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Abstract

We extend the two-sided many-to-one matching setting of Che, Kim, and

Kojima (2019) by allowing workers’ preferences to depend on the matching

itself. In finite markets, complementarities and externalities are both known

to cause problems for the existence of stable matchings. Che, Kim, and Ko-

jima (2019) find that in a large market with a continuum of workers, a stable

matching exists even when the firms’ preferences exhibit complementarities. In

the same spirit, we show that as long as workers’ preferences depend on the

matching in a continuous way, a stable matching exists in the presence of both

complementarities and externalities.
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1 Introduction

In a recent paper, Che, Kim, and Kojima (2019) (CKK henceforth) solve a longstand-

ing problem in matching theory concerning the existence of a stable matching in a

two-sided many-to-one matching market. A typical example of such market is a labor

market where firms are matched with workers; this is a many-to-one matching market

since each firm can hire multiple workers. It is well known that in such markets, when

there are finitely many agents, the existence of a stable matching is not guaranteed

when the firms’ preferences exhibit complementarities. Since it is natural that a firm

may wish to hire workers with complementary skills, for example, the nonexistence

of a stable matching in such situations is a serious problem for the applicability of

matching theory.

Another challenge for matching theory — one that has recently been tackled in

the context of school choice by Cox, Fonseca, and Pakzad-Hurson (2022) and Leshno

(2022) — is that agents may have preferences that depend on the matching itself. Be-

yond the school choice problem, externalities are also a natural feature of more general

many-to-one matching markets. For example, a worker may prefer to work for a firm

that hires other similarly qualified workers. Like complementarities, externalities can

cause problems for the existence of a stable matching in finite economies. Indeed, Py-

cia and Yenmez (2022) show that in finite markets with externalities, substitutability

is a necessary condition for the existence of stable matchings in a maximal domain

sense.

CKK solve the existence problem for complementarities by considering matching

markets that are large in the sense that there is a continuum of workers. They

provide an existence result that is general enough to allow firms’ preferences to exhibit

complementarities; however, externalities are not allowed on either side of the market.

Our aim is to extend CKK’s existence result to allow workers’ preferences to depend

on the matching itself, i.e. to provide a general existence result that allows for both

complementarities and externalities. In particular, we show that in the CKK economy,

a stable matching exists even when there are externalities on the non-atomic side of
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the market, as long as preferences depend on the matching in a continuous way.

As well as being key for the existence of stable matchings, non-atomicity is also

important conceptually since stability is easy to define when preferences exhibit exter-

nalities only on the non-atomic side of the market. Indeed, each worker is negligible

and thus her decisions have no impact on the matching. In this case, each worker

can believe that she is the only one being hired by some firm and, because she is

of negligible size, there is no change to the matching. The definition of stability we

use is thus analogous to the one in Fisher and Hafalir (2016) whose stability notion

assumes that there is no change to the matching in response to the formation of a

blocking coalition; in a setting with non-atomic workers, this notion of stability can

be justified, for example, by assuming that each worker who is considering a job offer

does not have sufficient knowledge about (any positive measure of) other workers

who also received job offers. Moreover, our notion of stability coincides with the one

in CKK in the case where workers’ preferences are strict and do not depend on the

matching. See Section 2.4 for a more detailed discussion of these issues.1

In CKK’s model, a finite number of firms are matched with a continuum of workers.

A matching specifies for each firm a workforce to which the firm is matched such that,

for each worker type, the total measure of the workers of that type employed by the

firms (including by a dummy firm used to represent unemployment) equals the total

measure of that type of workers in the population. We extend CKK’s model by

allowing workers’ preferences to depend on the matching itself. In addition, unlike

CKK, we allow workers to be indifferent between firms; in fact, indifferences are

unavoidable when workers’ preferences depend on the matching in a non-trivial and

continuous way.

1Several papers address the definition and the existence of stable matchings in economies with

finitely many individuals and externalities; these include Sasaki and Toda (1996), Dutta and Massó

(1997), Ma (2001), Echenique and Yenmez (2007), Hafalir (2008), Mumcu and Saglam (2010), Bando

(2012), Pycia (2012), Fisher and Hafalir (2016) and Pycia and Yenmez (2022). Their results are

formally unrelated to our and, in particular, use specific conditions on how preferences depend on

externalities to obtain the existence of stable matchings which we dispense with; in contrast, some

of our assumptions, such as the convexity of firms’ preferences, are not needed in their results.
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We show that if the firms’ preferences are described by choice correspondences

that are upper-hemicontinuous with nonempty, compact and convex values as in

CKK, and if the workers’ preferences are complete, transitive and continuous, then a

stable matching exists even when workers’ preferences are allowed to depend on the

matching. We then show that this results implies the existence result in CKK; it also

implies the existence of stable matchings in the setting of Azevedo and Leshno (2016)

without requiring strict preferences for the firms.

In the specific setting of school choice, Cox, Fonseca, and Pakzad-Hurson (2022)

and Leshno (2022) also consider large matching markets with a continuum of students

and establish the existence of a stable matching when students’ preferences may

depend on the matching. Although their setting imposes more restrictions on schools’

preferences than we do, they do not impose a continuity requirement on individual

students’ preferences, but instead assume a diversity of preferences assumption which

ensures that the aggregate demand for schools is continuous. Assuming that the

students’ type space is separable, which they do not require, we show that a stable

matching exists in a general setting under the diversity of preferences assumption.

In particular, this result does not require individual students’ preferences to depend

continuously on the matching, allows for general preferences for the colleges which

can exhibit complementarities, and for students’ preferences that depend on the entire

matching and not just on some of its summary statistics.

The approach of Cox, Fonseca, and Pakzad-Hurson (2022) and Leshno (2022) re-

lies on the specific (cutoff) characterization of stable matchings which holds in their

setting but not in general. Thus, our approach is closest to that of CKK. The main

contribution of our approach is that it allows us to accommodate workers being indif-

ferent between firms; once this is accomplished, adding externalities under a variety

of different assumptions is then relatively easy. As we now explain, accommodating

indifference is a challenge because it causes the measure of workers available to a firm

to change discontinuously with the matching.

Given a matching, the measure of a worker type available to a firm is the measure

of that worker type matched with the firm or some other firm that is strictly worse
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from the perspective of the worker. In CKK, the correspondence that maps each

profile of available workers (one for each firm) to a new profile of available work-

ers resulting from the firms’ optimal choices is upper-hemicontinuous and plays a

crucial role in the fixed point argument that establishes existence. With external-

ities, however, the measure of available workers may change discontinuously as the

matching changes. This is because, as the matching changes, workers that previously

preferred to match with a given firm may become indifferent, causing a jump in the

measure of workers available to that firm. Indeed, the problem of discontinuity arises

because workers are allowed to be indifferent between firms. Thus, the correspon-

dence used by CKK, suitably generalized to allow for externalities, will fail to be

upper-hemicontinuous even when the preferences are continuous.

We address the above discontinuity issue using ideas from the discontinuous games

literature that followed Reny (1999) along the lines we used in Carmona (2011). We

establish our result in two steps. First, we show that when the set of worker types is

finite, a stable matching exists. To deal with the issue of ties, we define an aggregate

choice correspondence for the workers as well as for the firms. To ensure that the

correspondences are upper hemicontinuous, we use a continuous approximation to the

measure of available workers. Using the Kakutani fixed point theorem, we establish

the existence of a stable matching when the set of worker types is finite. The final

step in our argument is to establish the existence of a stable matching for a general

distribution. We approximate such distribution with a sequence of finitely supported

distributions, and we show that the limit of the sequence of stable matchings for the

finitely supported distributions is a stable matching for the limit distribution.

Our result implies that as long as preferences depend on the matching in a con-

tinuous way, externalities on the non-atomic side of the market cause no problems

for existence. However, we show that a stable matching may fail to exist when firms’

preferences are allowed to depend on the matching.2 Partly motivated by this issue,

in Carmona and Laohakunakorn (2023), we establish the existence of a stable match-

ing in a setting with a continuum of firms as well as a continuum of workers. There,

2See the working paper version of this article for details.
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we find that as long as preferences are continuous (convexity is not needed), a stable

matching exists even when there are externalities on both sides of the market.3

Our existence result also weakens the assumptions that CKK place on workers.

Specifically, each worker is described by her type, in a way that workers of the same

type have the same preferences, and their population is described by a probability

measure on this set of types. CKK assume that workers’ type space is a compact

metric space whereas we assume only that it is a separable metric space and that the

type distribution is tight.4 Our result thus allows for the case where the workers’ type

space is R and the type distribution is the normal distribution. More importantly,

this extra generality allows us to obtain CKK’s existence result from ours.5

In summary, the contributions of this paper consist of establishing the existence

of stable matchings in:

1. CKK’s setting extended by allowing workers’ preferences to depend on the

matching,

2. Azevedo and Leshno’s (2016) setting without strict preferences for the firms,

3. the setting of Cox, Fonseca, and Pakzad-Hurson (2022) and Leshno (2022) if

workers’ preferences depend continuously on the matching (and not just on

some of its summary statistics) with neither strict preferences for the firms nor

diversity of preferences being assumed, and

4. when workers’ preferences do not depend continuously on the matching and

3In Carmona and Laohakunakorn (2023), we also allow occupational choice, i.e. each individual

chooses the side of the market to which she belongs. As we show in that paper, the standard

two-sided matching model is a special case of the model with occupational choice.
4Note that probability measures on compact metric spaces are trivially tight.
5A simple example of CKK’s setting illustrates this issue: There is one firm, firm 1, in addition

to the dummy firm denoted by ∅, workers’ type space is [0, 1] and the type distribution is uniform.

Workers with type θ ≤ 1/2 strictly prefer firm ∅ to firm 1 whereas workers with type θ > 1/2 strictly

prefer firm 1 to firm ∅. In this example, workers’ preferences are discontinuous in θ at 1/2; we deal

with this by considering [0, 1/2)∪ (1/2, 1] as the workers’ type space, which is then neither compact

nor complete, but it is separable and the restriction of the type distribution to it is tight.
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workers’ type space is separable, under the diversity of preferences assumption

and general preferences for the firms which need not be strict.

The paper is organized as follows. The framework we consider is introduced in

Section 2, which also includes motivating examples, special cases and a discussion of

the no blocking condition in our stability notion. Section 3 contains our existence

result with continuous individual preferences and an outline of the main argument of

its proof. In Section 4.1 we obtain the existence of stable matchings for the case where

firms have explicit preferences as a corollary to our existence result. In Section 4.2,

we consider the extension of our existence result to the case of diverse preferences.

Omitted proofs are in the Appendix.

2 Model

2.1 Environment and matching

We consider CKK’s model but with the addition of externalities in workers’ prefer-

ences. There is a finite set F = {f1, . . . , fn} of firms and a mass of workers; let ∅

denote the null firm so that a worker matched with ∅ is unemployed and F̃ = F ∪{∅}.

Workers are described by their type so that workers with the same type have the

same preferences. Let Θ be the set of workers’ types, a separable metric space with

metric d, and Borel σ-algebra Σ. Let X̄ be the set of all nonnegative measures X

such that X(Θ) ≤ 1. The type distribution is a tight measure G ∈ X̄ such that

G(Θ) = 1.6 A subpopulation is X ∈ X̄ such that X(E) ≤ G(E) for all E ∈ Σ; let X

be the set of all subpopulations.7 Feasibility requires each firm to be matched with

a subpopulation so that it doesn’t hire more workers of a type than those available

in the population. More generally, a measure X̃ ∈ X is a subpopulation of X ∈ X ,

denoted X̃ @ X, if X̃(E) ≤ X(E) for all E ∈ Σ. The set of all subpopulations of X

is denoted by XX .

6Recall that G is tight if, for each ε > 0, there exists a compact subset K of Θ such that

G(Θ \K) < ε.
7We endow X with the weak convergence (narrow) topology (see Varadarajan (1958) for details).

7



Firms’ preferences are described indirectly by a choice correspondence as in CKK

following Alkan and Gale (2003) (see Section 4.1 for the case where firms have explicit

preferences). Each firm f ∈ F has a choice correspondence Cf : X ⇒ X satisfying:

(i) Cf (X) ⊆ XX , (ii) for each X,X ′ ∈ X with X @ X ′, if Cf (X
′) ∩ XX 6= ∅, then

Cf (X) = Cf (X
′)∩XX , and (iii) Cf is closed (i.e. it has a closed graph) with nonempty

and convex values. The choice set Cf (X) describes the set of optimal workforces for

firm f when constrained by the subpopulation X, i.e. when firm f cannot hire more

that X(E) workers with type in E ∈ Σ; thus, (i) requires that this constraint is

satisfied in each optimal workforce. Condition (ii) is the revealed preference property

in CKK which is automatically satisfied when firms have explicit preferences; in the

case of explicit firm preferences, condition (iii) holds when preferences are continuous

and convex.8 Regarding the empty firm, let C∅(X) = {X} for each X ∈ X . If Cf (X)

is singleton for all X ∈ X , then we sometimes abuse notation and write Cf as a

function, e.g. C∅(X) = X for all X ∈ X .

