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1 Introduction
This paper contains supplementary material to our paper “Privately Designed Cor-
related Equilibrium”. It contains:

Section 2: Limits of perfect conditional e-equilibria.
Section 3: Mixed information designs.

Section 4: Extension to the case of more than two players.

2 Limits of perfect conditional c-equilibria

In this section we establish the following claim made in Section 4.5.
Theorem 2.1 For each 2-player game G, UM™(G) = U.

Proof. We have that & C U(G) C U'™(@G), where the first inclusion follows by
Corollary 2. Thus, it remains to show that U™ (G) C U.
For each a = (ay,0) € R? and i € N, let
C! =u(N(G))N{u € R?* : u; = a; and u; < o}, and
Co = Zﬂico(C’i).
We then have that U,C,, C U;! hence, it is enough to show that U™(G) C U,C,.
Let u € U'™i*(G). We have that

u=lim (B > offmlu(rim) + 5 > ohmlu(r(m))).

méesupp(¢t) mesupp($F)

For each L € Nand i € N, let u™' =37 o) éF[m]u(n"(m)). For each k € N,

Z@M m;] Zﬂm“mﬂ (ot (me). e (my)

i, M m]
= Z qbz M; m] (Z ¢ Lmz:n:q’] (mz) 7T-L(WL])> :
m; m; i, M ]

Indeed, if u € Cq, then v = Y, fiu’, u! = ZkK:ll A pub® and w? = ZkK:ZI A2 pu?k where
Xik >0, 3 ik = 1, uF € u(N(G)), ul® = ul* = a; > ul* for each i € N and k, k’. In fact, the

()

converse also holds and, thus, U,Cy = U.



Thus,

Z¢1M m;lu (Z A Lmz,m] i (my), ‘L(mj)> :

1,M; m]
Taking a subsequence if necessary, we may assume that {u®*}5°_, converges; let
u' = limy u™?. Then u = B; limy u! + By limy u™? = Bru' + Bou?.

Note that supp(qﬁ%@) = supp(¢£Mj) U Supp(gbiMj) for each j € N.

Lemma 2.1 For each n > 0, there exists L € N such that, for each L > L and
1€ N,

z’L,Mj ({mj € supp( fMj) : Ui(ﬂ'f(mj)) > max vl(wf(m;)) — 7]}) >1-—n.

L
m esupp(6k;.)

Proof. Suppose not; then there is n > 0, i € N and a subsequence {7’*}; such
that gz5 (My) > n, where

My ={m; € supp(qﬁfﬁ/[j) : vi(ﬂf’“(mj)) <  max L vl(wf’“(m;)) -7
m; ESUPP(¢A1j )
Let ¢ > 0 be such that 2¢ < 3% and k¥ € N be such that 7%* is a per-
fect conditional e-equilibrium. Let m} € supp(qﬁﬁjj) be such that Ul'(ﬂ'jL "(m})) =
L L
MAX . coupp(gt £ vi(m;* (m)). Let m; & supp(¢y7) and ¢} = 1w, me).-
Condition 6(b) implies, in the limit, that

wi(m e (Mg, ¢), w7k (m3)) > max u;(ag, )

It also implies that, for each m; € supp(gbL’“ M)

¢Lk[m, m] m "
Z%uz( Lk(mzy¢/)7 *(my) >n}3xz alii] ui(a;, ij(mJ)) €.

m; ¢g M; [mz]

Hence,



> (0 o5 )mlui (™ (ma, @), w7 (my)) — Y & [muy(m* (m)

= iy (@mus(r™ (mi, ¢7), 77 (my)) = & [m]us (™ (i), 7w (my))

+ 85 Y o7 [m] (wi (™ (ma, 67), w7 (my)) = wa(m ™ (ma), w7 (my))

But this contradicts condition 6(a). =

For each L e Nand 7 € N, let

M = {mj € supp(¢yyy,) vyl (my)) > max - wi(mi(m))) — n} :

/ L
m; Esupp(¢>Mj

For each n > 0 and § € A(A;), let
BR](0) ={d € A(4;) : w;(0',6) > max u;(a;, 6) — n}.

a; EAZ‘

Lemma 2.2 For each n > 0, there exists L € N such that, for each L > L and
1€ N,

oF ({m € supp(¢f) : m; € M 1 and 7F(m;) € BR) (1 (mj))}) >1—n.

