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Abstract

We consider a version of Gale and Shapley’s (1962) marriage market fea-

turing a continuum of women and men based on Greinecker and Kah (2021).

We define a deferred acceptance algorithm for this setting and show that it

terminates after a finite number of iterations to yield a side-optimal stable

matching.

1 Introduction

Matching theory is widely used to address questions such as who gets which jobs,

which school places and who marries whom. Gale and Shapley (1962) (GS henceforth)

provided the first model of two-sided matching and its key solution concept, stability,

which requires that no one is matched with an unacceptable person and that no man

and woman who are not matched to each other would both prefer to be.
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GS also introduced the so-called deferred acceptance algorithm (DAA henceforth)

which converges in finitely many steps to a stable matching. Thus, the DAA es-

tablishes the existence of stable matchings and can also be used to compute the

side-optimal (i.e. man-optimal and woman-optimal) stable matchings.

There have been many extensions and variations of GS’s original work. One such

line of research that has been particularly active recently focuses on large matching

markets, motivated by the observation that, in reality, many such markets feature a

large number of participants.1 In this paper we extend GS’s DAA to the setting of

Greinecker and Kah (2021) (GK henceforth), which provides a formalization of GS’s

marriage market for the case where there is a continuum of men and women.

Specifically, we consider a version of GK’s setting where there is a finite set of

contracts, a finite set of types of men, each having preferences over types of women

and contracts, and a finite set of types of women, each having preferences over types

of men and contracts; in particular, for each contract, women are indifferent between

different men of the same type and vice versa.2 Instead of having an explicit set of

men and women, we only specify the type distribution of each gender. We then define

a DAA algorithm for this setting and show that, when preferences are linear orders

and each distribution has rational coefficients, it converges in finitely many steps to

a stable matching, which is side-optimal.

One interpretation of GK’s framework is that there is a continuum of men and

women, and the type distributions specify the measure of each type in the population.

Another, which is possible when each distribution has rational coefficients, is that each

man (resp. woman) type corresponds to a man (resp. woman). Thus, GS’s DAA can

be applied to the setting we consider, something which is already known since GK,

who use Crawford and Knoer’s (1981) version of GS’s DAA to show the existence of

1This literature includes, among others, Azevedo and Leshno (2016), Chiappori and Reny (2016),

Fisher and Hafalir (2016), Ashlagi, Kanoria, and Leshno (2017), Eeckhout and Kircher (2018),

Fuentes and Tohmé (2018), Nöldeke and Samuelson (2018), Che, Kim, and Kojima (2019), Che and

Tercieux (2019) and Greinecker and Kah (2021).
2Distributional marriage models with finitely many types have also been considered in Bäıou and

Balinski (2002), Echenique, Lee, and Yenmez (2010) and Echenique, Lee, Shum, and Yenmez (2013).
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stable matchings in discrete instances of their framework.

Our version of the DAA has an important advantage over the above as it solves

the following dimensionality problem. Suppose that there are 100 women, all of the

same type, and 100 men. If all of the men are of the same type, this market can be

scaled down to the case where there is just one man and one woman and the stable

matching is easy to obtain. If, instead, 99 of the men are of type m1 and 1 is of type

m2, then we can no longer scale it down. If we represent this marriage market in GS’s

setting, then, despite there being just one type of woman, each man has to linearly

order each of 100 women, each of whom he regards as equivalent. This is in contrast

with our algorithm in which we just need the single type of woman to linearly order

the two types of men. In short, our DAA does not require that certain ties be broken

and, thus, allows for a more parsimonious description of individual preferences. We

illustrate this advantage in an example and present a python code to compute stable

allocations using our version of the DAA.

A similar algorithm to ours is the column-greedy algorithm of Bäıou and Balinski

(2002). The main contribution of our algorithm over theirs is that it allows for

contracts.

The paper is organized as follows. The framework we consider is introduced in

Section 2. Section 3 illustrates our version of the DAA. Its formal definition and our

main result showing that it converges in finitely many steps to a side-optimal stable

matching is in Section 4. Appendix A contains the proof of our main result and a

description of how to use a (rudimentary) python code to implement our DAA; the

code itself is available here.3

2 Large marriage markets

We consider a simplified version of GK’s marriage market framework with finitely

many types and contracts. Such a marriage market is defined by the following ele-

ments. There are nonempty and finite setsW andM of types describing, respectively,

3https://drive.google.com/file/d/1dttfikCLlERLYPztlvRq_qNT4rk0VRvF/view
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the types of women and men in the marriage market. To represent unmatched indi-

viduals, there is a dummy type ∅ ̸∈ W ∪M ; let W∅ = W ∪ {∅} and M∅ = M ∪ {∅}.

The distributions of women and men are described by nonzero, finite measures νW

and νM on W and M , respectively.

There is a nonempty and finite set C of contracts. Women have preferences

over men (including the “empty man”, i.e. being unmatched) and contracts, and

analogously for men. Preferences are then described by a linear order ≻w on M∅ ×C

for each w ∈ W and a linear order ≻m on W∅ × C for each m ∈ M .

A marriage matching is a Borel measure µ ∈ M(M∅ ×W∅) such that

1. µ(M∅ × {w} × C) = νW (w) for each w ∈ W ,

2. µ({m} ×W∅ × C) = νM(m) for each m ∈ M , and

3. µ({(w,m, c) : w = m = ∅}) = 0.4

A marriage matching describes, for each (m,w, c) ∈ M∅ × W∅ × C, the measure

µ(m,w, c) of people that are matched, whose type profile is (m,w) and whose contract

is c; the unmatched are those who are matched with ∅ so that, in this sense, everyone

is matched. Condition 1 then says that the measure of those in a match where the

female type is w ∈ W is, since everyone is matched, exactly the measure of women

whose type is w. Condition 2 is the analogous condition for men. Condition 3 says

that almost all matches have a woman, or a man or both.

The definition of a stable marriage matching we use is that in Carmona and

Laohakunakorn (2022), which is equivalent to that in GK. For each m ∈ M∅, define

Tm(µ) = {(w, c) ∈ W × C : there exists (m′, c′) ∈ M∅ × C

such that (w,m′, c′) ∈ supp(µ) and (m, c) ≻w (m′, c′)}

∪ ({∅} × C) .

The set Tm(µ) consists of the pairs of women types and contracts (w, c) ∈ W∅ × C

that a man of type m can target at µ in the sense that either w = ∅ or there are

4Throughout the paper, whenever Y is a finite set, M(Y ) denotes the set of finite measures on

Y and is identified with R|Y |
+ . We write µ(y) for µ({y}) whenever y ∈ Y and µ ∈ M(Y ).
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women of type w ∈ W that prefers (m, c) to their current match in µ. Analogously,

define, for each w ∈ W∅,

Tw(µ) = {(m, c) ∈ M × C : there exists (w′, c′) ∈ W∅ × C

such that (w′,m, c′) ∈ supp(µ) and (w, c) ≻m (w′, c′)}

∪ ({∅} × C) .

Finally, define

SM(µ) = {(m,w, c) ∈ M∅ ×W∅ × C : there does not exist (w′, c′) ∈ Tm(µ)

such that (w′, c′) ≻m (w, c)},

SW (µ) = {(m,w, c) ∈ M∅ ×W∅ × C : there does not exist (m′, c′) ∈ Tw(µ)

such that (m′, c′) ≻w (m, c)},

S(µ) = SM(µ) ∩ SW (µ), and

IRW (µ) = {(m,w, c) ∈ M∅ ×W∅ × C : there does not exist c′ ∈ C

such that (∅, c′) ≻w (m, c)}.

A marriage matching µ is stable if supp(µ) ⊆ S(µ). As shown in Carmona and

Laohakunakorn (2022), a matching is stable if and only if supp(µ) ⊆ SM(µ)∩IRW (µ).

3 An Example

We introduce our version of the DAA using a simple example without contracts. In

this example, women prefer men of the same type and men prefer women of a different

type. Let M = {α, β}, W = {A,B} and preferences be B ≻α A ≻α ∅, A ≻β B ≻β ∅,

α ≻A β ≻A ∅ and β ≻B α ≻B ∅. Type distributions are νM(α) = 1, νM(β) = 2,

νW (A) = 2 and νW (B) = 2.

The idea of our DAA is analogous to that of GS: Each woman proposes to her

favorite man. Each man who receives more than one proposal rejects all but his

favorite from among those who have proposed to him and keeps his favorite on a

string to allow for the possibility that someone better may come along later.
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We start by specifying an initial distribution µ0 so that every (nonempty) man

is matched with the empty woman, µ0(m, ∅) = νM(m) for each m ∈ M , and no

(nonempty) woman is matched, µ0(m,w) = 0 for each m ∈ M∅ and w ∈ W . The

interpretation is that µ0 is the distribution of men and women on the string and

initially there is no (nonempty) woman on the string. We also specify µ0(∅, ∅) = 0 to

satisfy condition 3 in the definition of a matching, and we set νW (∅) = νM(M) = 3

which ensures that there is always enough measure of the empty woman to be added

to the string with any (nonempty) man.

