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Abstract

We consider a setting where each player of a simultaneous-move game pri-

vately designs an information structure before playing the game. One of these

designs is chosen at random to determine the distribution of the private mes-

sages that players receive. These messages allow players to correlate their

actions; however, private information design implies a push from correlated to

Nash equilibria. Indeed, the sequential equilibrium payoffs of the private in-

formation design extensive-form game are correlated equilibrium payoffs of the

underlying simultaneous-move game, but not all correlated equilibrium payoffs

are sequential equilibrium payoffs. In generic 2-player games, the latter are

specific convex combinations of two Nash equilibrium payoffs.

∗We wish to thank Gabriel Carroll, Hervé Moulin, Constantine Sorokin and seminar participants

at the University of Glasgow, the 2023 SAET conference (Paris), the 2023 EWET (Naples) and the

2023 Portuguese Economic Journal conference (Braga) for helpful comments. Any remaining errors

are, of course, ours.
†Address: University of Surrey, School of Economics, Guildford, GU2 7XH, UK; email:

g.carmona@surrey.ac.uk.
‡Address: University of Surrey, School of Economics, Guildford, GU2 7XH, UK; email:

k.laohakunakorn@surrey.ac.uk.

1



1 Introduction

It is well-known since Aumann (1974) that all players in a normal-form game can

obtain a payoff higher than in any of its Nash equilibria by correlating their play,

i.e. in a correlated equilibrium.1 Achieving correlated equilibrium payoffs requires

lotteries over a set of messages that are privately observed by the players and which

can be thought of as being chosen by an outside mediator. Since the assumption of an

impartial mediator may not always be appropriate, there is an interest in the payoffs

that can be achieved through unmediated interaction between the players. Bárány

(1992), Ben-Porath (1998), Urbano and Vila (2002) and Gerardi (2004) among others

have shown that (nearly) all correlated equilibrium payoffs can be obtained through

unmediated interaction.2

Aumann and Hart’s (2003) results already imply that for two player games, pre-

play cheap talk can achieve the entire convex hull of Nash payoffs (but no more).

Thus, in the above papers, either the number of players is assumed to be greater than

two or players have access to richer communication technology than cheap talk (e.g.

balls and urns, public verification). In this paper, we consider this question from a

different perspective. We focus on 2-player games and allow players access to fully me-

diated communication as long as they can agree on the mediation. However, although

the technology of mediated communication is available, we assume that players can

manipulate this technology in a general way. This addresses a difficulty with some

of the above results, which is that certain deviations are ruled out by assumption.

For example, in Ben-Porath’s (1998) result for 2-player games, player 2 lets player

1 choose a ball from an urn. But player 1 cannot deviate by secretly manipulating

the content of the urn before choosing from it. Do conceivable manipulations such as

this one matter for the correlated equilibrium payoffs that can be obtained through

unmediated interaction?

1Note, however, that Neyman (1997) defines a class of games having a smooth concave potential

such that any correlated equilibrium is a convex combination of pure strategy Nash equilibria.
2Other related papers include Ben-Porath (2003), Krishna (2007), Wagner (2011), Rivera (2018)

and Blume (2024).
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To answer the above question, we introduce a model of unmediated (or, more

accurately, self-mediated) interaction that builds on the information design literature

popularized by a large number of papers since the influential work of Kamenica and

Gentzkow (2011). As in this literature, the payoff of each player depends on the lot-

tery over privately-observed message profiles, on the information structure for short,

hence it is likely that he will try to design it in an optimal way. Our model is one

of private information design in the sense that each player chooses an information

design. Furthermore, it is guided by the observation that there are many actions

that players can take to influence the information structure: for example, one player

may anticipate that another will tamper with an agreed upon randomization device

and respond by including additional safeguards. The other may anticipate this and

secretly hide backdoors in the device. It is difficult to model explicitly each possible

manipulation and its effect on the resulting information structure. On the other hand,

we do not wish to rule out any kind of manipulation by assumption.

Thus, our aim is to provide a reduced form model that captures the idea that

players are able to try to manipulate the information structure in any way they de-

sire. We achieve this by letting each player choose the information structure directly.

Our model is also a reduced form model of conflict as it specifies what information

structure actually determines message profiles when different players choose different

information structures. Our specification is that each player’s chosen information

structure is the one that actually determines message profiles with a strictly positive

probability, i.e. each player i’s information design is chosen with probability βi > 0

(with
∑

i βi = 1) to determine the message profile that players receive. This specifica-

tion is a tractable way of obtaining that (i) if all players choose the same information

structure, then message profiles are drawn from such common information structure,

and (ii) each player is, with strictly positive probability, successful in attempting to

manipulate the information structure however he wishes; this strictly positive prob-

ability can be thought of as the relative power that each player has in determining

the information structure that actually determines message profiles.

We focus on 2-player simultaneous-move games and analyze the extensive-form
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game where players first choose an information design and then play the simultaneous-

move game. We show that the set of (Nash or sequential) equilibrium payoffs of

the extensive-form is a specific subset of the convex hull of the Nash equilibrium

payoffs of the simultaneous-move game. For generic 2-player simultaneous games,

the only achievable payoffs are specific convex combinations of two Nash equilibrium

payoffs. These results are in contrast with, e.g. Aumann and Hart (2003) or Ben-

Porath (1998), and show that the details of what is allowed for players to choose in

unmediated interaction matter for the payoffs that can be achieved in equilibrium.3

In particular, this paper shows that when information is designed optimally by the

individuals involved in a strategic situation, very few correlated equilibrium payoffs

can be achieved and there is a push from correlated to Nash equilibria.

The paper is organized as follows. Section 2 introduces our model of private

information design and characterizes the equilibrium outcomes of the information

design extensive-form game. Section 3 contains a motivating example suggesting an

interpretation for our model and results. Related literature is discussed in Section

4, along with extensions and concluding remarks. Proofs of our main results can be

found in the Appendix. Some details of the extensions we consider in Section 4 are

left to the supplementary material.4

2 Privately designed correlated equilibrium

Consider a 2-player simultaneous-move game G = (Ai, ui)i∈N where N = {1, 2} is the

set of players and, for each i ∈ N , Ai is a finite set of player i’s actions and ui : A→ R

is player i’s payoff function, where A =
∏

i∈N Ai. Let N(G) denote the set of Nash

3See Section 4 for a detailed comparison with these papers. Our view is that there are many

plausible models of unmediated interaction, but we find the one we put forward in this paper inter-

esting because (i) it allows certain deviations that are ruled out in other models and, consequently,

(ii) it leads to the extreme result that only a few correlated equilibrium payoffs can be achieved.
4Available at https://klaohakunakorn.com/idsm.pdf
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equilibria of G and C(G) the set of correlated equilibria of G.5

Before the game G is played, each player chooses an information design, which

sends messages to both players. We thus consider a setting with private information

design which is formalized by the following extensive-form gameGid. At the beginning

of the game, each player i ∈ N chooses simultaneously an information design which

is a probability distribution over messages. The set of messages each player i ∈ N

can potentially receive is Mi = N. An information design is a finitely supported

probability measure on M =M1×M2 = N2. Let S be the set of information designs.

Thus, each player i chooses an information design ϕi ∈ S. After all players have

chosen their information designs, a profile of messages m ∈ M is realized according

to ϕ ∈ ∆(M) defined by setting, for each m ∈M ,

ϕ[m] =
∑
i∈N

βiϕi[m],

where βi > 0 for each i ∈ N and
∑

i∈N βi = 1; the probabilities β1 and β2 are

exogenous and fixed throughout the paper, and one interpretation for them is that

the information design of each i ∈ N is chosen by nature with probability βi. Each

player i ∈ N observes his coordinatemi ∈Mi of the realized message profilem and his

choice ϕi ∈ S but not the other player’s coordinate mj ∈ Mj of the realized message

profile m or choice ϕj ∈ S, where j ̸= i. Then each player i chooses an action ai ∈ Ai

conditional on the observed (mi, ϕi). Player i’s payoff is then ui(a1, a2).

The information design is private in the sense that (i) it is done by the players,

(ii) each player’s choice of information design is his own private information and

(iii) no player observes the aggregate information design. Assuming that information

designs have finite support implies that each player always has the choice of knowing

whether his information design is the one that was chosen by nature; indeed, the

set of messages he can receive if his opponent’s design is chosen is the finite subset

supp(ϕj,Mi
) of N and, hence, he can choose ϕi such that supp(ϕi,Mi

) belongs to the

5Given a metric space X, ∆(X) denotes the set of Borel probability measures on X. For each

µ ∈ ∆(X), supp(µ) denotes the support of µ. When X =
∏

j∈J Xj for some finite set J , µXj
denotes

the marginal of µ on Xj for each j ∈ J . In particular, N(G) ⊆ ∆(A1)×∆(A2) and C(G) ⊆ ∆(A).
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complement of supp(ϕj,Mi
).6

A (behavioral) strategy for player i ∈ N is πi = (π1
i , π

2
i ) such that π1

i ∈ ∆(S) and

π2
i :Mi× S → ∆(Ai) is measurable.7 A strategy is π = (π1, π2) and let Π∗ be the set

of strategies. We focus mostly on strategies where players do not mix over the choice

of information structures.8 Let Π be the set of strategies π such that π1
i ∈ S (i.e. π1

i

is pure) for each i ∈ N .

For each strategy π ∈ Π and for each i ∈ N , mi ∈ Mi and ϕi ∈ S, we often

write ϕ∗
i = π1

i , πi(mi, ϕi) = π2
i (mi, ϕi) and πi(mi) = π2

i (mi, ϕ
∗
i ). For each m ∈M and

ϕ ∈ S2, we let π2(m,ϕ) be defined by π2
i (m,ϕ) = π2

i (mi, ϕi) for each i ∈ N ; we also

write π(m,ϕ) for π2(m,ϕ) and use π2
−i(m−i, ϕ−i) and π−i(m−i, ϕ−i) for the vector of

mixed actions π(m,ϕ) without the ith coordinate.

For each π ∈ Π, we also write ui(π) =
∑

m∈M ϕ∗[m]ui(π(m)) for each i ∈ N ,

where ϕ∗[m] =
∑

i∈N βiϕ
∗
i [m], π(m) ∈ ∆(A) is defined by π(m)[a] =

∏
i∈N πi(mi)[ai]

for each a ∈ A and, for each σ ∈ ∆(A), ui(σ) =
∑

a∈A σ[a]ui(a). We sometimes abuse

notation and also let π(m) = (π1(m1), π2(m2)).

We use Nash equilibrium and sequential equilibrium as solution concepts. Sequen-

tial equilibrium is defined analogously to Myerson and Reny (2020) (MR henceforth):

a strategy π ∈ Π is a sequential equilibrium if it is a perfect conditional ε-equilibrium

for each ε > 0.9

In contrast to our setting, if an impartial mediator sends messages according

to some exogenously given information design ϕ ∈ S, the set of equilibrium action

distributions that result from varying ϕ is exactly the set of correlated equilibria of

G, as shown by Aumann (1987).10 With private information design there will, in

general, be a reduction in the set of equilibrium outcomes. The reason is that the

messages m ∈ supp(ϕ∗
i ) that each player i sends must be optimal for player i. This is

6The assumption that the support of information designs is finite is also technically convenient

since then expected values are finite sums.
7The set S is endowed with the topology of the weak convergence of probability measures.
8See Section 4.6 for an extension of our results to the case where players can mix over the

information design.
9See A.1 in the Appendix for the definition of perfect conditional ε-equilibrium in our setting.