Proof. Suppose not; then there is n > 0, i € N and a subsequence {7l*};, such

that ¢-* (M) > n, where

My = {m € supp(6/*) : m; ¢ M or xf*(my) ¢ BRI(x}*(m;,)) }.

Let K € N be such that, for each £ > K, d) (ML“") > (b (M L’”"/z) >
1—n/2. Fix k > K and let

My = {m & supp(¢}*) : m; € M/*"" and 7*(m:) ¢ BR](x}* (m;)) } .

4



Then,

3

0 < 6 (M) < 67 (M) + 67 (supp(7*) \ (M x M) < 6 (M) + 5.

Hence, ¢ (My) > /2.

Let ¢ > 0 be such that ¢ < Bin?/4 and k > K be such that 7+ is a per-
fect conditional e-equilibrium. Let mj € supp(¢§/}“_) be such that ’Ui(7T]»L H(m})) =
MAX, (o) Vi (M), s ¢ supp(@af) and ¢ = Liz.ims)-

Condition 6(b) implies that

w; (7 (g, gb’),ﬂf’“(m ) > H}laxu,(az,wf
1

Condition 6(b) also implies that, for each m; € Supp(gbL’“ )

S b, ), wm»mﬁﬁfﬁﬁgww%f%wwa

o ] ok, ]

Hence,

Then

> (0 07" [mlus(nf (mz,¢’),ﬂf’“(mj))—Zcb“[m]ui(ﬂ”“(m))

m

Z ﬁzuz( (m17¢/ 7 j ZBZ Lk m l Lk<m)) _626

>m@wam»—e—¢[Mmm<%mmwww—u—¢ﬁwmwmﬁwwn)—@e

2

U
> B~ —& > .
2fig—e>e

But this contradicts condition 6(a). =

Corollary 2.1 For each n > 0, there exists L € N such that, for each L > L and
i€ N, qbeJ(M]Lm) >1—n and

. ZTI’L':T(.L m.;YeBM (7L (m; gsz[m’H m]]
¢£Mj ({ijMjL,z,n: 7 (mg)e 2(7( i) >].—7] >]_—7’]

i, M [m;]




Proof. We may assume that n < 1. Let n > 0 and let L € N be such that

o ({m € supp(r) : m; € M],L,z‘,aﬁ and wF(m;) € BR” ( L( ]))}> > 1—

for each L > L. Fix L > L and note that (;SﬁMj(MjL’i’nz) > 1 —n? and, hence,
Z N2 2
g, (M) > 0 (M) > 1 —ap?.

Let, for each m; € MjL’i’",

Epn, = {m; € M; : (m;, m;) € supp(¢;) and 7} (m;) € BR77 (7F(my))}-

Then
{m € supp(¢r) : m; € Mf’i’"Q and mF(m;) € BR77 (7 o ]))} =
U {m}xEa)
myed b
and

1—n* < ¢F ({m € supp(¢)) 1 m; € ML”i and 77 (m;) € BE’]7 (7 (mj))}>
ZmieEm ¢ZL [mi? mj]

= Z ¢7, M, [m;] L

mJGMLZ” 1,M; [mJ]
If
oF [mi, m]
L L2 mimh(m )EB” (mf(my)) T
o m; € M: : >1-— <1-—
sz,M] ) J ZLM [mj] n = n
then

ZmieEm ¢7,L [mi? mj]

11— < Z Cb [ ;] L

m;€ MLH7 1M[m]]

l—n+nl-—n)=1-—177°

a contradiction. Hence,

mimE (mi)eBY” (xk (m;) o7 [ms, my]
zLM [m;]

ng{jM]_ ijMf’i’”Q: >1—n >1-—n.



Since ]\@L’i’772 - ]\4]“’7 and Bfg (mF(m;)) € B (wF(m;)) for each m; € Mj, it follows
that
) Zmiﬂr.L m;)eB! (7l (m; ¢’LL [mi?mj]
P, ({mjeMjLM: cm)e ZL(J( ) >1—ne|>1-n.

i\ M, [m]

Lemma 2.3 For each n > 0, there exists L € N such that, for each L > L and
1€ N,

L . .
i ({mj € supp(¢7yy,) : 75 (my) € B] (Z %W’L(m» }> S

Proof. Suppose not; then there is n > 0, i € N and a subsequence {7l*}; such
that ¢-* (M) > n, where

ml,m
M, =m; € supp(gbﬁ%) : 7T Z o ke (mg) | 5
m; 7,M m]]
Let ¢ > 0 be such that ¢ < $n?/2 and k¥ € N be such that 7% is a per-

fect conditional e-equilibrium. Let m} € supp(gbﬁi) be such that v, (7 *(m?)) =

AN, cuppiatg) Vi (T (), My & supp(@a,) and @ = s, )

m;Esupp(P,

Condition 6(b) implies that
wy (7 (my, ), mi* (mf)) > max g (aj, w7 (my)) — & = v (m* (m])) —e.