Up to this point, the only difference between our setting and that of CKK is

that we allow Θ to be separable whereas Θ is compact in CKK. A more important

departure from CKK is that we allow workers’ preferences to depend on the matching

itself.

A matching isM = (Mf )f∈F̃ such that Mf ∈ X for each f ∈ F̃ and
∑

f∈F̃ Mf = G.

Each worker θ has a complete, transitive and continuous preference relation �θ on

F̃ × X n+1. We further require that workers’ preferences vary continuously with θ so

that {
(θ, f,M, f ′,M ′) ∈ Θ× (F̃ ×X n+1)2 : (f,M) �θ (f ′,M ′)

}
is open.

8For an example that satisfies conditions (i)–(iii), let Θ = {θ1, θ2}, Cf (X) =

{(min{X(θ1), X(θ2)},min{X(θ1), X(θ2)})}. Here, Cf is also the solution correspondence to the

maximization of an explicit utility function uf (X) = min{X(θ1), X(θ2)}− X(θ1)+X(θ2)
4 , i.e. Cf (X) =

{X ′ ∈ X : X ′ solves maxX̂∈X uf (X̂) subject to X̂ @ X}. Since uf is continuous and quasiconcave,

Cf is closed with nonempty and convex values (in fact, Cf is a continuous function). As pointed out

in CKK (p. 71), the firm “has a “complementary” (or more precisely, non-substitutable) preference

in the sense that availability of one worker causes it to demand the other.”
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The following examples illustrate this assumption and the departure of our framework

from that of CKK. Let Θ = {θ} and �θ be such that workers are indifferent between

all firms, e.g. �θ is represented by uθ ≡ 0. In this example workers’ preferences

do not depend on the matching but nevertheless are not covered by those allowed

in CKK since there workers have strict preferences. Clearly, workers’ preferences are

continuous in this example. For an example where workers’ preferences depend on the

matching, let Θ = {θ1, θ2} and �θi be represented by uθi such that uθi(f,M) = Mf (θi)

and uθi(∅,M) = −1 for each i = 1, 2, f ∈ F and M ∈ X n+1. Workers’ preference are

continuous and such that each worker prefers to be employed than to be unemployed

and prefers the (non-null) firm which employs the most workers of its own type.

A general example where the continuity assumption is natural is when Θ is the

space of bounded and continuous utility functions. Let S be a compact metric space,

s : X n+1 → S be a continuous function and Θ = C(F̃ × S), where C(F̃ × S) denotes

the space of bounded and continuous real-valued functions on F̃ × S endowed with

the sup norm, which is then a complete and separable metric space. The utility

for a worker of type θ ∈ Θ of choosing firm f when the matching is M ∈ X n+1

is then θ(f, s(M)).9 Then the continuity assumption on workers’ preferences holds

since {(θ, f,M, f ′,M ′) ∈ Θ×(F̃ ×X n+1)2 : (f,M) �θ (f ′,M ′)} = {(θ, f,M, f ′,M ′) ∈

Θ× (F̃ ×X n+1)2 : θ(f, s(M)) > θ(f ′, s(M ′))}.
9Workers’ preferences are allowed to depend on the entire matching by letting S = [−1, 1]F̃×N

be the countable product of the [−1, 1] interval (endowed with the product topology) and s(M) =

(
∫

Θ
pidMf )f∈F̃ ,i∈N, where {pi}i∈N is a countable dense subset of the space U1(Θ) of real-valued

uniformly continuous functions on Θ with sup norm bounded above by 1. Then S is a compact

metric space and s is continuous, one-to-one and such that s(M) ∈ S for each M ∈ Xn+1. See the

proof of Theorem 3.1 in Varadarajan (1958) for details when {pi}i∈N is a countable dense subset

of the space U(Θ) of real-valued bounded uniformly continuous functions on Θ; the same argument

applies to the case where U1(Θ) replaces U(Θ). Finally note that, for each M ∈ Xn+1 and f ∈ F̃ ,∣∣∫
Θ
pidMf

∣∣ ≤ ∫
Θ
|pi|dMf ≤ ||pi||∞ ≤ 1 when pi ∈ U1(Θ) since Mf (Θ) ≤ 1.
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2.2 Stability

The choice correspondence Cf induces a preference relation �f for each f ∈ F , known

as the Blair order after Blair (1984), as follows. For each X, Y ∈ X , let X ∨ Y (join)

be the supremum of X and Y ; it satisfies

(X ∨ Y )(E) = sup
D∈Σ

(X(E ∩D) + Y (E ∩Dc))

for each E ∈ Σ. We have thatX∨Y ∈ X and we then writeX �f Y ifX ∈ Cf (X∨Y ).

Let D�f (M) be defined by

D�f (M)(E) = Mf (E) +
∑

f ′∈F̃\{f}

Mf ′(E ∩ P (f, f ′,M))

for each E ∈ Σ, where

P (f, f ′,M) = {θ ∈ Θ : (f,M) �θ (f ′,M)}.

We have that D�f (M) is the measure of workers assigned to firm f or worse under

matching M ; it measures the number of workers who are available to match with f .

A matching M is stable if

1. (Individual Rationality) For each f ∈ F , Mf (P (∅, f,M)) = 0; and

2. (No Blocking Coalition) No f ∈ F and M ′
f ∈ X exist such that M ′

f @ D�f (M)

and M ′
f �f Mf .

This notion of stability is exactly equal to the one in CKK in their setting where

workers’ preferences are strict and do not depend on the matching. Since, in contrast

with CKK, our setting allows for indifference and externalities in the workers’ prefer-

ences, certain details of the above definition of stability require some discussion; see

Section 2.4 below. As we show in the following section, it coincides with the stability

notion used in Cox, Fonseca, and Pakzad-Hurson (2022) and Leshno (2022) when ap-

plied to their environment which, as ours, also features indifference and externalities

in workers’ preferences.
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2.3 Examples and special cases

A fully specified example of our environment is obtained by setting F = {f1, f2},

Θ = {θ1, θ2}, G(θ1) = G(θ2) = 1/2,

Cf (X) = (min{X(θ1), X(θ2)},min{X(θ1), X(θ2)})

for each f ∈ F and X ∈ X , and �θi be represented by uθi such that, for each i = 1, 2,

f ∈ F̃ and M ∈ X n+1,

uθi(f,M) =

Mf (θi) if f ∈ F,

−1 if f = ∅.

The set of stable matchings for this example is easy to characterize; it equals the

set of M ∈ X n+1 such that M∅(θi) = 0, Mf1(θi) = α and Mf2(θi) = 1/2− α for each

i = 1, 2 and α ∈ {0, 1/4, 1/2}. Indeed, if M is a stable matching, then Mf ∈ Cf (Mf )

(see Footnote 28 in CKK) and, hence, Mf (θ1) = Mf (θ2) for each f ∈ F . Then

M∅(θ1) = M∅(θ2) since M is a matching and, in fact, M∅(θ1) = M∅(θ2) = 0 since

M is stable. Thus, Mf1(θ1) = Mf1(θ2) = α and Mf2(θ1) = Mf2(θ2) = 1/2 − α for

some α ∈ [0, 1/2]. If α 6∈ {0, 1/4, 1/2} and α > 1/4, then D�f1(M) = (1/2, 1/2)

and M ′
f1

= (1/2, 1/2) is such that M ′
f1
@ D�f1(M) and M ′

f1
�f1 Mf1 . An analogous

argument using firm f2 shows that M fails to be stable when α 6∈ {0, 1/4, 1/2} and

α < 1/4, thus concluding the proof of the necessity part of the claim. Regarding its

sufficiency part, we have that D�f (M) = (1/4, 1/4) for each f ∈ F when α = 1/4,

D�f1(M) = (1/2, 1/2) and D�f2(M) = (0, 0) when α = 1, and D�f1(M) = (0, 0) and

D�f2(M) = (1/2, 1/2) when α = 0. In either case, there is no f ∈ F and M ′
f ∈ X

such that M ′
f @ D�f (M) and M ′

f �f Mf .

We next show how the setting of CKK and the school choice framework of Cox,

Fonseca, and Pakzad-Hurson (2022) and Leshno (2022) can be captured in our envi-

ronment.

In CKK, the set Θ of workers’ types is a compact metric space and each worker

has a strict preference P over F̃ . Let P denote the (finite) set of all possible strict

workers’ preferences over F̃ and, for each P ∈ P , let ΘP denote the set of all worker
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types whose preference is given by P . CKK assume that Θ = ∪P∈PΘP and, for each

P ∈ P , that the set ΘP is measurable and G(∂ΘP ) = 0. Firms and their preferences

are exactly as in our environment, and so is the definition of stability.

Set W = ∪P∈P int(ΘP ). Because G(∂ΘP ) = 0 for each P ∈ P , it follows that

G(Θ\W ) = 0; thus, only a null set of types of workers are excluded. Thus, up to null

sets, there is no difference between the economy with Θ as the workers’ type space

and the one with W , and we do not distinguish between the two. The advantage

of considering the latter is that all our assumptions are satisfied. Indeed, W is a

separable metric space and an open, hence, Borel subset of Θ, which is itself a compact

(hence, complete and separable) metric space. Thus, the restriction G|W of G to W is

tight by Parthasarathy (1967, Theorem 3.2, p. 29). Furthermore, workers’ preferences

are continuous since
{

(θ, f,M, f ′,M ′) ∈ W × (F̃ ×X n+1)2 : (f,M) �θ (f ′,M ′)
}

={
(θ, f,M, f ′,M ′) ∈ W × (F̃ ×X n+1)2 : θ ∈ ∪P∈P:f�P f ′ int(ΘP )

}
is open.

Our framework also includes a setting analogous to those of Cox, Fonseca, and

Pakzad-Hurson (2022) and Leshno (2022) under the assumption of continuous work-

ers’ preferences (which they do not make). In such setting, firms are interpreted as

colleges and workers as students. College f ∈ F̃ has the capacity to admit a mass of

qf > 0 students with q∅ > 1. The students’ type space is Θ = [0, 1]|F | × C(F̃ × S),

where S is a compact metric space and C(F̃ × S) denotes the space of bounded and

continuous real-valued functions on F̃ ×S. A typical student’s type is then θ = (r, u),

r is the student’s rank and is used to specify colleges’ preferences, and u is the stu-

dent’s utility function. The utility for a student of type θ = (r, u) of choosing firm f

when the matching is M ∈ X n+1 is u(f, s(M)) where s : X n+1 → S is a continuous

function. Thus, students’ preferences are allowed to depend on the matching in any

(continuous) way.10 For each f ∈ F , define Cf : X ⇒ X by setting, for each X ∈ X ,

Cf (X) = {δ ∈ X : δ solves max
δ′∈X

∫
Θ

π1,f (θ)dδ
′(θ)

subject to δ′ @ X and δ′(Θ) ≤ qf},
10Students’ preferences can depend on the entire matching by letting S be a countable product of

[−1, 1]; see footnote 9 for details.
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where π1,f : Θ→ [0, 1] is the projection of Θ onto the fth coordinate of [0, 1]|F |.

We refer to the above setting as a college admission economy. The resulting notion

of a stable matching of a college admission economy differs from that in Cox, Fonseca,

and Pakzad-Hurson (2022) and Leshno (2022) but only slightly. Indeed, stability for

a matching M = (Mf )f∈F̃ of a college admission economy is characterized by the

following conditions which are analogous to the ones in those papers: For each f ∈ F ,

(i) Mf (Θ) ≤ qf ,

(ii)
(
D�f (M)−Mf

)
({θ ∈ Θ : π1,f (θ) > 0}) = 0 if Mf (Θ) < qf ,

(iii)
(
D�f (M)−Mf

)
({θ ∈ Θ : π1,f (θ) > infθ′∈supp(Mf ) π1,f (θ

′)}) = 0 and

(iv) Mf ({θ ∈ Θ : π2(θ)(∅, s(M)) > π2(θ)(f, s(M))}) = 0,

where π2 : Θ→ C(F̃ × S) is the projection of Θ onto C(F̃ × S).11

The assumptions we made in Section 2.1 are satisfied in any college admission

economy. Indeed, C(F̃ × S) is a complete and separable metric space and, thus, G is

tight. Moreover, Cf satisfies assumptions (i)–(iii).12 Finally,{
(θ, f,M, f ′,M ′) ∈ Θ× (F̃ ×X n+1)2 : (f,M) �θ (f ′,M ′)

}
=
{

(θ, f,M, f ′,M ′) ∈ Θ× (F̃ ×X n+1)2 : π2(θ)(f, s(M)) > π2(θ)(f ′, s(M ′))
}

and it follows that this set is open.