10This result is also implied by Myerson (1982, Proposition 2).
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established in Theorem 1 which fully characterizes the set of sequential equilibrium

outcomes of Gid.

The following notation is used in the statement of Theorem 1. The outcome

of a strategy π ∈ Π is
(
ϕ∗
i , (πi(mi))mi∈supp(ϕ∗Mi

)

)
i∈N

; it consists of the information

design for each player and, for each message that he may receive with strictly positive

probability, the action he will choose in response. Let M∗ =
∏

i∈N supp(ϕ∗
Mi
) be the

product of the set of messages that each player may receive with strictly positive

probability. For each i ∈ N , j ̸= i and δ ∈ ∆(Aj), let vi(δ) = maxα∈∆(Ai) ui(α, δ) and

BRi(δ) = {α ∈ ∆(Ai) : ui(α, δ) = vi(δ)} be, respectively, player i’s value function

and best-reply correspondence.

Theorem 1. For each 2-player game G, the following conditions are equivalent:

1.
(
ϕ∗
i , (πi(mi))mi∈supp(ϕ∗Mi

)

)
i∈N

is the outcome of a Nash equilibrium of Gid.

2.
(
ϕ∗
i , (πi(mi))mi∈supp(ϕ∗Mi

)

)
i∈N

is the outcome of a sequential equilibrium of Gid.

3.
(
ϕ∗
i , (πi(mi))mi∈supp(ϕ∗Mi

)

)
i∈N

is such that, for each i, j ∈ N and j ̸= i,

vi(πj(mj)) = max
m′

j∈M∗
j

vi(πj(m
′
j)) and πi(mi) ∈ BRi(πj(mj)) (1)

for each m ∈ supp(ϕ∗
i ), and

πi(mi) solves max
αi∈∆(Ai)

∑
mj

ϕ∗
j [mi,m−i]

ϕ∗
j,Mi

[mi]
ui(αi, πj(mj)) (2)

for each mi ∈ supp(ϕ∗
j,Mi

).

Theorem 1 shows that Nash and sequential equilibrium outcomes of the private

information design game coincide. These are characterized by the optimality of the

messages each player sends and of the actions he chooses. Each message profile sent

by a player is optimal in the sense that the payoff of the action profile it induces is

the highest amongst the action profiles belonging to the outcome. The optimality of

the actions chosen by each player i ∈ N consists of πi(mi) maximizing his expected

payoff conditional on his information design not being chosen when mi is a message
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that he receives with strictly positive probability from the information design of the

other player. The two optimality conditions imply that, for each player i, πi(mi)

maximizes his expected payoff conditional on his information design being chosen

when mi ∈ supp(ϕ∗
i,Mi

) \ supp(ϕ∗
j,Mi

) and maximizes his expected payoff conditional

on his information design not being chosen when mi ∈ supp(ϕ∗
j,Mi

) \ supp(ϕ∗
i,Mi

);

indeed, in the former case, player i can only have received message mi if ϕ
∗
i has been

chosen and, in the latter case, only if ϕ∗
i has not been chosen. Furthermore, in the

remaining case where mi ∈ supp(ϕ∗
i,Mi

) ∩ supp(ϕ∗
j,Mi

), it turns out that πi(mi) must

satisfy the two criteria. Briefly, this happens because player i can always make sure

that the message he sends to himself is different from the ones he may receive from the

other player (we will elaborate on conditions (1) and (2) in the proof of the necessity

part of Theorem 1 in Section A.2.1).

The following corollary of Theorem 1 characterizes the action distributions of se-

quential (and Nash) equilibria of Gid. For each strategy π ∈ Π, the action distribution

of π is σπ ∈ ∆(A) such that, for each a ∈ A,

σπ[a] =
∑
m∈M∗

ϕ∗[m]π(m)[a].

Let

A(G) = {σπ : π ∈ Π is a sequential equilibrium of Gid}

be the set of action distributions of the sequential equilibria of Gid.

Corollary 1 characterizes each equilibrium action distribution as the expected

value of a specific distribution over Nash equilibria of G. Let ∆f (∆(A1) × ∆(A2))

be the set of finitely supported distributions over ∆(A1) ×∆(A2) and, for each ψ ∈

∆f (∆(A1)×∆(A2)), let ψ
A ∈ ∆(A) be defined by setting, for each a ∈ A,

ψA[a] =
∑

(α1,α2)∈supp(ψ)

ψ[α1, α2]α1[a1]α2[a2];

i.e. ψA is the reduced lottery of ψ or, alternatively, the expected value of ψ. Corollary
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1 then shows that A(G) equals the following set:

A =

{
(β1ψ1 + β2ψ2)

A : ∀i ∈ N, there exists Li, (η
i,l)Li

l=1, (σ
i,l)Li

l=1 such that

ψi =

Li∑
l=1

ηi,l1σi,l , ηi ≥ 0,

Li∑
l=1

ηi,l = 1,

σi,l ∈ N(G) and ui(σ
i,k) = ui(σ

i,l) ≥ ui(σ
j,r)

∀k, l ∈ {1, . . . , Li}, j ∈ N and r ∈ {1, . . . , Lj}
}
.

Corollary 1. For each 2-player game G, A(G) = A.

Corollary 1 characterizes the equilibrium action distributions of Gid for 2-player

games. It shows that when player i’s information design is chosen, there is a resulting

distribution ψi over Nash equilibria of G, all of which give the same payoff to player i.

Furthermore, this common payoff is no less than the payoff player i obtains in each of

the Nash equilibria of G in the support of ψj, j ̸= i. In other words, player i weakly

prefers any Nash equilibria of G in the support of ψi to any of them in the support

of ψj.

The characterization of equilibrium action distributions in Corollary 1 implies an

analogous characterization of the set of equilibrium payoffs of Gid. Let

U(G) = {u(π) : π ∈ Π is a sequential equilibrium of Gid}

be the set of sequential equilibrium payoffs of Gid. Corollary 2 shows that U(G)

equals the following set:

U =

{
β1u

1 + β2u
2 : ∀i ∈ N, there exists Li, (η

i,l)Li
l=1, (σ

i,l)Li
l=1 such that

ui =

Li∑
l=1

ηi,lu(σi,l), ηi ≥ 0,

Li∑
l=1

ηi,l = 1,

σi,l ∈ N(G) and ui(σ
i,k) = ui(σ

i,l) ≥ ui(σ
j,r)

∀k, l ∈ {1, . . . , Li}, j ∈ N and r ∈ {1, . . . , Lj}
}
.

Corollary 2. For each 2-player game G, U(G) = U .
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Thus, in general, not all correlated equilibrium payoffs of G can be achieved in

Gid when information is designed privately. Indeed, equilibrium payoffs of Gid form

a particular subset of the convex hull of the Nash equilibrium payoffs of G. For the

battle of the sexes,

1\2 A B

A 2, 1 0, 0

B 0, 0 1, 2

Corollary 2 implies that U(G) = u(N(G)) ∪ {β1(2, 1) + β2(1, 2)}.

The characterization of U(G) is simpler in generic games, such as the battle of

the sexes, since then the payoff resulting after each information design is chosen is

that of a Nash equilibrium. Let G be the set of games such that, for each Nash

equilibria σ and σ′ of G, if ui(σ) = ui(σ
′) for some i ∈ N , then uj(σ) = uj(σ

′) for

j ̸= i (equivalently, if ui(σ) ̸= ui(σ
′) for some i ∈ N then uj(σ) ̸= uj(σ

′) for j ̸= i).

We regard G as a subset of R2|A|. A subset B of an Euclidean space is generic if the

closure of its complement has Lebesgue measure zero.

Corollary 3. The set G is generic and, for each 2-player game G ∈ G,

U(G) = {β1u(σ) + β2u(σ
′) : σ, σ′ ∈ N(G), u1(σ) ≥ u1(σ

′), u2(σ
′) ≥ u2(σ)}.

The proof of Corollary 3 actually shows that the set of games such that ui(σ) ̸=

ui(σ
′) for each i ∈ N and σ, σ′ ∈ N(G) such that σ ̸= σ′ is generic. This set is

contained in G and contains all games with a unique equilibrium as well as the battle

of the sexes. It is clear from Corollary 3 that U(G) = u(N(G)) for each 2-player game

G with a unique Nash equilibrium.

3 An example

We motivate our model of private information design in the context of the following

game of “chicken”:

10



1\2 A B

A 6, 6 1, 7

B 7, 1 0, 0

We interpret this game as representing a scenario where two competing firms have the

option to enter a new market (e.g. a new drug). This new market has the potential

to be very profitable if and only if both firms enter; this can happen, for example, if

the demand in the new market is high if and only if there is a large investment in

R&D which is beyond the capability of a single firm. Thus, A stands for entry in

the new market and B for no entry. If no firm enters the new market, each gets its

profit in the old market. If only one firm enters, then that firm gets a small increase

of $1 million in profits whereas the other firm obtains a large increase of $7 million

in profits, for instance, because the latter firm becomes dominant in the old market.

If both enter, then each obtains an increase of $6 million in profits.

An alternative interpretation of the chicken game is as a tariff war between two

countries. In this interpretation, choosing B means increasing tariffs whereas Ameans

keeping them at the current level. If only one country imposes high tariffs, that

country gains while the other loses but trade between the two still occurs; in contrast,

if both countries impose high tariffs, then trade between them collapses.

The Nash equilibria are (A,B), (B,A) and (1
2
1A+ 1

2
1B,

1
2
1A+ 1

2
1B) giving payoffs

(7, 1), (1, 7) and (7
2
, 7
2
) respectively. It is well-known that there are correlated equi-

libria with payoffs outside the convex hull of the Nash equilibrium payoffs. In the

scenario of two competing firms who seek to collaborate, it is often the case that the

effort to improve joint payoffs is assisted by a consulting firm, which may play the

role of mediator by providing information and recommendations to both parties.11 In

11For example, as described in Marshall and Marx (2012), the consulting firm AC-Treuhand was

found guilty of participating in two cartels between 1993 and 2000. According to a European Court

ruling, AC-Treuhand “acted as a moderator in case of tensions between members of the agreement

and encouraged the parties to find compromises.” In Carmona and Laohakunakorn (2023), we show

that a consulting firm may help support cooperative payoffs in a repeated game by aggregating

information. In contrast, our results in the current paper suggest that a consulting firm may be less

effective in facilitating correlated equilibrium payoffs in a one-shot interaction.

11



the scenario of a tariff war, it is often the case that the effort to improve joint payoffs

is carried out by negotiators that each country sends to put forward its position.

Suppose then that players 1 and 2 are competing firms and hire a consulting firm

to act as a mediator to try to achieve a payoff of 42
3
each. For example, if the action

profiles (A,A), (A,B) and (B,A) are recommended, each with probability 1
3
, then

each player will find it optimal to follow the recommendation and the outcome is a

correlated equilibrium with payoffs (42
3
, 42

3
). However, the consulting firm may not be

an impartial mediator but may be susceptible to influence by the players themselves.

In this case, can the players still achieve higher payoffs with its help?

Consider a player who has received recommendation A. He finds it optimal to

play A because he believes that his opponent has received recommendations A and

B with equal probability. But if he could acquire some additional information about

the message of his opponent, then he will find it optimal to play B after receiving any

information that increases his belief that his opponent has received a recommendation

to play A. Thus, such player would have an incentive to find out from the consulting

firm what recommendation it made to his opponent. Moreover, each player may

try to influence the consulting firm into sending the recommendation for himself

to play B more often. In other words, players may have incentives (i) to acquire

additional information from the mediator and (ii) to influence the recommendations

of the mediator. We assume that the set of possible messages for each player is N in

order to allow the players to receive sufficiently rich information from the consulting

firm if they desire.