X 1
a;

Condition 6(b) also implies that, for each m; € supp(¢£ fwj),

Lt o
Z ¢i LEm“m—j]uj(W-Lk (mj7 Cb,), *(m;)) > maXZ (bm—“mﬂ“ (aJaWLk(mi)) —&.

(b‘,Mj[mj] ’ ™ ¢1M[mJ] Z
Hence,
. , ¢; " mg, . ¢; " my, "
Uy (WJL< Ja¢j)>;i (Z)ZI:E;;[ 77;{] ;:(ml)) Znéaxuj (a]’;i (bZLE“\T[m??]J] ZL( z)) —-€



Then

Z¢ ) <wfk<mj>,wfk<mi>>>

zM m]]

mg

> @6—}—@2@]\/[ m;] (maxuj (a],ngm—“mj]ﬁf’“(mi)> —€

qbz i, [m)

- ezt

> —Pie+ 51( —E&+ QSZL;CVIJ [Mk]77>

> Bin® —e > e.

But this contradicts condition 6(a). =

The following corollary follows from Corollary 2.1 and Lemma 2.3.

Corollary 2.2 For each n > 0, there exists L € N such that, for each L > L and
1€ N,

i Z77’L'17'|'~L m;)eBI (nl(m; ¢1L[m7,, m]]
¢z‘L,Mj<{mj€MjL”’": C(mi)e E(J(J)) S 1y ﬂ

in[m']

{mj € supp(¢y, ) : wk(m;) € B! (Z %m—“””]wﬂmi)) }) >1-1.

i, [my]

Proof. Let > 0, L; be given by Corollary 2.1 and L, be given by Lemma 2.3,
both corresponding to 1/2. Then let L = max{L;,L,}. =



Let

Zmz Ty (ml)GB"(ﬂ (my)) ¢2L[m“ mj]

Z'I:Mj [m]]

{mj € supp(@;yy,) : 75 (m;) € B] (Z (blL[m—“Wj]]WzL(mz)> }

m;

J

“rLimn LG
M; —{mJEM

A

B = max max |u;(a)|,

1EN acA
B=B+1,

1
———  and
TT iy ™

“rLin _ L,
M = M
The following corollary follows by Corollary 2.2 and the definition of M JL A,

Corollary 2.3 For each n > 0, there exists L € N such that, for each L > L and
1€ N, qb ( LG)>1_77 and, foreachmjeML’"

mﬁew(zﬁ%@ﬂﬂﬁmm>

i, M [m]]

Z%Lﬁﬁ m (mi) € B (nj (my)), and

(ZqﬁLm@,mJ F(my), L(mj)> > max (g (m])) .

M m] m;esupp(qﬁklj)

Proof. Let n > 0 and let L € N be given by Corollary 2.2 and such that
Fa, (M%) > 1 — ym for each L > L and i € N. Fix L > L and i € N. Then
zLM (ML”]) = ZLM (MLZW) >1—=yn>1-n.

Let m; € M{*"" = M. Then,

(mmﬁ«zgﬁﬂﬂﬂwv

@M [m]]

since yn < 7. Furthermore,

A~

—B=—(B+1)=-B—1 < maxu(a, jL(m])) —-1< maxui(ai,ﬂf(mj)) —n

a; a;



and, hence,

i, M m]

Z ¢¢LL[mi’ m;] "

(Z o Lm“m” Lim), -L(mj>) -

i(m) (mg), 77 (my))+

. J
miwl (mi)€B)" (xk (my)) ¢i,Mj [mj]
oF[mi, mj)
)3 e m), m ) >
mich (m)gB]" (rk (my)) T OME

L

(1 = ym)(maxwi(ai, 75 (my)) — yn) — ynB =

max u;(a;, 7 (m;)) — 0 — v max u;(a;, 7 (
max u;(a;, f(m]))

a;