In the first stage of the DAA, we let the set of rejected women be R1 = {A,B}

to reflect that
∑

m∈M∅
µ0(m,w) < νW (w) for each w ∈ W . Since there have been no

proposals yet, we let the set of men who have rejected women of type A be empty,

M1,A = ∅, and likewise for type B, M1,B = ∅. Women propose to their favorite men:

We let Pw(k) be the kth favorite man according to w’s preferences, let r1(A) = 1

and r1(B) = 1, and specify that women of type w propose to men of type Pw(r1(w)).

Thus, women of type A propose to men of type α and women of type B propose to

men of type β. Men can choose between women who have proposed to them, with the

convention that the empty woman proposes to each (nonempty) man. Hence, men

of type α can choose between women of type w ∈ W ∗
1,α = {A, ∅}, and men of type

β can choose between women of type w ∈ W ∗
1,β = {B, ∅}. We also let W ∗

1,∅ = ∅ to

indicate that no woman (nonempty or otherwise) proposed to the empty man. We

then allocate all men of type α to women of type A since A ≻α ∅, µ1(α,A) = 1, and

all men of type β to women of type B, µ1(β,B) = 2. All the remaining entries of µ1

are equal to zero.

In stage 2, we obtain that R2 = {A} since 1 =
∑

m∈M∅
µ0(m,A) < νW (A) = 2 and∑

m∈M∅
µ0(m,B) = νW (B). Some women of type A have been rejected by men of type

α, thus M2,A = {α}; in contrast, no women of type B has been rejected: M2,B = ∅.

We let r2(A) = 2 = 1+|M2,A| and r2(B) = 1 = 1+|M2,B|, hence women of type A now

propose to their second favorite type of man, which is β. Proposals are made by the

women who were rejected, thus by a measure ν2
W (A) = νW (A)−

∑
m∈M∅

µ0(m,A) = 1

of women of type A and a measure ν2
W (B) = 0 of women of type B. Men of type
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m ∈ M∅ can choose from W ∗
2,α = {A, ∅}, W ∗

2,β = {A,B, ∅} and W ∗
2,∅ = ∅; for instance,

men of type β can always choose to be unmatched (i.e. choose ∅), can choose from

those women of type B who are on the string with them and also from those women

of type A that just proposed to them. We then allocate men of type β as follows:

Since A is their favorite type of women,

µ2(β,A) = min{µ1(β,A) + ν2
W (A), νM(β)} = 1

and

µ2(β,B) = min{µ1(β,B), νM(β)− µ2(β,A)} = 1;

note that µ1(β,A) = 0 is the measure of women of type A who were on the string

with men of type β in stage 1 and ν2
W (A) = 1 is the measure of rejected women of

type A who proposed to type β in stage 2; thus men of type β can choose from a

measure 1 of women of type A; they can also choose from a measure 1 of women of

type B which consist only of those who were on the string with men of type β in

stage 1. Nothing changed regarding men of type α, thus µ2(α,A) = 1.

Continuing to apply the above procedure, we obtain the following.

Stage 3: It follows that R3 = {B}, r3(B) = 2, M3,A = {α}, M3,B = {β}, r3(A) =

2, r3(B) = 2, ν3
W (B) = 1, W ∗

3,α = {A,B, ∅}, W ∗
3,β = {A,B, ∅}, µ3(α,B) = 1,

µ3(β,A) = 1 and µ3(β,B) = 1.

Stage 4: We have that R4 = {A}, M4,A = {α}, M4,B = {β}, r4(A) = 2, r4(B) = 2,

ν4
W (A) = 1, W ∗

4,α = {B, ∅}, W ∗
4,β = {A,B, ∅}, µ4(α,B) = 1 and µ4(β,A) = 2.

Stage 5: It follows that R5 = {B}, M5,A = {α}, M5,B = {β}, r5(A) = 2, r5(B) =

2, ν5
W (B) = 1, W ∗

5,α = {B, ∅}, W ∗
5,β = {A, ∅}, µ5(α,B) = 1 and µ5(β,A) = 2.

Stage 6: We obtain that R6 = {B}, M6,A = {α}, M6,B = {α, β}, r6(A) = 2,

r6(B) = 3, ν6
W (B) = 1, W ∗

6,α = {B, ∅}, W ∗
6,β = {A, ∅}, W ∗

6,∅ = {B, ∅}, µ6(α,B) = 1,

µ6(β,A) = 2 and µ6(∅, B) = 1.

Since R7 = ∅, the algorithm stops after 6 iterations and µ6 is a stable matching.
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4 A DAA for large marriage markets

4.1 The algorithm

The key concept in the construction of the algorithm is what GS call the string, which

consists in their setting of the best woman that has proposed to a man. Here we have

a distribution of men and women on the string. The initial distribution µ0 is such that

there is no woman on the string, so that µ0(m, ∅, cm) = νM(m) for eachm ∈ M , where

cm ∈ C is such that (∅, cm) ≻m (∅, c) for each c ∈ C \ {cm}, µ0(m,w, c) = 0 for each

m ∈ M∅, w ∈ W and c ∈ C and µ0(∅, ∅, c) = 0 for each c ∈ C. Set νW (∅) = νM(M).

Stage 1: The set of rejected women is

R1 = {w ∈ W :
∑

(m,c)∈M∅×C

µ0(m,w, c) < νW (w)} = W

to reflect that no woman is on the string and define the new measure of women by

setting, for each w ∈ W∅,

ν1
W (w) = νW (w)−

∑
(m,c)∈M∅×C

µ0(m,w, c).

We then have that ν1
W (w) = νW (w) for each w ∈ W .

For each w ∈ W , the set of man-contract pairs who have rejected w is

M1,w = ∅

to reflect that no offer and, thus, no rejections have been made yet. Let

r1(w) = |M1,w|+ 1 = 1

be 1+the number of man-contract pairs that have rejected a woman of type w. The

reason why we add 1 to the latter number in the definition of r1(w) is as follows. For

each w ∈ W , order M∅ × C according to ≻w; thus,

M∅ × C = {(m1, c1), . . . , (m|M∅×C|, c|M∅×C|)}

with (m1, c1) ≻w · · · ≻w (m|M∅×C|, c|M∅×C|) and, for each 1 ≤ k ≤ |M∅ × C|, let

Pw(k) = (mk, ck) be the kth favorite man-contract pair for any woman of type w.
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Each (m, c) ∈ M∅×C receives proposals from w ∈ R1 such that Pw(1) = Pw(r1(w)) =

(m, c).

For each (m, c) ∈ M × C, let

W1,m,c = {w ∈ R1 : Pw(r1(w)) = (m, c)} ∪ {∅}

be the set of women types that men of type m have to decide upon (with contract c),

and which equals those w that have proposed to match with m under contract c as

well as the empty woman type ∅. In general, men of type m need also consider those

women on the string with m under contract c, hence, the set of women types in

W ∗
1,m,c = W1,m,c ∪ supp(µ0(m, ·, c));

since initially there are no women on the string, we have that supp(µ0(m, ·, c)) equals

{∅} if c = cm or ∅ otherwise; in either case, W ∗
1,m,c = W1,m,c. Let

W ∗
1,m = ∪c∈C(W

∗
1,m,c × {c})

be the set of woman-contract pairs such that the women have proposed to m and

order it according to ≻m: W
∗
1,m = {(w1,m

1 , c1,m1 ), . . . , (w1,m
j1,m , c

1,m
j1,m)} with j1,m = |W ∗

1,m|

and (w1,m
k , c1,mk ) ≻m (w1,m

k+1, c
1,m
k+1) for each k ∈ {1, . . . , j1,m − 1}. The distribution of

those on the string is:

µ1(m,w1,m
1 , c1,m1 ) = min {µ0(m,w1,m

1 , c1,m1 ) + ν1
W (w1,m

1 )1W
1,m,c

1,m
1

(w1,m
1 ),

νM(m)} and

µ1(m,w1,m
k , c1,mk ) = min {µ0(m,w1,m

k , c1,mk ) + ν1
W (w1,m

k )1W
1,m,c

1,m
k

(w1,m
k ),

νM(m)−
∑
j<k

µ1(m,w1,m
j , c1,mj )}.

In short, men of type m add women outside the string in accordance with their

preferences up to capacity.

If m = ∅, let, for each c ∈ C,

W1,∅,c = {w ∈ R1 : Pw(r1(w)) = (∅, c)} and

W ∗
1,∅,c = W1,∅,c ∪ supp(µ0(∅, ·, c)).
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For each w ∈ W ∗
1,∅,c, let

µ1(∅, w, c) = µ0(∅, w, c) + ν1
W (w)1W1,∅,c(w).

