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Abstract

We consider a setting where each player of a simultaneous-move game pri-

vately designs an information structure before playing the game. One of these

information structures is chosen at random to determine the distribution of the

private messages that players receive. These messages allow players to correlate

their actions; however, their private design implies a push from correlated to

Nash equilibria. Indeed, the sequential equilibrium payoffs of the extensive-form

game with privately designed information structures are correlated equilibrium

payoffs of the underlying simultaneous-move game, but not all correlated equi-

librium payoffs are sequential equilibrium payoffs. In generic 2-player games,

the latter are specific convex combinations of two Nash equilibrium payoffs.
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1 Introduction

It is well-known since Aumann (1974) that all players in a normal-form game can

obtain a payoff higher than in any of its Nash equilibria by correlating their play,

i.e. in a correlated equilibrium.1 Achieving correlated equilibrium payoffs requires

lotteries over a set of messages that are privately observed by the players and which

can be thought of as being chosen by an outside mediator. Since the assumption

of an impartial mediator may not always be appropriate, there is an interest in the

payoffs that can be achieved through unmediated interaction between the players.

For example, Aumann and Hart’s (2003) results imply that for two player games,

pre-play cheap talk can achieve the entire convex hull of Nash payoffs (but no more).

Other papers (e.g. Bárány (1992), Ben-Porath (1998), Gerardi (2004), Āzacis, Laclau,

and Vida (2025)) attempt to obtain the entire set of correlated equilibrium payoffs,

which requires more than two players or richer communication technology than cheap

talk (e.g. balls and urns, public verification).2

In this paper, we consider this question from a different perspective. We focus

on 2-player games and allow players access to fully mediated communication as long

as they can agree on the mediation. However, although the technology of mediated

communication is available, we assume that players can manipulate this technology

in a general way. In our model of self-mediated interaction, we will allow the play-

ers to design the information structure by choosing, in principle, any lottery over

privately-observed message profiles; however, (i) the true information structure will

be exactly as each player chooses only when both players choose the same information

structure and (ii) each player’s choice of information structure is unobserved by his

opponent, allowing for the possibility that each player may secretly manipulate the

true information structure.

Our model is guided by the observation that there are many actions that players

can take to influence the information structure: for example, one player may antici-

1Note, however, that Neyman (1997) defines a class of games having a smooth concave potential

such that any correlated equilibrium is a convex combination of pure strategy Nash equilibria.
2This literature will be discussed in Section 3.
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pate that another will tamper with an agreed upon randomization device and respond

by including additional safeguards. The other may anticipate this and secretly hide

backdoors in the device. It is difficult to model explicitly each possible manipulation

and its effect on the resulting information structure. On the other hand, we do not

wish to rule out any kind of manipulation by assumption.

Thus, our aim is to provide a reduced form model that captures the idea that

players are able to try to manipulate the information structure in any way they de-

sire. We achieve this by letting each player choose the information structure directly.

Our model is also a reduced form model of conflict as it specifies what information

structure actually determines message profiles when different players choose different

information structures. Our specification is that each player’s chosen information

structure is the one that actually determines message profiles with a strictly posi-

tive probability, i.e. each player i’s information structure is chosen with probability

βi > 0 (with
∑

i βi = 1) to determine the message profile that players receive; our

specification is also that players do not observe which information structure has been

chosen. This specification is a tractable way of obtaining that (i) if all players choose

the same information structure, then message profiles are drawn from such common

information structure, (ii) each player is successful in attempting to manipulate the

information structure however he wishes with a strictly positive probability, which can

be thought of as the relative power that each player has in determining the informa-

tion structure that actually determines message profiles, and (iii) players’ deviations

are not directly observable.

We focus on 2-player simultaneous-move games and analyze the extensive-form

game where players first choose an information structure and then play the simultaneous-

move game. We show that the set of Nash and sequential equilibrium payoffs of the

extensive-form coincide and such set is a specific subset of the convex hull of the Nash

equilibrium payoffs of the simultaneous-move game. This set is easiest to describe

for generic 2-player simultaneous-move games, where the only achievable payoffs are

convex combinations of two Nash equilibrium payoffs with weights β1 and β2 and the

restriction that the payoff with weight βi is no worse for player i than the payoff with
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weight βj.
3 These results are in contrast with, e.g. Aumann and Hart (2003) or Ben-

Porath (1998), and show that the details of what is allowed for players to choose in

self-mediated interaction matter for the payoffs that can be achieved in equilibrium.

In particular, this paper shows that when information is designed optimally by the

individuals involved in a strategic situation, very few correlated equilibrium payoffs

can be achieved and there is a push from correlated to Nash equilibria.

The paper is organized as follows. Section 2 introduces our model of privately

designed correlated equilibrium and characterizes the equilibrium outcomes of the

information design extensive-form game. Related literature is discussed in Section

3, along with extensions and concluding remarks. Proofs of our main results can be

found in the Appendix. Some details of the extensions we consider in Section 3 are

left to the supplementary material.4

2 Privately designed correlated equilibrium

This section presents our model (Section 2.1) and main results (Section 2.2).

2.1 Model

Consider a 2-player simultaneous-move game G = (Ai, ui)i∈N where N = {1, 2} is the

set of players and, for each i ∈ N , Ai is a finite set of player i’s actions and ui : A→ R

is player i’s payoff function, where A =
∏

i∈N Ai. We extend the domain of ui to the

space of mixed actions in the usual way.5 Let N(G) ⊆ ∆(A1)×∆(A2) denote the set

of Nash equilibria of G.6

3In the non-generic case, the payoff with weight βi may itself be a convex combination of payoffs

of Nash equilibria among which player i is indifferent.
4Available at https://klaohakunakorn.com/idsm.pdf
5I.e. for each α1 ∈ ∆(A1) and α2 ∈ ∆(A2), ui(α1, α2) =

∑
a∈A α1[a1]α2[a2]ui(a1, a2).

6Given a metric space X, ∆(X) denotes the set of Borel probability measures on X. For each

µ ∈ ∆(X), supp(µ) denotes the support of µ. For each x ∈ X, the probability measure in ∆(X) that

assigns probability one to x is denoted by 1x. When X =
∏

j∈J Xj for some finite set J , µXj
denotes

the marginal of µ on Xj for each j ∈ J . Given (µ1, µ2) ∈ ∆(X1) ×∆(X2), µ1 × µ2 ∈ ∆(X1 ×X2)

denotes the product measure on X1 ×X2.
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Before the game G is played, each player privately receives a message on which

he can potentially condition his action in G. However, rather than assuming that

the joint distribution of these private messages is exogenously given (as in the stan-

dard model of correlated equilibrium), we will allow each player to privately design

this information structure. Our model of privately designed correlated equilibrium

is formalized by the following extensive-form game Gid, which we refer to as the

information design extension of G.

At the beginning of the game, each player i ∈ N chooses simultaneously an

information structure which is a probability distribution over message profiles. The

set of messages each player i ∈ N can potentially receive is Mi = N. An information

structure is a finitely supported probability measure on M = M1 ×M2 = N2. Let

S be the set of information structures. Thus, each player i chooses an information

structure ϕi ∈ S. Given a profile of chosen information structures (ϕ1, ϕ2), a message

profile m ∈M is drawn from the distribution ϕ ∈ ∆(M) defined by setting, for each

m ∈M ,

ϕ[m] = β1ϕ1[m] + β2ϕ2[m],

where β1, β2 > 0 and β1 + β2 = 1; the probabilities β1 and β2 are exogenous and

fixed throughout the paper, and one interpretation for them is that the information

structure of each i ∈ N is chosen by nature with probability βi. Each player i ∈ N

observes his coordinate mi ∈ Mi of the realized message profile m and his choice

ϕi ∈ S but not the other player’s coordinate mj ∈Mj of the realized message profile

m or choice ϕj ∈ S, where j ̸= i. Then each player i chooses an action ai ∈ Ai of the

underlying simultaneous-move game G conditional on the observed (mi, ϕi). Player

i’s payoff is then ui(a1, a2).

A formal description of Gid is as follows: the set of terminal histories is the set of

sequences (ϕ1, ϕ2,m, a1, a2) ∈ S×S×M×A1×A2. Player 1 moves following the empty

history, denoted by w, and histories of the form (ϕ1, ϕ2,m). Player 2 moves following

histories of the form (ϕ1) and (ϕ1, ϕ2,m, a1). For each history (ϕ1, ϕ2) ∈ S2, nature

draws m ∈ M from the distribution β1ϕ1 + β2ϕ2 ∈ ∆(M). Player 1’s information

sets are {w} and H(ϕ1,m1) = {(ϕ1, ϕ2, (m1,m2)) : ϕ2 ∈ S and m2 ∈ M2} for each
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ϕ1 ∈ S and m1 ∈M1; player 2’s information sets are {(ϕ1) : ϕ1 ∈ S} and H(ϕ2,m2) =

{(ϕ1, ϕ2, (m1,m2), a1) : ϕ1 ∈ S,m1 ∈M1 and a1 ∈ A1} for each ϕ2 ∈ S and m2 ∈M2.

Finally, for each i ∈ {1, 2}, player i’s payoff from terminal history (ϕ1, ϕ2,m, a1, a2)

is ui(a1, a2).

The design of information structures in Gid is private in the sense that (i) it is done

by the players, (ii) each player’s choice of information structure is his own private

information and (iii) no player observes nature’s choice of the aggregated information

structure. Assuming that information structures have finite support implies that each

player always has the choice of knowing whether his information structure is the one

that was chosen by nature; indeed, the set of messages he can receive if his opponent’s

information structure is chosen is the finite subset supp(ϕj,Mi
) of N and, hence, he

can choose ϕi such that supp(ϕi,Mi
) is contained in the complement of supp(ϕj,Mi

).

