N, implies that qn −
∑

t̂≥p′ π̃(t̂) = 0,

contradicting qn >
∑

t̂≥p′ π̃(t̂). Thus, it follows that p = p′. Hence, u(t, γn(t, π)) −

u(t, γn(t′, π)) = (1− α′)(t− t′) ≥ 0.
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