The case of the empty man type ∅ differs from the previous case in that there is no

limit to the measure of women that can be added to the string with ∅.

Stage n > 1: The set of rejected women is

Rn = {w ∈ W :
∑

(m,c)∈M∅×C

µn−1(m,w, c) < νW (w)},

i.e. the set of women types with some of its members being outside the string. For

each w ∈ W , let

Mn,w = Mn−1,w ∪ {(m, c) ∈ M × C : µn−1(m,w, c)− µn−2(m,w, c) < 0}

∪ {(m, c) ∈ M × C : w ∈ Wn−1,m,c and µn−1(m,w, c)− µn−2(m,w, c) < νn−1
W (w)}

be the set of (m, c) who have rejected w before the start of stage n. This rejection

could have happened before stage n− 1 or it could happen in stage n− 1 when some

women of type w are removed from the string or when some of them outside the

string had proposed to some men of type m but were not added to the string with

such men. Set

rn(w) = |Mn,w|+ 1

and, for each w ∈ W∅,

νn
W (w) = νW (w)−

∑
(m,c)∈M∅×C

µn−1(m,w, c)

be the measure of women of type w who are outside the string.

For each m ∈ M and c ∈ C, let

Wn,m,c = {w ∈ Rn : Pw(rn(w)) = (m, c)} ∪ {∅} and

W ∗
n,m,c = Wn,m,c ∪ supp(µn−1(m, ·, c)).

Order

W ∗
n,m = ∪c∈C(W

∗
n,m,c × {c})
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according to ≻m: W ∗
n,m = {(wn,m

1 , cn,m1 ), . . . , (wn,m
jn,m , c

n,m
jn,m)} with jn,m = |W ∗

n,m| and

(wn,m
k , cn,mk ) ≻m (wn,m

k+1, c
n,m
k+1) for each k ∈ {1, . . . , j1,m − 1}. The distribution of those

on the string is:

µn(m,wn,m
1 , cn,m1 ) = min {µn−1(m,wn,m

1 , cn,m1 ) + νn
W (wn,m

1 )1W
n,m,c

n,m
1

(wn,m
1 ),

νM(m)} and

µn(m,wn,m
k , cn,mk ) = min {µn−1(m,wn,m

k , cn,mk ) + νn
W (wn,m

k )1W
n,m,c

n,m
k

(wn,m
k ),

νM(m)−
∑
j<k

µn(m,wn,m
j , cn,mj )}.

If m = ∅, let, for each c ∈ C,

Wn,∅,c = {w ∈ Rn : Pw(rn(w)) = (∅, c)} and

W ∗
n,∅,c = Wn,∅,c ∪ supp(µn−1(∅, ·, c)).

Then, for each w ∈ W ∗
n,∅,c, let

µn(∅, w, c) = µn−1(∅, w, c) + νn
W (w)1Wn,∅,c(w).

4.2 Convergence of the DAA

Let N be the first n such that Rn = ∅. Then we say that the algorithm terminates

after N − 1 iterations. Our main result shows that when the type distributions have

rational coefficients, such an N always exists and µN−1 is a stable matching. In

addition, µN−1 is woman-optimal in the sense that, for each w ∈ W and each stable

matching µ′, ∑
(m′,c′)∈M∅×C:(m′,c′)⪰w(m,c)

µ′(m′, w, c′) ≤
∑

(m′,c′)∈M∅×C:(m′,c′)⪰w(m,c)

µN−1(m
′, w, c′)

for each (m, c) ∈ M∅ × C, where (m, c) ⪰w (m′, c′) stands for either (m, c) = (m′, c′)

or (m, c) ≻w (m′, c′) (and analogously for (w, c) ⪰m (w′, c′)).5

5For a discussion of this notion of woman-optimality, which is defined in analogy to first order

stochastic dominance, see, for example, Echenique, Lee, and Yenmez (2010).
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Theorem 1 Let E be a marriage market. If preferences are linear orders, νM(m) ∈

Q for each m ∈ M and νW (w) ∈ Q for each w ∈ W , then there is N ∈ N such

that the DAA terminates after N − 1 iterations and µN−1 is a woman-optimal stable

matching.

Theorem 1 can be used in marriage markets in which preferences are only acyclic.

In this case, since M and W are finite, each preference relation can be extended to

a linear order to which our DAA applies. Since extending preferences can only make

blocking easier, the stable matching for the extended preferences is a stable matching

of the original marriage market.

The assumption that the distributions of men and women have rational coefficients

is needed to guarantee that the DAA terminates in finitely many steps. Nevertheless,

marriage markets whose distributions of men and women do not have rational coeffi-

cients can be approximated by a sequence of marriage markets to which Theorem 1

can be applied and, thus, a stable matching for the original marriage market can be

obtained as the limit of a sequence of stable matchings for the marriage markets in

the sequence.

Our DAA can be easily modified to produce a man-optimal stable matching. All

it takes is to reverse the role of men and women in the algorithm, i.e. to make men

be the ones who propose.

The proof of Theorem 1 is in Section A.1; here we provide an outline of it.

Note first that, by construction, µn(∅, ∅, c) = 0 for each n ∈ N0 and c ∈ C since

∅ ̸∈ W ∗
n,∅,c; thus, we obtain condition 3 in the definition of a matching.

Condition 2 for a matching is also obtained by construction since the algorithm

allocates all men. Indeed, since the measure of the empty woman is effectively un-

bounded, it can absorb all men of a given type that are not on the string with women

that they prefer to the empty woman; thus, we actually have that∑
(w,c)∈W∅×C:(w,c)⪰m(∅,cm)

µn(m,w, c) =
∑

(w,c)∈W∅×C

µn(m,w, c) = νM(m) (1)

for each n ∈ N0 and m ∈ M (recall that cm ∈ C is the best contract for unmatched

men of type m).
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The marginal condition for women (i.e. condition 1 for a matching) holds when

the algorithm stops. Nevertheless, along the sequence, we have that∑
(m,c)∈M∅×C

µn(m,w, c) ≤ νW (w)

for each n ∈ N0 and w ∈ W∅. This, in turn, implies that νn
W (w) ≥ 0 and µn(m,w, c) ≥

0 for each m ∈ M∅, w ∈ W∅, c ∈ C and n ∈ N; hence µn is a measure for each n ∈ N.

When the algorithm stops, i.e. when RN = ∅, we have from the definition of RN that∑
(m,c)∈M∅×C µN−1(m,w, c) ≥ νW (w) for all w ∈ W . Combined with the above, this

implies that
∑

(m,c)∈M∅×C µN−1(m,w, c) = νW (w) for all w ∈ W .

The algorithm is guaranteed to stop when the type distributions have rational

coefficients. The importance of this feature is that there is a common denominator K

for νM(m) and νW (w) for each m ∈ M and w ∈ W ; from this, it can be shown that

K is in fact a common denominator for {νn
W (w)}∞n=1, and hence νn

W (w) > 0 implies

νn
W (w) ≥ 1

K
.

To see how the above implies that the algorithm stops, note first that maxn rn(w)

exists since rn(w) ∈ {1, . . . , |M∅ ×C|}. Thus, rn(w) is eventually constant, i.e. there

is k such that rn(w) = r for each n ≥ k. Then for n ≥ k, we must have Pw(r) ̸∈ Mn,w.

Since rn+1(w) > rn(w) if µn(Pw(r), w) < µn−1(Pw(r), w) + νn
W (w),6,7 a contradiction,

it follows that for n ≥ k

µn(Pw(r), w) ≥ µn−1(Pw(r), w) + νn
W (w)

and, in fact (from the argument in the previous paragraph),

µn(Pw(r), w) ≥ µn−1(Pw(r), w) +
1

K

provided that νn
W (w) > 0 i.e. w ∈ Rn. Since µn(Pw(r), w) is bounded, it follows that

there is Nw such that w ̸∈ Rn for all n ≥ Nw. Then, Rn = ∅ for all n ≥ maxw Nw.

6The notation µn(Pw(r), w) stands for µn(m,w, c) with (m, c) = Pw(r).
7By definition, rn+1(w) > rn(w) if for some (m, c) ̸∈ Mn,w, µn(m,w, c) < µn−1(m,w, c) or

µn(m,w, c) < µn−1(m,w, c) + νnW (w) and w ∈ Wn,m,c. But since Pw(r) ̸∈ Mn,w and w ∈ Wn,Pw(r)

whenever νnW (w) > 0, we have that rn+1(w) > rn(w) if µn(Pw(r), w) < µn−1(Pw(r), w) + νnW (w).
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Let N be the first n ∈ N such that Rn = ∅. Then the algorithm stops after N − 1

iterations.