A (behavioral) strategy for player i ∈ N is πi = (π1
i , π

2
i ) such that π1

i ∈ ∆(S) and

π2
i :Mi × S → ∆(Ai) is measurable.7 A strategy is π = (π1, π2) and let Π∗ be the set

of strategies. We focus mostly on strategies where players do not mix over the choice

of information structures.8 Let Π be the set of strategies π such that π1
i ∈ S (i.e. π1

i

is pure) for each i ∈ N .

For each strategy π ∈ Π and for each i ∈ N and mi ∈ Mi, we often write

ϕ∗
i = π1

i and σ∗
i (mi) = π2

i (mi, ϕ
∗
i ). We define ϕ∗ ∈ ∆(M) such that, for each m ∈M ,

ϕ∗[m] = β1ϕ
∗
1[m] + β2ϕ

∗
2[m]. For each m ∈ M , we write σ∗(m) = (σ∗

1(m1), σ
∗
2(m2)),

and for each π ∈ Π, we write ui(π) =
∑

m∈M ϕ∗[m]ui(σ
∗(m)) for each i ∈ N .

We use Nash equilibrium and sequential equilibrium as solution concepts. Se-

quential equilibrium is defined analogously to Myerson and Reny (2020): a strategy

π ∈ Π∗ is a sequential equilibrium if it is a perfect conditional ε-equilibrium for each

ε > 0.9 Informally, π is a perfect conditional ε-equilibrium if there exists a net of

behavioral strategies converging to π and a net of nature’s choices converging to

(ϕ1, ϕ2) 7→ β1ϕ1 + β2ϕ2 such that every profile of information structures ϕ = (ϕ1, ϕ2)

7The set S is endowed with the topology of the weak convergence of probability measures.
8See Section 3.4 for an extension of our results to the case where players can mix over the

information structure.
9See A.1 in the Appendix for the definition of perfect conditional ε-equilibrium in our setting.
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is played with positive probability sufficiently far in the tails of the net, every message

profile m = (m1,m2) is realized with positive probability following any ϕ sufficiently

far in the tails of the net, every action profile is played with positive probability fol-

lowing any (ϕ,m) sufficiently far in the tails of the net, and all strategies in the net are

ε-optimal conditional on every positive probability information set. Note that each

strategy in the net is also an ε-Nash equilibrium which only requires unconditional

ε-optimality.

In finite games, π is a sequential equilibrium if and only if it is a perfect condi-

tional ε-equilibrium for each ε > 0; thus, our definition of sequential equilibrium is

the natural extension to infinite games. However, as argued by Myerson and Reny

(2020), a drawback of this definition is that a sequential equilibrium may not exist in

general. To circumvent this non-existence issue, they define a slightly weaker notion

of equilibrium. However, in our setting, Theorem 1 implies that there exists a se-

quential equilibrium as we have defined it and in the supplementary material to this

paper, we show that the two definitions lead to the same set of equilibrium payoffs.

2.2 Main results

Our setting is in contrast to the case where an impartial mediator sends messages

according to some exogenously given information structure ϕ ∈ S. In this case, the

set of equilibrium action distributions that result from varying ϕ is exactly the set of

correlated equilibria of G, as shown by Aumann (1987).10 With privately designed

information structures there will, in general, be a reduction in the set of equilibrium

outcomes. The reason is that the messagesm ∈ supp(ϕ∗
i ) that each player i sends must

be optimal for player i. This is established in Theorem 1 which fully characterizes

the set of sequential equilibrium outcomes of Gid.

The following notation is used in the statement of Theorem 1. Given a strat-

egy π, for each i ∈ N , let M∗
i = supp(ϕ∗

Mi
) be the set of messages that player

i receives with strictly positive probability. The outcome of a strategy π ∈ Π is

10This result is also implied by Myerson (1982, Proposition 2).
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(
ϕ∗
i , (σ

∗
i (mi))mi∈M∗

i

)
i∈N ; it consists of the information structure chosen by each player

and, for each message that he receives with strictly positive probability, the mixed

action he will choose in response. For each i ∈ N , j ̸= i and δ ∈ ∆(Aj), let

vi(δ) = maxα∈∆(Ai) ui(α, δ) and BRi(δ) = {α ∈ ∆(Ai) : ui(α, δ) = vi(δ)} be, re-

spectively, player i’s value function and best-reply correspondence.

Theorem 1. For each 2-player game G, the following conditions are equivalent:

1.
(
ϕ∗
i , (σ

∗
i (mi))mi∈M∗

i

)
i∈N is the outcome of a Nash equilibrium of Gid.

2.
(
ϕ∗
i , (σ

∗
i (mi))mi∈M∗

i

)
i∈N is the outcome of a sequential equilibrium of Gid.

3.
(
ϕ∗
i , (σ

∗
i (mi))mi∈M∗

i

)
i∈N is such that, for each i, j ∈ N and j ̸= i,

vi(σ
∗
j (mj)) = max

m′
j∈M∗

j

vi(σ
∗
j (m

′
j)) and σ

∗
i (mi) ∈ BRi(σ

∗
j (mj)) (1)

for each m ∈ supp(ϕ∗
i ), and

σ∗
i (mi) solves max

αi∈∆(Ai)

∑
mj

ϕ∗
j [mi,m−i]

ϕ∗
j,Mi

[mi]
ui(αi, σ

∗
j (mj)) (2)

for each mi ∈ supp(ϕ∗
j,Mi

).

Theorem 1 shows that Nash and sequential equilibrium outcomes of the informa-

tion design extension of G coincide.11 These are characterized by the optimality of

the messages each player sends and of the actions he chooses: (1) requires that each

message profile sent by a player i, i.e. each m ∈ supp(ϕ∗
i ), must be optimal in the

sense that it induces a mixed action σ∗
j (mj) of the other player j ̸= i that maximizes

player i’s value function over {σ∗
j (m

′
j) : m′

j ∈ M∗
j } and, moreover, σ∗

i (mi) must be

a best response to σ∗
j (mj). To see why this condition is necessary, consider a devi-

ation by player i to an information structure ϕi that sends message profile m̄ with

probability one, where m̄i ̸∈ M∗
i and m̄j ∈ argmaxm′

j∈M∗
j
vi(σ

∗
j (m

′
j)). Then following

m̄i, player i can best respond to σ∗
j (m̄j) and following mi ̸= m̄i, player i can choose

an action to maximize his payoff conditional on the information structure being ϕ∗
j .

11This is in contrast to mediated communication games where this equivalence fails when priors

lack full support (see e.g. Gerardi and Myerson (2007) and Sugaya and Wolitzky (2021)).
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This deviation is profitable unless σ∗
j (mj) maximizes vi over {σ∗

j (m
′
j) : m

′
j ∈M∗

j } and

σ∗
i (mi) is a best response to σ∗

j (mj), i.e. unless (1) is satisfied.

In addition, this deviation is profitable unless for each mi ∈ supp(ϕ∗
j,Mi

), σ∗
i (mi)

maximizes player i’s payoff conditional on ϕ∗
j being the information structure. Thus,

for messages mi that player i receives with strictly positive probability from the infor-

mation structure ϕ∗
j , (2) requires that σ

∗
i (mi) maximizes player i’s payoff conditional

on ϕ∗
j being the information structure.

We show that (1) and (2) are sufficient for the outcome to be supported in sequen-

tial equilibrium by constructing one where for each off-path message mi ̸∈M∗
i , player

i’s belief is the same as his belief following some message m̄i ∈ supp(ϕ∗
i,Mi

) which then

makes σ∗
i (mi) = σ∗

i (m̄i) sequentially rational.12 Since for each off-path message mi ̸∈

M∗
i , player i plays an on-path continuation action σ∗

i (m̄i) ∈ {σ∗
i (m

′
i) : m′

i ∈ M∗
i },

player j’s choice of information structure is optimal since it induces continuation

actions of player i that maximize player j’s value function over this set.

The following corollary of Theorem 1 characterizes the action distributions of

sequential equilibria of Gid. For each strategy π ∈ Π, the action distribution of π is

σπ ∈ ∆(A) such that σπ =
∑

m∈M∗ ϕ∗[m](σ∗
1(m)× σ∗

2(m)).13 Let

A(G) = {σπ : π ∈ Π is a sequential equilibrium of Gid}

be the set of action distributions of the sequential equilibria of Gid. Corollary 1

characterizes each equilibrium action distribution as a specific convex combination

of the action distributions of Nash equilibria of G by showing that A(G) equals the

12Although our definition of sequential equilibrium does not make reference to systems of beliefs,

the beliefs are implicitly specified through the net of perturbations and the required belief can easily

be generated by the appropriate perturbation of nature’s choices.
13Recall that for each (α1, α2) ∈ ∆A1 ×∆A2, α1 ×α2 ∈ ∆(A) is the product distribution, i.e., for

each a ∈ A, (α1 × α2)[a] = α1[a1]α2[a2].
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following set:

A =

{
σ ∈ ∆(A) : ∀i ∈ N, there exists Li, (η

i,l)Li
l=1, (σ

i,l)Li
l=1 such that

σ = β1

L1∑
l=1

η1,l(σ1,l
1 × σ1,l

2 ) + β2

L2∑
l=1

η2,l(σ2,l
1 × σ2,l

2 ),

ηi ≥ 0,

Li∑
l=1

ηi,l = 1, σi,l ∈ N(G) and ui(σ
i,k) = ui(σ

i,l) ≥ ui(σ
j,r)

∀k, l ∈ {1, . . . , Li}, j ∈ N and r ∈ {1, . . . , Lj}
}
.

Corollary 1. For each 2-player game G, A(G) = A.

Corollary 1 characterizes the equilibrium action distributions of Gid for 2-player

games. It shows that when player i’s information structure is chosen, there is a

resulting distribution over Nash equilibria of G, all of which give the same payoff to

player i. Furthermore, this common payoff is no less than the payoff player i obtains

in each of the Nash equilibria that result when player j’s information structure is

chosen.