—yn—mB —mB =

max wi(a;, 7 (m;)) — 27(2 +4B) =
maxuz(ai,wf(m])) - g

Since yn < n/2 and m; € MjL’m", it follows by the above that

(Z gb Lml, mj

1, M m]

l\DIG

> max

i (ma), -L(mj)> > vi(mj (my) —

Note that, for each L € N and 7 € N,

_ Z (bl[:MJ [m] (Z ¢ Lmz; m]

1,M; m]

i (ma), -L(mj)>

m; €supp(¢f; )

m;)) +v°*n* —ynB >

=(1-

ijM-L’in
L

L ¢2M m]

+¢ [ “7] Z L%n
mjeMjL,in ’LM[

Define

L

—Li _ QSZM m]

u = Z [ LG
zM

eyl
mJEMj

Then u! = lim;, a™".

. H m i ]
LMJ'[MJ'L’ZW]) Z ¢M []\/J[LG <Z¢Lm o

i (mi), 7f (mj)>

@, M. m]

(Z¢ m“mf m(ms), »L<mj>>.
(Z Cb Lml,m] L(mz‘)aWjL(mj)> )

10



Let n > 0 and let L € N be as in Corollary 2.2. For each L > L, let oy =

(ap1,ar2) be defined by setting, for each i € N,

L
Ay, = max i\ (15) ),
L mjesupp(¢1L\/fj) Z( ! ( ]>),

note that oy ; € co(u;(A)) and that co(u;(A)) is compact. Let

N'(G) = {(01,02) € A(A1) x A(Ay) : 0, € BR](0;) for each i € N}, and

CZY’Z =u(N"(G))N{u e R? ap; —n<w <ap; and u; < o}

It then follows that

u"* € co(CLM).

Indeed, for each m; € M]L,z‘,n7

. Z—(bﬂmi’mﬂ‘] Ema),wbmy) | > max  wi(rb(m)) —n=ag, -
U; — le: [ ] 7Ti m; 77Tj j = t\y g n= L n,

m; Esupp(¢ﬁ4j )

) MWL m.). L (m. max vi(TH(m’)) = ar; an
Us (% qu [ ] z( 1)7 g( J)) S Z( J( J>> Ly d

m/; Esupp(¢LMj )
; —qbﬂmi’mj]w!: m;), 75 (m;) | = —gbiL[mi’mj]u b (m;), 7t (m,;
u] (;l ¢I: [ ] z( 1)7 y( ])) Z QSL7 [ ] J( z( Z)’ J( J))

<  max v;(7(m)) = ar;.
e (o) = o,

It then follows by Caratheodory’s Theorem that @™ = 370 Ap; qul®* for some
ALits ALz Anis € [0,1] and ul bt 2 gy b3 e C’;Q such that Zizl Arik = L.
Taking a subsequence if necessary, we may assume that {ar}7 ;, {uL’i7k}zO:E and

Lk

{ALix}52; converge for each k = 1,2,3; let a = limp oy, u"F = limp u and

11



Aix = limp, Ap; for each £ = 1,2, 3. Hence,

and, for each k = 1,2, 3,
Aig >0,
ik
o —n < u < o,
utf < a; and
i S G

u"* € u(N"(Q)).

Since this holds for each n > 0, it follows that, for each £ = 1,2, 3, uzk = «; and
u* € u(N(Q)). Hence, u' € co(Cl) andue C, CU. m

3 Mixed information designs

In this section we establish the claims made in Section 4.6. The first one is that,
for each 2-player game in G, the sequential equilibrium payoffs of G;; are specific

combinations of two Nash equilibria of G.
Theorem 3.1 For each 2-player game G € G,
U(G) CUG) C {pu(o) + Beu(c’) : 0,0" € N(G)}.

The second claim is that £;(1,1) 4+ (2(2,2) is a sequential equilibrium payoff of
G;q when @ is the battle of the sexes.

Claim 1 If G is the battle of the sexes, then f1(1,1) 4+ 52(2,2) € U*(G).

The final claim is that, for each 2-player game G, the limit payoffs of perfect

conditional e-equilibria are combinations of two Nash equilibria.
Theorem 3.2 For each 2-player game G,
{Bru(o) + Pyu(d’) : 0,0’ € N(G)} C U™™(G).