We now outline the argument for why µ := µN−1 is stable; in Section A.1, we

show that in addition µ is woman-optimal. It follows from (1) that µ is individually

rational for the men. Individual rationality for the women follows because one can

show that µn(Pw(r), w) = 0 for each n ∈ N and r > rw, where rw ∈ {1, . . . , |M∅×C|}

is such that Pw(rw) = (∅, cw), where cw ∈ C is the best contract for unmatched women

of type w, i.e. (∅, cw) ≻w (∅, c) for each c ∈ C \ {cw}.

It can be shown that for each n ∈ N, m ∈ M , w ∈ W and c ∈ C such that

(m,w, c) ∈ supp(µn),∑
(w′,c′):(w′,c′)⪰m(w,c)

µn(m,w′, c′) = νM(m) or

∑
(m′,c′):(m′,c′)⪰w(m,c)

µn(m
′, w, c′) =

∑
(m′,c′)∈M∅×C

µn(m
′, w, c′).

(2)

In words, men of type m are on the string only with women that are not worse than

w or women of type w are on the string only with men that are not worse than m.

This then shows that there are no blocking pairs as follows. Let m ∈ M , w ∈ W

and c ∈ C be such that (m,w, c) ∈ supp(µ) and there exists (w′, c′, m̄, c̄) such that

µ(m̄, w′, c̄) > 0, (w′, c′) ≻m (w, c) and (m, c′) ≻w′ (m̄, c̄). Since µ(m,w, c) > 0, it

follows that
∑

(w̃,c̃):(w̃,c̃)⪰m(w′,c′) µ(m, w̃, c̃) < νM(m). Using this inequality, it can be

shown that µ(m,w′, c′) > 0. Then (2) and RN = ∅ imply that∑
(m̃,c̃):(m̃,c̃)⪰w′ (m,c′)

µ(m̃, w′, c̃) =
∑

(m̃,c̃)∈M∅×C

µ(m̃, w′, c̃) = νW (w′).

Hence, µ(m̄, w′, c̄) = 0, a contradiction to µ(m̄, w′, c̄) > 0. This then shows that there

are no blocking pairs and that µ is stable.
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A Appendix

A.1 Proof of Theorem 1

We establish Theorem 1 in the following claims.

Claim 1 For each n ∈ N0 and c ∈ C, µn(∅, ∅, c) = 0.

Proof. Let c ∈ C. The conclusion is clear when n = 0 and, for n > 0, it follows

because ∅ ̸∈ W ∗
n,∅,c for each n ∈ N.

Claim 2 For each n ∈ N0 and w ∈ W∅,
∑

(m,c)∈M∅×C µn(m,w, c) ≤ νW (w).

Proof. Let w ∈ W∅ and note that the conclusion is clear when n = 0. Let n > 0,

w ∈ W and (m∗, c∗) = Pw(rn(w)); then 1Wn,m,c(w) = 0 for each (m, c) ̸= (m∗, c∗). It

then follows that∑
(m,c)∈M∅×C

µn(m,w, c) ≤
∑

(m,c)∈M∅×C

µn−1(m,w, c) + νn
W (w)

=
∑

(m,c)∈M∅×C

µn−1(m,w, c) + νW (w)−
∑

(m,c)∈M∅×C

µn−1(m,w, c) = νW (w).

When w = ∅, using Claim 1,∑
(m,c)∈M∅×C

µn(m, ∅, c) =
∑

(m,c)∈M×C

µn(m, ∅, c) ≤
∑
m∈M

νM(m) = νM(M) ≤ νW (∅).

Claim 2 implies that νn
W (w) ≥ 0 for each w ∈ W∅ and n ∈ N. This, in turn,

implies that µn(m,w, c) ≥ 0 for each m ∈ M∅, w ∈ W∅, c ∈ C and n ∈ N.

Write (m, c) ⪰w (m′, c′) if either (m, c) = (m′, c′) or (m, c) ≻w (m′, c′) and analo-

gously for (w, c) ⪰m (w′, c′).

Claim 3 For each n ∈ N0 and m ∈ M ,∑
(w,c)∈W∅×C:(w,c)⪰m(∅,cm)

µn(m,w, c) =
∑

(w,c)∈W∅×C

µn(m,w, c) = νM(m).
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Proof. Let m ∈ M be given and note that the conclusion is clear when n = 0.

Let n > 0 and assume that the conclusion holds for each j = 0, . . . , n − 1. We have

that (∅, cm) ∈ W ∗
n,m and νn

W (∅) ≥ νM(M) −
∑

(m′,c)∈M∅×C µn−1(m
′, ∅, c) = νM(M) −∑

(m′,c)∈M×C µn−1(m
′, ∅, c) = νM(M) −

∑
m′∈M µn−1(m

′, ∅, cm′) by Claim 1 and the

inductive hypothesis. Thus,

µn−1(m, ∅, cm) + νn
W (∅) ≥ νM(M)−

∑
m′∈M\{m}

µn−1(m
′, ∅, cm′)

≥ νM(M)−
∑

m′∈M\{m}

νM(m′) = νM(m).

Hence, µn(m, ∅, cm) = νM(m) −
∑

(w,c)∈W ∗
n,m:(w,c)≻m(∅,cm) µn(m,w, c) and, therefore,∑

(w,c)∈W∅×C:(w,c)⪰m(∅,cm) µn(m,w) = νM(m).

Claim 4 If n ∈ N, m ∈ M∅, w ∈ W , c ∈ C and (m,w, c) ∈ supp(µn), then (m, c) ∈{
Pw(r) : r ∈ {1, . . . , rn(w)}

}
.

Proof. The conclusion clearly holds for µ1. Suppose that the conclusion holds

for µ1, . . . , µn−1 and that (m,w, c) ∈ supp(µn). Then

µn−1(m,w, c) > 0 or νn
W (w)1Wn,m,c(w) > 0.

In the former case, (m, c) = Pw(r) for some r ≤ rn−1(w) by the inductive hypothesis;

hence, r ≤ rn(w) since Mn−1,w ⊆ Mn,w and, thus, rn−1(w) ≤ rn(w). In the latter

case, it follows by w ∈ Wn,m,c that (m, c) = Pw(rn(w)).

For each n ∈ N, w ∈ W and r ∈ {1, . . . , |M∅×C|}, let µn(Pw(r), w) = µn(m,w, c)

where (m, c) = Pw(r).

Claim 5 For each n ∈ N and w ∈ W , Mn,w = {Pw(1), . . . , Pw(rn(w)− 1)} (with the

convention that {Pw(1), Pw(0)} = ∅) and rn+1(w)− rn(w) ∈ {0, 1}.

Proof. The claim holds for M1,w and M2,w. For the latter, note that M2,w =

{(m, c) ∈ M × C : w ∈ W1,m,c and µ1(m,w, c) < νW (w)}. Since w ∈ W1,m,c if and

only if Pw(1) = (m, c), M2,w = {Pw(1)} if µ1(Pw(1), w) < νW (w) and M2,w = ∅

if µ1(Pw(1), w) = νW (w). In the former case, r2(w) = 2 so M2,w = {Pw(1)} and
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r2(w) − r1(w) = 1. In the latter case, r2(w) = 1 so M2,w = {Pw(1), Pw(0)} = ∅ and

r2(w)− r1(w) = 0.

Suppose that it holds for M1,w, . . . ,Mn−1,w. Then

Mn−1,w = {Pw(1), . . . , Pw(rn−1(w)− 1)}.

If r > rn−1(w) ≥ rn−2(w) (since Mn−2,w ⊆ Mn−1,w), then µn−2(Pw(r), w) = 0 by

Claim 4. Hence,

{(m, c) ∈ M × C : µn−1(m,w, c) < µn−2(m,w, c)} ⊆

{Pw(1), . . . , Pw(rn−1(w)− 1), Pw(rn−1(w))}.

Furthermore, {(m, c) ∈ M × C : w ∈ Wn−1,m,c} ⊆ {Pw(rn−1(w))}.

Thus, either rn(w) = rn−1(w) and

Mn,w = {Pw(1), . . . , Pw(rn−1(w)− 1)} = {Pw(1), . . . , Pw(rn(w)− 1)}

or rn(w) = rn−1(w) + 1 and

Mn,w = {Pw(1), . . . , Pw(rn−1(w))} = {Pw(1), . . . , Pw(rn(w)− 1)}.

Since the conclusion of the claim holds in both cases, this completes the proof.

For each w ∈ W , let cw ∈ C be such that (∅, cw) ≻w (∅, c) for each c ∈ C \ {cw}.

Claim 6 For each w ∈ W , let rw ∈ {1, . . . , |M×C|+1} be such that Pw(rw) = (∅, cw).

Then µn(Pw(r), w) = 0 for each n ∈ N and r ∈ {rw + 1, . . . , |M∅ × C|}.