2.4 No blocking condition

The no blocking condition in the definition of a stable matching requires that no firm

gets strictly better off by hiring a workforce that does not exceed the measure of

available workers to it. In this section we argue that different ways of defining the

measure of available workers to a firm have different implications for the existence of

stable matchings. We first use a simple example to discuss the measure of available

11See Appendix A.2 for a proof of this claim.
12The proof of this claim is analogous to the proof of Corollary 1 available in the working paper

version of this article.
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workers to a firm we use and to show how this notion in CKK coincides with ours. This

is an example where workers’ preferences feature indifferences but not externalities.

We then discuss the implications of our notion of the measure of available workers to

a firm in the presence of externalities.

2.4.1 Weak vs strong domination

Consider then the following example with two firms, f1 and f2, one type of workers

and a measure one of workers of this single type in the population. Workers are

indifferent between each of the two firms and prefer to work than to be unemployed.

The two firms have the same preferences that are strictly increasing in the measure

of workers employed. In particular, when faced with some measure X ∈ [0, 1] of

available workers, each firm will choose to employ the entire measure X.

There is no stable matching in this example if the measure of available workers to

a firm is defined using weak domination, i.e. no one in the blocking coalition can be

made worse off and only one agent in the blocking coalition needs to be made strictly

better off. Indeed, with this notion, the measure of available workers to each firm is

one since the workers are indifferent between each firm. Consequently, in any stable

matching, each firm must employ a measure one of workers since its preferences are

strictly increasing in the measure of workers it employs. But this is impossible since

there is only a measure one of workers.

If we define the measure of available workers using strong domination, i.e. by

requiring that every agent in the blocking coalition be strictly better off, then stable

matchings exist. Indeed, these are easily characterized as follows: for each α ∈ [0, 1],

firm f1 hires a measure α of workers and firm f2 hires a measure 1− α of workers.

Thus, existence of stable matchings (under general assumptions) is not guaran-

teed when stability is defined using weak domination but, as Theorem 1 shows, it

is guaranteed when stability is defined using strong domination. In general, we can

do better by defining the measure of available workers to a firm and stability using

a notion of domination that is between weak and strong domination. Namely, the

measure of available workers to a firm f in the stability notion that we consider is the
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measure of those who are matched with the firm f itself plus the measure of those

who are matched with firms that they regard as worse than f .

The above notion of the measure of available workers to a firm coincides with the

one used by CKK. In their setting, because workers’ preferences are strict, it also

coincides with the notion of the measure of available workers to a firm defined via

weak domination. Thus, CKK obtain the existence of stable matchings when stability

is defined via weak domination. As the above example shows, this conclusion does

not generalize beyond the strict preference case, something already present in the

discrete markets of Kelso and Crawford (1982). The result that does extend is the

one for the stability notion defined via the above notion of the measure of available

workers to a firm.

The notion of the measure of available workers to a firm we use and resulting

stability notion is unusual in that workers of the same type, matched with firms over

which they are indifferent, are treated differently depending on which of them they are

currently matched with. Nevertheless, this notion of stability is appealing because

it yields a smaller set of stable matchings as compared to the one obtained when

stability is defined via strong domination and, as we show in this paper, its existence

is guaranteed under standard assumptions.

The following example illustrates. There are two types of workers and one firm so

that Θ = {θ1, θ2} and X ∈ X can be written as (X(θ1), X(θ2)). The firm’s preferences

are given by Cf1(X) = {X ′ ∈ XX : min{X ′(θ1), X ′(θ2)} = min{X(θ1), X(θ2)}}.

Workers prefer working for the firm to being unmatched. Let G(θ1) = G(θ2) = 1/2.

When stability is defined via strong domination, M such that Mf1 = (1/2, 0) is stable;

the only profitable deviations involve both types of workers,13 but workers of type 1

are already working for the firm so will not be strictly better off. Also since the firm

is indifferent between all Mf1 such that Mf1(θ2) = 0, Mf1 ∈ Cf1(Mf1).14 On the other

hand, by our notion of stability, which allows the firm to form blocking coalitions

13Indeed, M ′f1 �f1 Mf1 requires min{M ′f1(θ1),M ′f1(θ2)} > 0.
14The individual rationality requirement that Mf ∈ Cf (Mf ) is implied by our no blocking condi-

tion but not by the one defined via strong domination and, thus, should be explicitly added to the

latter.
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that combine workers who would be strictly bettter off with its existing workers, the

only stable matching is M such that Mf1 = (1/2, 1/2). This example shows that

the notion of stability we use can yield a strictly smaller set of stable matchings as

compared to the one obtained when stability is defined via strong domination.

2.4.2 Externalities

The main issue regarding the definition of stability in economies with externalities

concerns how a blocking coalition will affect the matching and, thus, the preferences

of its members via the externality. In our setting this concerns the workers since they

are the ones whose preferences depend on externalities.

The presence of externalities has been incorporated in stability notions in several

ways. One approach, along the lines of Echenique and Yenmez (2007), is to assume

that the workers in a blocking coalition will evaluate the matching according to the

one that will result if the formation of the coalition is the only change to the matching.

A difficulty with this approach is, however, that stable matchings may fail to exist

under our assumptions as the following example shows.

Consider the following example with two firms and two types of workers, so that

F = {f1, f2} and Θ = {θ1, θ2} with G(θ1) = G(θ2) = 1/2. Firm 1 has preferences

given by Cf1(X) = (min{X(θ1), X(θ2)},min{X(θ1), X(θ2)}) and firm 2 has prefer-

ences given by Cf2(X) = (X(θ1), X(θ2)). Workers’ preferences are given by:

uθ1(f,M) =

−4Mf2(θ2) if f ∈ F,

1− 4Mf2(θ2) if f = ∅,

uθ2(f,M) =


1 if f = f1,

0 if f = f2, and

−1 if f = ∅.

Now consider an alternative no blocking condition that requires for M to be

stable that there does not exist f ∈ {f1, f2} and (δk)k∈{f1,f2,∅} ∈ X 3 such that, for

each k ∈ {f1, f2, ∅} and θ ∈ {θ1, θ2}, (i) 0 ≤ δk(θ) ≤ Mk(θ) and δk(θ) > 0 only if
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uθ(k,M) < uθ(f,M
′), and (ii) M ′

f �f Mf , where

M ′
f =

∑
k∈{f1,f2,∅}

δk,

M ′
∅ = M∅ +Mf − δf − δ∅, and

M ′
k = Mk − δk for each k ∈ {f1, f2} \ {f}.

In words, a blocking coalition consists of a firm, for example f1, who keeps δf1 of its

existing workers and hires δf2 and δ∅ from firm f2 and the unemployed. If the initial

matching was M , then, in the matching M ′ that results from the formation of this

coalition, firm f1’s workforce is M ′
f1

= δf1 + δf2 + δ∅, firm f2’s workforce is M ′
f2

=

Mf2−δf2 and the measure of the unemployed workers becomeM ′
∅ = M∅+Mf1−δf1−δ∅.

This alternative no blocking condition then requires that it is not the case that firm

f1 prefers M ′
f1

to Mf1 and every worker hired under M ′
f1

prefers working for firm f1

given matching M ′ to working for their old employer given the original matching M .

In any stable matching M , individual rationality requires that M∅(θ1) = 1/2,

which implies that Mf1 = (0, 0) and hence Mf2 = (0, 1/2). However, under this

alternative no blocking condition, M ′
f1

= (1/2, 1/2) blocks. Firm f1 prefers M ′
f1

to

Mf1 ; all workers of type θ2 prefer working for firm f1 over working for firm f2; and

all workers of θ1 prefer working for firm f1 when no one is working for firm f2 over

being unemployed when all workers of type θ2 are working for firm f2.

The above example establishes in our setting the conclusion in Echenique and

Yenmez (2007) that stable matchings may fail to exist in their setting. Alternative

notions of stability have been proposed in settings which, as in Echenique and Yenmez

(2007), feature finitely many individuals with the goal of restoring existence of stable

matchings, e.g. strong and weak stability in Bando (2012), the stability notion in

Mumcu and Saglam (2010) and the notion of prudent stability in Fisher and Hafalir

(2016). These notions still postulate that a specific matching will result in response to

a blocking coalition but impose some degree of far-sightedness in individuals’ forecast

of the ultimate matching that will result. These stability notions involve varying

degrees of far-sightedness and raise some conceptual issues about the appropriate

level of sophistication that should be attributed to agents.
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In this paper – as in Cox, Fonseca, and Pakzad-Hurson (2022) and Leshno (2022)

– our approach is to assume that the workers in a blocking coalition evaluate their

preferences holding the rest of the matching fixed. This can be justified, for example,

if each worker is only aware that some firm is trying to hire her, without any knowledge

about who else the firm is trying to hire. Hence, each worker can believe that she

is the only one moving and, because she is of negligible size, there is no change

to the matching. Thus, the conceptual issues regarding how a blocking coalition

will ultimately affect the matching can be avoided if the set of individuals whose

preferences depend on the matching is non-atomic.

In many situations, it seems reasonable to suppose that workers in a blocking

coalition do not know who else is part of the coalition other than the firm trying

to hire them. One story consistent with our assumption is that blocking coalitions

are formed when a firm sends job offers to the workers that it wishes to hire. If job

offers are confidential, then each worker may not be able to find out who else the firm

intends to hire. In such situations, it is reasonable for each worker to evaluate her

offer assuming that she would be the only one moving, i.e. with the overall matching

remaining fixed as she is a negligible agent.15 The resulting notion of stability is

thus analogous to the one in Fisher and Hafalir (2016) whose no blocking condition

assumes that there is no change to the matching in response to the formation of such

coalition.

An alternative approach, proposed by Sasaki and Toda (1996) and Dutta and

Massó (1997), is to define the no blocking condition to require that members of

the coalition be better off for each possible matching in which they are matched; a

somewhat milder requirement is proposed in Hafalir (2008). Of course, our existence

15As well as causing issues for existence, allowing workers to anticipate changes to the matching

raises some conceptual issues. In the above example, should the relevant comparison for θ1 really

be between (∅,M) and (f1,M
′)? Workers are small and cannot affect the matching, so their choice

of firm should be made with the matching held fixed. But which matching? Resolving such issues

is beyond the scope of this paper but our point is that in a market with a continuum of workers,

these issues can be avoided if we assume that workers lack information about other workers in the

economy.
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result also implies the existence of stable matchings in this approach. Indeed, by

making the requirement for blocking more demanding by allowing more matchings to

arise in response to a blocking coalition and by requiring its members to be better

off in all of them, existence becomes easier to guarantee under the resulting stability

notion.

3 Existence of stable matchings

Our assumptions guarantee the existence of stable matchings.

Theorem 1 A stable matching exists.

We remark that Theorem 1 has CKK’s existence result as a special case by what

we have shown in Section 2.3. Similarly, Theorem 1 also implies that any college

admission economy has a stable matching.

We note that the only assumption needed for the application of Theorem 1 to

college admission economies is that students’ preferences depend continuously on the

matching. In the particular case where students’ preferences do not depend on the

matching as in Azevedo and Leshno (2016), this assumption is trivially satisfied and

thus we obtain the existence of a stable matching without any assumption besides

those defining a college admission economy; in particular, the assumption of strict

preferences in Azevedo and Leshno (2016) can be dispensed with as far as existence

of stable matchings is concerned.

Cox, Fonseca, and Pakzad-Hurson (2022) and Leshno (2022) do not assume that

students’ preferences depend continuously on the matching; however, when students’

preferences do depend continuously on the matching, then their other assumptions

can also be dispensed with for the existence of stable matchings. We consider the case

where students’ preferences are not required to depend continuously on the matching

in Section 4.2.