12



3.1 Proof of Theorem 3.1

Let m € II* be a sequential (or Nash) equilibrium of G;4. Then
Yol Y olmlui(n(m)) = Y wiles) (6 &) mlui(mi(mi, ¢7),mi(my)),  (3.1)
@ m ?;j m

for each i,7 € N, j #i, ¢; € S and 7} : M; x S — A(A;).
For each i € N and m; € M;, let m(m;) = >°, 7wt [¢i]mi(di, m;). Then, for each

m e M, let W(m) = (71'1(7711),71'2(7712)).
Lemma 3.1 For eachi,j € N, j # 1, ¢; € supp(w}) and m € supp(¢;),

wi(} (¢s, M), m(my)) = S}é%%(ﬁf(cbmmﬁ)aﬂj(m;))-
Proof. Suppose not; then there is i € N, ¢; € supp(n}), m’ € supp(¢;) and
m* € M such that w; (77 (¢s, m), wj(m})) > wi(w} (di, mj), m;(m)).

Define ¢; by setting, for each m € supp(¢?),

(
ApE[m/] it m=m/,

¢ilm] = § ¢r[m*] + (1 — Ngr[m!]  if m = m*,

¢F[m] otherwise,
\

where A € (0,1) is such that ¢; & supp(w}). Define 7! by setting, for each ¢; €

supp(7}), (

T [¢i] = mier] if ¢ = (%i;

\ m}[¢:] otherwise,

and define 77 : S x M; — A(A;) by setting, for each (¢;, m;) € S x M;,

7T7,2< ;‘k»mi) if ¢; = ¢Ei7

72(¢p;,m;)  otherwise.

13



Then, letting 7' = (7}, 7j) and @* = (77, 73),

Z it'[¢) Z Slmui(7*(¢,m)) — %wlm > dlmlui(x*(¢,m)) =
(Zw 63132605l (67, 6 m)
—ij 031 (01,0l <¢:,¢j,m>>) =
80 (Zw [0us(m (65, &5 m Zw 665,05 ))) =
mH 67161 — >¢>Z-[m](ui<m-<¢i,mz->,7rj<m;f>>—uz< <¢Z, m),m(m))) > 0.
But this is a contradiction to (3.1). m

Lemma 3.2 For each i,j € N, i # j, ¢, ¢, € supp(n}), m € supp(¢;) and m’ €
supp(¢),
i (77 (s, mi), w5 (my)) = wi (w7 (¢, my), w5(m)).

Proof. Condition (3.1) implies that
S mHo] > (60 6 mlus(n3 (65, 65, m) =
?;j m
> mile) Y (@1, é)mlui(m* (6, 65, m)).
¢ m

Lemma 3.1 implies that w;(72(d;, 1), 75 (1)) = wi(72(¢s, mi), mj(m;)) for each m €

supp(¢;) and that u; (72 (4, my), 7 (1)) = (72 (P, ms), m;( ;)) for each m € supp(¢,).

Hence,
0= ZW (5] Z i, &) [mui (7 (¢4, 65, m)) —
Zw ¢J Z (&%, 63) [m]ui (7 (8, 6y, m)) =
i (uim (60, m0), 75(m)) = wi(m (6, ml), i),
|

Lemma 3.3 For eachi,j € N, i # j ¢; € supp(w}) and m € supp(¢;),

(sz:mz)eBR( ( J))

14



Proof. Suppose not; then there is 4,5 € N, j # i, ¢} € supp(n}) and m* €
supp(¢;) such that 77 (¢;, m;) & BR;(73(m})). Let af € BR;(7;(m})), i & Ugpesupp(x)Supp(¢as, ),
gbi = l(mhm;), 7l = 15 and 720 S x M; — A(A;) be such that 7#2(¢;,m;) = af if
(¢s,m;) = (éiami) and 72(¢;, m;) = m2(ds, m;) otherwise. Then

il m5) = wilm) = B (walal, w3 (m3)) = (w2 (65, mi), 72(m3)) ) > 0.
But this contradicts (3.1). =

Lemma 3.4 For each i,j € N, i # j, ¢; € supp(w}) and m € supp(¢;) such that
m; € Uy, esupp(n! 1Supp(@; s, ), mi( @i, mi) solves

max Zcbj J[¢J]Z (bj[ml,m]]ul(a,,wj(gzﬁj,m]))
a€A(As) Z¢] 310500, [m]