Proof. Let w ∈ W , n ∈ N and r ∈ {rw+1, . . . , |M∅×C|}. Note first that rn(w) ≤

rw for each n ∈ N since otherwise, by Claim 5, (∅, cw) ∈ {Pw(1), . . . , Pw(rw)} ⊆

Mn,w ⊆ M × C, a contradiction as ∅ ̸∈ M . It then follows that w ̸∈ Wn,m,c for each

n ∈ N and (m, c) ̸∈ {Pw(1), . . . , Pw(rw)}.

It follows from the above that µn(Pw(r), w) = 0 for all n ∈ N. To see this, note that

µ0(Pw(r), w) = 0. Assume that µn−1(Pw(r), w) = 0. Then w ̸∈ supp(µn−1(Pw(r), ·))∪

Wn,Pw(r) = W ∗
n,Pw(r). Thus, µn(Pw(r), w) = 0.

For each w ∈ W and r ∈ {1, . . . , |M∅ × C|}, write Pw(r) = (mw(r), cw(r)). Also,

for each m ∈ M , w ∈ W∅ and c ∈ C, write Sm(w, c) = {(w′, c′) ∈ W∅×C : (w′, c′) ≻m

(w, c)} and Sw(m, c) = {(m′, c′) ∈ M∅ × C : (m′, c′) ≻w (m, c)}.

19



Claim 7 For each n ∈ N and w ∈ W ,

µn(Pw(r), w) = νM(mw(r))−
∑

(w′,c′)∈Smw(r)(w,cw(r))

µn(mw(r), w
′, c′)

if r < rn(w)

µn(Pw(rn(w)), w) = min{µn−1(Pw(rn(w)), w) + νn
W (w),

νM(mw(rn(w)))−
∑

(w′,c′)∈Smw(rn(w))(w,cw(rn(w)))

µn(mw(rn(w)), w
′, c′)}

and, if rn(w) > rn−1(w), then

µn−1(Pw(rn−1(w)), w) =

νM(mw(rn−1(w)))−
∑

(w′,c′)∈Smw(rn−1(w))(w,cw(rn−1(w)))

µn−1(mw(rn−1(w)), w
′, c′).

Proof. The conclusion holds for n = 1 since r1(w) = 1, w ∈ W1,Pw(1) and

µ1(Pw(1), w) =min{µ0(Pw(1), w) + ν1
W (w),

νM(mw(1))−
∑

(w′,c′)∈Smw(1)(w,cw(1))

µn(mw(1), w
′, c′)}.

Suppose it holds for µ1, . . . , µn−1 and consider first the case where rn(w) =

rn−1(w). Let r < rn(w). Then r < rn−1(w) and, by the inductive hypothesis,

µn−1(Pw(r), w) = νM(mw(r))−
∑

(w′,c′)∈Smw(r)(w,cw(r))

µn−1(mw(r), w
′, c′).

Moreover, Pw(rn(w)) ̸= Pw(r), hence w ̸∈ Wn,Pw(r). The latter implies that

µn−1(Pw(r), w) + νn
W (w)1Wn,Pw(r)

(w) = µn−1(Pw(r), w)

and we may assume that µn(Pw(r), w) = µn−1(Pw(r), w) since otherwise there is

nothing to prove.

If µn−1(Pw(r), w) = 0, then∑
(w′,c′)∈Smw(r)(w,cw(r))

µn−1(mw(r), w
′, c′) = νM(mw(r)).
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This then implies that supp(µn−1(mw(r), ·)) ⊆ Smw(r)(w, cw(r)) and, hence,

supp(µn(mw(r), ·)) ⊆ Smw(r)(w, cw(r))

as follows: This is clear if there is (w′, c′) ∈ supp(µn−1(mw(r), ·)) such that

µn(mw(r), w
′, c′) = νM(mw(r))−

∑
(w̃,c̃)∈Smw(r)(w

′,c′)

µn(mw(r), w̃, c̃);

if this condition does not hold, then

µn(mw(r), w
′, c′) = µn−1(mw(r), w

′, c′) + νn
W (w′)1Wn,mw(r),c′

(w′)

for each (w′, c′) ∈ supp(µn−1(mw(r), ·)) and it follows by Claim 3 that

νM(mw(r)) ≥
∑

(w′,c′)∈supp(µn−1(mw(r),·))

µn(mw(r), w
′, c′)

≥
∑

(w′,c′)∈supp(µn−1(mw(r),·))

µn−1(mw(r), w
′, c′) = νM(mw(r));

thus, indeed, supp(µn(mw(r), ·)) ⊆ Smw(r)(w, cw(r)). This, together with Claim 3,

then implies that
∑

(w′,c′)∈Smw(r)(w,cw(r)) µn(mw(r), w
′, c′) = νM(mw(r)) and

µn(Pw(r), w) = 0 = νM(mw(r))−
∑

(w′,c′)∈Smw(r)(w,cw(r))

µn(mw(r), w
′, c′).

If µn−1(Pw(r), w) > 0, then

µn(Pw(r), w) = µn−1(Pw(r), w) = νM(mw(r))−
∑

(w′,c′)∈Smw(r)(w,cw(r))

µn−1(mw(r), w
′, c′).

Because µn(Pw(r), w) > 0, for each (w′, c′) ∈ Smw(r)(w, cw(r)), it cannot be that

µn(mw(r), w
′, c′) = νM(mw(r))−

∑
(w̃,c̃)∈Smw(r)(w

′,c′)

µn(mw(r), w̃, c̃).

Thus, for each (w′, c′) ∈ Smw(r)(w, cw(r)), µn(mw(r), w
′, c′) = µn−1(mw(r), w

′, c′) +

νn
W (w′)1Wn,mw(r),c′

(w′). Hence,∑
(w′,c′)∈Smw(r)(w,cw(r))

µn(mw(r), w
′, c′) ≥

∑
(w′,c′)∈Smw(r)(w,cw(r))

µn−1(mw(r), w
′, c′);
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if this inequality holds strictly, then

µn(Pw(r), w) ≤ νM(mw(r))−
∑

(w′,c′)∈Smw(r)(w,cw(r))

µn(mw(r), w
′, c′)

< νM(mw(r))−
∑

(w′,c′)∈Smw(r)(w,cw(r))

µn−1(mw(r), w
′, c′) = µn−1(Pw(r), w)

= µn(Pw(r), w),

a contradiction. Thus,∑
(w′,c′)∈Smw(r)(w,cw(r))

µn(mw(r), w
′, c′) =

∑
(w′,c′)∈Smw(r)(w,cw(r))

µn−1(mw(r), w
′, c′)

and

µn(Pw(r), w) = νM(mw(r))−
∑

(w′,c′)∈Smw(r)(w,cw(r))

µn−1(mw(r), w
′, c′)

= νM(mw(r))−
∑

(w′,c′)∈Smw(r)(w,cw(r))

µn(mw(r), w
′, c′)

as claimed.

For r = rn(w), w ∈ Wn,Pw(rn(w)) if and only if νn
W (w) > 0, hence

µn(Pw(rn(w)), w) = min{µn−1(Pw(rn(w)), w) + νn
W (w),

νM(mw(rn(w)))−
∑

(w′,c′)∈Smw(rn(w))(w,cw(rn(w)))

µn(mw(rn(w)), w
′, c′)}

as claimed.

Consider the remaining (by Claim 5) case where rn(w) = rn−1(w) + 1. When

r < rn−1(w) or r = rn(w), the above argument yields the desired conclusion. Thus,

let r = rn−1(w). If

µn−1(Pw(rn−1(w)), w) =

νM(mw(rn−1(w)))−
∑

(w′,c′)∈Smw(rn−1(w))(w,cw(rn−1(w)))

µn−1(mw(rn−1(w)), w
′, c′),

(3)

then the above argument applies as well. Thus, in this case, it suffices to show that

(3) holds.
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By Claim 5,

Mn−1,w = {Pw(1), . . . , Pw(rn−1(w)− 1)} and Mn,w = {Pw(1), . . . , Pw(rn−1(w))}

since rn(w)− 1 = rn−1(w). For convenience, let (m, c) = Pw(rn−1(w)). Since (m, c) ∈

Mn,w \ Mn−1,w, we have that (a) µn−1(m,w, c) < µn−2(m,w, c) or (b) w ∈ Wn−1,m,c

and µn−1(m,w, c) < µn−2(m,w, c) + νn−1
W (w). If (3) does not hold, then

µn−1(m,w, c) = µn−2(m,w, c) + 1Wn−1,m,c(w)ν
n−1
W (w)

and neither (a) nor (b) can hold. Thus, (3) must hold and the claim follows.

Claim 8 For each n ∈ N, m ∈ M , w ∈ W and c ∈ C, if (m,w, c) ∈ supp(µn) then∑
(w′,c′):(w′,c′)⪰m(w,c)

µn(m,w′, c′) = νM(m)

or ∑
(m′,c′):(m′,c′)⪰w(m,c)

µn(m
′, w, c′) =

∑
(m′,c′)∈M∅×C

µn(m
′, w, c′).