The importance of the continuity of workers’ preferences for the existence can

be illustrated with the following example, which modifies the one in Section 2.4.1.
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There is only one firm, one type of workers and a measure one of workers of this

single type in the population. The firm f1 has preferences that are strictly increasing

in the measure of workers employed: thus, when faced with some measure X ∈ [0, 1]

of available workers, each firm will choose to employ the entire measure X. Workers’

preferences are represented by the following utility function uθ : F̃ ×X 2 → R, defined

by setting, for each (f,M) ∈ F̃ ×X 2,

uθ(f,M) =


2 if f = f1 and Mf < 1/2,

0 if f = f1 and Mf ≥ 1/2,

1 if f = ∅.

Then there is no stable matching. Indeed, if M is a matching such that Mf1 < 1/2,

then D�f1(M) = 1 and M ′
f1

= 1 blocks; if Mf1 ≥ 1/2, then Mf1(P (∅, f1,M)) =

Mf1 ≥ 1/2 > 0. All our assumptions are satisfied except the continuity of workers’

preferences. Moreover, if workers’ utility function is changed in such a way that

uθ(f1,M) = 2(1−Mf1), then uθ is continuous and a stable matching exists. Indeed,

in this case, the matching M such that Mf1 = 1/2 is a stable matching (the unique

one in fact).

Non-atomicity of workers is also an important condition. As discussed in Section

2.4.2, this property is important for the definition of stability itself. In addition, we

present in the working paper version of this article a counterexample for existence

of stable matchings for the case where the atomic individuals, i.e. the firms, have

preferences that depend on the matching. As CKK have pointed out (see Section 2

of their paper), the non-atomicity of the workers cannot be dispensed with for the

existence of stable matchings when firms’ preferences are non-substitutable; since our

setting includes that of CKK, the same holds here.

We next present a brief outline of the argument we use to establish Theorem 1

before its proof, which is in Section A.1.
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3.1 Outline

The proof of Theorem 1 follows that of CKK’s existence result. We first establish its

conclusion in the special case where Θ is finite and we use the following example to

illustrate our approach: There is only one firm, one type of workers and a measure

one of workers of this single type in the population. The firm f1 has preferences

that are strictly increasing in the measure of workers employed: Cf1(X) = X for

each X ∈ [0, 1]. Workers’ preferences are represented by the following utility function

uΘ : F̃ ×X 2 → R, defined by setting, for each (f,M) ∈ F̃ ×X 2,

uΘ(f,M) =

1 + 2(1−Mf1) if f = f1,

2 if f = ∅.

The main idea is that firms choose workforces and, thus, a matching µ′ given

available workers κ and workers choose an allocation τ given the matching µ; this

allocation τ specifies the measure of workers of each type that will work in each

firm and determines the measure of available workers κ′. We then obtain a mapping

(µ, κ) 7→ (µ′, κ′) and the goal is to obtain a stable matching via a fixed point of such

mapping.

The firms’ and workers’ problems are as follows. For each f ∈ F̃ and given (µ, κ)

where µ = (µf )f∈F̃ and κ = (κf )f∈F̃ , firm f ’s problem is to choose µ′f optimally from

the available workers κf . As in CKK, the solution is

Df (µ, κ) = Cf (κf ).

In the example,

Df (µ, κ) = κf .

The workers’ problem is to choose the measure of workers of each type that will

work in each firm. It depends on the matching because workers’ preferences depend

on the matching and also because it describes the demand of labor by firms. First,

represent workers’ preferences by a (bounded and continuous) utility function uΘ :

F̃ ×Θ×X n+1 → R, normalized so that uΘ ≥ 1. Given a matching µ, the solution to
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the workers’ problem is

DΘ(µ) ={τ ∈ X n+1 : τ ∈ arg max
τ ′∈Xn+1

∑
f∈F̃ ,θ∈Θ

uΘ(f, θ, µ)τ ′f (θ)

subject to
∑
f∈F̃

τ ′f (θ) ≤ G(θ) and

τ ′f (θ) ≤ µf (θ) for each f ∈ F̃ and θ ∈ Θ}.

In the example, where uΘ does not depend on θ because there is only a single type

of worker,

DΘ(µ) ={τ ∈ X n+1 : τ ∈ arg max
τ ′∈Xn+1

2τ ′∅ + (1 + 2(1− µf1))τ ′f1

subject to τ ′∅ + τ ′f1
≤ 1, τ ′∅ ≤ µ∅ and τ ′f1

≤ µf1}.

Each solution τ to the workers’ problem determines the measure of available work-

ers: the workers of type θ available to firm f are those allocated to f or to firms that

workers of type θ regard as worse than f . Thus, letting

B(f, θ, µ) = {f ′ ∈ F̃ : (f ′, µ) �θ (f, µ)} and

B−(f, θ, µ) = B(f, θ, µ) \ {f},

the measure of available workers g(µ, τ)(f, θ) of type θ to firm f is

G(θ)−
∑

f ′∈B−(f,θ,µ)

τf ′(θ) = τf (θ) +G(θ)−
∑

f ′∈B(f,θ,µ)

τf ′(θ).

In the example, for the single type of worker θ ∈ Θ,

g(µ, τ)(f, θ) =



1 if f = f1 and µf1 < 1/2,

1− τ∅ if f = f1 and µf1 ≥ 1/2,

1− τf1 if f = ∅ and µf1 ≤ 1/2,

1 if f = ∅ and µf1 > 1/2.

When workers’ preferences are strict and do not depend on externalities, the

above corresponds essentially to CKK’s approach. Indeed, in this case, the allocation
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of workers to firms is uniquely determined (i.e. DΘ is a function) and, thus, so is

the measure of available workers. This measure of available workers depends on the

matching only indirectly through the dependence of τ on µ; indeed, in this case,

the set B−(f, θ, µ) does not depend on µ and equals the set of firms that workers

of type θ strictly prefer to f . Hence, we then obtain a continuous function µ 7→

g(µ,DΘ(µ)) that gives us the measure of available workers. Then we obtain a well-

behaved correspondence

(µ, κ) 7→
∏
f∈F̃

Df (µ, κ)× {g(µ,DΘ(µ))}

which has a fixed point and is such that its fixed points are stable.

When workers’ preferences depend on externalities, the above uniqueness no longer

holds and this has forced us to consider explicitly the workers’ problem DΘ. More

importantly, the measure of available workers is no longer (directly) independent of µ.

The main difficulty is that this dependence is discontinuous since f ′ 6= f may belong

to B−(f, θ, µ) but not to B−(f, θ, µ′) for some µ′ in a neighborhood of µ. In the

example, note that g is discontinuous at (µ, τ) such that µf1 = 1/2 and τ∅ + τf1 > 0,

in particular when τ ∈ DΘ(µ).

We deal with the above difficulty by considering a continuous approximation to

g. The key idea is that g(µ, τ)(f, θ) can be written as

g(µ, τ)(f, θ) = τf (θ) +G(θ)−
∑
f ′∈F̃

α(f,θ)(f
′, µ)τf ′(θ)

with

α(f,θ)(f
′, µ) =

1 if uΘ(f ′, θ, µ) ≥ uΘ(f, θ, µ),

0 otherwise.

The discontinuity of g can then be tracked back to the weights α(f,θ) and, hence, we

approximate these weights with continuous ones, namely

αj,(f,θ)(f
′, µ) = jmax

{
0,min

{
1

j
+ uΘ(f ′, θ, µ)− uΘ(f, θ, µ),

1

j

}}
.

We then let

gj(µ, τ)(f, θ) = τf (θ) +G(θ)−
∑
f ′∈F̃

αj,(f,θ)(f
′, µ)τf ′(θ).
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In the example, for the single type of worker θ ∈ Θ,

gj(µ, τ)(f1, θ) =


1 if µf1 ≤ 1

2
− 1

2j
,

1− (1 + j(2µf1 − 1))τ∅ if 1
2
− 1

2j
< µf1 <

1
2
,

1− τ∅ if µf1 ≥ 1
2
,

and

gj(µ, τ)(∅, θ) =


1− τf1 if µf1 ≤ 1

2
,

1− (1 + j(1− 2µf1))τf1 if 1
2
< µf1 <

1
2

+ 1
2j
,

1 if µf1 ≥ 1
2

+ 1
2j
.

The continuity of gj implies that the mapping

(µ, κ) 7→
∏
f∈F̃

Df (µ, κ)× {gj(µ, τ) : τ ∈ DΘ(µ)}

is well-behaved and, thus, has a fixed point (µj, κj) for each j ∈ N. The function gj

proves to be a good approximation to g, in the sense that gj(µ, τ)(f, θ) ≤ g(µ, τ)(f, θ)

and lim infj gj(µj, τj)(f, θ) ≥ g(µ, τ)(f, θ) whenever (µj, τj)→ (µ, τ); these properties

allow us to prove that if (µ, κ) is a limit point of the sequence {(µj, κj)}∞j=1, then

µ is a stable matching and, thus, to establish the existence of a stable matching in

discrete economies.

We then use a limit argument to extend the existence result from discrete to gen-

eral economies. The limit argument builds upon analogous results in CKK (namely,

their Lemma 7) but extended to the case of a separable Θ and tight G. The main

issue concerns again the measure of available workers. To see this, let {Gk}∞k=1 such

that Gk → G and supp(Gk) is finite for each k define a sequence of discrete economies

converging to the one defined by G. Furthermore, let (µk, κk) be obtained via the

above fixed point argument and (µ, κ) be a limit point of {(µk, κk)}∞k=1. Despite the

lack of continuity of µ′ 7→ D�f (µ′), we establish that D�f (µk) @ κk,f for each k

implies that D�f (µ) @ κf . Using this result, we show that there are no blocking

coalitions in the economy defined by G and, in fact, show that µ is a stable matching.
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4 Discussion

In this section, we show that Theorem 1 applies to the case where firms have explicit

preferences (although not without difficulties) and that it extends to the case of diverse

worker preferences. Its conclusion, however, does not extend to the case where firms’

preferences depend on the matching.16

4.1 Existence of stable matchings with explicit preferences

In this section we assume that firms have explicit preferences. Intuitively, this yields

a particular case of the model in Section 2 and we will show that this intuition is

indeed correct but not without difficulties.

The main difficulty in establishing this result consists in showing that the choice

correspondence Cf obtained from preference maximization is closed. This is relatively

simple when Θ is finite and can be shown by proving, in particular, that the constraint

correspondence in the definition of Cf below is lower hemicontinuous. Extending this

result to the case where Θ is separable or even compact is challenging.

The model with explicit firms’ preferences is as in Section 2 with the following

differences. Each firm f ∈ F has a complete, transitive and continuous preference

relation �f on X which is convex.17

In this setting, a matching M is stable if

1. (Individual Rationality) For each f ∈ F , Mf (P (∅, f,M)) = 0; and

2. (No Blocking Coalition) No f ∈ F and M ′
f ∈ X exist such that M ′

f @ D�f (M)

and M ′
f �f Mf .

Condition 1 in the above definition is the same as in Section 2. Although condition 2

above looks exactly like condition 2 of Section 2, they are different because �f in the

16In the working paper version of this article we present an example showing that a stable match-

ing, defined along the lines of strong stability in Bando (2012), fails to exist in a setting that differs

from that of Section 2 only because firms’ preferences depend on the matching.
17Convexity of preferences means that, for each λ ∈ (0, 1) and Mf ,M

′
f ∈ X , if Mf �f M ′f , then

λMf + (1− λ)M ′f �f M ′f .
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former is a primitive concept whereas in the latter is derived from Cf in the specific

way described in Section 2. Despite this difference, Theorem 1 applies to establish

that stable matchings exist for the setting with explicit firms’ preferences.18

Corollary 1 A stable matching exists when firms have explicit preferences.

4.2 Existence of stable matchings under diverse preferences

The proof of Theorem 1 readily extends to obtain the existence of stable matchings

under the assumption of diversity of preferences in Leshno (2022) and Cox, Fonseca,

and Pakzad-Hurson (2022) in place of the continuity assumption we made in Section

2 that
{

(θ, f,M, f ′,M ′) ∈ Θ× (F̃ ×X n+1)2 : (f,M) �θ (f ′,M ′)
}

is open. We will

establish this in a setting analogous to the one in Section 2 and show how it applies

to a setting analogous to one considered in those papers.

Consider the setting of Section 2 with the above continuity assumption replaced

with the following weak continuity assumption: P (f, f ′,M) is open for each f, f ′ ∈ F̃

and M ∈ X n+1. In addition, we make the diversity of preferences assumption which,

in our setting, requires that, for each µ ∈ X n+1 and ε > 0, there exists δ > 0 such that

G({θ ∈ Θ :�θ|µ 6=�θ|µ′}) < ε for each µ′ ∈ X n+1 such that ρ(µ, µ′) < δ, where �θ|µ is

the preference relation of θ over F̃ given µ, i.e. f �θ|µ f ′ if and only if (f, µ) �θ (f ′, µ)

and ρ is a metric on X n+1.19 The following existence result shows that the continuity

assumption made in Section 2 can be weakened provided preferences are diverse (see

Appendix A.3 for its proof).