As a reduced form representation of the interaction between the players and the

consulting firm, we assume that each player chooses an information structure ϕi ∈

∆(N×N) and the consulting firm releases information according to β1ϕ1 + β2ϕ2. For

example, each player may try to persuade the consulting firm to provide information

according to his wishes; according to its unmodelled preferences, the consulting firm

favors player i with some fixed probability βi.

Another interesting interpretation of our joint information design problem, illus-

trated in the tariff war example, is that each player sends a negotiator to discuss
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the possible increase of their tariffs. The negotiators are tasked with conveying a

particular message to the other player. With probability βi, the negotiator for player

i “wins” and each reports the message as suggested by the winning negotiator back

to the players.

After having received his private message from the consulting firm (resp. its ne-

gotiator), each player then chooses whether or not to enter the new market (resp. to

increase its tariffs). Note that although each player i does not observe ϕ−i, m−i or

the realized information structure, each player has the option to choose an informa-

tion structure such that its support is disjoint from the support of the equilibrium

information structure chosen by the other player. We view this as a simple way of

giving each player the option to learn when the consulting firm implements the infor-

mation structure he requests (resp. when its negotiator succeeds). This implies that

the players will either learn which information structure was implemented or their

actions must be optimal conditional on both information structures.

Our results imply that the set of (Nash or sequential) equilibrium payoffs of the

extended game is:

{
(7, 1), (1, 7), (7

2
, 7
2
), β1(7, 1) + β2(1, 7), β1(7, 1) + β2(

7
2
, 7
2
), β1(

7
2
, 7
2
) + β2(1, 7)

}
.

In particular, (42
3
, 42

3
) is not a sequential equilibrium payoff and the action distribu-

tion 1
3
1(A,A)+

1
3
1(A,B)+

1
3
1(B,A) is not the action distribution of a sequential equilibrium

of the information design extensive-form game. This payoff profile and action distri-

bution could be obtained with ϕ1 = ϕ2 = 1
3
1(1,1) +

1
3
1(1,2) +

1
3
1(2,1) and πi(1, ϕi) = A

and πi(2, ϕi) = B for each i. But then player 1 would gain by deviating to ϕ′
1 = 1(2,1)

thereby increasing the probability that his preferred action profile, (B,A), is played.

Thus, the consulting firm cannot act as an effective mediator. The possibility

that the consulting firm can be influenced or manipulated by the players implies that

the achievable outcomes are only specific convex combinations of Nash outcomes. In

particular, each player will optimally choose to bring about his favorite outcome of

the ones that may result from the mediation. The consulting firm cannot improve the

players’ payoffs relative to Nash equilibrium, and, in particular, there is no sequential
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equilibrium of the extended game where the good outcome (A,A) is achieved without

the bad outcome (B,B) also being inadvertently played. Likewise, the negotiators

that countries employ cannot act as effective mediators since there is no sequential

equilibrium of the extended game where the good outcome (A,A) of low tariffs is

achieved without also triggering the bad outcome (B,B) of a trade war with positive

probability.12

Correlated equilibrium is justified in Aumann (1987) as the result of Bayesian

rationality—each player is maximizing his utility given his information. But where

does this information come from? If the information is chosen optimally by players

who have the ability to privately manipulate the information structure, then it is

possible that only a very specific subset of the convex hull of Nash payoffs can be

achieved in the chicken game.

4 Related literature and discussion

Many papers have considered whether correlated equilibrium payoffs can be sustained

as the outcome of an extended game where players can take “cheap” pre-play actions.

For 2-player games, we find that only a very restricted set of outcomes is achievable

when each player has the ability to influence and manipulate the information structure

in a general way. The distinguishing feature of our model is that we allow each

12Experimental evidence on correlated equilibria with an impartial mediator, e.g. Cason and

Sharma (2007) and Duffy and Feltovich (2010), suggests that individuals often do not follow the

mediator’s recommendation and, thus, do not achieve the correlated equilibrium the mediator aims

at obtaining. We expect the same problem to occur in experimental designs of our setting. However,

the main point of our setting is how individuals chose information designs assuming that players do

follow recommendations (more precisely, that each follows some equilibrium strategy upon observing

his message). This could be tested by adapting Cason and Sharma’s (2007) approach of having

robots who always follow recommendations to choose the action profile. Specifically, in such an

experiment, (i) some strategy profile describing how each player chooses his action for each possible

message would be fixed, (ii) players in the experiment would to choose only an information design

and (iii) the action profile would then be determined by the fixed strategy and the realized message

profile.
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player to choose any information structure he desires, and with some probability

the information structure he chooses is the one that actually determines the joint

distribution of the messages of all players. This section provides a discussion of these

features and how they relate with alternative formalizations in the literature.

Our specification captures certain reasonable features of unmediated interaction

that are missing from other models. We emphasise that our point is not that our

specification is right or that others are wrong, but simply that these modelling details

matter greatly for the question of which payoffs can be supported in equilibrium. Our

specification is of interest because it leads to the stark result that very few payoffs

can be supported.

4.1 Cheap talk

Several papers have studied the question of whether players can achieve correlated

equilibrium outcomes by directly communicating with each other via cheap talk before

playing the game.

For 2-player games, Aumann and Hart’s (2003) results imply that any payoff in

the convex hull of the Nash equilibrium payoffs can be achieved as the outcome of an

extended game where players talk for as long as they like before playing the game. In

Aumann and Hart (2003), messages are common knowledge so there is no possibility

of getting payoffs outside of the convex hull, but cheap talk is enough for players to

reach any outcome achievable using publicly observed lotteries. On the other hand,

in our model, there are privately observed lotteries but nevertheless players can only

get payoffs in co(u(N(G))) and not even all of those (even if we were to vary β). We

discuss this connection further in the next subsection.

Other papers (e.g. Bárány (1992), Ben-Porath (1998) or Gerardi (2004)) attempt

to achieve the entire set of correlated equilibrium payoffs via cheap talk, which requires

more than two players.13 Although our focus is primarily on 2-player games, we

discuss the extension of our results to more than two players in Section 4.7, which

13See Forges (2020), Section 4, for a survey of these papers.
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implies that, in general, payoffs from private information design are a strict subset of

the set of correlated equilibrium payoffs.

Beyond cheap talk, Ben-Porath (1998) attempts to achieve correlated equilibrium

payoffs by relaxing the cheap talk assumption, i.e. by introducing additional commu-

nication protocols. This will be discussed in Section 4.2.

4.1.1 Public cheap talk

Consider a (one-shot) cheap talk extension of a 2-player game G where each player

i ∈ N = {1, 2} chooses a message mi ∈ N (possibly at random). Each player

i ∈ N then observes m = (m1,m2) and chooses a mixed action πi(m) ∈ ∆(Ai). This

corresponds to a special case of Aumann and Hart’s (2003) model with complete

information and communication restricted to one period only. Nevertheless, in this

model, every rational convex combination of Nash payoffs can be achieved using

jointly controlled lotteries, in contrast to our model where only a few specific convex

combination of Nash payoffs can be achieved. In Section 4.3, we show that this special

case can be captured in our framework using an alternative aggregation function,

i.e. by specifying the appropriate mapping (ϕ1, ϕ2) 7→ ϕ that determines the true

information structure from the choices of the players.

The key difference between our specification and the setting of Aumann and Hart

(2003) is that each player in the latter is sure that his opponent receives the message

he sends, he knows what this message is, and his opponent cannot do anything to

influence this message. On the other hand, according to our specification, there is

always a possibility that each player gets to determine the messages of both players.

For example, if player 2 benefits from player 1 sending some message m1, then player

2 may want to take certain (unmodelled) actions that increase the likelihood that

player 1 will send message m1.

4.1.2 Cheap talk with private messages

There is a variation of the cheap talk framework of Section 4.1.1 that is related to

our model. This happens when each player i is chosen to be a sender with probability
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βi. When i is the sender, he chooses a message for the other player (possibly at

random) who then privately observes the message, i.e. player i chooses ϕ ∈ ∆(N);

player j then privately observes the realization of ϕ, while player i observes nothing

(for convenience, we represent this as player i receiving a dummy message ∅).

We can model this one-shot cheap talk extension of a 2-player game G with pri-

vate messages in our framework as follows. Each player i ∈ N = {1, 2} chooses

a probability distribution over the empty message for himself and a message in N

for the other player, i.e. player 1 chooses ϕ1 ∈ ∆({∅} × N) and player 2 chooses

ϕ2 ∈ ∆(N×{∅}). Then nature chooses a message profile m ∈ (N ∪ {∅})2 with proba-

bility ϕ[m] =
∑2

i=1 βiϕi[m].14 Each player i ∈ N observes ϕi andmi, and then chooses

a mixed action πi(mi, ϕi) ∈ ∆(Ai). Given (ϕ1, ϕ2,m), each player i ∈ N receives a

payoff of ui(π1(ϕ1,m1), π2(ϕ2,m2)).

If player i is the sender and j ̸= i is the receiver, then, for some mj ∈ supp(ϕi,N),

(πi(∅), πj(mj)) is played. Thus, for each i ∈ N and mj ∈ supp(ϕi,N), (πi(∅), πj(mj)) is

a Nash equilibrium. In particular, (πi(∅),
∑

mj
ϕi,N[mj]πj(mj))) is a Nash equilibrium,

and the set of (Nash or sequential) equilibrium payoffs of the simultaneous, one-shot

cheap talk extension of the 2-player game G with private messages is {β1u(σ) +

β2u(σ
′) : σ, σ′ ∈ N(G)}.

4.1.3 Cheap talk with random sender

Another variation is when each player i chooses a message mi ∈ N (possibly at

random) and, with probability βi, the messagemi is publicly observed by both players,

i.e. player i becomes the sender with probability βi. This variation is exactly as in

Section 4.1.1 except the publicly observed message profile is (mi,mi) with probability

βi instead of (m1,m2) with probability 1. It is also closely related to the variation in

4.1.2, the difference being that the message is publicly rather than privately observed.

This setting is, in fact, the same as our model with the additional restriction that

players must choose information designs supported on {(m1,m2) ∈ N2 : m1 = m2}.
14Note that the support of ϕ is contained in ({∅} × N) ∪ (N× {∅}) and, for each k ∈ N, ϕ[∅, k] =

β1ϕ1[∅, k] and ϕ[k, ∅] = β2ϕ2[k, ∅].
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Nevertheless, the set of (Nash or sequential) equilibrium payoffs of this setting is the

same set U that features in Corollary 2.

We emphasize that the equivalence in payoffs between this setting and ours is a

result that follows from Corollary 2, which implies that publicly observed lotteries are

sufficient to achieve all the payoffs in our model (in the two player case). In our model,

the players have access to privately observed lotteries but cannot be incentivized to

choose them because of the possibility of manipulation.

4.2 Communication protocols and manipulability

Beyond Aumann and Hart (2003), the literature has focused on whether players can

communicate in a more sophisticated manner to achieve correlated equilibrium pay-

offs. For instance, Ben-Porath (1998) shows that each correlated equilibrium can be

approximated by the action distribution of a sequential equilibrium in a specific infor-

mation design extensive-form game that includes the possibility of credibly revealing

messages and (in the case of two players) ball and urns.15 However, the specification

of such extensive form games rules out the possibility of certain manipulations by

assumption.