Proof. Let n ∈ N, m ∈ M , w ∈ W and c ∈ C be such that (m,w, c) ∈ supp(µn).

Then (m, c) = Pw(r) for some 1 ≤ r ≤ rn(w) by Claim 4. The conclusion of the claim

follows immediately from Claim 7 except when (m, c) = Pw(rn(w)) and µn(m,w, c) =

µn−1(m,w, c) + νn
W (w).

Hence, suppose that (m, c) = Pw(rn(w)) and µn(m,w, c) = µn−1(m,w, c)+νn
W (w).

By Claim 5, there are two possible cases: (a) rn(w) = rn−1(w) + 1 and (b) rn(w) =

rn−1(w).

In case (a), µn−1(Pw(rn(w)), w) = 0 since

supp(µn−1(·, w)) ⊆ {Pw(1), . . . , Pw(rn(w)− 1)},

thus µn(Pw(rn(w)), w) = νn
W (w) and

νn
W (w) = νW (w)−

rn−1(w)∑
r=1

µn−1(Pw(r), w) = νW (w)−
rn(w)−1∑

r=1

µn−1(Pw(r), w).
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Hence,

rn(w)∑
r=1

µn(Pw(r), w) = νW (w)−
rn(w)−1∑

r=1

µn−1(Pw(r), w)

+

rn(w)−1∑
r=1

νM(mw(r))−
∑

(w′,c′)∈Smw(r)(w,cw(r))

µn(mw(r), w
′, c′)

 .

(4)

In case (b),

νn
W (w) = νW (w)−

rn−1(w)∑
r=1

µn−1(Pw(r), w) = νW (w)−
rn(w)∑
r=1

µn−1(Pw(r), w)

and, hence,

rn(w)∑
r=1

µn(Pw(r), w) = µn−1(Pw(rn(w)), w) + νW (w)−
rn(w)∑
r=1

µn−1(Pw(r), w)

+

rn(w)−1∑
r=1

νM(mw(r))−
∑

(w′,c′)∈Smw(r)(w,cw(r))

µn(mw(r), w
′, c′)


= νW (w)−

rn(w)−1∑
r=1

µn−1(Pw(r), w)

+

rn(w)−1∑
r=1

νM(mw(r))−
∑

(w′,c′)∈Smw(r)(w,cw(r))

µn(mw(r), w
′, c′)

 .

Thus, (4) holds.

It then follows from µn(Pw(rn(w)), w) = µn−1(Pw(rn(w)), w) + νn
W (w), (4) and
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Claim 7 that ∑
(m′,c′):(m′,c′)⪰w(m,c)

µn(m
′, w, c′) =

rn(w)∑
r=1

µn(Pw(r), w)

= νW (w)−
rn(w)−1∑

r=1

µn−1(Pw(r), w)

+

rn(w)−1∑
r=1

νM(mw(r))−
∑

(w′,c′)∈Smw(r)(w,cw(r))

µn(mw(r), w
′, c′)


= νW (w)−

rn(w)−1∑
r=1

µn−1(Pw(r), w) +

rn(w)−1∑
r=1

µn(Pw(r), w)

= νW (w)−
rn(w)−1∑

r=1

µn−1(Pw(r), w) +

rn(w)−1∑
r=1

µn(Pw(r), w)

− µn−1(Pw(rn(w)), w) + µn(Pw(rn(w)), w)− νn
W (w)

= νW (w)−
rn(w)∑
r=1

µn−1(Pw(r), w) +

rn(w)∑
r=1

µn(Pw(r), w)− νn
W (w)

=

rn(w)∑
r=1

µn(Pw(r), w) =
∑

(m′,c′)∈M∅×C

µn(m
′, w, c′).

Claim 9 There exists ν > 0 such that if νn
W (w) > 0, then νn

W (w) ≥ ν.

Proof. We have that νM(m) and νW (w) are rational for all m ∈ M and w ∈ W∅,

and let K > 0 be such that νM(m) = qM (m)
K

and νW (w) = qW (w)
K

for each m ∈ M ,

w ∈ W∅, and qM(w), qW (w) ∈ Z. We will show that for all m ∈ M∅, w ∈ W∅, c ∈ C

and n ∈ N, µn(m,w, c) = qµ(n,m,w,c)

K
and νn+1

W (w) = qν(n+1,w)
K

for some qµ(n,m,w, c),

qν(n+ 1, w) ∈ Z. Thus, ν = 1
K

proves the claim.

For any m ∈ M∅, let W
∗
1,m = {(w1, c1), . . . , (w|W ∗

1,m|, c|W ∗
1,m|)}. Then

µ1(m,w1, c) = min
{qW (w1)

K
,
qM(m)

K

}
=

qµ(1,m,w1, c1)

K
,

where qµ(1,m,w1, c1) ∈ Z. For each 1 < k ≤ |W ∗
1,m|, assume that for each j < k,

µ1(m,wj, cj) =
qµ(1,m,wj ,cj)

K
for some qµ(1,m,wj, cj) ∈ Z. Then

µ1(m,wk, ck) = min
{qW (wk)

K
,
qM(m)

K
−

∑
j<k

qµ(1,m,wj, cj)

K

}
=

qµ(1,m,wk, ck)

K
,
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where qµ(1,m,wk, ck) ∈ Z, since qW (w1) ∈ Z, qM(m) ∈ Z, and qµ(1,m,wj, cj) ∈ Z

for each j < k. Thus, for each (w, c) ∈ W ∗
1,m, µ1(m,w, c) = qµ(1,m,w,c)

K
for some

qµ(1,m,w, c) ∈ Z. For each (w, c) ̸∈ W ∗
1,m, µ1(m,w, c) = qµ(1,m,w,c)

K
for qµ(1,m,w, c) =

0 ∈ Z. Finally, for each w ∈ W∅, ν
2
W (w) = qW (w)

K
−

∑
(m,c)∈M∅×C

qµ(1,m,w,c)

K
= qν(2,w)

K

for some qν(2, w) ∈ Z.

Now suppose that for all m ∈ M∅, w ∈ W∅ and c ∈ C, µn−1(m,w, c) = qµ(n−1,m,w,c)

K

and νn
W (w) = qν(n,w)

K
for some qµ(n − 1,m,w, c), qν(n,w) ∈ Z. For any m ∈ M∅, let

W ∗
n,m = {(w1, c1), . . . , (w|W ∗

n,m|, c|W ∗
n,m|)}. Then

µn(m,w1, c1) = min
{qµ(n− 1,m,w1, c1)

K
+

qν(n,w1)

K
1Wn,m,c1

(w1),
qM(m)

K

}
=

qµ(n,m,w1, c1)

K
,

where qµ(n,m,w1, c1) ∈ Z. For each 1 < k ≤ |W ∗
n,m|, assume that for each j < k,

µn(m,wj, cj) =
qµ(n,m,wj ,cj)

K
for some qµ(n,m,wj, cj) ∈ Z. Then

µn(m,wk, ck) = min
{qµ(n− 1,m,wk, ck)

K
+

qν(n,wk)

K
1Wn,m,ck

(wk),

qM(m)

K
−
∑
j<k

qµ(n,m,wj, cj)

K

}
=

qµ(n,m,wk, ck)

K
,

where qµ(n,m,wk, ck) ∈ Z, since qµ(n− 1,m,wk, ck) ∈ Z, qν(n,wk) ∈ Z, qM(m) ∈ Z,

and qµ(n,m,wj, cj) ∈ Z for each j < k. Thus, for each (w, c) ∈ W ∗
n,m, µn(m,w, c) =

qµ(n,m,w,c)

K
for some qµ(n,m,w, c) ∈ Z. For each (w, c) ̸∈ W ∗

n,m, µn(m,w, c) =

qµ(n,m,w,c)

K
for qµ(n,m,w, c) = 0 ∈ Z. Finally, for each w ∈ W∅, ν

n+1
W (w) = qW (w)

K
−∑

(m,c)∈M∅×C
qµ(n,m,w,c)

K
= qν(n+1,w)

K
for some qν(n+ 1, w) ∈ Z.

Claim 10 For each w ∈ W and k ∈ N, if |{n > k : w ∈ Rn}| > νW (w)
ν

then

rk′(w) = rk(w) + 1 for some k′ > k.

Proof. Let w ∈ W and k ∈ N. Suppose for a contradiction that rn(w) = rk(w)

for all n ≥ k and, for convenience, let r = rk(w). For each n > k, it follows that

Pw(r) ̸∈ Mn+1,w since Mn+1,w = {Pw(1), . . . , Pw(r − 1)} by Claim 5 and, therefore,

µn(Pw(r), w) ≥ µn−1(Pw(r), w) + νn
W (w) since w ∈ Wn,Pw(r) whenever νn

W (w) > 0.
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Hence, µn(Pw(r), w) ≥ µn−1(Pw(r), w) if w ̸∈ Rn and µn(Pw(r), w)−µn−1(Pw(r), w) ≥

ν if w ∈ Rn by Claim 9 and because νn
W (w) > 0 whenever w ∈ Rn.