Theorem 2 A stable matching exists in weakly continuous economies with diverse

preferences.

Theorem 2 applies to a college admission setting analogous to the one considered

by Cox, Fonseca, and Pakzad-Hurson (2022) and Leshno (2022) in a similar way to

what has been described in Section 2.3. The only changes concerns (i) the students’

18See the working paper version of this article for details.
19The space of measures on Θ with the weak convergence of measures is metrizable by Varadarajan

(1958, Theorem 3.1).
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type space Θ, which is now a separable subset of [0, 1]|F |×B(F̃ ×S), where B(F̃ ×S)

denotes the space of bounded real-valued functions on F̃ × S and (ii) the function

s : X n+1 → S which is no longer assumed to be continuous. Rather, it is assumed that

the diversity of preferences assumption holds when �θ|µ is defined by f �θ|µ f ′ if and

only if u(f, s(µ)) ≥ u(f ′, s(µ)) for each θ = (r, u) ∈ Θ, f, f ′ ∈ F̃ and µ ∈ X n+1. We

note that neither Leshno (2022) nor Cox, Fonseca, and Pakzad-Hurson (2022) make

any such separability assumption.20 Weak continuity is satisfied since P (f, f ′,M) =

{θ ∈ Θ : π2(θ)(f, s(M)) > π2(θ)(f ′, s(M))} for each f, f ′ ∈ F̃ and M ∈ X n+1. Since

[0, 1]|F | × B(F̃ × S) is complete, the closure of Θ is complete and separable and it

follows by Parthasarathy (1967, Theorem 3.2, p. 29) that G is tight. Thus, a stable

matching exists in any college admission economy with diverse preferences.

A Appendix

A.1 Proof of Theorem 1

The first step in our existence proof is to show the existence of a stable matching

when Θ is finite.

A.1.1 Finite case

Lemma 1 If Θ is finite and supp(G) = Θ, then a stable matching exists.

Proof. Note that in this case

X = {δ ∈ RΘ : 0 ≤ δ(θ) ≤ G(θ)}

is a nonempty, convex, and compact subset of a Euclidean space.

For each f ∈ F̃ , let Df : X n+1 × X n+1 ⇒ X be defined by setting, for each

(µ, κ) ∈ X n+1 ×X n+1, where µ = (µf )f∈F̃ and κ = (κf )f∈F̃ ,

Df (µ, κ) = Cf (κf ).

20Our separability assumption holds, for instance, if there exists a subset Γ of a Euclidean space

and a continuous function U : Γ → B(F̃ × S) such that Θ = [0, 1]|F | × U(Γ). While Leshno (2022)

makes a similar assumption, he does not require U to be continuous.
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The following claim follows by assumption (iii) on Cf .

Claim 1 For each f ∈ F̃ , Df is upper hemicontinuous with nonempty, compact and

convex values.

Let uΘ : F̃ × Θ × X n+1 → R be a bounded and continuous utility function

that represents workers’ preferences (see, e.g., Debreu (1964)). We normalize so that

uΘ ≥ 1. Let DΘ : X n+1 ⇒ X n+1 be defined by setting, for each µ ∈ X n+1,

DΘ(µ) ={τ ∈ X n+1 : τ ∈ arg max
τ ′∈Xn+1

∑
f∈F̃ ,θ∈Θ

uΘ(f, θ, µ)τ ′f (θ)

subject to
∑
f∈F̃

τ ′f (θ) ≤ G(θ) and

τ ′f (θ) ≤ µf (θ) for each f ∈ F̃ and θ ∈ Θ}.

Claim 2 DΘ is upper hemicontinuous with nonempty, compact and convex values.

Proof. It follows by the linearity of the objective function together with the

convexity of the constraint set that DΘ has convex values. It follows from Berge’s

maximum theorem that DΘ is upper hemicontinuous with nonempty and compact

values. To see this, first note that the objective function is continuous and that

the constraint set, denoted by ΦΘ(µ), is contained in the compact set X n+1. It is

clear that ΦΘ is upper hemicontinuous with compact and nonempty values; for the

latter, note that 0 ∈ ΦΘ(µ) for each µ ∈ X n+1. Finally, to see that ΦΘ is lower

hemicontinuous, let µ ∈ X n+1, O ⊆ X n+1 be an open set such that ΦΘ(µ) ∩ O 6= ∅,

and τ ∈ ΦΘ(µ) ∩ O. Let τ̂ = λτ ∈ O for some λ ∈ (0, 1). Then
∑

f∈F̃ τ̂f (θ) < G(θ)

for each θ ∈ Θ and τ̂f (θ) < µf (θ) for each (f, θ) ∈ F̃ ×Θ such that τf (θ) > 0, hence,

τ̂ ∈ ΦΘ(µ′) for each µ′ in a neighborhood of µ.
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For each µ ∈ X n+1 and (f, θ) ∈ F̃ ×Θ, let

W (f, θ, µ) = {f ′ ∈ F̃ : (f, µ) �θ (f ′, µ)},

I(f, θ, µ) = {f ′ ∈ F̃ : (f ′, µ) ∼θ (f, µ)},

S(f, θ, µ) = {f ′ ∈ F̃ : (f ′, µ) �θ (f, µ)},

B(f, θ, µ) = {f ′ ∈ F̃ : (f ′, µ) �θ (f, µ)} and

B−(f, θ, µ) = B(f, θ, µ) \ {f}.

Claim 3 If µ ∈ X n+1, τ ∈ DΘ(µ) and (f, θ) ∈ F̃ ×Θ is such that∑
f ′∈B−(f,θ,µ)

τf ′(θ) < G(θ)

(in particular, if τf (θ) > 0), then τf ′(θ) = µf ′(θ) for each f ′ ∈ S(f, θ, µ).

Proof. If not, then τf ′(θ) < µf ′(θ) for some f ′ ∈ F̃ such that (f ′, µ) �θ (f, µ).

Thus, increase τf ′(θ) while decreasing, if
∑

f̂∈F̃ τf̂ (θ) = G(θ), τf̃ (θ) by the same

amount ε ∈ (0, τf̃ (θ)), for some f̃ ∈ W (f, θ, µ)∪{f}; note that this is possible because

if
∑

f̂∈F̃ τf̂ (θ) = G(θ), then
∑

f̂∈W (f,θ,µ)∪{f} τf̂ (θ) = G(θ) −
∑

f ′∈B−(f,θ,µ) τf ′(θ) > 0.

This increases the objective function in DΘ(µ) while satisfying the constraints.

Finally, note that if τf (θ) > 0, then
∑

f ′∈B−(f,θ,µ) τf ′(θ) ≤ G(θ)− τf (θ) < G(θ).

Claim 4 Let µ ∈ X n+1, τ ∈ DΘ(µ) and θ ∈ Θ. If
∑

f∈F̃ µf (θ) > G(θ), then∑
f∈F̃ τf (θ) = G(θ).

Proof. If not, then
∑

f∈F̃ τf (θ) < G(θ) and there exists f ′ ∈ F̃ such that τf ′(θ) <

µf ′(θ) since, otherwise,
∑

f∈F̃ τf (θ) =
∑

f∈F̃ µf (θ) > G(θ) >
∑

f∈F̃ τf (θ). Thus,

increase τf ′(θ) to increase the objective function while satisfying the constraints.

Claim 5 Let µ ∈ X n+1, τ ∈ DΘ(µ), θ ∈ Θ and f̄ ∈ F̃ be such that τf̄ (θ) > 0 and

τf (θ) = 0 for each f ∈ W (f̄ , θ, µ).

If ∑
f∈I(f̄ ,θ,µ)

µf (θ) > G(θ)−
∑

f∈S(f̄ ,θ,µ)

µf (θ), (1)

then ∑
f∈I(f̄ ,θ,µ)

τf (θ) = G(θ)−
∑

f∈S(f̄ ,θ,µ)

τf (θ).
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Proof. This claim is a corollary of Claim 4. Indeed, since
∑

f∈F̃ µf (θ) ≥∑
f∈B(f̄ ,θ,µ) µf (θ) > G(θ), Claim 4 implies that

∑
f∈F̃ τf (θ) = G(θ). Since τf (θ) = 0

for each f ∈ W (f̄ , θ, µ), we obtain that
∑

f∈B(f̄ ,θ,µ) τf (θ) =
∑

f∈F̃ τf (θ) = G(θ).

Claim 6 Let µ ∈ X n+1, τ ∈ DΘ(µ), θ ∈ Θ and f̄ ∈ F̃ be such that τf̄ (θ) > 0 and

τf (θ) = 0 for each f ∈ W (f̄ , θ, µ).

If ∑
f∈I(f̄ ,θ,µ)

µf (θ) ≤ G(θ)−
∑

f∈S(f̄ ,θ,µ)

µf (θ), (2)

then τf (θ) = µf (θ) for each f ∈ B(f̄ , θ, µ).

Proof. Note that the conclusion holds for each f ∈ S(f̄ , θ, µ) by Claim 3. We

next show that it also holds for each f ∈ I(f̄ , θ, µ). Indeed, if not, then τf (θ) < µf (θ)

for some f ∈ I(f̄ , θ, µ). Then, by (2) and τf ′(θ) = 0 for each f ′ ∈ W (f̄ , θ, µ), it

follows that ∑
f ′∈F̃

τf ′(θ) =
∑

f ′∈B(f̄ ,θ,µ)

τf ′(θ) <
∑

f ′∈B(f̄ ,θ,µ)

µf ′(θ) ≤ G(θ).

Thus increase τf (θ) to increase the objective function while satisfying the constraints.

Let g : X n+1×DΘ(X n+1)→ X n+1 be defined by setting, for each (µ, τ) ∈ X n+1×

DΘ(X n+1) and (f, θ) ∈ F̃ ×Θ,

g(µ, τ)(f, θ) = G(θ)−
∑

f ′∈B−(f,θ,µ)

τf ′(θ) = τf (θ) +G(θ)−
∑

f ′∈B(f,θ,µ)

τf ′(θ).

For each j ∈ N and (f, θ) ∈ F̃ × Θ, let αj,(f,θ) : F̃ × X n+1 → [0, 1] be defined by

setting, for each (f ′, µ) ∈ F̃ ×X n+1,

αj,(f,θ)(f
′, µ) = jmax

{
0,min

{
1

j
+ uΘ(f ′, θ, µ)− uΘ(f, θ, µ),

1

j

}}
.

For each j ∈ N, let gj : X n+1×DΘ(X n+1)→ X n+1 be defined by setting, for each

(µ, τ) ∈ X n+1 ×DΘ(X n+1) and (f, θ) ∈ F̃ ×Θ,

gj(µ, τ)(f, θ) = τf (θ) +G(θ)−
∑
f ′∈F̃

αj,(f,θ)(f
′, µ)τf ′(θ).
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Claim 7 The following holds:

1. gj is continuous for each j ∈ N.

2. For each µ ∈ X n+1 and j ∈ N, τ 7→ gj(µ, τ) is linear.

3. For each (µ, τ) ∈ X n+1 × DΘ(X n+1), {(µj, τj)}∞j=1 ⊆ X n+1 × DΘ(X n+1) such

that (µj, τj)→ (µ, τ) and (f, θ) ∈ F̃ ×Θ,

gj(µ, τ)(f, θ) ≤ g(µ, τ)(f, θ) for each j ∈ N, and (3)

lim inf
j

gj(µj, τj)(f, θ) ≥ g(µ, τ)(f, θ). (4)

Proof. Let j ∈ N. We have that gj is continuous since αj,(f,θ) is continuous for

each (f, θ) ∈ F̃ ×Θ. It is clear that τ 7→ gj(µ, τ) is linear.

For each f, f ′ ∈ F̃ , θ ∈ Θ, µ ∈ X n+1 and τ ∈ X n+1,

αj,(f,θ)(f
′, µ) ∈


{1} if uΘ(f ′, θ, µ) ≥ uΘ(f, θ, µ),

(0, 1) if uΘ(f ′, θ, µ)− 1
j
< uΘ(f ′, θ, µ) < uΘ(f, θ, µ),

{0} if uΘ(f ′, θ, µ) ≤ uΘ(f, θ, µ)− 1
j
.