The characterization of equilibrium action distributions in Corollary 1 implies an

analogous characterization of the set of equilibrium payoffs of Gid. Let

U(G) = {u(π) : π ∈ Π is a sequential equilibrium of Gid}

be the set of sequential equilibrium payoffs of Gid. Corollary 2 shows that U(G)

equals the following set:

U =

{
β1u

1 + β2u
2 : ∀i ∈ N, there exists Li, (η

i,l)Li
l=1, (σ

i,l)Li
l=1 such that

ui =

Li∑
l=1

ηi,lu(σi,l), ηi ≥ 0,

Li∑
l=1

ηi,l = 1,

σi,l ∈ N(G) and ui(σ
i,k) = ui(σ

i,l) ≥ ui(σ
j,r)

∀k, l ∈ {1, . . . , Li}, j ∈ N and r ∈ {1, . . . , Lj}
}
.

Corollary 2. For each 2-player game G, U(G) = U .
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1\2 A B

A 2, 1 0, 0

B 0, 0 1, 2

Figure 1: The battle of the sexes.

1\2 A B

A 6, 6 1, 7

B 7, 1 0, 0

Figure 2: The game of chicken.

Thus, in general, not all correlated equilibrium payoffs of G can be achieved in

the information design extensive-form game Gid. Indeed, equilibrium payoffs of Gid

form a particular subset of the convex hull of the Nash equilibrium payoffs of G.

When G is the battle of the sexes in Figure 1, Corollary 2 implies that U(G) =

u(N(G)) ∪ {β1(2, 1) + β2(1, 2)}. The payoff profile β1(2, 1) + β2(1, 2), for example,

can be generated by ϕ∗
i = 1(i,i), σ

∗
i (1) = A and σ∗

i (2) = B for each i, which satisfies

conditions (1) and (2) and hence is the outcome of a sequential equilibrium of Gid.

When G is the game of chicken in Figure 2, the Nash equilibria are (A,B), (B,A)

and (1
2
1A + 1

2
1B,

1
2
1A + 1

2
1B), with payoffs (7, 1), (1, 7) and (7

2
, 7
2
) respectively, and it

is well-known that there are correlated equilibria with payoffs outside the convex hull

of the Nash equilibrium payoffs. Corollary 2 implies that

U(G) = u(N(G)) ∪
{
β1(7, 1) + β2(1, 7), β1(7, 1) + β2(

7
2
, 7
2
), β1(

7
2
, 7
2
) + β2(1, 7)

}
.

In particular, (42
3
, 42

3
) is not in U(G) and the action distribution 1

3
1(A,A) +

1
3
1(A,B) +

1
3
1(B,A) is not the action distribution of a Nash equilibrium of the information design

extensive-form game. This payoff profile and action distribution could be obtained

with ϕ1 = ϕ2 =
1
3
1(1,1) +

1
3
1(1,2) +

1
3
1(2,1) and π

2
i (1, ϕi) = A and π2

i (2, ϕi) = B for each

i. But then player 1 would gain by deviating to ϕ′
1 = 1(2,1) thereby increasing the

probability that his preferred action profile, (B,A), is played.

The characterization of U(G) is simpler in generic games, such as the battle of the
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sexes and the game of chicken, since then the payoff resulting after each information

structure is chosen is that of a Nash equilibrium. Let G be the set of games such

that, for each Nash equilibria σ and σ′ of G, if ui(σ) = ui(σ
′) for some i ∈ N ,

then uj(σ) = uj(σ
′) for j ̸= i (equivalently, if ui(σ) ̸= ui(σ

′) for some i ∈ N then

uj(σ) ̸= uj(σ
′) for j ̸= i). We regard G as a subset of R2|A|. A subset of a Euclidean

space is generic if the closure of its complement has Lebesgue measure zero.

Corollary 3. The set G is generic and, for each 2-player game G ∈ G,

U(G) = {β1u(σ) + β2u(σ
′) : σ, σ′ ∈ N(G), u1(σ) ≥ u1(σ

′), u2(σ
′) ≥ u2(σ)}.

The proof of Corollary 3 actually shows that the set of games such that ui(σ) ̸=

ui(σ
′) for each i ∈ N and σ, σ′ ∈ N(G) such that σ ̸= σ′ is generic. This set is

contained in G and contains all games with a unique equilibrium as well as the battle

of the sexes. It is clear from Corollary 3 that U(G) = u(N(G)) for each 2-player game

G with a unique Nash equilibrium.

3 Related literature and discussion

Many papers have considered whether correlated equilibrium payoffs can be sustained

as the outcome of an extended game where players can take “cheap” pre-play actions

that determine the distribution of their information. The distinguishing feature of our

model is that we allow each player to choose any information structure he desires, and

with some probability the information structure he chooses is the one that actually

determines the joint distribution of the messages of all players. This section provides

a discussion of how our model relates to alternative formalizations in the literature

and possible extensions.

3.1 Cheap talk

For 2-player games, Aumann and Hart’s (2003) results imply that any payoff in

the convex hull of the Nash equilibrium payoffs can be achieved as the outcome
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of an extended game where players engage in cheap talk for as long as they like

before playing the original game. In Aumann and Hart (2003), messages are common

knowledge so there is no possibility of getting payoffs outside of the convex hull,

but cheap talk is enough for players to reach any outcome achievable using publicly

observed lotteries. On the other hand, in our model, there are privately observed

lotteries but nevertheless players can only get payoffs in co(u(N(G))) and not even

all of those (even if we were to vary β). The key difference between our specification

and the setting of Aumann and Hart (2003) is that in the latter, each player fully

determines the message received by the other player. On the other hand, according

to our specification, there is always a possibility that each player gets to determine

the messages of both players. For example, if player 2 benefits from player 1 sending

some message m1, then player 2 may want to take certain (unmodelled) actions that

increase the likelihood that player 1 will send message m1.

It is possible to unify the two cases through an abstract aggregation function

α : S2 → S such that if player 1 chooses information structure ϕ1 ∈ S and player

2 chooses information structure ϕ2 ∈ S, then the realized information structure is

α(ϕ1, ϕ2) ∈ S. Our formalization corresponds to α(ϕ1, ϕ2) = β1ϕ1 + β2ϕ2 and it

is possible to specify an alternative aggregation function to capture Aumann and

Hart’s (2003) model when communication is restricted to one period only. Indeed,

assume that each player i chooses ϕi ∈ S concentrated on {mi ∈ N2 : mi
1 = mi

2}, let

ψ : N2 × N2 → N2 be a bijection and let α(ϕ1, ϕ2) = (ϕ1 × ϕ2) ◦ ψ−1. Note that each

message received by player i is in bijective correspondence with (m1,m2), where mj

is drawn from ϕj and can be identified with the message sent by player j in Aumann

and Hart (2003).

Other papers (e.g. Bárány (1992), Gerardi (2004), and Āzacis, Laclau, and Vida

(2025)) attempt to achieve the entire set of correlated equilibrium payoffs via cheap

talk, which requires more than two players.14 Although our focus is primarily on

14See Forges (2020), Section 4, for a detailed survey. For pure unmediated interaction (no balls and

urns or verification) and sequential rationality, Āzacis, Laclau, and Vida (2025) requires at least four

players, improving on Gerardi’s (2004) result which required five players. Bárány (1992) established
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2-player games, we discuss the extension of our results to more than two players in

Section 3.5, which implies that, in general, payoffs from privately designed correlated

equilibrium are a strict subset of the set of correlated equilibrium payoffs.

3.2 Communication protocols and manipulability

Another strand of the literature has focused on whether players can communicate in

a more sophisticated manner to achieve correlated equilibrium payoffs. For instance,

Ben-Porath (1998) shows that each correlated equilibrium can be approximated by

the action distribution of a sequential equilibrium in a specific information design

extensive-form game that includes the possibility of credibly revealing messages and

(in the case of two players) ball and urns.15

However, the specification of such extensive form games rules out the possibility

of certain manipulations by assumption. In the chicken game, Ben-Porath’s (1998)

result implies that the correlated equilibrium ϕ = 1
3
1(A,A)+

1
3
1(A,B)+

1
3
1(B,A) is close to

the action distribution of a sequential equilibrium of his information design extensive-

form game. This sequential equilibrium involves, in particular, player 1 drawing from

a ball from an urn which contains 2
3
green balls and 1

3
red balls and playing A if and

only if the ball is green. This urn is provided by player 2 and, by assumption, player 1

cannot manipulate its contents before choosing from it. In contrast, such a deviation

corresponds to an alternative choice of information structure by player 1 and has a

positive probability of being successful in the extensive-form game we consider.

3.3 Privacy

An alternative to our assumption that the information structures are chosen privately

is to assume that aggregated information structure is public, i.e. that each player ob-

serves the information structure β1ϕ1+β2ϕ2 chosen by nature. Under this assumption

and for the chicken game, the payoff (42
3
, 42

3
) can be achieved. Intuitively, both play-

ers choose the information structure inducing this payoff (e.g. 1
3
1(1,1)+

1
3
1(1,2)+

1
3
1(2,1))

a result for four players but without sequential rationality and assuming public verification.
15See also Urbano and Vila (2002) for 2-player games where players are boundedly rational.
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and deviations from it can be deterred by the threat of reverting to the mixed strat-

egy Nash equilibrium whenever some alternative information structure is realized.

Thus, when the choice of information is observed, certain information structures can

be sustained by the threat of punishment. Our aim is instead to ask which outcomes

can arise abstracting away from the possibility of such threats.

3.4 Mixing over information structures

We have focused so far on the case where players are not allowed to mix in their choice

of an information structure. As we argue in this section, allowing randomization in

the choice of information structures does not significantly change our results.16

We focus on Corollary 3 and let

U∗(G) = {u(π) : π ∈ Π∗ is a sequential equilibrium of Gid},

where, recall, Π∗ is the set of mixed strategies of Gid. We then have that, for each

2-player game G ∈ G, U(G) ⊆ U∗(G) ⊆ {β1u(σ) + β2u(σ
′) : σ, σ′ ∈ N(G)}. Thus,

in generic 2-player games, sequential equilibrium payoffs of Gid when mixing over

information structures is allowed continue to be specific convex combinations of two

Nash equilibrium payoffs.