It then follows by induction that

µk′(Pw(r), w) ≥ µk(Pw(r), w) + |{k′ ≥ n > k : w ∈ Rn}|ν.

Then for k′ such that |{k′ ≥ n > k : w ∈ Rn}| > νW (w)/ν, µk′(Pw(r), w) >

µk(Pw(r), w)+νW (w), a contradiction to Claim 2. Thus, there exists k∗ > k such that

rk∗(w) > rk(w) and it follows by Claim 5 that rk′(w) = rk(w) + 1 for some k′ > k.

Claim 11 For each w ∈ W and k ∈ N, either there exists k′ > k such that rk′(w) =

rk(w) + 1, or there exists Nw ∈ N such that w ̸∈ Rn for all n > Nw.

Proof. By Claim 10, if there does not exist k′ > k such that rk′(w) = rk(w) + 1,

then |{n > k : w ∈ Rn}| ≤ νW (w)/ν. Thus, there must exist some Nw such that

w ̸∈ Rn for all n > Nw.

Claim 12 For each w ∈ W , there exists Nw ∈ N such that w ̸∈ Rn for all n > Nw.

Proof. Let r = maxn∈N rn(w), which exists since rn(w) ∈ {1, . . . , |M∅ × C|}, and

k ∈ N such that rk(w) = r. It then follows from Claim 11 that w ̸∈ Rn for all n > Nw.

Claim 13 There exists n ∈ N such that Rn = ∅.

Proof. This follows from Claim 12 (take n to be the max Nw over all w).

Let N = min{n ∈ N : Rn = ∅} and define µ = µN−1.

Claim 14 For each w ∈ W ,
∑

(m,c)∈M∅×C µ(m,w, c) = νW (w).

Proof. It follows from Claim 2 and from Rn = ∅ that∑
(m,c)∈M∅×C

µ(m,w, c) =
∑

(m,c)∈M∅×C

µn−1(m,w, c) = νW (w).
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Claim 15 supp(µ) ⊆ SM(µ) ∩ IRW (µ).

Proof. Let (m,w, c) ∈ supp(µ) and suppose that (m,w, c) ̸∈ IRW (µ). Thus,

there exists c′ ∈ C such that (∅, c′) ≻w (m, c) and, hence, w ∈ W and r > rw, where

Pw(r) = (m, c). Hence, µ(m,w, c) = 0 by Claim 6, a contradiction to µ(m,w, c) > 0.

Suppose next that (m,w, c) ̸∈ SM(µ). Then m ∈ M . If (∅, c′) ≻m (w, c), then

µ(m,w, c) = 0 by Claim 3, a contradiction to µ(m,w, c) > 0.

Thus, there exists (w′, c′, m̄, c̄) such that µ(m̄, w′, c̄) > 0, (w′, c′) ≻m (w, c) and

(m, c′) ≻w′ (m̄, c̄). Since µ(m,w, c) > 0, it follows that
∑

(w̃,c̃):(w̃,c̃)⪰m(w′,c′) µ(m, w̃, c̃) <

νM(m). Letting r, r̄ be such that Pw′(r) = (m, c′) and Pw′(r̄) = (m̄, c̄), (m, c′) ≻w′

(m̄, c̄) implies that r < r̄ and µ(m̄, w′, c̄) > 0 implies that r̄ ≤ rN−1(w
′) since

supp(µ(w′, ·)) ⊆ {Pw′(1), . . . , Pw′(rN−1(w
′))}. Hence, by Claim 7,

µ(m,w′, c′) = νM(m)−
∑

(w̃,c̃):(w̃,c̃)≻m(w′,c′)

µ(m, w̃, c̃) > 0.

Since
∑

(w̃,c̃):(w̃,c̃)⪰m(w′,c′) µ(m, w̃, c̃) < νM(m) and µ(m,w′, c′) > 0, Claims 8 and 14

then imply that
∑

(m̃,c̃):(m̃,c̃)⪰w′ (m,c′) µ(m̃, w′, c̃) =
∑

(m̃,c̃)∈M∅×C µ(m̃, w′, c̃) = νW (w′).

Hence, µ(m̄, w′, c̄) = 0, a contradiction to µ(m̄, w′, c̄) > 0.

Thus, µ is stable. Claims 16 to 18 establish that µ is woman-optimal.

Claim 16 For each w ∈ W and r′ ∈ {1, . . . , |M∅ × C|}, µn(Pw(r
′), w) ≤ νW (w) −∑r′−1

r=1 µn−1(Pw(r), w).

Proof. If (w, cw(r
′)) ̸∈ W ∗

n,mw(r′), then µn(Pw(r
′), w) = 0. Otherwise, by defini-

tion, the distribution must satisfy µn(Pw(r
′), w) ≤ µn−1(Pw(r

′), w) + 1Wn,Pw(r′)
νn
W (w).

By Claim 2, µn−1(Pw(r
′), w) ≤ νW (w) −

∑r′−1
r=1 µn−1(Pw(r), w). Whenever w ∈

Wn,Pw(r′), r
′ = rn(w), and by Claim 4, supp(µn−1(·, w)) ⊆ {Pw(1), . . . , Pw(rn−1(w))} ⊆

{Pw(1), . . . , Pw(rn(w))}. Thus, νn
W (w) = νW (w)−

∑r′

r=1 µn−1(Pw(r), w).

Claim 17 For each n ∈ N, for each w ∈ W , and for each stable matching µ′:

1.
∑k

r=1 µn(Pw(r), w) ≥
∑k

r=1 µ
′(Pw(r), w) for each k ∈ {1, . . . , rn(w)− 1}.

2.
∑rn(w)

r=1 µn(Pw(r), w) ≥
∑rn(w)

r=1 µ′(Pw(r), w) if rn(w) < rn+1(w).
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Proof. For n = 1: It is sufficient to show that µ′(Pw(1), w) ≤ µ1(Pw(1), w) for

each w ∈ W . Fix w ∈ W , and suppose for a contradiction that µ′(Pw(1), w) >

µ1(Pw(1), w). This implies that µ1(Pw(1), w) < νW (w) = µ0(Pw(1), w) + ν1
W (w) and

hence by Claim 7:

µ1(Pw(1), w) = νM(mw(1))−
∑

(ŵ,ĉ)∈Smw(1)(w,cw(1))

µ1(mw(1), ŵ, ĉ).

Suppose that µ′(mw(1), ŵ, ĉ) ≥ µ1(mw(1), ŵ, ĉ) for every (ŵ, ĉ) ∈ Smw(1)(w, cw(1)).

Then:

νM(mw(1))− µ′(Pw(1), w) ≥
∑

(ŵ,ĉ)∈Smw(1)(w,cw(1))

µ′(mw(1), ŵ, ĉ)

≥
∑

(ŵ,ĉ)∈Smw(1)(w,cw(1))

µ1(mw(1), ŵ, ĉ)

= νM(mw(1))− µ1(Pw(1), w),

a contradiction because µ1(Pw(1), w) < µ′(Pw(1), w). Thus, it must be that for some

(ŵ, ĉ) ∈ Smw(1)(w, cw(1)), 0 ≤ µ′(mw(1), ŵ, ĉ) < µ1(mw(1), ŵ, ĉ) ≤ νW (ŵ). Since

0 < µ1(mw(1), ŵ, ĉ), Pŵ(1) = (mw(1), ĉ) by Claim 4. Since µ′(mw(1), ŵ, ĉ) < νW (ŵ)

and Pŵ(1) = (mw(1), ĉ), (ŵ, ĉ) ∈ Tmw(1)(µ
′). But (ŵ, ĉ) ∈ Smw(1)(w, cw(1)) and

(Pw(1), w) ∈ supp(µ′), a contradiction to the stability of µ′.

Now assume that the Claim holds for µ1, . . . , µn−1. We need to show that if

k ≤ rn(w)−1 or if k = rn(w) < rn+1(w), then
∑k

r=1 µ
′(Pw(r), w) ≤

∑k
r=1 µn(Pw(r), w)

for each w ∈ W . First consider k = 1. Fix w ∈ W , and suppose for a contradiction

that µ′(Pw(1), w) > µn(Pw(1), w). Since µ′(Pw(1), w) ≤ µn−1(Pw(1), w), this implies

that µn−1(Pw(1), w) > µn(Pw(1), w), and hence by Claim 7:

µn(Pw(1), w) = νM(mw(1))−
∑

(ŵ,ĉ)∈Smw(1)(w,cw(1))

µn(mw(1), ŵ, ĉ).