For example, consider once again the chicken game from Section 3. In Ben-Porath

(1998), the correlated equilibrium ϕ = 1
3
1(A,A) +

1
3
1(A,B) +

1
3
1(B,A) is close to the

action distribution of a sequential equilibrium of his information design extensive-

form, which works as follows. Player 2 lets player 1 choose a ball from an urn U1

and the ball which player 1 draws from U1 determines an action a1; the induced

distribution of player 1’s action is ϕA1 =
2
3
1A + 1

3
1B. Player 1 then gives player 2 an

urn U2(a1) inducing on A2 the distribution 1
2
1A + 1

2
1B if a1 = A and 1A if a1 = B.

After this has occurred, there is a sufficiently high probability that the contents of

the urns U1 and U2(a1) are revealed as well as the ball that was chosen by player 1

from U1. Our point is that there is a (unmodelled) possibility of manipulation by one

player in this extensive-form. Specifically, player 1 can send urn U2(B) to player 2

15Gerardi (2004) obtains a stronger result for games with at least five players. See also Urbano

and Vila (2002) for 2-player games where players are boundedly rational.
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when the ball he draws from U1 indicates that he should play A; in addition, he could

take all the balls from U1 and put them all inside again, except one ball indicating

that he should play B. In this way, he obtains a payoff of 7 instead of 42
3
.

We share Ben-Porath’s (1998) motivation that a reliable mediator who is immune

to manipulation by the players is not always available. However, players may wish

to manipulate the information structure regardless of whether it is the result of some

procedure designed by the players themselves or if it comes from a mediator. As

the previous example shows, if players are able to manipulate the communication

protocol, then they will do so as well, i.e. Ben-Porath’s (1998) results require that

certain manipulations are ruled out by assumption.

4.3 Aggregation of information designs

In our model, the true information structure is a convex combination of the ones

chosen by the players. A more general way of combining the two information designs is

to postulate an abstract aggregation function α : S2 → S such that if player 1 chooses

information structure ϕ1 ∈ S and player 2 chooses information structure ϕ2 ∈ S,

then the realized information structure is α(ϕ1, ϕ2) ∈ S. Alternative formulations of

information design in a setting without an explicit designer can then be obtained by

specifying alternative aggregation functions α.

One such alternative is for each player i ∈ {1, 2} to choose ϕi ∈ S and then

assume that each i receives two messages m1
i and m2

i , where m
1 = (m1

1,m
1
2) and

m2 = (m2
1,m

2
2) are independently drawn from ϕ1 and ϕ2 respectively. We note that

this formulation can be embedded in our framework under an alternative aggregation

function α. Indeed, let ψ : N2 × N2 → N2 be a bijection and let α(ϕ1, ϕ2) = (ϕ1 ×

ϕ2) ◦ ψ−1. If we additionally impose the restriction that players are only allowed to

choose ϕi such that ϕi[m
i
1,m

i
2] = 0 whenevermi

1 ̸= mi
2, then this formulation captures

exactly the model of Aumann and Hart (2003) when cheap talk is restricted to take

place over a single period.

In particular, for each i ∈ {1, 2}, let mi = (m1
i ,m

2
i ) and restrict each player’s

choice of ϕi to distributions over mi = (mi
1,m

i
2) such that ϕi[m

i
1,m

i
2] = 0 whenever
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mi
1 ̸= mi

2. Recall that m1 and m2 are independently drawn from ϕ1 and ϕ2 respec-

tively. Thus, the messagemi
i just reveals to i the message he sends to j, andmi can be

identified with the message sent by player i in Aumann and Hart (2003). According

to this formulation, note that player i has no ability to influence the distribution of

m−i. On the other hand, our specification of α does not restrict players from learning

about or influencing any aspect of the information structure.

4.4 Privacy

An alternative to our assumption that the information design choices are made pri-

vately is to assume that information design is public so that, for example, each

player observes the information structure β1ϕ1 + β2ϕ2 chosen by nature. To model

this, we can let, for each player i, i’s action be a function of the message that he

receives, his own information design and the information structure β1ϕ1 + β2ϕ2,

i.e. πi : Mi × S × S → ∆({A,B}). Under this assumption, the payoff (42
3
, 42

3
)

can be achieved by specifying that ϕ1 = ϕ2 = ϕ∗ = 1
3
1(A,B) +

1
3
1(B,A) +

1
3
1(A,A),

πi(mi, ϕi, ϕ
∗) = mi for each ϕi ∈ S andmi ∈ supp(ϕ∗

Mi
); and πi(mi, ϕi, ϕ̂) =

1
2
1A+

1
2
1B

for each ϕi ∈ S, ϕ̂ ̸= ϕ∗ and mi ∈ supp(ϕ̂Mi
). Intuitively, deviations from ϕ∗ can be

deterred by the threat of reverting to the mixed strategy Nash equilibrium whenever

some alternative information structure is realized. The reason we assume that infor-

mation design is private is because we are interested in how the ability to manipulate

the information structure affects the outcomes of the game. When the choice of in-

formation is observed, certain information structures can be sustained by the threat

of punishment. Our aim is instead to ask which outcomes can arise abstracting away

from the possibility of such threats.

4.5 Limits of perfect conditional ε-equilibria

Theorem 1 implies, in particular, that there exists a strategy of Gid which is a perfect

conditional ε-equilibrium for each ε > 0 for any 2-player game G, i.e. there exists a

sequential equilibrium as we have defined it. In finite games, π is a sequential equi-
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librium if and only if it is a perfect conditional ε-equilibrium for each ε > 0; thus,

our definition is the natural extension to infinite games. However, as argued by My-

erson and Reny (2020), a drawback of this definition is that a sequential equilibrium

may not exist in general. To circumvent this non-existence issue, they focus instead

on distributions of outcomes and payoffs that arise as limits of perfect conditional

ε-equilibria.

In our setting, and focusing on payoffs, the set of payoffs achievable with limits of

perfect conditional ε-equilibria is

U limit(G) ={u ∈ R2 : u = lim
L
u(πL) for some {πL}∞L=1 such that, for each ε > 0,

there exists L̄ ∈ N such that πL ∈ Π is a perfect conditional

ε-equilibrium of Gid for each L ≥ L̄}.

We show in the supplementary material to this paper that, for each 2-player game

G, U limit(G) = U . Thus, no change results to the set of equilibrium payoffs from

weakening the equilibrium concept from sequential equilibrium as we have defined it

(i.e. perfect conditional ε-equilibrium for each ε > 0) to limits of perfect conditional

ε-equilibrium as ε→ 0.16

4.6 Mixed information designs

We have focused so far in the case where players are not allowed to mix in their choice

of an information design. As we argue in this section, allowing for mixed information

designs does not significantly change our results.17

We focus on Corollary 3 and let

U∗(G) = {u(π) : π ∈ Π∗ is a sequential equilibrium of Gid},

where, recall, Π∗ is the set of mixed strategies of Gid. We then have that, for each

16The limit notion is weaker because limits of perfect conditional ε-equilibrium strategies may not

be a strategy; thus, there may be no sequential equilibrium (as we have defined it) that achieves the

limit payoff.
17See the supplementary material to this paper for the details for this section.
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2-player game G ∈ G,

U(G) ⊆ U∗(G) ⊆ {β1u(σ) + β2u(σ
′) : σ, σ′ ∈ N(G)}.

Thus, in generic 2-player games, sequential equilibrium payoffs of Gid when mixed

information designs are allowed continue to be specific convex combinations of two

Nash equilibrium payoffs.

In games with a unique equilibrium, it then follows that U(G) = U∗(G) =

u(N(G)). If G is a 2-player game that has more than one Nash equilibrium, then

mixed information designs can expand the set of equilibrium payoffs. We illustrate

this claim in the battle of the sexes by showing in the supplementary material to

this paper that β1u(B,B) + β2u(A,A) ∈ U∗(G) \ U(G). The reason why this payoff

profile does not belong to U(G) is that e.g. player 2 is obtaining a lower payoff if his

information design is chosen than if player’s 1 design is chosen. Thus, player 2 could

deviate in her information design by sending a message to player 1 from player 1’s

design which triggers player 1 to choose B. With mixed designs, player 1 can avoid

this profitable deviation by player 2 by obfuscating her message, for instance by uni-

formly randomizing over L information designs, ϕ1
1, . . . , ϕ

L
1 , with ϕ

l
1 sending message

l to herself and choosing B if and only if she receives message l and had chosen ϕl1.

In this way, if player 2 sends message l ∈ {1, . . . , L} to player 1, this will trigger B

only with probability 1/L.

Thus, the possibility of mixing in the first period allows additional payoffs to be

sustained, but since, for G ∈ G,

U∗(G) ⊆ {β1u(σ) + β2u(σ
′) : σ, σ′ ∈ N(G)},

our main conclusion that only a small subset of correlated equilibrium payoffs can

be achieved with private information design continues to holds. It is natural to ask

whether also

{β1u(σ) + β2u(σ
′) : σ, σ′ ∈ N(G)} ⊆ U∗(G),

i.e. whether the two sets are in fact equal. This is false in general, e.g. when σ

involves a weakly dominated action for player 1. Nevertheless, the argument in the
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previous paragraph can be used to show that each player can only send a message to

his opponent that triggers some favorable action for himself with a probability that is

essentially equal to zero in the limit as L→ ∞. Thus, considering instead the weaker

notion of limits of perfect conditional ε-equilibrium payoffs (as discussed in Section

4.5), i.e.

U limit∗(G) ={u ∈ R2 : u = lim
L
u(πL) for some {πL}∞L=1 such that, for each ε > 0,

there exists L̄ ∈ N such that πL ∈ Π∗ is a perfect conditional

ε-equilibrium of Gid for each L ≥ L̄}

we obtain that, for each 2-player game G,

{β1u(σ) + β2u(σ
′) : σ, σ′ ∈ N(G)} ⊆ U limit∗(G).

4.7 More than two players

The extension of our setting to the case of more than two players is straightforward.18

Theorem 1 extends, with condition (2) in part 3 stating that, for each i ∈ N and

mi ∈ ∪j∈N\{i}supp(ϕ
∗
j,Mi

), πi(mi) solves

max
αi∈∆(Ai)

∑
m−i

∑
j∈N\{i} βjϕ

∗
j [mi,m−i]∑

j∈N\{i} βjϕ
∗
j,Mi

[mi]
ui(αi, π−i(m−i)).

Corollaries 1, 2 and 3 do not extend. To see this, consider the following game,

Example 2.5 in Aumann (1974), where player 1 chooses the row, player 2 chooses the

column, and player 3 chooses the matrix (A3 = {L,M,R}):

1\2 A B

A 0, 0, 3 0, 0, 0

B 1, 0, 0 0, 0, 0

1\2 A B

A 2, 2, 2 0, 0, 0

B 0, 0, 0 2, 2, 2

1\2 A B

A 0, 0, 0 0, 0, 0

B 0, 1, 0 0, 0, 3

If min{2β1, 2β2} ≥ β3, then (1 − β3)(2, 2, 2) + β3(0, 0, 3) is a sequential equilibrium

payoff. This payoff can be obtained by setting ϕ∗
1 = ϕ∗

2 =
1
2
1(m′

1,m
′
2,m̂3) +

1
2
1(m′′

1 ,m
′′
2 ,m̂3),

18See the supplementary material to this paper for the details for this section.
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ϕ∗
3 =

1
2
1(m′

1,m
′
2,m̂

′
3)
+ 1

2
1(m′′

1 ,m
′′
2 ,m̂

′′
3 )

and

π1(m
′
1) = A, π1(m

′′
1) = B,

π2(m
′
2) = A, π2(m

′′
2) = B,

π3(m̂3) =M,π3(m̂
′
3) = L and π3(m̂

′′
3) = R.19

Thus, even though ui ≤ 1 for each u ∈ u(N(G)). Thus, correlation of players’

actions through private information design can still significantly improve the payoff

to everybody relative to Nash equilibrium payoffs.