In games with a unique Nash equilibrium, it then follows that U(G) = U∗(G) =

u(N(G)). If G is a 2-player game that has more than one Nash equilibrium, then

mixing over information structures can expand the set of equilibrium payoffs. We il-

lustrate this claim in the battle of the sexes by showing in the supplementary material

to this paper that β1u(B,B)+β2u(A,A) ∈ U∗(G)\U(G). The reason why this payoff

profile does not belong to U(G) is that each player obtains a lower payoff following

his own information structure being chosen by nature than following the information

structure of his opponent being chosen. Thus, e.g. player 2 could deviate in his choice

of information structure by sending a message to player 1 from player 1’s informa-

tion structure which triggers player 1 to choose B. When mixing over information

structures is allowed, player 1 can prevent this deviation from being profitable by, for

16See the supplementary material to this paper for the details of this section.
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1\2 A B

A 0, 0, 3 0, 0, 0

B 1, 0, 0 0, 0, 0

1\2 A B

A 2, 2, 2 0, 0, 0

B 0, 0, 0 2, 2, 2

1\2 A B

A 0, 0, 0 0, 0, 0

B 0, 1, 0 0, 0, 3

Figure 3: Game from Aumann (1974).

instance, uniformly randomizing over L information structures, ϕ1
1, . . . , ϕ

L
1 , with ϕl

1

sending message l to himself and choosing B if and only if she receives message l and

had chosen ϕl
1. In this way, if player 2 sends message l ∈ {1, . . . , L} to player 1, this

will trigger B only with probability 1/L (note that player 2 does not observe which

ϕl
1 realizes and cannot condition the message he sends on it).

3.5 More than two players

The extension of our setting to the case of more than two players is straightforward.17

Theorem 1 extends, but corollaries 1, 2 and 3 do not. Consider the game in Figure

3, which is Example 2.5 in Aumann (1974), where player 1 chooses the row, player 2

chooses the column, and player 3 chooses the matrix (A3 = {L,M,R}). In this game,

ui ≤ 1 for each u ∈ u(N(G)) and i ∈ {1, 2, 3} but (2, 2, 2) is a correlated equilibrium

payoff.

Using the extension of Theorem 1, we show in the supplementary material to

this paper that if min{2β1, 2β2} ≥ β3, then (1 − β3)(2, 2, 2) + β3(0, 0, 3) is a se-

quential equilibrium payoff of the information design extensive-form game. This

payoff can be obtained by setting ϕ∗
1 = ϕ∗

2 = 1
2
1(m′

1,m
′
2,m̂3) +

1
2
1(m′′

1 ,m
′′
2 ,m̂3), ϕ

∗
3 =

1
2
1(m′

1,m
′
2,m̂

′
3)
+ 1

2
1(m′′

1 ,m
′′
2 ,m̂

′′
3 )
, σ∗

1(m
′
1) = A, σ∗

1(m
′′
1) = B, σ∗

2(m
′
2) = A, σ∗

2(m
′′
2) = B,

σ∗
3(m̂3) = M , σ∗

3(m̂
′
3) = L and σ∗

3(m̂
′′
3) = R. Thus, the four message profiles

that can occur induce the following action profiles: σ∗(m′
1,m

′
2, m̂3) = (A,A,M),

σ∗(m′′
1,m

′′
2, m̂3) = (B,B,M), σ∗(m′

1,m
′
2, m̂

′
3) = (A,A, L) and σ∗(m′′

1,m
′′
2, m̂

′′
3) =

(B,B,R). This shows that correlation of players’ actions through privately designed

information structures can achieve payoffs outside the convex hull of the Nash equi-

17See the supplementary material to this paper for the details for this section.
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librium payoffs when there are more than two players.

Nevertheless, it is also clear that, with privately designed information structures,

not all correlated equilibrium payoffs can be achieved. For example, if (2, 2, 2) ∈

U(G), then, for some sequential equilibrium π ∈ Π,

(2, 2, 2) =
∑

m∈supp(ϕ∗)

ϕ∗[m]u(σ∗(m))

and, thus, σ∗(m) = (A,A,M) or σ∗(m) = (B,B,M) for each m ∈ supp(ϕ∗). But

then, for each m ∈ supp(ϕ∗
3), σ

∗
3(m3) is not a best-reply against σ∗

−3(m−3), contra-

dicting (the extension of) Theorem 1.

Note that the correlated equilibrium payoff (2, 2, 2) cannot be approximated by u ∈

U(G). Indeed, to get close to (2, 2, 2), ϕ∗ must put small probability on m such that

σ∗(m) ̸∈ {(A,A,M), (B,B,M)}. Thus, ϕ∗
3 must also put small probability on such

m. But then there exists m′ ∈ supp(ϕ∗
3) such that σ∗(m′) ∈ {(A,A,M), (B,B,M)},

which contradicts (the extension of) Theorem 1.
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A Appendix

A.1 Definition of perfect conditional ε-equilibrium

A sequential equilibrium π ∈ Π∗ is, by definition, a perfect conditional ε-equilibrium

for each ε > 0. For each ε > 0, π ∈ Π∗ is a perfect conditional ε-equilibrium if

there exists a net {πα, pα}α such that the following properties hold. The first five

require that {πα}α is a net of strategies converging to π that assign strictly positive

probability to each action and information structure beyond a certain order, and that

{pα}α is a net of nature’s choices regarding the probability distribution of message

profiles for each profile of information structures (ϕ1, ϕ2) that converges to β1ϕ1+β2ϕ2

and assigns strictly positive probability to each message profile beyond a certain order:

(i) For each α, πα is a strategy and pα : S2 → ∆(M) is measurable,

(ii) For each i ∈ N , supB∈B(S) |π
1,α
i [B]− π1

i [B]| → 0 and

sup
(mi,ϕi)∈Mi×S,ai∈Ai

|π2,α
i (mi, ϕi)[ai]− π2

i (mi, ϕi)[ai]| → 0, 18

(iii) For each i ∈ N , mi ∈ Mi, ϕi ∈ S and ai ∈ Ai, there is ᾱ such that π1,α
i [ϕi] > 0

and π2,α
i (mi, ϕi)[ai] > 0 for each α ≥ ᾱ,

(iv) supϕ∈S2,B⊆M |pα(ϕ)[B]−
∑

i∈N βiϕi[B]| → 0, and

(v) For each ϕ ∈ S2 and m ∈M , there is ᾱ such that pα(ϕ)[m] > 0 for each α ≥ ᾱ.

A final condition requires that, for each α, πα is such that the payoff that each player

obtains by following it at each information set which is reached with strictly positive

probability is within ε of his maximum payoff conditional on that information set:

(vi) for each α and i, j ∈ N , with j ̸= i,

18We let B(S) denote the class of Borel measurable subsets of S and, for each ϕ ∈ S, 1ϕ denote

the probability measure on S degenerate at ϕ.
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(a) For each ϕ′
i ∈ S,

∑
ϕ∈supp(π1,α)

π1,α[ϕ]

(∑
m

pα(ϕ)[m]ui(π
2,α(m,ϕ))

)
≥

∑
ϕ∈supp(1ϕ′

i
×π1,α

j )

(1ϕ′
i
× π1,α

j )[ϕ]

(∑
m

pα(ϕ)[m]ui(π
2,α(m,ϕ))

)
− ε,

where π1,α = π1,α
1 × π1,α

2 and π2,α(m,ϕ) = (π2,α
1 (m1, ϕ1), π

2,α
2 (m2, ϕ2)), and

(b) For each i ∈ N , (mi, ϕi) ∈Mi × S such that

π1,α
i [ϕi]

∑
ϕj∈supp(π1,α

j )

π1,α
j [ϕj]p

α
Mi
(ϕi, ϕj)[mi] > 0

and ai ∈ Ai,∑
ϕj∈supp(π1,α

j ) π
1,α
j [ϕj]

(∑
mj
pα(ϕi, ϕj)[mi,mj]ui(π

2,α(m,ϕ))
)

∑
ϕj∈supp(π1,α

j ) π
1,α
j [ϕj]pαMi

(ϕi, ϕj)[mi]
≥

∑
ϕj∈supp(π1,α

j ) π
1,α
j [ϕj]

(∑
mj
pα(ϕi, ϕj)[mi,mj]ui(ai, π

2,α
j (mj, ϕj))

)
∑

ϕj∈supp(π1,α
j ) π

1,α
j [ϕj]pαMi

(ϕi, ϕj)[mi]
− ε.

A.2 Proof of Theorem 1

Every sequential equilibrium is a Nash equilibrium, hence condition 2 implies con-

dition 1. Thus, it suffices to show that condition 1 implies condition 3 and that

condition 3 implies condition 2.

A.2.1 Proof that condition 1 implies condition 3

Let π ∈ Π be a Nash equilibrium of Gid. Then∑
m

ϕ∗[m]ui(σ
∗(m)) ≥

∑
m

(ϕ′
i, ϕ

∗
j)[m]ui(ζ(mi), σ

∗
j (mj)), (3)

for each i, j ∈ N , j ̸= i, ϕ′
i ∈ S and ζ :Mi → ∆(Ai), where (ϕ′

i, ϕ
∗
j) = βiϕ

′
i + βjϕ

∗
j . It

follows from (3) that∑
mj

ϕ∗[m]

ϕ∗
Mi
[mi]

ui(σ
∗(m)) ≥

∑
mj

ϕ∗[m]

ϕ∗
Mi
[mi]

ui(ai, σ
∗
j (mj)) (4)
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for each i, j ∈ N , j ̸= i, mi ∈ supp(ϕ∗
Mi
) and ai ∈ Ai.

In each Nash equilibrium of Gid, any player i ∈ N must send optimal messages

m in the sense that they induce an action profile σ∗(m) that maximizes i’s payoff

function. This is stated in Lemma 1 which is a preliminary result for condition (1).