Suppose that µ′(mw(1), ŵ, ĉ) ≥ µn(mw(1), ŵ, ĉ) for every (ŵ, ĉ) ∈ Smw(1)(w, cw(1)).
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Then:

νM(mw(1))− µ′(Pw(1), w) ≥
∑

(ŵ,ĉ)∈Smw(1)(w,cw(1))

µ′(mw(1), ŵ, ĉ)

≥
∑

(ŵ,ĉ)∈Smw(1)(w,cw(1))

µn(mw(1), ŵ, ĉ)

= νM(mw(1))− µn(Pw(1), w),

a contradiction because µn(Pw(1), w) < µ′(Pw(1), w). Thus, it must be that for

some (ŵ, ĉ) ∈ Smw(1)(w, cw(1)), 0 ≤ µ′(mw(1), ŵ, ĉ) < µn(mw(1), ŵ, ĉ) ≤ νW (ŵ).

Since 0 < µn(mw(1), ŵ, ĉ), Pŵ(r
′) = (mw(1), ĉ) for some r′ ≤ rn(ŵ) by Claim

4. Note that either r′ ≤ rn−1(ŵ) or rn−1(w) < rn(w). By the inductive hypoth-

esis,
∑r′−1

r=1 µ′(Pŵ(r), ŵ) ≤
∑r′−1

r=1 µn−1(Pŵ(r), ŵ). By Claim 16, µn(Pŵ(r
′), ŵ) ≤

νW (ŵ) −
∑r′−1

r=1 µn−1(Pŵ(r), ŵ). Therefore,
∑r′−1

r=1 µ′(Pŵ(r), ŵ) + µ′(mw(1), ŵ, ĉ) <∑r′−1
r=1 µn−1(Pŵ(r), ŵ) + µn(mw(1), ŵ, ĉ) ≤ νW (ŵ), so νW (ŵ) >

∑r′−1
r=1 µ′(Pŵ(r), ŵ) +

µ′(mw(1), ŵ, ĉ). Thus, µ′(Pŵ(r), ŵ) > 0 for some r > r′, and so (ŵ, ĉ) ∈ Tmw(1)(µ
′).

But (ŵ, ĉ) ∈ Smw(1)(w, cw(1)) and (Pw(1), w) ∈ supp(µ′), a contradiction to the sta-

bility of µ′.

Now assume that
∑k−1

r=1 µ
′(Pw(r), w) ≤

∑k−1
r=1 µn(Pw(r), w) for each w ∈ W . Fix

w ∈ W , and suppose for a contradiction that
∑k

r=1 µ
′(Pw(r), w) >

∑k
r=1 µn(Pw(r), w).

This implies that µn(Pw(k), w) < µ′(Pw(k), w). If k < rn(w) or if k = rn(w) <

rn+1(w), then by Claim 7:

µn(Pw(k), w) = νM(mw(k))−
∑

(ŵ,ĉ)∈Smw(k)(w,cw(k))

µn(mw(k), ŵ, ĉ).

Suppose that µ′(mw(k), ŵ, ĉ) ≥ µn(mw(k), ŵ, ĉ) for every (ŵ, ĉ) ∈ Smw(k)(w, cw(k)).

Then:

νM(mw(k))− µ′(Pw(k), w) ≥
∑

(ŵ,ĉ)∈Smw(k)(w,cw(k))

µ′(mw(k), ŵ, ĉ)

≥
∑

(ŵ,ĉ)∈Smw(k)(w,cw(k))

µn(mw(k), ŵ, ĉ)

= νM(mw(k))− µn(Pw(k), w),
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a contradiction because µn(Pw(k), w) < µ′(Pw(k), w). Thus, it must be that for some

(ŵ, ĉ) ∈ Smw(k)(w, cw(k)), 0 ≤ µ′(mw(k), ŵ, ĉ) < µn(mw(k), ŵ, ĉ) ≤ νW (ŵ). Since 0 <

µn(mw(k), ŵ, ĉ), Pŵ(r
′) = (mw(k), ĉ) for some r′ ≤ rn(ŵ) by Claim 4. Note that either

r′ ≤ rn−1(ŵ) or rn−1(w) < rn(w). By the inductive hypothesis,
∑r′−1

r=1 µ′(Pŵ(r), ŵ) ≤∑r′−1
r=1 µn−1(Pŵ(r), ŵ). By Claim 16, µn(Pŵ(r

′), ŵ) ≤ νW (ŵ)−
∑r′−1

r=1 µn−1(Pŵ(r), ŵ).

Then
∑r′−1

r=1 µ′(Pŵ(r), ŵ)+µ′(mw(k), ŵ, ĉ) <
∑r′−1

r=1 µn−1(Pŵ(r), ŵ)+µn(mw(k), ŵ, ĉ) ≤

νW (ŵ), so νW (ŵ) >
∑r′−1

r=1 µ′(Pŵ(r), ŵ) + µ′(mw(k), ŵ, ĉ). Thus, µ′(Pŵ(r), ŵ) > 0

for some r > r′, and so (ŵ, ĉ) ∈ Tmw(k)(µ
′). But (ŵ, ĉ) ∈ Smw(k)(w, cw(k)) and

(Pw(k), w) ∈ supp(µ′), a contradiction to the stability of µ′.

Claim 18 Let N be the first n such that Rn = ∅. For each w ∈ W and each stable

matching µ′, ∑
(m′,c′)∈M∅×C:(m′,c′)⪰w(m,c)

µ′(m′, w, c′) ≤
∑

(m′,c′)∈M∅×C:(m′,c′)⪰w(m,c)

µN−1(m
′, w, c′)

for each (m, c) ∈ M∅ × C.

Proof. For each k ∈ {1, . . . , rN−1(w)− 1},
k∑

r=1

µN−1(Pw(r), w) ≥
k∑

r=1

µ′(Pw(r), w)

for every stable matching µ′ by Claim 17. Also by Claims 4 and 14,

k∑
r=1

µN−1(Pw(r), w) =

rN−1(w)∑
r=1

µN−1(Pw(r), w) = νW (w) ≥
k∑

r=1

µ′(Pw(r), w)

for any k ∈ {rN−1(w), . . . , |M∅ × C|}.

A.2 Python code

In this section we describe how to use a python code that implements the DAA

defined in Section 4; the code itself is available at https://drive.google.com/file/

d/1dttfikCLlERLYPztlvRq_qNT4rk0VRvF/view. It considers the specification of the

example in Section 3 and here we describe how to modify its preamble, i.e. lines 3-18,

to obtain any other example.

We first specify the number of men and women types and the number of contracts:
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#m is the number of men types

m=2

#w is the number of women types

w=2

#c is the number of contracts

c=1

Then we specify preferences in the following form: Using m = |M |, w = |W |

and c = |C| as above and writing C = {c1, . . . , cc}, M∅ = {m1, . . . ,mm,mm+1} and

W∅ = {w1, . . . , ww, ww+1}, where mm+1 = ww+1 = ∅, preferences as described by

p = [[Pm1(w1, c1), . . . , Pm1(w1, cc), . . . , Pm1(ww+1, c1), . . . , Pm1(ww+1, cc)], . . . ,

[Pmm(w1, c1), . . . , Pmm(w1, cc), . . . , Pmm(ww+1, c1), . . . , Pmm(ww+1, cc)]] and

q = [[Pw1(m1, c1), . . . , Pw1(m1, cc), . . . , Pw1(mm+1, c1), . . . , Pw1(mm+1, cc)], . . . ,

[Pww(m1, c1), . . . , Pww(m1, cc), . . . , Pww(mm+1, c1), . . . , Pww(mm+1, cc)]].

In the case of the example:

#p describes men’s preferences, last entry is the empty woman

p=[[2,1,3],

[1,2,3]]

#q describes women’s preferences

q=[[1,2,3],

[2,1,3]]

The final element in the preamble consist of the type distributions. These are

described as

dm = [νM(m1), . . . , νM(mm)] and

dw = [νW (w1), . . . , νW (ww)]

in general, and as

#distribution of men
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dm=[1,2]

#distribution of women

dw=[2,2]

in the case of example.

Once the above specifications are made, the code computes a stable matching

using our DAA. Its output for the example is:

mu is: [[0, 1, 0], [2, 0, 0], [0, 1, 0]] number of iterations 6

In general, the output is a stable matching µ in the form

[[µ(m1, w1, c1), . . . , µ(m1, w1, cc), . . . , µ(m1, ww+1, c1), . . . , µ(m1, ww+1, cc)], . . . ,

[µ(mm+1, w1, c1), . . . , µ(mm+1, w1, cc), . . . , µ(mm+1, ww+1, c1), . . . , µ(mm+1, ww+1, cc)]]

and N − 1, where N is the first n ∈ N such that Rn = ∅.
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