Nevertheless, it is also clear that, with private information design, not all corre-

lated equilibrium payoffs can be achieved. For example, consider (2, 2, 2) ∈ u(C(G));

if (2, 2, 2) ∈ U(G), then, for some sequential equilibrium π ∈ Π,

(2, 2, 2) =
∑

m∈supp(ϕ∗)

ϕ∗[m]u(π(m))

and, thus, π(m) = (A,A,M) or π(m) = (B,B,M) for each m ∈ supp(ϕ∗). But then,

for each m ∈ supp(ϕ∗
3), π3(m3) is not a best-reply against π−3(m−3), contradicting

(the extension of) Theorem 1.20

References

Aliprantis, C., and K. Border (2006): Infinite Dimensional Analysis. Springer,

Berlin, 3rd edn.

Aumann, R. (1974): “Subjectivity and Correlation in Randomized Strategies,” Jour-

nal of Mathematical Economics, 1, 67–96.

(1987): “Correlated Equilibrium as an Expression of Bayesian Rationality,”

Econometrica, 55, 1–18.

19Note that π(m′
1,m

′
2, m̂3) = (A,A,M), π(m′′

1 ,m
′′
2 , m̂3) = (B,B,M), π(m′

1,m
′
2, m̂

′
3) = (A,A,L)

and π(m′′
1 ,m

′′
2 , m̂

′′
3) = (B,B,R).

20Note that (2, 2, 2) ∈ u(C(G)) cannot be approximated by u ∈ U(G). Indeed, to get close

to (2, 2, 2), ϕ∗ must put small probability on m such that π(m) ̸∈ {(A,A,M), (B,B,M)}. Thus,

ϕ∗
3 must also put small probability on such m. But then there exists m′ ∈ supp(ϕ∗

3) such that

π(m′) ∈ {(A,A,M), (B,B,M)}, which contradicts (the extension of) Theorem 1.

24



Aumann, R., and S. Hart (2003): “Long Cheap Talk,” Econometrica, 71, 1619–

1660.
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A Appendix

A.1 Definition of perfect conditional ε-equilibrium

A sequential equilibrium π ∈ Π∗ is, by definition, a perfect conditional ε-equilibrium

for each ε > 0. For each ε > 0, π ∈ Π∗ is a perfect conditional ε-equilibrium if there

exits a net {πα, pα}α such that the following properties hold. The first five require that

{πα}α is a net of strategies converging to π that assign strictly positive probability

to each action and information design beyond a certain order, and that {pα}α is a

net of nature’s choices regarding the probability distribution of message profiles for

each profile of information designs (ϕ1, ϕ2) that converges to β1ϕ1 + β2ϕ2 and assigns

strictly positive probability to each message profile beyond a certain order:

(i) For each α, πα is a strategy and pα : S2 → ∆(M) is measurable,

(ii) For each i ∈ N , supB∈B(S) |π
1,α
i [B]− π1

i [B]| → 0 and

sup
(mi,ϕi)∈Mi×S,ai∈Ai

|π2,α
i (mi, ϕi)[ai]− πi(mi, ϕi)[ai]| → 0, 21

(iii) For each i ∈ N , mi ∈ Mi, ϕi ∈ S and ai ∈ Ai, there is ᾱ such that π1,α
i [ϕi] > 0

and π2,α
i (mi, ϕi)[ai] > 0 for each α ≥ ᾱ,

(iv) supϕ∈S2,B⊆M |pα(ϕ)[B]−
∑

i∈N βiϕi[B]| → 0, and

(v) For each ϕ ∈ S2 and m ∈M , there is ᾱ such that pα(ϕ)[m] > 0 for each α ≥ ᾱ.

A final condition requires that, for each α, πα is such that the payoff that each player

obtains by following it at each information set which is reached with strictly positive

probability is within ε of his maximum payoff conditional on that information set:

(vi) for each α and i, j ∈ N , with j ̸= i,

21We let B(S) denote the class of Borel measurable subsets of S and, for each ϕ ∈ S, 1ϕ denote

the probability measure on S degenerate at ϕ.
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(a) For each ϕ′
i ∈ S,

∑
ϕ∈supp(π1,α)

π1,α[ϕ]

(∑
m

pα(ϕ)[m]ui(π
2,α(m,ϕ))

)
≥

∑
ϕ∈supp(1ϕ′

i
×π1,α

j )

(1ϕ′i × π1,α
j )[ϕ]

(∑
m

pα(ϕ)[m]ui(π
2,α(m,ϕ))

)
− ε,

where π1,α = π1,α
1 × π1,α

2 , and

(b) For each i ∈ N , (mi, ϕi) ∈Mi × S such that

π1,α
i [ϕi]

∑
ϕj∈supp(π1,α

j )

π1,α
j [ϕj]p

α
Mi
(ϕi, ϕj)[mi] > 0

and ai ∈ Ai,∑
ϕj∈supp(π1,α

j ) π
1,α
j [ϕj]

(∑
mj
pα(ϕi, ϕj)[mi,mj]ui(π

2,α(m,ϕ))
)

∑
ϕj∈supp(π1,α

j ) π
1,α
j [ϕj]pαMi

(ϕi, ϕj)[mi]
≥

∑
ϕj∈supp(π1,α

j ) π
1,α
j [ϕj]

(∑
mj
pα(ϕi, ϕj)[mi,mj]ui(ai, π

2,α
j (mj, ϕj))

)
∑

ϕj∈supp(π1,α
j ) π

1,α
j [ϕj]pαMi

(ϕi, ϕj)[mi]
− ε.

A.2 Proof of Theorem 1

Every sequential equilibrium is a Nash equilibrium, hence condition 2 implies con-

dition 1. Thus, it suffices to show that condition 1 implies condition 3 and that

condition 3 implies condition 2.

A.2.1 Proof that condition 1 implies condition 3

Let π ∈ Π be a Nash equilibrium of Gid. Then∑
m

ϕ∗[m]ui(π(m)) ≥
∑
m

(ϕ′
i, ϕ

∗
j)[m]ui(π

′
i(mi, ϕ

′
i), πj(mj)), (3)

for each i, j ∈ N , j ̸= i, ϕ′
i ∈ S and π′

i :Mi×S → ∆(Ai), where (ϕ
′
i, ϕ

∗
j) = βiϕ

′
i+βjϕ

∗
j .

It follows from (3) that∑
mj

ϕ∗[m]

ϕ∗
Mi
[mi]

ui(π(m)) ≥
∑
mj

ϕ∗[m]

ϕ∗
Mi
[mi]

ui(ai, πj(mj)) (4)
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for each i, j ∈ N , j ̸= i, mi ∈ supp(ϕ∗
Mi
) and ai ∈ Ai.

In each Nash equilibrium of Gid, any player i ∈ N must send optimal messages

m in the sense that they induce an action profile π(m) that maximizes i’s payoff

function. This is stated in Lemma 1 which is a preliminary result for condition (1).

Lemma 1. For each i ∈ N , supp(ϕ∗
i ) ⊆ {m ∈M : ui(π(m)) = supm′∈M ui(π(m

′))}.

Proof. Suppose not; then there is i ∈ N , m′ ∈ supp(ϕ∗
i ) and m

∗ ∈ M such that

ui(π(m
∗)) > ui(π(m

′)). Define ϕ′
i by setting, for each m ∈ supp(ϕ∗

i ),

ϕ′
i[m] =


0 if m = m′,

ϕ∗
i [m

∗] + ϕ∗
i [m

′] if m = m∗,

ϕ∗
i [m] otherwise,

and let π′
i : Mi × S → ∆(Ai) be such that π′

i(mi, ϕ
′
i) = πi(mi, ϕ

∗
i ) for each mi ∈ Mi.

Then ∑
m

(ϕ′
i, ϕ

∗
j)[m]ui(π

′
i(mi, ϕ

′
i), πj(mj))−

∑
m

ϕ∗[m]ui(π(m))

=
∑
m

(ϕ′
i, ϕ

∗
j)[m]ui(π(m))−

∑
m

ϕ∗[m]ui(π(m))

=
∑
m

βi (ϕ
′
i[m]− ϕ∗

i [m])ui(π(m))

= βiϕ
∗
i [m

′]
(
ui(π(m

∗))− ui(π(m
′))
)
> 0.

But this contradicts (3).

The conclusion of Lemma 1 can be strengthened: for a message m to be optimal,

ui(π(m)) must achieve maxm′
j
vi(πj(m

′
j)) and, thus, πi(mi) be a best-reply to πj(mj).

Lemma 2. For each i, j ∈ N with i ̸= j,

supp(ϕ∗
i ) ⊆ {m ∈M : vi(πj(mj)) = sup

m′
j∈Mj

vi(πj(m
′
j)) and πi(mi) ∈ BRi(πj(mj))}.

Proof. Suppose not; then there is i ∈ N , j ̸= i, m′ ∈ supp(ϕ∗
i ) and m∗ ∈ M

such that (i) vi(πj(m
∗
j)) > vi(πj(m

′
j)) or (ii) vi(πj(m

′
j)) = supm̂j∈Mj

vi(πj(m̂j)) and

πi(m
′
i) ̸∈ BRi(πj(m

′
j)); in case (ii), let m∗ = m′. Let a∗i ∈ BRi(πj(m

∗
j)), m̄i ̸∈
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supp(ϕ∗
Mi
), ϕ′

i = 1(m̄i,m∗
j )

and π′
i : Mi × S → ∆(Ai) be such that π′

i(m̄i, ϕ
′
i) = a∗i and

π′
i(mi, ϕ

′
i) = πi(mi, ϕ

∗
i ) for each mi ̸= m̄i. Then∑

m

(ϕ′
i, ϕ

∗
j)[m]ui(π

′
i(mi, ϕ

′
i), πj(mj))−

∑
m

ϕ∗[m]ui(π(m))

=
∑
m

βiϕ
′
i[m]ui(π

′
i(mi, ϕ

′
i), πj(mj))−

∑
m

βiϕ
∗
i [m]ui(π(m))

= βi

(
ui(a

∗
i , πj(m

∗
j))−

∑
m∈supp(ϕ∗i )

ϕ∗
i [m]ui(π(m))

)
= βi

(
vi(πj(m

∗
j))− ui(π(m

′))
)

because ui(π(m)) = ui(π(m
′)) for each m ∈ supp(ϕ∗

i ) by Lemma 1 as m′ ∈ supp(ϕ∗
i ).

Thus, if vi(πj(m
∗
j)) > vi(πj(m

′
j)), then

vi(πj(m
∗
j))− ui(π(m

′)) ≥ vi(πj(m
∗
j))− vi(πj(m

′
j)) > 0;

if vi(πj(m
∗
j)) = vi(πj(m

′
j)), then πi(m

′
i) ̸∈ BRi(πj(m

′
j)) and

vi(πj(m
∗
j))− ui(π(m

′)) > vi(πj(m
∗
j))− vi(πj(m

′
j)) ≥ 0.

It then follows that
∑

m(ϕ
′
i, ϕ

∗
j)[m]ui(π

′
i(mi, ϕ

′
i), πj(mj))−

∑
m ϕ

∗[m]ui(π(m)) > 0 in

either case. But this contradicts (3).