Proof. Suppose not; then there is i, € N, i # j, ¢f € supp(w}) and m' €

supp(¢;) such that m;} € Uy, esupp(r} 1supp(¢;,n;) and m; (@7, m;) does not solve
ax Z¢J LACNIDI (bj[mz,m]]ul(az,ﬂj(gbj,mj))
a; €A(A;) Z@ ][(bj](b]M[ m;]
Let aj be a solution to problem (3.2), m; & Usesupp(x)SUPP(Pnr,), &5 = Lmm!),
7l = lg and 7; : S x M; — A(A4;) be such that

¢

(3.2)

* 4 _ /
a; it m; =m;,

([ (2

mi(¢F,m;) otherwise.
Then
i, m5) = wi(m) = B (wa w2 (65, md), g (m))) — walw? (67, mid), s () )
85 > m s S dslimymg) (sl 7505, my) = im0, mi), w505, my)) )
b; mj

= B w81 D ilmlm] (wilad, w05 my)) = w65, mol), i (65,m,)) ).
b; m;

Since m;(¢F, m}) does not solve problem (3.2) but af does, it follows that

Do, T30 2o, @5lmi, my]
>, Ti[05]0500,[m]

(uz‘(afaﬂj(%mj)) - Ui(m(@»mﬁ)’ﬂj(%mj)))

15



is strictly positive and, since m; € U¢jesupp(ﬂj1)supp(¢j, M),
B 3 mloa) Y éulimtymy) (wilas (5 ms)) = im0 5 (0, my)) ) > 0.
bj m;
Hence, u;(7;, 7;) — u;(m) > 0. But this contradicts (3.1). =

Lemma 3.5 Foreachi,j € N, j # 1, ¢; € supp(w}) and m; € U¢jesupp(ﬂj1)supp(¢j7Mi),

i (s, m;) solves

-— 22, T (03] 2o, b5lmi, mylui(ou, mi(d5, my))
@i €A(A)) Z¢j {31050, (] '

Proof. If m; is such that (m;,m;) € supp(¢;) for some m;, then the conclusion
follows by Lemma 3.4. Otherwise, it follows from (3.1). m
Let i,j € N with i # j. We then have that, for each m; € Uy, coupp(x1)SUPP(9i,0,);

17 4. Tme . ma T2 (b m
(Z@_ T [@Z;]:Z:f[zz][glu ”Ej?]f]@ (¢i, M) ’ W?(mj)> is a Nash equilibrium of G.
¢i 1 [ i,Mj j

Indeed, it follows by Lemma 3.5 that 72(6;, m;) € BR, (

g, T 0il 3o, Gilmimylad (dima)
R ﬂ-?(mj) B Z¢j ﬂ-]l [ij]ﬂ—?(gbj’mj) < bR, < . o, Ti il m; [:nj] >

Furthermore, for each ¢; € supp(n}) and m; € M; such that (m;, m;) € supp(¢;),
7 (ds,my) € BRi(WJQ-(mj)) by Lemma 3.3. Thus,

D, T Di] 2, Gilms, mylmd (di, my)
Z(pi s [¢i]¢i,Mj [m;]

24, ) ] D m,; i [mi,mﬂﬂf(%,mi))
>, T il a1, [my] ’

€ BRZ(WJ2<TI’LJ))
We have that

u(m) =6 7ol Y elmlu(r(o,m) + B> wel DY dafmlu(n®(¢,m))
¢ ]

méesupp(o1) mesupp(¢2)

=By _mled D ealmu(ri(¢r, ma), 73 (ma))
o1

mesupp(¢1)

+ By mleal Y dalmlu(ri(m), 73 (d2,ms)).
@2

mesupp(¢z)

16



Hence, we compute u' := 37, 7} [0i] 3, caupp(on Pilmlu(m?(¢i, mi), 73 (m;)) for each
i € supp(p). Let i,k € N. Then

Z 2, T il i ns; [ Z Z di[mi, mylug (7 (di, mi), 75 (my))

Zqﬁl i ¢1M[
_ w1515 ar. [ DT [¢z] > m, Gilmi, mylmi(di,my) (.
‘;; ot < R T T ”)'
Thus,
i _ L P Zqﬁi m; (6] Zmz @i[mi, mylmi(¢i, m;) (s
u —;% i[¢z]¢z,Mg’[ ]] ( Z@ Wil[(bi](bi,Mj[mj] ) J( j))