Hence, it follows that gj(µ, τ)(f, θ) ≤ g(µ, τ)(f, θ) since

g(µ, τ)(f, θ) = τf (θ) +G(θ)−
∑
f ′∈F̃

α(f,θ)(f
′, µ)τf ′(θ)

with

α(f,θ)(f
′, µ) =

1 if uΘ(f ′, θ, µ) ≥ uΘ(f, θ, µ),

0 otherwise.

Furthermore, for each (µ, τ) ∈ X n+1 × DΘ(X n+1), (f, θ) ∈ F̃ × Θ and sequence

{(µj, τj)}∞j=1 ⊆ X n+1 ×DΘ(X n+1) such that limj(µj, τj) = (µ, τ),

lim inf
j

gj(µj, τj)(f, θ) ≥ g(τ, µ)(f, θ).

Indeed, there is J ∈ N such that the following holds for each j ≥ J : (i) if uΘ(f ′, θ, µ) >

uΘ(f, θ, µ), then uΘ(f ′, θ, µj) > uΘ(f, θ, µj), and (ii) if uΘ(f ′, θ, µ) < uΘ(f, θ, µ), then
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uΘ(f ′, θ, µj) < uΘ(f, θ, µj)− 1
j
. Hence, for each j ≥ J ,

gj(µj, τj)(f, θ)− g(τ, µ)(f, θ) =∑
f ′∈F̃

τf ′(θ)
(
α(f,θ)(f

′, µ)− αj,(f,θ)(f ′, µ)
)

+

∑
f ′∈F̃

αj,(f,θ)(f
′, µ)

(
τf ′(θ)− τj,f ′(θ)

)
=

∑
f ′:uΘ(f ′,θ,µ)=uΘ(f,θ,µ)

τf ′(θ)
(
α(f,θ)(f

′, µ)− αj,(f,θ)(f ′, µ)
)

+

∑
f ′∈F̃

αj,(f,θ)(f
′, µ)

(
τf ′(θ)− τj,f ′(θ)

)
≥

∑
f ′∈F̃

αj,(f,θ)(f
′, µ)

(
τf ′(θ)− τj,f ′(θ)

)
since α(f,θ)(f

′, µ) − αj,(f,θ)(f
′, µ) = 1 − αj,(f,θ)(f

′, µ) ≥ 0 for each f ′ ∈ F̃ such that

uΘ(f ′, θ, µ) = uΘ(f, θ, µ). Since

lim
j

∑
f ′∈F̃

αj,(f,θ)(f
′, µ)

(
τf ′(θ)− τj,f ′(θ)

)
= 0,

it follows that lim infj gj(µj, τj)(f, θ) ≥ g(τ, µ)(f, θ).

For each j ∈ N, let Hj : X n+1 ⇒ X n+1 be defined by setting, for each µ ∈ X n+1,

Hj(µ) = {gj(µ, τ) : τ ∈ DΘ(µ)}.

Claim 8 For each j ∈ N, Hj is upper hemicontinuous with nonempty, compact and

convex values.

Proof. Since gj is continuous andDΘ is upper hemicontinuous with nonempty and

compact values, Hj is upper-hemicontinuous with nonempty and compact values. We

have that Hj is convex-valued as follows. Let µ ∈ X n+1, κ, κ′ ∈ Hj(µ) and λ ∈ (0, 1).

Furthermore, let τ, τ ′ ∈ DΘ(µ) be such that κ = gj(µ, τ) and κ′ = gj(µ, τ
′). Then

λτ + (1−λ)τ ′ ∈ DΘ(µ) and gj(µ, λτ + (1−λ)τ ′) = λκ+ (1−λ)κ′ by Claim 7. Hence,

λκ+ (1− λ)κ′ ∈ Hj(µ).

For each j ∈ N, let Ψj : X n+1 × X n+1 ⇒ X n+1 × X n+1 be defined by setting, for

each (µ, κ) ∈ X n+1 ×X n+1,

Ψj(µ, κ) =
∏
f∈F̃

Df (µ, κ)×Hj(µ).
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It follows from Claims 1 and 8 that Ψj is upper hemicontinuous with nonempty,

compact and convex values. Hence, by the Kakutani fixed point theorem, let (µj, κj)

be a fixed point of Ψj and τj ∈ DΘ(µj) be such that κj = gj(µj, τj).

Since X n+1 × X n+1 × DΘ(X n+1) is compact, taking a subsequence if necessary,

we may assume that {(µj, κj, τj)}∞j=1 converges; let (µ, κ, τ) = limj→∞(µj, κj, τj). We

have that τ ∈ DΘ(µ) since DΘ is compact-valued and upper-hemicontinuous, and

µ ∈
∏

f∈F̃ Df (µ, κ) since
∏

f∈F̃ Df is compact-valued and upper-hemicontinuous.

Claim 9 For each θ ∈ Θ and j ∈ N, there exists f̄j ∈ F̃ such that τj,f̄j(θ) > 0 and

τj,f (θ) = 0 for each f ∈ W (f̄j, θ, µj).

Proof. Let θ ∈ Θ and j ∈ N. First note that
∑

f∈F̃ τj,f (θ) > 0. Suppose not; then

τj,f (θ) = 0 for each f ∈ F̃ . Hence, µj,f (θ) = 0 for each f ∈ F̃ since τj ∈ DΘ(µj) and

κj,∅(θ) = gj(µj, τj)(∅, θ) = G(θ). But this contradicts µj,∅(θ) = κj,∅(θ) = G(θ) > 0,

which follows since µj,∅ ∈ C∅(κj,∅).

Partition F̃ using ∪Ll=1I(fl, θ, µj) for some L ∈ {1, . . . , n + 1} and f1, . . . , fL ∈

F̃ , where (f, µj) �θ (f ′, µj) whenever f ∈ I(fl, θ, µj), f
′ ∈ I(fl′ , θ, µj) and l < l′.

Define L∗ = min{l ∈ {1, . . . , L} :
∑

f∈I(fl,θ,µj) τj,f (θ) = 0} with the convention that

L∗ = L + 1 if {l ∈ {1, . . . , L} :
∑

f∈I(fl,θ,µj) τj,f (θ) = 0} = ∅. Since
∑

f∈F̃ τj,f (θ) > 0,

it follows that L∗ > 1 and, thus,
∑

f∈I(fL∗−1,θ,µj)
τj,f (θ) > 0 by the definition of L∗.

Thus, let f ∈ I(fL∗−1, θ, µj) be such that τj,f (θ) > 0 and set f̄j = f .

Claim 10 µ is a matching.

Proof. Let θ ∈ Θ and j ∈ N. Let, by Claim 9, f̄j ∈ F̃ be such that τj,f̄j(θ) > 0

and τj,f (θ) = 0 for each f ∈ W (f̄j, θ, µj).

We first show that (1) with µj in place of µ cannot hold. Suppose for a contra-

diction that ∑
f∈I(f̄j ,θ,µj)

µj,f (θ) > G(θ)−
∑

f∈S(f̄j ,θ,µj)

µj,f (θ). (5)

Since µj ∈
∏

f∈F̃ Df (µj, κj) and κj = gj(µj, τj), assumption (i) on Cf̄j and Claim 7

imply that

µj,f̄j(θ) ≤ gj(µj, τj)(f̄j, θ) ≤ g(µj, τj)(f̄j, θ) = G(θ)−
∑

f∈B−(f̄j ,θ,µj)

τj,f (θ).
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Hence,

G(θ) ≥ µj,f̄j(θ) +
∑

f∈B−(f̄j ,θ,µj)

τj,f (θ). (6)

Let β = |I(f̄j, θ, µj)|. If β > 1, since (6) holds for each f ′ ∈ I(f̄j, θ, µj), it follows

that

β
(
G(θ)−

∑
f∈S(f̄j ,θ,µj)

τj,f (θ)
)
≥

∑
f∈I(f̄j ,θ,µj)

(
µj,f (θ) + (β − 1)τj,f (θ)

)
.

Since τj,f̄j(θ) > 0, Claim 3 implies that τj,f (θ) = µj,f (θ) for each f ∈ S(f̄j, θ, µj) and

this, together with (5), implies that

β
(
G(θ)−

∑
f∈S(f̄j ,θ,µj)

µj,f (θ)
)
> G(θ)−

∑
f∈S(f̄j ,θ,µj)

µj,f (θ) + (β − 1)
∑

f∈I(f̄j ,θ,µj)

τj,f (θ).

Thus,

G(θ)−
∑

f∈S(f̄j ,θ,µj)

τj,f (θ) = G(θ)−
∑

f∈S(f̄j ,θ,µj)

µj,f (θ) >
∑

f∈I(f̄j ,θ,µj)

τj,f (θ),

a contradiction to Claim 5.

If β = 1, then by (5)

µj,f̄j(θ) > G(θ)−
∑

f∈S(f̄j ,θ,µj)

µj,f (θ) = G(θ)−
∑

f∈S(f̄j ,θ,µj)

τj,f (θ)

since τj,f (θ) = µj,f (θ) for each f ∈ S(f̄j, θ, µj) by Claim 3. Since∑
f∈B−(f̄j ,θ,µj)

τj,f (θ) =
∑

f∈S(f̄j ,θ,µj)

τj,f (θ)

due to β = 1, it follows from (6) that

G(θ) > G(θ)−
∑

f∈S(f̄j ,θ,µ)

τj,f (θ) +
∑

f∈B−(f̄j ,θ,µj)

τj,f (θ) = G(θ),

a contradiction.

It follows from the above argument that∑
f∈I(f̄j ,θ,µj)

µj,f (θ) ≤ G(θ)−
∑

f∈S(f̄j ,θ,µj)

µj,f (θ) (7)
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for each j ∈ N. Fix j ∈ N. It follows by Claim 6 that

τj,f (θ) = µj,f (θ) for each f ∈ B(f̄j, θ, µj). (8)

We have that µj,∅(θ) = gj(µj, τj)(∅, θ) for each j ∈ N since µj,∅ ∈ D∅(µj, κj) and

κj = gj(µj, τj). Hence, by Claim 7,

µ∅(θ) = limj gj(µj, τj)(∅, θ) ≥ g(µ, τ)(∅, θ) = G(θ)−
∑

f∈B−(∅,θ,µ) τf (θ).

We have that τf (θ) ≤ µf (θ) for each f ∈ F̃ since τ ∈ DΘ(µ), hence∑
f∈F̃

µf (θ) ≥
∑

f∈B(∅,θ,µ)

µf (θ) ≥ µ∅(θ) +
∑

f∈B−(∅,θ,µ)

τf (θ) ≥ G(θ). (9)

If
∑

f∈F̃ µf (θ) > G(θ), then
∑

f∈F̃ τf (θ) = G(θ) by Claim 4 since τ ∈ DΘ(µ). For

each j and f ∈ W (f̄j, θ, µj),

µj,f (θ) ≤ gj(µj, τj)(f, θ) ≤ g(µj, τj)(f, θ) = G(θ)−
∑

f ′∈B−(f,θ,µj)

τj,f ′(θ)

= G(θ)−
∑

f ′∈B(f̄j ,θ,µj)

τj,f ′(θ) = G(θ)−
∑
f ′∈F̃

τj,f ′(θ)

by assumption (i) on Cf , Claim 7 and since τj,f ′(θ) = 0 for each f ′ ∈ W (f̄j, θ, µj).

Thus, by the above, (8) and τj,f ′(θ) = 0 for each f ′ ∈ W (f̄j, θ, µj),

∑
f∈F̃ µj,f (θ) ≤

∑
f∈B(f̄j ,θ,µj)

µj,f (θ) + |W (f̄j, θ, µj)|
(
G(θ)−

∑
f∈F̃

τj,f (θ)
)

=
∑
f∈F̃

τj,f (θ) + |W (f̄j, θ, µj)|
(
G(θ)−

∑
f∈F̃

τj,f (θ)
)
.

Since
∑

f∈F̃ τj,f (θ)→
∑

f∈F̃ τf (θ) = G(θ), it follows that∑
f∈F̃

µf (θ) = lim
j

∑
f∈F̃

µj,f (θ) ≤
∑
f∈F̃

τf (θ) = G(θ),

a contradiction. Thus,
∑

f∈F̃ µf (θ) ≤ G(θ) and this, together with (9), implies that∑
f∈F̃ µf (θ) = G(θ).