Lemma 2 implies that πi(mi) is a best-reply against πj(mj) wheneverm ∈ supp(ϕ∗
i )

and i, j ∈ N with i ̸= j. We will now show that if, in addition, mi ∈ supp(ϕ∗
j,Mi

),

then πi(mi) solves

max
αi∈∆(Ai)

∑
mj

ϕ∗
j [mi,mj]

ϕ∗
j,Mi

[mi]
ui(αi, πj(mj)).

Thus, whenever mi ∈ supp(ϕ∗
i,Mi

) ∩ supp(ϕ∗
j,Mi

), πi(mi) solves player i’s expected

payoff conditional on his information design ϕ∗
i being chosen and also conditional

on it not being chosen. The reason for this is that player i can always differentiate

the messages he receives from himself from those that he receives from the other

players: if m ∈ supp(ϕ∗
i ) is such that πi(mi) does not maximize i’s expected payoff

conditional on his information design ϕ∗
i not being chosen, then player i would gain by

deviating from ϕ∗
i by simply sending a message (m̄i,mj) with probability one for some

m̄i ̸∈ supp(ϕ∗
Mi
). If he receives message mi, then he can be sure that his information
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design has not been chosen and can choose a solution to that problem in response to

mi; if he receives message m̄i, then the can be sure that his information design has

been chosen and choose πi(mi), which is a best-reply against mj, in response to m̄i.

Lemma 3. For each i, j ∈ N with i ̸= j,

supp(ϕ∗
i ) ⊆

{
m ∈M : mi ̸∈ supp(ϕ∗

j,Mi
) or πi(mi) solves

max
αi∈∆(Ai)

∑
mj

ϕ∗
j [mi,mj]

ϕ∗
j,Mi

[mi]
ui(αi, πj(mj))

}
.

Proof. Suppose not; then there is i ∈ N and m′ ∈ supp(ϕ∗
i ) such that m′

i ∈

supp(ϕ∗
j,Mi

), j ̸= i, and πi(m
′
i) does not solve

max
αi∈∆(Ai)

∑
mj

ϕ∗
j [m

′
i,mj]

ϕ∗
j,Mi

[m′
i]
ui(αi, πj(mj)). (5)

Let a∗i be a solution to problem (5), m̄i ̸∈ supp(ϕ∗
Mi
), ϕ′

i = 1(m̄i,m′
j)
and π′

i :Mi×S →

∆(Ai) be such that

π′
i(mi, ϕ

′
i) =


a∗i if mi = m′

i,

πi(m
′
i) if mi = m̄i,

πi(mi) otherwise.

Then ∑
m

(ϕ′
i, ϕ

∗
j)[m]ui(π

′
i(mi, ϕ

′
i), πj(mj))−

∑
m

ϕ∗[m]ui(π(m))

= βi

(
ui(π(m

′))−
∑

m∈supp(ϕ∗i )

ϕ∗
i [m]ui(π(m))

)
+βj

∑
mj

ϕ∗
j [m

′
i,mj]

(
ui(a

∗
i , πj(mj))− ui(πi(m

′
i), πj(mj))

)
= βj

∑
mj

ϕ∗
j [m

′
i,mj]

(
ui(a

∗
i , πj(mj))− ui(πi(m

′
i), πj(mj))

)
where the last equality follows by Lemma 1 since m′ ∈ supp(ϕ∗

i ). Since πi(m
′
i) does

not solve problem (5) but a∗i does, it follows that∑
mj

ϕ∗
j [m

′
i,mj]

ϕ∗
j,Mi

[m′
i]

(
ui(a

∗
i , πj(mj))− ui(πi(m

′
i), πj(mj))

)
> 0
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and, since m′
i ∈ supp(ϕ∗

j,Mi
),∑

mj

ϕ∗
j [m

′
i,mj]

(
ui(a

∗
i , πj(mj))− ui(πi(m

′
i), πj(mj))

)
> 0.

Hence,
∑

m(ϕ
′
i, ϕ

∗
j)[m]ui(π

′
i(mi, ϕ

′
i), πj(mj)) −

∑
m ϕ

∗[m]ui(π(m)) > 0. But this con-

tradicts (3).

It follows by Lemmas 2 and 3 that, for each Nash equilibrium outcome, i, j ∈ N ,

i ̸= j, and m ∈ supp(ϕ∗
i ), condition (1) in Theorem 1 holds and πi(mi) solves

max
αi∈∆(Ai)

∑
mj

ϕ∗
j [mi,mj]

ϕ∗
j,Mi

[mi]
ui(αi, πj(mj))

whenever mi ∈ supp(ϕ∗
j,Mi

) and, hence, mi ∈ supp(ϕ∗
i,Mi

) ∩ supp(ϕ∗
j,Mi

). In fact,

regarding (1), note that if i ∈ N and m ∈ supp(ϕ∗
i ), then mk ∈ supp(ϕ∗

Mk
) for each

k ∈ N and, thus, m ∈M∗. Hence,

vi(πj(mj)) ≤ max
m′

j∈M∗
j

vi(πj(m
′
j)) ≤ sup

m′
j∈Mj

vi(πj(m
′
j)) = vi(πj(mj)).

Condition (4) implies that, for each i ∈ N , πi(mi) solves

max
αi∈∆(Ai)

∑
mj

ϕ∗
j [mi,mj]

ϕ∗
j,Mi

[mi]
ui(αi, πj(mj))

whenever mi ∈ supp(ϕ∗
j,Mi

) \ supp(ϕ∗
i,Mi

). This, together with what has been shown

in the previous paragraph, shows that condition (2) in Theorem 1 holds.

A.2.2 Proof that condition 3 implies condition 2

Let
(
(ϕ∗

i )i∈supp(β),
(
(πi(mi))mi∈supp(ϕ∗Mi

)

)
i∈N

)
be such that conditions (1) and (2) in

Theorem 1 hold; we will show that it is the outcome of a sequential equilibrium.

We will construct a sequential equilibrium π with the desired outcome. Let i ∈ N

and j ̸= i. Set π1
i = ϕ∗

i and π2
i (mi, ϕ

∗
i ) = πi(mi) for each mi ∈ supp(ϕ∗

Mi
) since the

goal is to define a strategy with outcome
(
(ϕ∗

i )i∈supp(β),
(
(πi(mi))mi∈supp(ϕ∗Mi

)

)
i∈N

)
.

We will specify the remaining values of π2
i as follows. Let

m̄i ∈ supp(ϕ∗
i,Mi

).
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Informally, we will define {πα, pα}α such that player i, after choosing ϕi and receiving

mi, believes that ϕj = ϕ∗
j and that mj occurs with probability

ϕ∗i [m̄i,mj ]

ϕ∗i,Mi
[m̄i]

. In this case,

we set player i’s action to be πi(m̄i), which is a best-reply against the action πj(mj)

of player j for each mj such that ϕ∗
i [m̄i,mj] > 0.

The above belief is only possible when βiϕi,Mi
[mi]+βiϕi,Mj

[mj] = 0 since otherwise,

player i has to assign probability
βiϕi[mi,mj ]+βjϕ

∗
j [mi,mj ]

βiϕi,Mi
[mi]+βjϕ∗j,Mi

[mi]
to (mj, ϕ

∗
j). In this case, we

specify player i’s action to be a best-reply against the expected action of player j.

The formal details are as follows. For each mi ∈ Mi and ϕi ∈ S such that

βiϕi,Mi
[mi] + βjϕ

∗
j,Mi

[mi] = 0, let π2
i (mi, ϕi) = πi(m̄i). In particular, π2

i (mi, ϕ
∗
i ) =

πi(m̄i) if mi ̸∈ supp(ϕ∗
Mi
) since then βiϕ

∗
i,Mi

[mi] + βjϕ
∗
j,Mi

[mi] = 0. Thus, πi(mi) =

π2
i (mi, ϕ

∗
i ) is defined for each i ∈ N and mi ∈Mi.

For eachmi ∈Mi and ϕi ̸= ϕ∗
i such that βiϕi,Mi

[mi]+βjϕ
∗
j,Mi

[mi] > 0, let π2
i (mi, ϕi)

be a best-reply against∑
mj

βiϕi[mi,mj] + βjϕ
∗
j [mi,mj]

βiϕi,Mi
[mi] + βjϕ∗

j,Mi
[mi]

πj(mj).

We may assume that πi :Mi×S → ∆(Ai) is measurable. Note first thatMi×S =

∪3
r=1Br with

B1 = {(mi, ϕi) : ϕi = ϕ∗
i },

B2 = {(mi, ϕi) : ϕi ̸= ϕ∗
i and βiϕi,Mi

[mi] + βjϕ
∗
j,Mi

[mi] = 0} and

B3 = {(mi, ϕi) : ϕi ̸= ϕ∗
i and βiϕi,Mi

[mi] + βjϕ
∗
j,Mi

[mi] > 0}.

For each r ∈ {1, 2, 3}, Br is measurable. Indeed, B1 is closed, B2 is the intersec-

tion of an open set, {(mi, ϕi) : ϕi ̸= ϕ∗
i }, with a closed set, {(mi, ϕi) : βiϕi,Mi

[mi] +

βjϕ
∗
j,Mi

[mi] = 0}, and B3 is open. Then, for each measurable B ⊆ ∆(Ai), π
−1
i (B) ∩

B1 is measurable since π−1
i (B) ∩ B1 is countable. Regarding π−1

i (B) ∩ B3: Let

f : Mi × S → ∆(Aj) be defined by setting, for each (mi, ϕi) ∈ B3, f(mi, ϕi) =∑
mj

βiϕi[mi,mj ]+βjϕ
∗
j [mi,mj ]

βiϕi,Mi
[mi]+βjϕ∗j,Mi

[mi]
πj(mj). Letting BRi : ∆(Aj) ⇒ ∆(Ai) be player i’s best-

reply correspondence in G, define Ψ :Mi×S ⇒ ∆(Ai) by setting, for each (mi, ϕi) ∈

B3, Ψ(mi, ϕi) = BRi(f(mi, ϕi)). Since ∆(Ai) is compact, f is continuous and BRi
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is upper hemicontinuous, it follows that Ψ is upper hemicontinuous and, hence, mea-

surable (and, thus, weakly measurable). Hence, Ψ has a measurable selection by the

Kuratowski-Ryll-Nardzewski Selection Theorem (e.g. Aliprantis and Border (2006,

Theorem 18.13, p. 600)). Finally, for each measurable B ⊆ ∆(Ai), π
−1
i (B) = B2 if

πi(m̄i) ∈ B and π−1
i (B) = ∅ otherwise; thus π−1

i (B) ∩B2 is measurable.

We define {πα, pα}α as follows. The index set consists of α = (k, F, F̂ ) such that

k ∈ N, F is a finite subset of N and F̂ is a finite subset of S; this set is partially

ordered by defining (k′, F ′, F̂ ′) ≥ (k, F, F̂ ) if k′ ≥ k, F ⊆ F ′ and F̂ ⊆ F̂ ′. For each

mj ∈Mj, let

q̄i[mj] =
ϕ∗
i [m̄i,mj]

ϕ∗
i,Mi

[m̄i]

be the ϕ∗
i -probability of mj conditional on m̄i. For each α = (k, F, F̂ ), we define

pα(ϕ) such that the probability distribution of message profiles is β1ϕ1 + β2ϕ2 with

probability 1 − k−1; with probability k−3, it equals a probability distribution τα

that assigns strictly positive probability to each message in F and in the support

of information designs in F̂ ; and, with the remaining probability of k−1(1 − k−2), it

equals a probability distribution qα such that the probability of mj conditional on mi

equals q̄i[mj]. Let

ταi =

∑
l∈F∪(∪ϕ∈F̂ supp(ϕMi

)) 2
−l1l∑

l∈F∪(∪ϕ∈F̂ supp(ϕMi
)) 2

−l ,

qαi = ταi × q̄i,

τα = τα1 × τα2 ,

qα = (qα1 + qα2 )/2,

µα = (1− k−2)qα + k−2τα, and

pα(ϕ) = (1− k−1)(β1ϕ1 + β2ϕ2) + k−1µα.