Lemma 1. For each i ∈ N , supp(ϕ∗
i ) ⊆ {m ∈M : ui(σ

∗(m)) = supm′∈M ui(σ
∗(m′))}.

Proof. Suppose not; then there is i ∈ N , m′ ∈ supp(ϕ∗
i ) and m

∗ ∈ M such that

ui(σ
∗(m∗)) > ui(σ

∗(m′)). Define ϕ′
i by setting, for each m ∈ supp(ϕ∗

i ),

ϕ′
i[m] =


0 if m = m′,

ϕ∗
i [m

∗] + ϕ∗
i [m

′] if m = m∗,

ϕ∗
i [m] otherwise,

and let ζ :Mi → ∆(Ai) be such that ζ(mi) = σ∗
i (mi) for each mi ∈Mi. Then∑

m

(ϕ′
i, ϕ

∗
j)[m]ui(ζ(mi), σ

∗
j (mj))−

∑
m

ϕ∗[m]ui(σ
∗(m))

=
∑
m

(ϕ′
i, ϕ

∗
j)[m]ui(σ

∗(m))−
∑
m

ϕ∗[m]ui(σ
∗(m))

=
∑
m

βi (ϕ
′
i[m]− ϕ∗

i [m])ui(σ
∗(m))

= βiϕ
∗
i [m

′]
(
ui(σ

∗(m∗))− ui(σ
∗(m′))

)
> 0.

But this contradicts (3).

The conclusion of Lemma 1 can be strengthened: for a message m to be optimal,

ui(σ
∗(m)) must achieve maxm′

j
vi(σ

∗
j (m

′
j)) and, thus, σ

∗
i (mi) must be a best-reply to

σ∗
j (mj).

Lemma 2. For each i, j ∈ N with i ̸= j,

supp(ϕ∗
i ) ⊆ {m ∈M : vi(σ

∗
j (mj)) = sup

m′
j∈Mj

vi(σ
∗
j (m

′
j)) and σ

∗
i (mi) ∈ BRi(σ

∗
j (mj))}.

Proof. Suppose not; then there is i ∈ N , j ̸= i, m′ ∈ supp(ϕ∗
i ) and m∗ ∈

M such that (i) vi(σ
∗
j (m

∗
j)) > vi(σ

∗
j (m

′
j)) or (ii) vi(σ

∗
j (m

′
j)) = supm̂j∈Mj

vi(σ
∗
j (m̂j))

and σ∗
i (m

′
i) ̸∈ BRi(σ

∗
j (m

′
j)); in case (ii), let m∗ = m′. Let a∗i ∈ BRi(σ

∗
j (m

∗
j)),
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m̄i ̸∈ supp(ϕ∗
Mi
), ϕ′

i = 1(m̄i,m∗
j )

and ζ : Mi → ∆(Ai) be such that ζ(m̄i) = a∗i and

ζ(mi) = σ∗
i (mi) for each mi ̸= m̄i. Then∑

m

(ϕ′
i, ϕ

∗
j)[m]ui(ζ(mi), σ

∗
j (mj))−

∑
m

ϕ∗[m]ui(σ
∗(m))

=
∑
m

βiϕ
′
i[m]ui(ζ(mi), σ

∗
j (mj))−

∑
m

βiϕ
∗
i [m]ui(σ

∗(m))

= βi

(
ui(a

∗
i , σ

∗
j (m

∗
j))−

∑
m∈supp(ϕ∗

i )

ϕ∗
i [m]ui(σ

∗(m))
)

= βi

(
vi(σ

∗
j (m

∗
j))− ui(σ

∗(m′))
)

because ui(σ
∗(m)) = ui(σ

∗(m′)) for eachm ∈ supp(ϕ∗
i ) by Lemma 1 asm′ ∈ supp(ϕ∗

i ).

Thus, if vi(σ
∗
j (m

∗
j)) > vi(σ

∗
j (m

′
j)), then

vi(σ
∗
j (m

∗
j))− ui(σ

∗(m′)) ≥ vi(σ
∗
j (m

∗
j))− vi(σ

∗
j (m

′
j)) > 0;

if vi(σ
∗
j (m

∗
j)) = vi(σ

∗
j (m

′
j)), then σ

∗
i (m

′
i) ̸∈ BRi(σ

∗
j (m

′
j)) and

vi(σ
∗
j (m

∗
j))− ui(σ

∗(m′)) > vi(σ
∗
j (m

∗
j))− vi(σ

∗
j (m

′
j)) ≥ 0.

It then follows that
∑

m(ϕ
′
i, ϕ

∗
j)[m]ui(ζ(mi), σ

∗
j (mj)) −

∑
m ϕ

∗[m]ui(σ
∗(m)) > 0 in

either case. But this contradicts (3).

Lemma 2 implies that σ∗
i (mi) is a best-reply against σ∗

j (mj) whenever m ∈

supp(ϕ∗
i ) and i, j ∈ N with i ̸= j. We will now show that if, in addition, mi ∈

supp(ϕ∗
j,Mi

), then σ∗
i (mi) solves

max
αi∈∆(Ai)

∑
mj

ϕ∗
j [mi,mj]

ϕ∗
j,Mi

[mi]
ui(αi, σ

∗
j (mj)).

Thus, whenever mi ∈ supp(ϕ∗
i,Mi

) ∩ supp(ϕ∗
j,Mi

), σ∗
i (mi) solves player i’s expected

payoff conditional on his information structure ϕ∗
i being chosen and also conditional

on it not being chosen.

Lemma 3. For each i, j ∈ N with i ̸= j,

supp(ϕ∗
i ) ⊆

{
m ∈M : mi ̸∈ supp(ϕ∗

j,Mi
) or σ∗

i (mi) solves

max
αi∈∆(Ai)

∑
mj

ϕ∗
j [mi,mj]

ϕ∗
j,Mi

[mi]
ui(αi, σ

∗
j (mj))

}
.
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Proof. Suppose not; then there is i ∈ N and m′ ∈ supp(ϕ∗
i ) such that m′

i ∈

supp(ϕ∗
j,Mi

), j ̸= i, and σ∗
i (m

′
i) does not solve

max
αi∈∆(Ai)

∑
mj

ϕ∗
j [m

′
i,mj]

ϕ∗
j,Mi

[m′
i]
ui(αi, σ

∗
j (mj)). (5)

Let a∗i be a solution to problem (5), m̄i ̸∈ supp(ϕ∗
Mi
), ϕ′

i = 1(m̄i,m′
j)
and ζ :Mi → ∆(Ai)

be such that

ζ(mi) =


a∗i if mi = m′

i,

σ∗
i (m

′
i) if mi = m̄i,

σ∗
i (mi) otherwise.

Then ∑
m

(ϕ′
i, ϕ

∗
j)[m]ui(ζ(mi), σ

∗
j (mj))−

∑
m

ϕ∗[m]ui(σ
∗(m))

= βi

(
ui(σ

∗(m′))−
∑

m∈supp(ϕ∗
i )

ϕ∗
i [m]ui(σ

∗(m))
)

+βj
∑
mj

ϕ∗
j [m

′
i,mj]

(
ui(a

∗
i , σ

∗
j (mj))− ui(σ

∗
i (m

′
i), σ

∗
j (mj))

)
= βj

∑
mj

ϕ∗
j [m

′
i,mj]

(
ui(a

∗
i , σ

∗
j (mj))− ui(σ

∗
i (m

′
i), σ

∗
j (mj))

)
where the last equality follows by Lemma 1 since m′ ∈ supp(ϕ∗

i ). Since σ∗
i (m

′
i) does

not solve problem (5) but a∗i does, it follows that∑
mj

ϕ∗
j [m

′
i,mj]

ϕ∗
j,Mi

[m′
i]

(
ui(a

∗
i , σ

∗
j (mj))− ui(σ

∗
i (m

′
i), σ

∗
j (mj))

)
> 0

and, since m′
i ∈ supp(ϕ∗

j,Mi
),∑

mj

ϕ∗
j [m

′
i,mj]

(
ui(a

∗
i , σ

∗
j (mj))− ui(σ

∗
i (m

′
i), σ

∗
j (mj))

)
> 0.

Hence,
∑

m(ϕ
′
i, ϕ

∗
j)[m]ui(ζ(mi), σ

∗
j (mj)) −

∑
m ϕ

∗[m]ui(σ
∗(m)) > 0. But this contra-

dicts (3).

It follows by Lemmas 2 and 3 that, for each Nash equilibrium outcome, i, j ∈ N ,

i ̸= j, and m ∈ supp(ϕ∗
i ), condition (1) in Theorem 1 holds and σ∗

i (mi) solves

max
αi∈∆(Ai)

∑
mj

ϕ∗
j [mi,mj]

ϕ∗
j,Mi

[mi]
ui(αi, σ

∗
j (mj))
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whenever mi ∈ supp(ϕ∗
j,Mi

) and, hence, mi ∈ supp(ϕ∗
i,Mi

) ∩ supp(ϕ∗
j,Mi

). In fact,

regarding (1), note that m ∈ supp(ϕ∗
i ) implies that mj ∈ supp(ϕ∗

Mj
) =M∗

j . Hence,

vi(σ
∗
j (mj)) ≤ max

m′
j∈M∗

j

vi(σ
∗
j (m

′
j)) ≤ sup

m′
j∈Mj

vi(σ
∗
j (m

′
j)) = vi(σ

∗
j (mj)).

Condition (4) implies that, for each i ∈ N , σ∗
i (mi) solves

max
αi∈∆(Ai)

∑
mj

ϕ∗
j [mi,mj]

ϕ∗
j,Mi

[mi]
ui(αi, σ

∗
j (mj))

whenever mi ∈ supp(ϕ∗
j,Mi

) \ supp(ϕ∗
i,Mi

). This, together with what has been shown

in the previous paragraph, shows that condition (2) in Theorem 1 holds.