Claim 11 For each f ∈ F , µf (P (∅, f, µ)) = 0.
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Proof. Suppose not; then there exists f ∈ F and θ ∈ Θ such that µf (θ) > 0

and (∅, µ) �θ (f, µ). For sufficiently large j, µj,f (θ) > 0 and (∅, µj) �θ (f, µj). Since

µj,f ∈ Df (µj, κj), it follows by assumption (i) on Cf and Claim 7 that

0 < µj,f (θ) ≤ κj,f (θ) = gj(µj, τj)(f, θ)

≤ g(µj, τj)(f, θ) = G(θ)−
∑

f ′∈B−(f,θ,µj)

τj,f ′(θ).

This then implies that τj,∅(θ) = µj,∅(θ) by Claim 3 since τj ∈ DΘ(µj).

Since τj,∅(θ) = µj,∅(θ) and µj,∅(θ) = κj,∅(θ) (since µj,∅ ∈ D∅(µj, κj)) for each j

sufficiently large, using Claim 7 it follows that

τ∅(θ) = µ∅(θ) = lim
j
µj,∅(θ) = lim

j
κj,∅(θ) = lim

j
gj(µj, τj)(∅, θ)

≥ g(µ, τ)(∅, θ) = G(θ)−
∑

f ′∈B−(∅,θ,µ)

τf ′(θ).

Then
∑

f ′∈B(∅,θ,µ) τf ′(θ) ≥ G(θ) and, since τ ∈ DΘ(µ),
∑

f ′∈B(∅,θ,µ) µf ′(θ) ≥ G(θ).

Since µ is a matching by Claim 10, it follows that
∑

f ′∈B(∅,θ,µ) µf ′(θ) = G(θ) and that

µf (θ) = 0. But this contradicts µf (θ) > 0.

Claim 12 For each f ∈ F , D�f (µ) @ κf .

Proof. For each θ ∈ Θ,

D�f (µ)(θ) = µf (θ) +
∑

f ′∈W (f,θ,µ)

µf ′(θ)

and

κf (θ) = lim
j
κj,f (θ) = lim

j
gj(µj, τj)(f, θ) ≥ g(µ, τ)(f, θ)

= G(θ)−
∑

f ′∈B−(f,θ,µ)

τf ′(θ) ≥ G(θ)−
∑

f ′∈B−(f,θ,µ)

µf ′(θ)

= µf (θ) +
∑

f ′∈W (f,θ,µ)

µf ′(θ)

where the first inequality follows by Claim 7, the second inequality since τ ∈ DΘ(µ)

and the last equality since µ is a matching by Claim 10.

36



Claim 13 There does not exist f ∈ F and δ ∈ X such that δ @ D�f (µ) and δ �f µf .

Proof. Suppose otherwise; then there is f ∈ F and δ ∈ X such that δ @ D�f (µ)

and δ �f µf . By Claim 12, D�f (µ) @ κf . Hence, δ @ κf .

Since µf ∈ Cf (κf ), we have that µf @ κf by assumption (i) on Cf . Thus,

assumption (ii) on Cf implies that µf ∈ Cf (µf ∨ δ). But this is a contradiction to

δ �f µf .

It follows from Claims 10, 11 and 13 that µ is a stable matching.

A.1.2 Limit argument

Let {Gk}∞k=1 be such that Gk → G and, for each k, supp(Gk) = Θk is a finite subset

of Θ and Gk(Θ) = 1 (see, e.g., Parthasarathy (1967, Theorem 6.3, p. 44)). Let

Xk = {X ∈ X̄ : X @ Gk}. For each k ∈ N and f ∈ F̃ , define Dk,f : X n+1
k × X n+1

k ⇒

Xk and Dk,Θ : X n+1
k ⇒ X n+1

k as in the finite case, with Θk in place of Θ, Gk in

place of G, and Xk in place of X . Note that, for each (µ, κ) ∈ X n+1
k × X n+1

k , if

δ ∈ Dk,f (µ, κ) = Cf (κf ), then δ @ κf @ Gk and, hence, Dk,f (µ, κ) ⊆ Xk.

For each k ∈ N, let gk,j : X n+1
k ×Dk,Θ(X n+1

k ) → X n+1
k be defined for each j ∈ N

by setting, for each (µ, τ) ∈ X n+1
k ×Dk,Θ(X n+1

k ), f ∈ F̃ , and θ ∈ Θk,

gk,j(µ, τ)(f, θ) = τf (θ) +Gk(θ)−
∑
f ′∈F̃

αj,(f,θ)(f
′, µ)τf ′(θ).

By Lemma 1, for each k, there exists a stable matching µk when the set of

types is Θk and the distribution is Gk. Furthermore, for each k, we also have

µk ∈
∏

f∈F̃ Dk,f (µk, κk) and τk ∈ Dk,Θ(µk) as the proof of Lemma 1 shows. In particu-

lar, µk ∈ X n+1
k , τk ∈ X n+1

k and κk ∈ X n+1
k . Since G is tight, it follows that {Gk}∞k=1 is

tight and, hence, {(µk, κk, τk)}∞k=1 is tight. Thus, taking a subsequence if necessary, we

may assume that {(µk, κk, τk)}∞k=1 converges to some (µ, κ, τ) = limk→∞(µk, κk, τk).
21

It then follows from Lemma 2 below, which is analogous to Lemma 7 in CKK, that

(µ, κ, τ) ∈ X n+1 ×X n+1 ×X n+1.

21This result follows essentially by Aliprantis and Border (2006, Lemma 15.21, p. 518) by reducing

the problem to the case of probability measures, which is possible since µk,f (Θ) ≤ 1 for each k ∈ N

and f ∈ F̃ and analogously for κk and τk.

37



Lemma 2 Let X be a metric space, µ, ν ∈ M(X) and {µk}∞k=1, {νk}∞k=1 ⊆ M(X) be

such that µk → µ and νk → ν. If νk @ µk for each k ∈ N, then ν @ µ.

Proof. Suppose first that νk = 0 for each k ∈ N. Then 0 ≤ lim supk µk(C) ≤ µ(C)

for each closed subset C of X. Measures on metric spaces are regular (see, e.g.,

Parthasarathy (1967, Theorem 1.2, p. 27)), hence, for each Borel B ⊆ X,

µ(B) = sup{µ(C) : C is a closed subset of B} ≥ 0.

For the general case, define ψk = µk − νk. Then ψk → µ− ν and 0 @ ψk for each

k ∈ N. Thus, by what was shown in the above paragraph, 0 ≤ µ(B)− ν(B) for each

Borel B ⊆ X and, hence, ν @ µ.

Claim 14 µ is a matching.

Proof. Since µk is a stable matching for Gk, for each f ∈ F̃ , µk,f @ Gk. By

Lemma 2, µf @ G.

Similarly, we have that
∑

f∈F̃ µf = G, since
∑

f∈F̃ µf = limk→∞
∑

f∈F̃ µk,f =

limk→∞Gk = G.

Claim 15 For each f ∈ F , µ ∈ Df (µ, κ).

Proof. Since µk,f @ κk,f for each k, µf @ κf by Lemma 2. Furthermore, for each

k, µk,f ∈ Dk,f (µk, κk) = Cf (κk,f ). Since Cf is closed, it follows that µf ∈ Cf (κf ) =

Df (µ, κ).

Claim 16 For each f ∈ F , µf (P (∅, f, µ)) = 0.

Proof. Suppose not; then there exists f ∈ F such that µf (P (∅, f, µ)) > 0. Note

that P (∅, f, µ) is open by the continuity assumption on workers’ preferences. Since

µk → µ, we have that lim infk→∞ µk,f (P (∅, f, µ)) ≥ µf (P (∅, f, µ)) > 0. Thus, for

sufficiently large k, there exists θ ∈ P (∅, f, µ) such that µk,f (θ) > 0 and (∅, µk) �θ
(f, µk) (the latter again following from continuity of preferences), contradicting the

stability of µk.
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Claim 17 For each f ∈ F , D�f (µ) @ κf .

Proof. For each k, we have D�f (µk) @ κk,f by Claim 12.

For each E ∈ Σ, we have:

D�f (µ)(E) = µf (E) +
∑
f ′ 6=f

µf ′(E ∩ P (f, f ′, µ)).

Note that for each open set O ⊆ Θ, µf (O) ≤ lim infk→∞ µk,f (O). In addition, for

each f ′ 6= f , we claim that

µf ′(O ∩ P (f, f ′, µ)) ≤ lim inf
k→∞

µk,f ′(O ∩ P (f, f ′, µk)).

This claim can be established as follows. For each θ ∈ O ∩ P (f, f ′, µ), there are

open neighborhoods Uθ ⊆ O ∩ P (f, f ′, µ) and Vθ of θ and µ, respectively, such that

(f, µ′) �θ′ (f ′, µ′) for each θ′ ∈ Uθ and µ′ ∈ Vθ. Since Θ is separable, there exists a

countable subcover {Uθj}∞j=1 of O ∩ P (f, f ′, µ), i.e. O ∩ P (f, f ′, µ) = ∪∞j=1Uθj . Let

ε > 0; then there is J ∈ N such that µf ′(O ∩ P (f, f ′, µ)) ≤ µf ′(∪Jj=1Uθj) + ε and

K ∈ N such that µk ∈ ∩Jj=1Vθj for each k ≥ K. The latter implies that, for each

k ≥ K, ∪Jj=1Uθj ⊆ O ∩ P (f, f ′, µk). Since ∪Jj=1Uθj is open,

µf ′(O ∩ P (f, f ′, µ)) ≤ µf ′(∪Jj=1Uθj) + ε ≤ lim inf
k

µk,f ′(∪Jj=1Uθj) + ε

≤ lim inf
k

µk,f ′(O ∩ P (f, f ′, µk)) + ε.

Since ε > 0 was arbitrary, the claim follows.

It then follows that for each open set O,

D�f (µ)(O) ≤ lim inf
k→∞

µk,f (O) + lim inf
k→∞

∑
f ′ 6=f

µk,f ′(O ∩ P (f, f ′, µk))

≤ lim inf
k→∞

D�f (µk)(O) ≤ lim inf
k→∞

κk,f (O).

We claim that for each closed subset C of Θ,

D�f (µ)(C) ≤ κf (C).

Let C be a closed subset of Θ, η > 0 and, for each ε > 0, let Bε = {θ ∈ Θ :

d(θ, C) < ε} and Sε = {θ ∈ Θ : d(θ, C) = ε}. Since Bε ↓ C, there is ε̄ > 0 such that
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κf (Bε) < κf (C) + η for each 0 < ε < ε̄. Since the family {Sε : 0 < ε < ε̄} is pairwise

disjoint, it follows that κf (Sε) = 0 for all but countably many ε ∈ (0, ε̄). Thus, let

ε∗ ∈ (0, ε̄) be such that κf (Sε∗) = 0. Since the boundary of Bε∗ is contained in Sε∗

and κk → κ, it follows that limk→∞ κk,f (Bε∗) = κf (Bε∗). Hence, since Bε∗ is open,

D�f (µ)(C) ≤ D�f (µ)(Bε∗) ≤ lim inf
k→∞

κk,f (Bε∗) = κf (Bε∗) < κf (C) + η.

Since η > 0 is arbitrary, this establishes the above claim.

Let E ∈ Σ and ε > 0. By regularity, let C be a closed subset of E such that

D�f (µ)(E) ≤ D�f (µ)(C) + ε. Hence, κf (C) ≤ κf (E) and

κf (E)−D�f (µ)(E) ≥ κf (C)−D�f (µ)(C)− ε ≥ −ε.

Since ε > 0 is arbitrary, it follows that κf (E) ≥ D�f (µ)(E). Thus, D�f (µ) @ κf .

Claim 18 There does not exist f ∈ F and Mf @ D�f (µ) such that Mf �f µf .

Proof. Suppose there exists f ∈ F and Mf @ D�f (µ) such that Mf �f µf . By

Claim 17, D�f (µ) @ κf . Hence, Mf @ κf .

Since µf ∈ Df (µ, κ) = Cf (κf ) by Claim 15, we have that µf @ κf by assumption

(i) on Cf . Thus, assumption (ii) on Cf implies that µf ∈ Cf (µf ∨Mf ). But this is a

contradiction to Mf �f µf .

It follows from Claims 14, 16, and 18 that µ is a stable matching.

A.2 Proof of the characterization of stability in college ad-

mission economies

Condition (iv) is clearly equivalent to the individual rationality of M . Hence, it

suffices to show that conditions (i)–(iii) are equivalent to the no blocking coalition

condition.