Furthermore, let υX ∈ ∆(X) be uniform on X whenever X is a finite set and let

π1,α
i = (1− k−3)1ϕ∗i + k−3υF̂ and π2,α

i (mi, ϕi) = (1− k−1)πi(mi, ϕi) + k−1υAi

for each (mi, ϕi) ∈ Mi × S. Thus, all information designs in F̂ and all actions are

played with strictly positive probability. Furthermore, the probability of an informa-

tion design different from ϕ∗
i is much smaller than the probability of qα (i.e. their
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ratio is k−3/k−1(1 − k−2) and goes to zero), which implies that if player i receives a

message that is neither in the support of the design he choose nor in the support of

ϕ∗
j , then player i believes that this happened because the message was drawn from qα

and not because player j chose a design different from ϕ∗
j .

Let ε > 0. We have that the conditions (i)–(v) in the definition of perfect condi-

tional ε-equilibrium hold by construction. We will show that condition (vi) holds for

some subnet of {πα, pα}α. Some technical details of this argument are simplified by

our construction of {πα, pα}α which is such that supp(π1,α) and supp(pα) are finite

for each α. We define

Si(F, F̂ ) =
((
F ∪ (∪ϕ∈F̂ supp(ϕMi

)) ∪ (supp(ϕ∗
j,Mi

))
)
× F̂

)
∪
((
F ∪ (∪ϕ∈F̂ supp(ϕMi

)) ∪ (supp(ϕ∗
Mi
))
)
× {ϕ∗

i }
)

which is the set of pairs (mi, ϕi) that can occur with strictly positive probability.

Indeed, if (m,ϕ) ∈ N2 × S2 is such that π1,α[ϕ] > 0 and
∑

ϕ′∈supp(π1,α) p
α(ϕ′)[m] > 0,

then (mi, ϕi) ∈ Si(F, F̂ ) for each i ∈ N .

Recall that α = (k, F, F̂ ). In what follows, we will often fix F and F̂ and take

limits as k → ∞. Regarding condition (vi) (a), let i, j ∈ N , j ̸= i and ϕ′
i ∈ S. We

have that, for each finite subsets F and F̂ of N and S, respectively,

lim
k

∑
ϕ∈supp(π1,α)

π1,α[ϕ]

(∑
m

pα(ϕ)[m]ui(π
2,α(m,ϕ))

)
=
∑
m

ϕ∗[m]ui(π(m))

and that

lim
k

∑
ϕ∈supp(1ϕ′

i
×π1,α

j )

(1ϕ′i × π1,α
j )[ϕ]

(∑
m

pα(ϕ)[m]ui(π
2,α(m,ϕ))

)
=

∑
m

(ϕ′
i, ϕ

∗
j)[m]ui(πi(mi, ϕ

′
i), πj(mj)).

Hence, by considering α such that k ≥ k0 for some k0 ∈ N, it is enough to show that∑
m

ϕ∗[m]ui(π(m)) ≥
∑
m

(ϕ′
i, ϕ

∗
j)[m]ui(πi(mi, ϕ

′
i), πj(mj)),

which is equivalent to∑
m

ϕ∗
i [m]ui(π(m)) ≥

∑
m

ϕ′
i[m]ui(πi(mi, ϕ

′
i), πj(mj)). (6)
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For each mj ∈ Mj, πj(mj) ∈ {πj(m′
j) : m′

j ∈ supp(ϕ∗
Mj

)} since πj(mj) = πj(m̄j)

whenever mj ̸∈ supp(ϕ∗
Mj

). Thus, by (1),∑
m

ϕ′
i[m]ui(πi(mi, ϕ

′
i), πj(mj)) ≤

∑
m

ϕ′
i[m]vi(πj(mj))

≤ max
mj∈M∗

j

vi(πj(mj)) =
∑
m

ϕ∗
i [m]ui(π(m))

and, hence, (6) holds. It then follows that condition (vi) (a) also holds.

Consider next condition (vi) (b). For each i, j ∈ N , i ̸= j, finite subset F of N,

finite subset F̂ of S, (mi, ϕi) ∈ Si(F, F̂ ) and γi ∈ ∆(Ai), we have that

lim
k

∑
ϕj∈supp(π1,α

j ) π
1,α
j [ϕj]

(∑
mj
pα(ϕi, ϕj)[mi,mj]ui(γi, π

2,α
j (mj, ϕj))

)
∑

ϕj∈supp(π1,α
j ) π

1,α
j [ϕj]pαMi

(ϕi, ϕj)[mi]

=
∑
mj

ϕ∗
i [m̄i,mj]

ϕ∗
i,Mi

[m̄i]
ui(γi, πj(mj))

if βiϕi,Mi
[mi] + βjϕ

∗
j,Mi

[mi] = 0, and

lim
k

∑
ϕj∈supp(π1,α

j ) π
1,α
j [ϕj]

(∑
mj
pα(ϕi, ϕj)[mi,mj]ui(γi, π

2,α
j (mj, ϕj))

)
∑

ϕj∈supp(π1,α
j ) π

1,α
j [ϕj]pαMi

(ϕi, ϕj)[mi]
=

∑
mj

βiϕi[mi,mj] + βjϕ
∗
j [mi,mj]

βiϕi,Mi
[mi] + βjϕ∗

j,Mi
[mi]

ui(γi, πj(mj))

if βiϕi,Mi
[mi] + βjϕ

∗
j,Mi

[mi] > 0. The latter case is clear since all terms in the denom-

inator of the fraction converge to zero except the one that converges to βiϕi,Mi
[mi] +

βjϕ
∗
j,Mi

[mi] and similarly regarding the numerator.

In the former case, both the numerator and the denominator converge to zero

since βiϕi,Mi
[mi] + βjϕ

∗
j,Mi

[mi] = 0. Multiplying each by k, it follows that all terms

converge to zero except the ones corresponding to the case where π1,α
j = ϕ∗

j and

pα(ϕi, ϕ
∗
j) = qα. Furthermore, for each mj ∈Mj,

qα[mi,mj] = 2−1(qαi [mi,mj] + qαj [mi,mj]),

qαi [mi,mj] = ταi [mi]q̄i[mj] and

qαj [mi,mj] = 0,
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the latter since mi ̸∈ supp(ϕ∗
j,Mi

). Hence, qα[mi,mj] = 2−1ταi [mi]q̄i[mj] and q
α
Mi
[mi] =

2−1ταi [mi]. Thus,
qα[mi,mj]

qαMi
[mi]

= q̄i[mj] =
ϕ∗
i [m̄i,mj]

ϕ∗
i,Mi

[m̄i]
.

We will next show that πi(mi, ϕi) solves

max
γi∈∆(Ai)

lim
k

∑
ϕ−i∈supp(π1,α

−i ) π
1,α
−i [ϕ−i]

(∑
m−i

pα(ϕi, ϕ−i)[mi,m−i]ui(γi, π
2,α
−i (m−i, ϕ−i))

)
∑

ϕ−i∈supp(π1,α
−i ) π

1,α
−i [ϕ−i]pαMi

(ϕi, ϕ−i)[mi]

(7)

for each i ∈ N and (mi, ϕi) ∈ Si(F, F̂ ).

If βiϕi,Mi
[mi] + βjϕ

∗
j,Mi

[mi] = 0, then

lim
k

∑
ϕj∈supp(π1,α

j ) π
1,α
j [ϕj]

(∑
mj
pα(ϕi, ϕj)[mi,mj]ui(γi, π

2,α
j (mj, ϕj))

)
∑

ϕj∈supp(π1,α
j ) π

1,α
j [ϕj]pαMi

(ϕi, ϕj)[mi]

=
∑
mj

ϕ∗
i [m̄i,mj]

ϕ∗
i,Mi

[m̄i]
ui(γi, πj(mj)).

Since πi(mi, ϕi) = πi(m̄i) and πi(m̄i) ∈ BRi(πj(mj)) for each mj ∈ Mj such that

(m̄i,mj) ∈ supp(ϕ∗
i ) by (1), it follows that (7) holds in this case.

If βiϕi,Mi
[mi] + βjϕ

∗
j,Mi

[mi] > 0 and ϕi ̸= ϕ∗
i , then

lim
k

∑
ϕj∈supp(π1,α

j ) π
1,α
j [ϕj]

(∑
mj
pα(ϕi, ϕj)[mi,mj]ui(γi, π

2,α
j (mj, ϕj))

)
∑

ϕj∈supp(π1,α
j ) π

1,α
j [ϕj]pαMi

(ϕi, ϕj)[mi]

=
∑
mj

βiϕi[mi,mj] + βjϕ
∗
j [mi,mj]

βiϕi,Mi
[mi] + βjϕ∗

j,Mi
[mi]

ui(γi, πj(mj))

= ui

γi,∑
mj

βiϕi[mi,mj] + βjϕ
∗
j [mi,mj]

βiϕi,Mi
[mi] + βjϕ∗

j,Mi
[mi]

πj(mj)

 .

Since πi(mi, ϕi) is optimal against
∑

mj

βiϕi[mi,mj ]+βjϕ
∗
j [mi,mj ]

βiϕi,Mi
[mi]+βjϕ∗j,Mi

[mi]
πj(mj), it follows that (7)

holds in this case.

Finally, consider the case where ϕi = ϕ∗
i and βiϕi,Mi

[mi] + βjϕ
∗
j,Mi

[mi] > 0. Note

that it is enough to show that∑
mj

ϕ∗[m]
(
ui(π(m))− ui(ai, πj(mj))

)
≥ 0 (8)
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for each ai ∈ Ai and that∑
mj

ϕ∗[m]
(
ui(π(m))− ui(ai, πj(mj))

)
=

∑
mj

βiϕ
∗
i [m]

(
ui(π(m))− ui(ai, πj(mj))

)
+
∑
mj

βjϕ
∗
j [m]

(
ui(π(m))− ui(ai, πj(mj))

)
.

We have that ui(π(m)) ≥ ui(ai, πj(mj)) for each mj such that ϕ∗
i [m] > 0 by (1);

moreover, for each mj such that ϕ∗
j [m] > 0, then mi ∈ supp(ϕ∗

j,Mi
) and, hence,∑

mj
βjϕ

∗
j [m]

(
ui(π(m))− ui(ai, πj(mj))

)
≥ 0 by (2). Thus, (8) holds and so does (7).

The above arguments show that, for each finite subsets F of N and F̂ of S,

condition (vi) holds whenever k is sufficiently high. Specifically, condition (vi) (a)

holds for each i ∈ N whenever k ≥ k0. For each i ∈ N and (mi, ϕi) ∈ Si(F, F̂ ), there

is k(mi, ϕi) such that condition (vi) (b) holds whenever k ≥ k(mi, ϕi). Thus, let

k(F, F̂ ) = max

{
k0,max

i∈N
max

(mi,ϕi)∈Si(F,F̂ )
k(mi, ϕi)

}
.