A.2.2 Proof that condition 3 implies condition 2

Let
(
ϕ∗
i , (σ

∗
i (mi))mi∈M∗

i

)
i∈N be such that conditions (1) and (2) in Theorem 1 hold;

we will show that it is the outcome of a sequential equilibrium.

We will construct a sequential equilibrium π with the desired outcome. Let i ∈ N

and j ̸= i. Set π1
i = ϕ∗

i and π2
i (mi, ϕ

∗
i ) = σ∗

i (mi) for each mi ∈ M∗
i since the goal is

to define a strategy with outcome
(
ϕ∗
i , (σ

∗
i (mi))mi∈M∗

i

)
i∈N .

We will specify the remaining values of π2
i as follows. Let

m̄i ∈ supp(ϕ∗
i,Mi

).

Informally, we will define {πα, pα}α such that player i, after choosing ϕi and receiving

mi, believes that ϕj = ϕ∗
j and that mj occurs with probability

ϕ∗
i [m̄i,mj ]

ϕ∗
i,Mi

[m̄i]
. In this case,

we set player i’s action to be σ∗
i (m̄i), which is a best-reply against the action σ∗

j (mj)

of player j for each mj such that ϕ∗
i [m̄i,mj] > 0.

The above belief is only possible when βiϕi,Mi
[mi]+βiϕ

∗
j,Mi

[mi] = 0 since otherwise,

player i has to assign probability
βiϕi[mi,mj ]+βjϕ

∗
j [mi,mj ]

βiϕi,Mi
[mi]+βjϕ∗

j,Mi
[mi]

to (mj, ϕ
∗
j). In this case, we

specify player i’s action to be a best-reply against the expected action of player j.

The formal details are as follows. For each mi ∈ Mi and ϕi ∈ S such that

βiϕi,Mi
[mi] + βjϕ

∗
j,Mi

[mi] = 0, let π2
i (mi, ϕi) = σ∗

i (m̄i). In particular, π2
i (mi, ϕ

∗
i ) =

σ∗
i (m̄i) ifmi ̸∈M∗

i since then βiϕ
∗
i,Mi

[mi]+βjϕ
∗
j,Mi

[mi] = 0. Thus, σ∗
i (mi) = π2

i (mi, ϕ
∗
i )

is defined for each i ∈ N and mi ∈Mi.
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For eachmi ∈Mi and ϕi ̸= ϕ∗
i such that βiϕi,Mi

[mi]+βjϕ
∗
j,Mi

[mi] > 0, let π2
i (mi, ϕi)

be a best-reply against∑
mj

βiϕi[mi,mj] + βjϕ
∗
j [mi,mj]

βiϕi,Mi
[mi] + βjϕ∗

j,Mi
[mi]

σ∗
j (mj).

We may assume that π2
i :Mi×S → ∆(Ai) is measurable. Note first thatMi×S =

∪3
r=1Br with

B1 = {(mi, ϕi) : ϕi = ϕ∗
i },

B2 = {(mi, ϕi) : ϕi ̸= ϕ∗
i and βiϕi,Mi

[mi] + βjϕ
∗
j,Mi

[mi] = 0} and

B3 = {(mi, ϕi) : ϕi ̸= ϕ∗
i and βiϕi,Mi

[mi] + βjϕ
∗
j,Mi

[mi] > 0}.

For each r ∈ {1, 2, 3}, Br is measurable. Indeed, B1 is closed, B2 is the intersec-

tion of an open set, {(mi, ϕi) : ϕi ̸= ϕ∗
i }, with a closed set, {(mi, ϕi) : βiϕi,Mi

[mi] +

βjϕ
∗
j,Mi

[mi] = 0}, and B3 is open. Then, for each measurable B ⊆ ∆(Ai), (π
2
i )

−1(B)∩

B1 is measurable since (π2
i )

−1(B) ∩ B1 is countable. Regarding (π2
i )

−1(B) ∩ B3: Let

f : Mi × S → ∆(Aj) be defined by setting, for each (mi, ϕi) ∈ B3, f(mi, ϕi) =∑
mj

βiϕi[mi,mj ]+βjϕ
∗
j [mi,mj ]

βiϕi,Mi
[mi]+βjϕ∗

j,Mi
[mi]

σ∗
j (mj). Letting BRi : ∆(Aj) ⇒ ∆(Ai) be player i’s best-

reply correspondence in G, define Ψ :Mi×S ⇒ ∆(Ai) by setting, for each (mi, ϕi) ∈

B3, Ψ(mi, ϕi) = BRi(f(mi, ϕi)). Since ∆(Ai) is compact, f is continuous and BRi

is upper hemicontinuous, it follows that Ψ is upper hemicontinuous and, hence, mea-

surable (and, thus, weakly measurable). Hence, Ψ has a measurable selection by the

Kuratowski-Ryll-Nardzewski Selection Theorem (e.g. Aliprantis and Border (2006,

Theorem 18.13, p. 600)). Finally, for each measurable B ⊆ ∆(Ai), (π
2
i )

−1(B) = B2

if σ∗
i (m̄i) ∈ B and (π2

i )
−1(B)∩B2 = ∅ otherwise; thus (π2

i )
−1(B)∩B2 is measurable.

We define {πα, pα}α as follows. The index set consists of α = (k, F, F̂ ) such that

k ∈ N, F is a finite subset of N and F̂ is a finite subset of S; this set is partially

ordered by defining (k′, F ′, F̂ ′) ≥ (k, F, F̂ ) if k′ ≥ k, F ⊆ F ′ and F̂ ⊆ F̂ ′. For each

mj ∈Mj, let

q̄i[mj] =
ϕ∗
i [m̄i,mj]

ϕ∗
i,Mi

[m̄i]

be the ϕ∗
i -probability of mj conditional on m̄i. For each α = (k, F, F̂ ), we define

pα(ϕ) such that the probability distribution of message profiles is β1ϕ1 + β2ϕ2 with
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probability 1 − k−1; with probability k−3, it equals a probability distribution τα

that assigns strictly positive probability to each message in F and in the support of

information structures in F̂ ; and, with the remaining probability of k−1(1 − k−2), it

equals a probability distribution qα such that the probability of mj conditional on mi

equals q̄i[mj]. Let

ταi =

∑
l∈F∪(∪ϕ∈F̂ supp(ϕMi

)) 2
−l1l∑

l∈F∪(∪ϕ∈F̂ supp(ϕMi
)) 2

−l
,

qαi = ταi × q̄i,

τα = τα1 × τα2 ,

qα = (qα1 + qα2 )/2,

µα = (1− k−2)qα + k−2τα, and

pα(ϕ) = (1− k−1)(β1ϕ1 + β2ϕ2) + k−1µα.

Furthermore, let υX ∈ ∆(X) be uniform on X whenever X is a finite set and let

π1,α
i = (1− k−3)1ϕ∗

i
+ k−3υF̂ and π2,α

i (mi, ϕi) = (1− k−1)π2
i (mi, ϕi) + k−1υAi

for each (mi, ϕi) ∈Mi × S. Thus, all information structures in F̂ and all actions are

chosen with strictly positive probability. Furthermore, the probability of an informa-

tion structure different from ϕ∗
i is much smaller than the probability of qα (i.e. their

ratio is k−3/k−1(1 − k−2) and goes to zero), which implies that if player i receives a

message that is neither in the support of the information structure he chose nor in

the support of ϕ∗
j , then player i believes that this happened because the message was

drawn from qα and not because player j chose an information structure different from

ϕ∗
j .

Let ε > 0. We have that the conditions (i)–(v) in the definition of perfect condi-

tional ε-equilibrium hold by construction. We will show that condition (vi) holds for

some subnet of {πα, pα}α. Some technical details of this argument are simplified by

our construction of {πα, pα}α which is such that supp(π1,α) and supp(pα) are finite
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for each α. We define

Si(F, F̂ ) =
((
F ∪ (∪ϕ∈F̂ supp(ϕMi

)) ∪ (supp(ϕ∗
j,Mi

))
)
× F̂

)
∪
((
F ∪ (∪ϕ∈F̂ supp(ϕMi

)) ∪ (supp(ϕ∗
Mi
))
)
× {ϕ∗

i }
)

which is the set of pairs (mi, ϕi) that can occur with strictly positive probability.

Indeed, if (m,ϕ) ∈ N2 × S2 is such that π1,α[ϕ] > 0 and
∑

ϕ′∈supp(π1,α) p
α(ϕ′)[m] > 0,

then (mi, ϕi) ∈ Si(F, F̂ ) for each i ∈ N .

Recall that α = (k, F, F̂ ). In what follows, we will often fix F and F̂ and take

limits as k → ∞. Regarding condition (vi) (a), let i, j ∈ N , j ̸= i and ϕ′
i ∈ S. We

have that, for each finite subsets F and F̂ of N and S, respectively,

lim
k

∑
ϕ∈supp(π1,α)

π1,α[ϕ]

(∑
m

pα(ϕ)[m]ui(π
2,α(m,ϕ))

)
=
∑
m

ϕ∗[m]ui(σ
∗(m))

and that

lim
k

∑
ϕ∈supp(1ϕ′

i
×π1,α

j )

(1ϕ′
i
× π1,α

j )[ϕ]

(∑
m

pα(ϕ)[m]ui(π
2,α(m,ϕ))

)
=

∑
m

(ϕ′
i, ϕ

∗
j)[m]ui(π

2
i (mi, ϕ

′
i), σ

∗
j (mj)).