(Necessity) Let M be a matching satisfying the no blocking coalition condition

and f ∈ F . Then, Mf ∈ Cf (Mf ) (see Che, Kim, and Kojima (2019, Footnote 28))

and, hence, Mf (Θ) ≤ qf . Thus, (i) holds.
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To establish (ii), let E = {θ ∈ Θ : π1,f (θ) > 0} and assume that Mf (Θ) < qf

and
(
D�f (M)−Mf

)
(E) > 0. Let δ′ be such that δ′(B) =

(
D�f (M)−Mf

)
(E ∩B)

for each Borel B ⊆ Θ, ε ∈ (0, 1) such that Mf (Θ) + ε
(
D�f (M)−Mf

)
(E) < qf

and M ′
f = Mf + εδ′. Then M ′

f (Θ) = Mf (Θ) + ε
(
D�f (M)−Mf

)
(E) < qf and

M ′
f @ D�f (M), the latter since, for each Borel B ⊆ Θ,

M ′
f (B) = Mf (B ∩ Ec) +Mf (B ∩ E) + ε

(
D�f (M)−Mf

)
(B ∩ E)

≤ D�f (M)(B ∩ Ec) +Mf (B ∩ E) +D�f (M)(B ∩ E)−Mf (B ∩ E)

= D�f (M)(B).

Moreover,∫
Θ

π1,f (θ)dM
′
f (θ) =

∫
Θ

π1,f (θ)dMf (θ) + ε

∫
E

π1,f (θ)d
(
D�f (M)−Mf

)
(θ)

>

∫
Θ

π1,f (θ)dMf (θ)

since
(
D�f (M)−Mf

)
(E) > 0 and π1,f (θ) > 0 for each θ ∈ E. But this is a

contradiction since M satisfies no blocking coalition condition; thus, (ii) holds.

We turn to (iii). Let E = {θ ∈ Θ : π1,f (θ) > infθ′∈supp(Mf ) π1,f (θ
′)} and assume

that
(
D�f (M)−Mf

)
(E) > 0.

For each θ ∈ E, let εθ > 0 and θ′θ ∈ supp(Mf ) be such that

π1,f (θ
′
θ) < inf

θ∈supp(Mf )
π1,f (θ) + εθ < π1,f (θ).

Let Vθ be an open neighborhood of θ′θ such that π1,f (θ) > supθ̂∈Vθ π1,f (θ̂) and Eθ =

{θ̃ ∈ Θ : π1,f (θ̃) > supθ̂∈Vθ π1,f (θ̂)}; then θ ∈ Eθ ⊆ E, Eθ is open, Eθ ∩ Vθ = ∅ and

Mf (Vθ) > 0, the latter since θ′θ ∈ supp(Mf ). Since Θ is separable, there exists {θk}∞k=1

such that E = ∪kEθk . Hence, there exists k ∈ N such that
(
D�f (M)−Mf

)
(Eθk) > 0.

Let δ, δ′ be such that δ(B) = Mf (Vθk ∩B) and δ′(B) =
(
D�f (M)−Mf

)
(Eθk ∩B)

for each Borel B ⊆ Θ and M ′
f = Mf + εδ′ − ηδ where ε > 0, η > 0 are such that

ε
(
D�f (M)−Mf

)
(Eθk) = ηMf (Vθk) and ε + η = 1.22 Then M ′

f (Vθk) = 0, 0 @ M ′
f ,

22Such ε and η exist: η =
(D�f (M)−Mf)(Eθk )

(D�f (M)−Mf )(Eθk )+Mf (Vθk )
and ε =

Mf (Vθk )

(D�f (M)−Mf )(Eθk )+Mf (Vθk )
.
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M ′
f (Θ) ≤Mf (Θ) ≤ qf , M

′
f @Mf + εδ′ @ D�f (M) (the latter as in part (ii)) and∫

Θ

π1,f (θ)dM
′
f (θ)−

∫
Θ

π1,f (θ)dMf (θ)

= ε

∫
Eθk

π1,f (θ)d
(
D�f (M)−Mf

)
(θ)− η

∫
Vθk

π1,f (θ)dMf (θ)

>
[
ε
(
D�f (M)−Mf

)
(Eθk)− ηMf (Vθk)

]
sup
θ∈Vθk

π1,f (θ) = 0.

But this is a contradiction since M satisfies no blocking coalition condition and, thus,

(iii) holds.

(Sufficiency) Let M be a matching satisfying conditions (i)–(iii) and suppose that

the no blocking coalition condition fails. Then let M ′
f ∈ X be such that M ′

f @

D�f (M) and M ′
f �f Mf . Hence, M ′

f (Θ) ≤ qf and
∫
π1,fdM

′
f >

∫
π1,fdMf .

Consider first the case where Mf (Θ) < qf . Let E = {θ ∈ Θ : π1,f (θ) > 0}; (ii) and

M ′
f @ D�f (M) imply that M ′

f (E) ≤Mf (E). Since Θ = E ∪ {θ ∈ Θ : π1,f (θ) = 0}, it

follows that ∫
π1,fdM

′
f =

∫
E

π1,fdM
′
f ≤

∫
E

π1,fdMf =

∫
π1,fdMf ,

a contradiction.

Consider next the remaining case where Mf (Θ) = qf . Let ᾱ = infθ∈supp(Mf ) π1,f (θ)

and E = {θ ∈ Θ : π1,f (θ) > ᾱ}. Fix k ∈ N and define, for each j ∈ {1, . . . , 2k},

Ej = {θ ∈ Θ : ᾱ + (j − 1)(1− ᾱ)2−k < π1,f (θ) ≤ ᾱ + j(1− ᾱ)2−k}.

Then E = ∪2k

j=1Ej and {Ej}j is pairwise disjoint. Condition (iii) and M ′
f @ D�f (M)

imply that

M ′
f (Ej) ≤Mf (Ej) for each j ∈ {1, . . . , 2k}. (10)

Since Mf (E
c) = 0, it follows that

2k∑
j=1

Mf (Ej) = Mf (E
c) +

2k∑
j=1

Mf (Ej) = Mf (Θ) = qf ≥M ′
f (Θ)

= M ′
f (E

c) +
2k∑
j=1

M ′
f (Ej);
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hence,

M ′
f (E

c) ≤
2k∑
j=1

(Mf (Ej)−M ′
f (Ej)). (11)

Define gk : Θ→ [0, 1] by setting, for each θ ∈ Θ,

gk(θ) =


ᾱ + (j − 1)(1− ᾱ)2−k if θ ∈ Ej, j = 1, . . . , 2k,

(j − 1)ᾱ2−k if (j − 1)ᾱ2−k < π1,f (θ) ≤ jᾱ2−k, j = 1, . . . , 2k,

0 if π1,f (θ) = 0.

Then ∫
gkdM

′
f ≤ ᾱM ′

f (E
c) +

2k∑
j=1

(ᾱ + (j − 1)(1− ᾱ)2−k)M ′
f (Ej)

≤ ᾱ
2k∑
j=1

Mf (Ej) +
2k∑
j=1

(j − 1)(1− ᾱ)2−kM ′
f (Ej)

≤
2k∑
j=1

(ᾱ + (j − 1)(1− ᾱ)2−k)Mf (Ej)

=

∫
gkdMf ,

where the first inequality follows because gk(θ) < ᾱ for each θ ∈ Ec, the second by

(11) and the third by (10).

We thus have that
∫
gkdM

′
f ≤

∫
gkdMf for each k ∈ N. Since {gk}∞k=1 converges

(uniformly) to π1,f , it follows that
∫
π1,fdM

′
f ≤

∫
π1,fdMf , a contradiction. This

completes the proof.

A.3 Proof of Theorem 2

The proof of Theorem 1 extends without change provided that (i) there is, when Θ

is finite, a function uΘ : F̃ × Θ × X n+1 → R representing workers’ preferences such

that the function U : X 2(n+1) → R defined by setting, for each (µ, τ) ∈ X 2(n+1),

U(µ, τ) =
∑

f∈F̃ ,θ∈Θ

uΘ(f, θ, µ)τf (θ)
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is continuous and (ii) µf (O ∩ P (f ′, f, µ)) ≤ lim infk µk,f (O ∩ P (f ′, f, µk)) for each

open subset O of Θ, f, f ′ ∈ F̃ , µ ∈ X n+1 and {µk}∞k=1 ⊆ X n+1 such that µ = limk µk.

Hence, it suffices to show that (i) and (ii) hold under the assumptions of Theorem 2.

To establish (i), we normalize the workers’ utility function so that 1 ≤ uΘ ≤

2 and show that U is continuous. Let (µ, τ) ∈ X 2(n+1), {(µk, τk)}∞k=1 ⊆ X 2(n+1)

such that (µk, τk) → (µ, τ) and ε > 0. Let δ > 0 be given by the diversity of

preferences assumption corresponding to ε/|F̃ | and K ∈ N such that ρ(µk, µ) < δ

and |U(µ, τk) − U(µ, τ)| < ε/2 for each k ≥ K. Fix k ≥ K, let Ek = {θ ∈ Θ :

uΘ(f, θ, µk) 6= uΘ(f, θ, µ) for some f ∈ F̃} and note that τk,f (Ek) ≤ G(Ek) < ε/|F̃ |

for each f ∈ F̃ since τk,f ∈ X (and, hence, τk,f @ G) for each f ∈ F̃ and due to the

diversity of preferences assumption. Thus,

|U(µk, τk)− U(µ, τk)| ≤
∑

f∈F̃ ,θ∈Θ

τk,f (θ)|uΘ(f, θ, µk)− uΘ(f, θ, µ)|

≤
∑
f∈F̃

τk,f (Ek) ≤ |F̃ |G(Ek) <
ε

2

since |uΘ(f, θ, µk) − uΘ(f, θ, µ)| = 0 if θ ∈ Ec
k and |uΘ(f, θ, µk) − uΘ(f, θ, µ)| ≤ 1 if

θ ∈ Ek due to 1 ≤ uΘ ≤ 2. Hence, for each k ≥ K,

|U(µk, τk)− U(µ, τ)| ≤ |U(µk, τk)− U(µ, τk)|+ |U(µ, τk)− U(µ, τ)| < ε.

We now establish (ii). Since P (f ′, f, µ) is open, it follows that µf (O∩P (f ′, f, µ)) ≤

lim infk µk,f (O ∩ P (f ′, f, µ)). Let ε > 0 and let δ > 0 be given by the diversity

of preferences assumption corresponding to ε. For each k ∈ N, let Ek = {θ ∈

Θ :�θ|µ 6=�θ|µk} and let K ∈ N be such that µk ∈ Bδ(µ) for each k ∈ N. Then, for

each k ≥ K,

µk,f (O ∩ P (f ′, f, µk)) ≥ µk,f (O ∩ P (f ′, f, µk) ∩ Ec
k) = µk,f (O ∩ P (f ′, f, µ) ∩ Ec

k)

≥ µk,f (O ∩ P (f ′, f, µ))− ε.

It then follows that

µf (O ∩ P (f ′, f, µ)) ≤ lim inf
k

µk,f (O ∩ P (f ′, f, µ)) ≤ lim inf
k

µk,f (O ∩ P (f ′, f, µk)) + ε

and, since ε > 0 is arbitrary, that µf (O∩P (f ′, f, µ)) ≤ lim infk µk,f (O∩P (f ′, f, µk)).

44



References

Aliprantis, C., and K. Border (2006): Infinite Dimensional Analysis. Springer,

Berlin, 3rd edn.

Alkan, A., and D. Gale (2003): “Stable Schedule Matching Under Revealed

Preferences,” Journal of Economic Theory, 112, 289–306.

Azevedo, E., and J. Leshno (2016): “A Supply and Demand Framework for

Two-Sided Matching Markets,” Journal of Political Economy, 124, 1235–1268.

Bando, K. (2012): “Many-To-One Matching Markets with Externalities among

Firms,” Journal of Mathematical Economics, 48, 14–20.

Blair, C. (1984): “Every Finite Distributive Lattice Is a Set of Stable Matchings,”

Journal of Combinatorial Theory, 37, 353–356.

Carmona, G. (2011): “Understanding Some Recent Existence Results for Discon-

tinuous Games,” Economic Theory, 48, 31–45.

Carmona, G., and K. Laohakunakorn (2023): “Stable Matching in Large Mar-

kets with Occupational Choice,” University of Surrey.

Che, Y.-K., J. Kim, and F. Kojima (2019): “Stable Matching in Large

Economies,” Econometrica, 87, 65–110.

Cox, N., R. Fonseca, and B. Pakzad-Hurson (2022): “Do Peer Preferences

Matter in School Choice Market Design? Theory and Evidence,” Princeton Uni-

versity and Brown University.

Debreu, G. (1964): “Continuity Properties of Paretian Utility,” International Eco-

nomic Review, 5, 285–293.
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