Since condition (vi) (b) is trivially satisfied when

π1,α
i [ϕi]

∑
ϕj∈supp(π1,α

j )

π1,α
j [ϕj]p

α
Mi
(ϕi, ϕj)[mi] = 0,

i.e. when i ∈ N and (mi, ϕi) ̸∈ Si(F, F̂ ), it follows that condition (vi) holds whenever

k ≥ k(F, F̂ ). This allows us to define the following subnet {πφ(η), pφ(η)}η of {πα, pα}α
such that condition (vi) holds.

The index set of the subnet {πφ(η), pφ(η)}η is the same as the one in the net

{πα, pα}α. The function φ : η 7→ α is defined by setting, for each η = (k, F, F̂ ),

φ(η) =
(
max

{
k, k(F, F̂ )

}
, F, F̂

)
.

It is then clear that condition (vi) holds and that, as required by the definition of a

subnet, for each α0, there exists η0, e.g. η0 = α0, such that φ(η) ≥ α0 for each η ≥ η0.

A.3 Proof of Corollary 1

We first show that A(G) ⊆ A. Let π ∈ Π be a sequential equilibrium of Gid

and σ = σπ be its action distribution. Then
(
ϕ∗
i , (πi(mi))mi∈supp(ϕ∗Mi

)

)
i∈N

satisfies
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the conditions of Theorem 1. Define ϕi ∈ ∆f (∆(A1) × ∆(A2)) such that ϕi[α] =∑
m:π(m)=α ϕ

∗
i [m]. Then

σ[a] =
∑
i,m

βiϕ
∗
i [m]π(m)[a] =

∑
i,α

βiϕi[α]α[a].

Thus, σ = (
∑

i βiϕi)
A.

Claim 1. For each i ∈ N and αj ∈ supp(ϕi,∆(Aj)), ∑
αi∈supp(ϕi,∆(Ai)

)

ϕi[αi, αj]

ϕi,∆(Aj)[αj]
αi, αj


is a Nash equilibrium of G and

ui(αi, αj) = max
α′∈∪lsupp(ϕl)

ui(α
′)

for each αi ∈ ∆(Ai) such that ϕi[αi, αj] > 0.

Proof. Since αj ∈ supp(ϕi,∆(Aj)), there exists mj ∈ supp(ϕ∗
i,Mj

) such that αj =

πj(mj). Let M̂j be the set of such mj and note that, for each ai ∈ Ai,∑
mi

∑
mj∈M̂j

ϕ∗
i [mi,mj]πi(mi)[ai] =

∑
αi

ϕi[αi, αj]αi[ai].

Thus, it follows that
∑

mi

ϕ∗i [{mi}×M̂j ]

ϕ∗i,Mj
[M̂j ]

πi(mi)[ai] =
∑

αi

ϕi[αi,αj ]

ϕi,∆(Aj)
[αj ]

αi[ai]. Since, for each

mj ∈ M̂j and α̂j ∈ ∆(Aj),∑
mi

ϕ∗
i [mi,mj]uj(αj, πi(mi)) ≥

∑
mi

ϕ∗
i [mi,mj]uj(α̂j, πi(mi))

by (2), it follows that∑
mi

∑
mj∈M̂j

ϕ∗
i [mi,mj]uj(αj, πi(mi)) ≥

∑
mi

∑
mj∈M̂j

ϕ∗
i [mi,mj]uj(α̂j, πi(mi))

and that αj maximises uj(·,
∑

αi

ϕi[αi,αj ]

ϕi,∆(Aj)
[αj ]

αi).

For each αi ∈ ∆(Ai) such that ϕi[αi, αj] > 0, there exists m ∈ supp(ϕ∗
i ) such that

π(m) = (αi, αj). Furthermore, for each α′ ∈ ∪lsupp(ϕl), there exists m′ ∈ M∗ such
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that π(m′) = α′. It then follows by (1) that αi = πi(mi) ∈ BRi(πj(mj)) = BRi(αj)

and

ui(αi, αj) = vi(αj) = vi(πj(mj)) ≥ vi(πj(m
′
j)) ≥ ui(π(m

′)) = ui(α
′).

Thus,
∑

αi∈supp(ϕi,∆(Ai)
)

ϕi[αi,αj ]

ϕi,∆(Aj)
[αj ]

αi ∈ BRi(αj).

Note that ϕi can be written as:

ϕi =
∑
αj

ϕi,∆(Aj)[αj]

((∑
αi

ϕi[αi, αj]

ϕi,∆(Aj)[αj]
1αi

)
⊗ 1αj

)

Hence, define ψi as:

ψi =
∑
αj

ϕi,∆(Aj)[αj]1σi,αj ,

where, for each αj ∈ supp(ϕi,∆(Aj)),

σi,αj =

(∑
αi

ϕi[αi, αj]

ϕi,∆(Aj)[αj]
αi, αj

)

is a Nash equilibrium of G by Claim 1. It is clear that ψAi = ϕAi and, hence,(∑
i

βiψi

)A

= σ.

Then let Li = |supp(ϕi,∆(Aj))| and, writing supp(ϕi,∆(Aj)) = {α1
j , . . . , α

Li
j }, let ηi,l =

ϕi,∆(Aj)[α
l
j] and σ

i,l = σi,α
l
j for each l ∈ {1, . . . , Li}.

For each αj ∈ supp(ϕi,∆(Aj)), it follows by Claim 1 that

ui(σ
i,αj) =

∑
αi

ϕi[αi, αj]

ϕi,∆(Aj)[αj]
ui(αi, αj) = max

α̂∈∪lsupp(ϕl)
ui(α̂).

Thus, ui(σ
i,αj) = ui(σ

i,α′
j) for each α′

j ∈ supp(ϕi,∆(Aj)). Furthermore, for each αi ∈

supp(ϕj,∆(Ai)),

ui(σ
j,αi) =

∑
αj

ϕj[αi, αj]

ϕj,∆(Ai)[αi]
ui(αi, αj) ≤ max

α̂∈∪lsupp(ϕl)
ui(α̂);

thus, ui(σ
i,αj) ≥ ui(σ

j,αi). This completes the proof that A(G) ⊆ A.

We now show that A ⊆ A(G). Let σ = (β1ϕ1+β2ϕ2)
A ∈ A, i.e. ϕi =

∑Li

l=1 η
i,l1σi,l ,∑Li

l=1 η
i,l = 1, ηi,l ≥ 0, σi,l ∈ N(G), ui(σ

i,l) = ui(σ
i,k) ≥ uj(σ

j,r) for each i, j ∈ N

with i ̸= j, l, k ∈ {1, . . . , Li} and r ∈ {1, . . . , Lj}.
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For each i ∈ N , l ∈ {1, . . . , L1} and k ∈ {1, . . . , L2}, pick m1,l
i and m2,k

i inMi such

that m1,l
i ̸= m1,r

i , m2,k
i ̸= m2,s

i and m1,l
i ̸= m2,k

i for each l, r ∈ {1, . . . , L1} and k, s ∈

{1, . . . , L2}. Set ϕ∗
1 =

∑L1

l=1 η
1,l1m1,l , ϕ∗

2 =
∑L2

l=1 η
2,l1m2,l and, for each i ∈ N , j ∈ N

and l ∈ {1, . . . , Lj}, πi(mj,l
i ) = σj,li . It is then clear that σ is the action distribution of

the outcome
(
ϕ∗
i , (πi(mi))mi∈supp(ϕ∗Mi

)

)
i∈N

, i.e. σ[a] =
∑

m∈M∗ ϕ∗[m]π(m)[a] for each

a ∈ A.

Fix i ∈ N and let j ̸= i. For each mj ∈M∗
j , πj(mj) = σk,lj for some k ∈ {i, j} and

l ∈ {1, . . . , Lk}. Since vi(σ
i,l
j ) = ui(σ

i,l) ≥ ui(σ
j,r) = vi(σ

j,r
j ) for each l ∈ {1, . . . , Li}

and r ∈ {1, . . . , Lj}, it follows that maxmj∈M∗
j
vi(πj(mj)) = ui(σ

i,l) for each l ∈

{1, . . . , Li}. Since, for each m ∈ supp(ϕ∗
i ), there exists l ∈ {1, . . . , Li} such that

πi(mi) = σi,li and πj(mj) = σi,lj , it follows that supp(ϕ
∗
i ) ⊆ {m ∈ M : vi(π−i(m−i)) =

maxm′
−i∈M−i

vi(π−i(m
′
−i)) and πi(mi) ∈ BRi(π−i(m−i))}. Thus, (1) holds.

Moreover, for each mi ∈ supp(ϕ∗
j,Mi

), mi = mj,l
i for some l ∈ {1, . . . , Lj} and hence

πi(mi) = σj,li solves

max
αi∈∆(Ai)

∑
mj

ϕ∗
j [mi,mj]

ϕ∗
j,Mi

[mi]
ui(αi, πj(mj)) = max

αi∈∆(Ai)
ui(αi, σ

j,l
j ).

Thus, (2) holds. It then follows by Theorem 1 that (ϕ∗
i , (πi(mi))mi∈supp(ϕ∗Mi

))i∈N is the

outcome of a sequential equilibrium of Gid and, thus, that σ ∈ A(G).

A.4 Proof of Corollary 3

The characterization of U(G) follows from the definition of G and Corollary 2.

Standard results (e.g. Theorems 2.5.5 and 2.6.1 in van Damme (1991) and their

proofs) imply that there is an open set O of R2|A| such that its complement has

Lebesgue measure zero and, for each u ∈ O, there is an open neighborhood Vu of u

and |N(u)| continuous functions, fk : Vu → ∆(A1)×∆(A2) with k ∈ {1, . . . , |N(u)|}

such that, for each u′ ∈ Vu, N(u′) =
{
fk(u

′) : k ∈ {1, . . . , |N(u)|}
}
and fk(u) ̸= fl(u)

for each k, l ∈ {1, . . . , |N(u)|} with k ̸= l.22 Shrinking Vu if needed, we may assume

that, for each a ∈ A, k, l ∈ {1, . . . , |N(u)|} and u′ ∈ Vu, fk(u
′)[a] ̸= fl(u

′)[a] if

fk(u)[a] ̸= fl(u)[a].

22The set N(u) denotes the set of Nash equilibria of the game with payoff function u.

41



We have that R2|A| is separable, hence, there is a countable collection {Vuj}∞j=1

such that O = ∪∞
j=1Vuj . Define, for each j ∈ N, Ij = {1, . . . , |N(uj)|} and

Oj = ∩(i,k,l)∈N×I2j :k ̸=l{u ∈ Vuj : ui(fk(u)) ̸= ui(fl(u))}.

Then Oj is open and ∪∞
j=1Oj ⊆ G. It thus suffices to show that Cj,i,k,l = {u ∈ Vuj :

ui(fk(u)) = ui(fl(u))} has Lebesgue measure zero for each j ∈ N and (i, k, l) ∈ N×I2j
such that k ̸= l.

Let j ∈ N and (i, k, l) ∈ N × I2j be such that k ̸= l. Since fk(uj) ̸= fl(uj), let

a ∈ A be such that fk(u)[a] ̸= fl(u)[a] for each u ∈ Vuj . Then

Cj,i,k,l ⊆

{
u ∈ Vuj : ui(a) =

∑
a′ ̸=a ui(a

′)
(
fl(u)[a

′]− fk(u)[a
′]
)

fk(u)[a]− fl(u)[a]

}
.

It then follows by Tonelli’s Theorem (e.g. Wheeden and Zygmund (1977, Theorem

6.10, p. 92)) that Cj,i,k,l has Lesbegue measure zero.
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