Hence, by considering α such that k ≥ k0 for some k0 ∈ N, it is enough to show that∑
m

ϕ∗[m]ui(σ
∗(m)) ≥

∑
m

(ϕ′
i, ϕ

∗
j)[m]ui(π

2
i (mi, ϕ

′
i), σ

∗
j (mj)),

which is equivalent to∑
m

ϕ∗
i [m]ui(σ

∗(m)) ≥
∑
m

ϕ′
i[m]ui(π

2
i (mi, ϕ

′
i), σ

∗
j (mj)). (6)

For each mj ∈ Mj, σ
∗
j (mj) ∈ {σ∗

j (m
′
j) : m

′
j ∈ M∗

j } since σ∗
j (mj) = σ∗

j (m̄j) whenever

mj ̸∈M∗
j . Thus, by (1),∑

m

ϕ′
i[m]ui(π

2
i (mi, ϕ

′
i), σ

∗
j (mj)) ≤

∑
m

ϕ′
i[m]vi(σ

∗
j (mj))

≤ max
mj∈M∗

j

vi(σ
∗
j (mj)) =

∑
m

ϕ∗
i [m]ui(σ

∗(m))

and, hence, (6) holds. It then follows that condition (vi) (a) also holds.
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Consider next condition (vi) (b). For each i, j ∈ N , i ̸= j, finite subset F of N,

finite subset F̂ of S, (mi, ϕi) ∈ Si(F, F̂ ) and γi ∈ ∆(Ai), we have that

lim
k

∑
ϕj∈supp(π1,α

j ) π
1,α
j [ϕj]

(∑
mj
pα(ϕi, ϕj)[mi,mj]ui(γi, π

2,α
j (mj, ϕj))

)
∑

ϕj∈supp(π1,α
j ) π

1,α
j [ϕj]pαMi

(ϕi, ϕj)[mi]

=
∑
mj

ϕ∗
i [m̄i,mj]

ϕ∗
i,Mi

[m̄i]
ui(γi, σ

∗
j (mj))

if βiϕi,Mi
[mi] + βjϕ

∗
j,Mi

[mi] = 0, and

lim
k

∑
ϕj∈supp(π1,α

j ) π
1,α
j [ϕj]

(∑
mj
pα(ϕi, ϕj)[mi,mj]ui(γi, π

2,α
j (mj, ϕj))

)
∑

ϕj∈supp(π1,α
j ) π

1,α
j [ϕj]pαMi

(ϕi, ϕj)[mi]
=

∑
mj

βiϕi[mi,mj] + βjϕ
∗
j [mi,mj]

βiϕi,Mi
[mi] + βjϕ∗

j,Mi
[mi]

ui(γi, σ
∗
j (mj))

if βiϕi,Mi
[mi] + βjϕ

∗
j,Mi

[mi] > 0. The latter case is clear since all terms in the denom-

inator of the fraction converge to zero except the one that converges to βiϕi,Mi
[mi] +

βjϕ
∗
j,Mi

[mi] and similarly regarding the numerator.

In the former case, both the numerator and the denominator converge to zero

since βiϕi,Mi
[mi] + βjϕ

∗
j,Mi

[mi] = 0. Multiplying each by k, it follows that all terms

converge to zero except the ones corresponding to the case where π1,α
j = ϕ∗

j and

pα(ϕi, ϕ
∗
j) = qα. Furthermore, for each mj ∈Mj,

qα[mi,mj] = 2−1(qαi [mi,mj] + qαj [mi,mj]),

qαi [mi,mj] = ταi [mi]q̄i[mj] and

qαj [mi,mj] = 0,

the latter since mi ̸∈ supp(ϕ∗
j,Mi

). Hence, qα[mi,mj] = 2−1ταi [mi]q̄i[mj] and q
α
Mi
[mi] =

2−1ταi [mi]. Thus,
qα[mi,mj]

qαMi
[mi]

= q̄i[mj] =
ϕ∗
i [m̄i,mj]

ϕ∗
i,Mi

[m̄i]
.

We will next show that π2
i (mi, ϕi) solves

max
γi∈∆(Ai)

lim
k

∑
ϕj∈supp(π1,α

j ) π
1,α
j [ϕj]

(∑
mj
pα(ϕi, ϕj)[mi,mj]ui(γi, π

2,α
j (mj, ϕj))

)
∑

ϕj∈supp(π1,α
j ) π

1,α
j [ϕj]pαMi

(ϕi, ϕj)[mi]
(7)
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for each i, j ∈ N , j ̸= i and (mi, ϕi) ∈ Si(F, F̂ ).

If βiϕi,Mi
[mi] + βjϕ

∗
j,Mi

[mi] = 0, then

lim
k

∑
ϕj∈supp(π1,α

j ) π
1,α
j [ϕj]

(∑
mj
pα(ϕi, ϕj)[mi,mj]ui(γi, π

2,α
j (mj, ϕj))

)
∑

ϕj∈supp(π1,α
j ) π

1,α
j [ϕj]pαMi

(ϕi, ϕj)[mi]

=
∑
mj

ϕ∗
i [m̄i,mj]

ϕ∗
i,Mi

[m̄i]
ui(γi, σ

∗
j (mj)).

Since π2
i (mi, ϕi) = σ∗

i (m̄i) and σ∗
i (m̄i) ∈ BRi(σ

∗
j (mj)) for each mj ∈ Mj such that

(m̄i,mj) ∈ supp(ϕ∗
i ) by (1), it follows that (7) holds in this case.

If βiϕi,Mi
[mi] + βjϕ

∗
j,Mi

[mi] > 0 and ϕi ̸= ϕ∗
i , then

lim
k

∑
ϕj∈supp(π1,α

j ) π
1,α
j [ϕj]

(∑
mj
pα(ϕi, ϕj)[mi,mj]ui(γi, π

2,α
j (mj, ϕj))

)
∑

ϕj∈supp(π1,α
j ) π

1,α
j [ϕj]pαMi

(ϕi, ϕj)[mi]

=
∑
mj

βiϕi[mi,mj] + βjϕ
∗
j [mi,mj]

βiϕi,Mi
[mi] + βjϕ∗

j,Mi
[mi]

ui(γi, σ
∗
j (mj))

= ui

γi,∑
mj

βiϕi[mi,mj] + βjϕ
∗
j [mi,mj]

βiϕi,Mi
[mi] + βjϕ∗

j,Mi
[mi]

σ∗
j (mj)

 .

Since π2
i (mi, ϕi) is optimal against

∑
mj

βiϕi[mi,mj ]+βjϕ
∗
j [mi,mj ]

βiϕi,Mi
[mi]+βjϕ∗

j,Mi
[mi]

σ∗
j (mj), it follows that

(7) holds in this case.

Finally, consider the case where ϕi = ϕ∗
i and βiϕi,Mi

[mi] + βjϕ
∗
j,Mi

[mi] > 0. Note

that it is enough to show that∑
mj

ϕ∗[m]
(
ui(σ

∗(m))− ui(ai, σ
∗
j (mj))

)
≥ 0 (8)

for each ai ∈ Ai and that∑
mj

ϕ∗[m]
(
ui(σ

∗(m))− ui(ai, σ
∗
j (mj))

)
=

∑
mj

βiϕ
∗
i [m]

(
ui(σ

∗(m))− ui(ai, σ
∗
j (mj))

)
+
∑
mj

βjϕ
∗
j [m]

(
ui(σ

∗(m))− ui(ai, σ
∗
j (mj))

)
.

We have that ui(σ
∗(m)) ≥ ui(ai, σ

∗
j (mj)) for each mj such that ϕ∗

i [m] > 0 by (1);

moreover, for each mj such that ϕ∗
j [m] > 0, then mi ∈ supp(ϕ∗

j,Mi
) and, hence,

29



∑
mj
βjϕ

∗
j [m]

(
ui(σ

∗(m)) − ui(ai, σ
∗
j (mj))

)
≥ 0 by (2). Thus, (8), and hence (7),

holds.

The above arguments show that, for each finite subsets F of N and F̂ of S,

condition (vi) holds whenever k is sufficiently large. Specifically, condition (vi) (a)

holds for each i ∈ N whenever k ≥ k0. For each i ∈ N and (mi, ϕi) ∈ Si(F, F̂ ), there

is k(mi, ϕi) such that condition (vi) (b) holds whenever k ≥ k(mi, ϕi). Thus, let

k(F, F̂ ) = max

{
k0,max

i∈N
max

(mi,ϕi)∈Si(F,F̂ )
k(mi, ϕi)

}
.

Since condition (vi) (b) is trivially satisfied when

π1,α
i [ϕi]

∑
ϕj∈supp(π1,α

j )

π1,α
j [ϕj]p

α
Mi
(ϕi, ϕj)[mi] = 0,

i.e. when i ∈ N and (mi, ϕi) ̸∈ Si(F, F̂ ), it follows that condition (vi) holds whenever

k ≥ k(F, F̂ ). This allows us to define the following subnet {πφ(η), pφ(η)}η of {πα, pα}α
such that condition (vi) holds.

The index set of the subnet {πφ(η), pφ(η)}η is the same as the one in the net

{πα, pα}α. The function φ : η 7→ α is defined by setting, for each η = (k, F, F̂ ),

φ(η) =
(
max

{
k, k(F, F̂ )

}
, F, F̂

)
.

It is then clear that condition (vi) holds and that, as required by the definition of a

subnet, for each α0, there exists η0, e.g. η0 = α0, such that φ(η) ≥ α0 for each η ≥ η0.

A.3 Proof of Corollary 1

We first show that A(G) ⊆ A. Let π ∈ Π be a sequential equilibrium of Gid and

σ = σπ be its action distribution. Then
(
ϕ∗
i , (σ

∗
i (mi))mi∈M∗

i

)
i∈N satisfies the conditions

of Theorem 1. Define ϕi ∈ ∆(∆(A1) × ∆(A2)) such that ϕi[α] =
∑

m:σ∗(m)=α ϕ
∗
i [m]

and note that ϕi has finite support. Then

σ =
∑
m

ϕ∗[m](σ∗
1(m)× σ∗

2(m)) =
∑
i,α

βiϕi[α](α1 × α2).
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Claim 1. For each i ∈ N and αj ∈ supp(ϕi,∆(Aj)), ∑
αi∈supp(ϕi,∆(Ai)

)

ϕi[αi, αj]

ϕi,∆(Aj)[αj]
αi, αj


is a Nash equilibrium of G and

ui(αi, αj) = max
α′∈∪lsupp(ϕl)

ui(α
′)

for each αi ∈ ∆(Ai) such that ϕi[αi, αj] > 0.

Proof. Since αj ∈ supp(ϕi,∆(Aj)), there exists mj ∈ supp(ϕ∗
i,Mj

) such that αj =

σ∗
j (mj). Let M̂j be the set of such mj and note that, for each ai ∈ Ai,∑

mi

∑
mj∈M̂j

ϕ∗
i [mi,mj]σ

∗
i (mi)[ai] =

∑
αi

ϕi[αi, αj]αi[ai].

Thus, it follows that
∑

mi

ϕ∗
i [{mi}×M̂j ]

ϕ∗
i,Mj

[M̂j ]
σ∗
i (mi)[ai] =

∑
αi

ϕi[αi,αj ]

ϕi,∆(Aj)
[αj ]

αi[ai]. Since, for each

mj ∈ M̂j and α̂j ∈ ∆(Aj),∑
mi

ϕ∗
i [mi,mj]uj(αj, σ

∗
i (mi)) ≥

∑
mi

ϕ∗
i [mi,mj]uj(α̂j, σ

∗
i (mi))

by (2), it follows that∑
mi

∑
mj∈M̂j

ϕ∗
i [mi,mj]uj(αj, σ

∗
i (mi)) ≥

∑
mi

∑
mj∈M̂j

ϕ∗
i [mi,mj]uj(α̂j, σ

∗
i (mi))

and that αj maximises uj(·,
∑

αi

ϕi[αi,αj ]

ϕi,∆(Aj)
[αj ]

αi).

For each αi ∈ ∆(Ai) such that ϕi[αi, αj] > 0, there exists m ∈ supp(ϕ∗
i ) such that

σ∗(m) = (αi, αj). Furthermore, for each α′ ∈ ∪lsupp(ϕl), there exists m′ ∈ M∗ such

that σ∗(m′) = α′. It then follows by (1) that αi = σ∗
i (mi) ∈ BRi(σ

∗
j (mj)) = BRi(αj)

and

ui(αi, αj) = vi(αj) = vi(σ
∗
j (mj)) ≥ vi(σ

∗
j (m

′
j)) ≥ ui(σ

∗(m′)) = ui(α
′).

Thus,
∑

αi∈supp(ϕi,∆(Ai)
)

ϕi[αi,αj ]

ϕi,∆(Aj)
[αj ]

αi ∈ BRi(αj).
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Note that ϕi can be written as:

ϕi =
∑
αj

ϕi,∆(Aj)[αj]

((∑
αi

ϕi[αi, αj]

ϕi,∆(Aj)[αj]
1αi

)
× 1αj

)
.

Hence,

σ =
∑
i,α

βiϕi[α](α1 × α2) =
∑
i

βi
∑

αj∈supp(ϕi,∆(Aj)
)

ϕi,∆(Aj)[αj](σ
i,αj

1 × σ
i,αj

2 ),

where, for each αj ∈ supp(ϕi,∆(Aj)),

σi,αj =

(∑
αi

ϕi[αi, αj]

ϕi,∆(Aj)[αj]
αi, αj

)

is a Nash equilibrium of G by Claim 1.

Then let Li = |supp(ϕi,∆(Aj))| and, writing supp(ϕi,∆(Aj)) = {α1
j , . . . , α

Li
j }, let

ηi,l = ϕi,∆(Aj)[α
l
j] and σ

i,l = σi,αl
j for each l ∈ {1, . . . , Li}.

For each αj ∈ supp(ϕi,∆(Aj)), it follows by Claim 1 that

ui(σ
i,αj) =

∑
αi

ϕi[αi, αj]

ϕi,∆(Aj)[αj]
ui(αi, αj) = max

α̂∈∪lsupp(ϕl)
ui(α̂).

Thus, ui(σ
i,αj) = ui(σ

i,α′
j) for each α′

j ∈ supp(ϕi,∆(Aj)). Furthermore, for each αi ∈

supp(ϕj,∆(Ai)),

ui(σ
j,αi) =

∑
αj

ϕj[αi, αj]

ϕj,∆(Ai)[αi]
ui(αi, αj) ≤ max

α̂∈∪lsupp(ϕl)
ui(α̂);

thus, ui(σ
i,αj) ≥ ui(σ

j,αi). This completes the proof that A(G) ⊆ A.

We now show that A ⊆ A(G). Let σ ∈ A, i.e. σ =
∑

i βi
∑Li

l=1 η
i,l(σi,l

1 × σi,l
2 ),∑Li

l=1 η
i,l = 1, ηi,l ≥ 0, σi,l ∈ N(G), ui(σ

i,l) = ui(σ
i,k) ≥ uj(σ

j,r) for each i, j ∈ N

with i ̸= j, l, k ∈ {1, . . . , Li} and r ∈ {1, . . . , Lj}.

For each i ∈ N , l ∈ {1, . . . , L1} and k ∈ {1, . . . , L2}, pick m1,l
i and m2,k

i inMi such

that m1,l
i ̸= m1,r

i , m2,k
i ̸= m2,s

i and m1,l
i ̸= m2,k

i for each l, r ∈ {1, . . . , L1} and k, s ∈

{1, . . . , L2}. Set ϕ∗
1 =

∑L1

l=1 η
1,l1m1,l , ϕ∗

2 =
∑L2

l=1 η
2,l1m2,l and, for each i ∈ N , j ∈ N

and l ∈ {1, . . . , Lj}, σ∗
i (m

j,l
i ) = σj,l

i . It is then clear that σ is the action distribution

of the outcome
(
ϕ∗
i , (σ

∗
i (mi))mi∈M∗

i

)
i∈N , i.e. σ =

∑
m∈M∗ ϕ∗[m](σ∗

1(m)× σ∗
2(m)).
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Fix i ∈ N and let j ̸= i. For each mj ∈M∗
j , σ

∗
j (mj) = σk,l

j for some k ∈ {i, j} and

l ∈ {1, . . . , Lk}. Since vi(σ
i,l
j ) = ui(σ

i,l) ≥ ui(σ
j,r) = vi(σ

j,r
j ) for each l ∈ {1, . . . , Li}

and r ∈ {1, . . . , Lj}, it follows that maxmj∈M∗
j
vi(σ

∗
j (mj)) = ui(σ

i,l) for each l ∈

{1, . . . , Li}. Since, for each m ∈ supp(ϕ∗
i ), there exists l ∈ {1, . . . , Li} such that

σ∗
i (mi) = σi,l

i and σ∗
j (mj) = σi,l

j , it follows that supp(ϕ∗
i ) ⊆ {m ∈ M : vi(σ

∗
j (mj)) =

maxm′
j∈M∗

j
vi(σ

∗
j (m

′
j)) and σ

∗
i (mi) ∈ BRi(σ

∗
j (mj))}. Thus, (1) holds.

Moreover, for each mi ∈ supp(ϕ∗
j,Mi

), mi = mj,l
i for some l ∈ {1, . . . , Lj} and hence

σ∗
i (mi) = σj,l

i solves

max
αi∈∆(Ai)

∑
mj

ϕ∗
j [mi,mj]

ϕ∗
j,Mi

[mi]
ui(αi, σ

∗
j (mj)) = max

αi∈∆(Ai)
ui(αi, σ

j,l
j ).

Thus, (2) holds. It then follows by Theorem 1 that (ϕ∗
i , (σ

∗
i (mi))mi∈M∗

i
)i∈N is the

outcome of a sequential equilibrium of Gid and, thus, that σ ∈ A(G).

A.4 Proof of Corollary 3

The characterization of U(G) follows from the definition of G and Corollary 2.

Standard results (e.g. Theorems 2.5.5 and 2.6.1 in van Damme (1991) and their

proofs) imply that there is an open set O of R2|A| such that its complement has

Lebesgue measure zero and, for each u ∈ O, there is an open neighborhood Vu of u

and |N(u)| continuous functions, fk : Vu → ∆(A1)×∆(A2) with k ∈ {1, . . . , |N(u)|}

such that, for each u′ ∈ Vu, N(u′) =
{
fk(u

′) : k ∈ {1, . . . , |N(u)|}
}
and fk(u) ̸= fl(u)

for each k, l ∈ {1, . . . , |N(u)|} with k ̸= l.19 Shrinking Vu if needed, we may assume

that, for each a ∈ A, k, l ∈ {1, . . . , |N(u)|} and u′ ∈ Vu, fk(u
′)[a] ̸= fl(u

′)[a] if

fk(u)[a] ̸= fl(u)[a].

We have that R2|A| is separable, hence, there is a countable collection {Vuj
}∞j=1

such that O = ∪∞
j=1Vuj

. Define, for each j ∈ N, Ij = {1, . . . , |N(uj)|} and

Oj = ∩(i,k,l)∈N×I2j :k ̸=l{u ∈ Vuj
: ui(fk(u)) ̸= ui(fl(u))}.

Then Oj is open and ∪∞
j=1Oj ⊆ G. It thus suffices to show that Cj,i,k,l = {u ∈ Vuj

:

19The set N(u) denotes the set of Nash equilibria of the game with payoff function u.
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ui(fk(u)) = ui(fl(u))} has Lebesgue measure zero for each j ∈ N and (i, k, l) ∈ N×I2j
such that k ̸= l.

Let j ∈ N and (i, k, l) ∈ N × I2j be such that k ̸= l. Since fk(uj) ̸= fl(uj), let

a ∈ A be such that fk(u)[a] ̸= fl(u)[a] for each u ∈ Vuj
. Then

Cj,i,k,l ⊆

{
u ∈ Vuj

: ui(a) =

∑
a′ ̸=a ui(a

′)
(
fl(u)[a

′]− fk(u)[a
′]
)

fk(u)[a]− fl(u)[a]

}
.

It then follows by Tonelli’s Theorem (e.g. Wheeden and Zygmund (1977, Theorem

6.10, p. 92)) that Cj,i,k,l has Lesbegue measure zero.
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