Hence, for each m; € supp(3_, /[¢i]diar,), there is a Nash equilibrium
iy Do, TPl D, Gilmi, mylmi(@s, my) ri(ms)
Z@ ﬂ—il[qsi](bi,Mj [m;] R
of G such that u' = ij alMiu(gtm) with o™ = 37wl [¢i]¢ia; [my]. Then let

Li = [supp (3, m}[di)¢inr,)| and, writing supp(32, ! [4i]dsng,) = {m], ..., mj}, let
abl = >, T (Bl i [mé] and o = o™i for each | € {1,..., L;}.
For each m; € supp(>_,, 7} [4il¢i ), it follows by Lemmas 3.1 and 3.2 that

S 8] S, il ]

o) S by i (@i i (i)
= max ui (72 (o%, m}), W?(m;))

o Esupp(ﬂ'il),m* eM

Thus, ui(o-iym]> - uz( ) for each m € Supp(ZqS 1[¢Z]¢1,MJ)

3.2 Proof of Claim 1

The proof uses a similar construction to the one used in the proof of Theorem 1.
Let 0! = (B, B), 0> = (A, A) and & be the mixed Nash equilibrium of the battle
of the sexes and pick L € N such that

T 2 x
1——— ’)— —2 <1 .
< 7 T 3+L + 2 < (3.3)

for each z,2’ € [0,1] such that 2’ <1 and z + 2’ < 1.

17



Let i € N and j # 4. Foreach 1 <[ < L, let
& = 1,r41) and ¢ = 1141

Let .
A=Ls,
L =1 '

be the first period strategy.
The second period strategy is as follows. For each 1 <[ < L and m; € M;, let
O'ZZ: if m; = l,

o; otherwise.

We will specify the remaining values of 77 as follows. For each m; € M; and ¢; €
S\ {¢!: 1 <1< L} such that Bigyas[mi] + B; Sor %MTM =0, let 72(m;, ¢;) = d;.
Note that, for each 1 <1 < L, ;¢ 5. [mi] + B; L ¢J ™) _ 0 for each m; &

L
{I, L +1} and 72(m;, ¢!) = ;. Thus,

W?(mw@‘) =0;

for each m; € M; and ¢; € S such that 5;¢; v, [mi] + 5; L ¢] ML[ =0.
For each m; € M; and ¢; € S\ {¢l : 1 <[ < L} such that [;¢; a,[mi] +

B30, 28 0 et w2(mi, ¢7) be a best-reply against

¢ [mi,m;]
5z¢z[m17mj] + 5] L L l
L azM g (5> 03):

m; Bld)zM [mz] + 6] T

Note that, for each 1 <1 < L, B¢} . [L 4 1] + 3; Zh 1 JML[LJF b = (; > 0 and

¢}P[L+1,m~}
Bt L+ 1,my] + B; 3, ]TJ
O ang H1]

m; 5i¢§7Mi[L+ ]‘1”532/1 R —

1 L 1 L .

EZZ¢?[L+17mJ]7TJ(mJ7¢?):Zzﬂ-ﬂ(ha(ﬁ?):og
h=1

h=1 m;

7Tj<mjv gb?) =

18



; R Lt
Thus, 72(L+1,¢!) = 0} € BR; (Zm]. Bebitmims B s~ (m, ¢>l.>). Further-
Bis, M; [mz}JFBJ Zszl #
more, for each 1 <1 < L, B¢l []+ﬁjzh1 Mg Zﬁi>0and
L+1 ,mj]

’ lL 1 g
Zﬁ(b[ il my]+ﬁj Zh 1¢hM [IL_H] j(mj,(b?) =
Bidh pr [L+ 1]+ B Yoy

Zcbé[l,mj]%ij(mj,czﬁé) = Zzﬂj(L +1,07) = 0j.
m; h=1

h=1
) Bigsilma,mi|+8; ZL ¢l[mzmj]
Thus, 77(1,¢;) = 0} € BR; | 3, —— 2= Te—m;(m;, ¢) | Hence,
Bz¢z M; [m2]+ﬁj Zl 1 ]MZ .
L @5 [mi,m;]
iQilmi, my| +
Triz(miu d)l) S BRZ 5 ¢ [ ]] ﬁj L ¢ L[/m} ﬂ-j(mj?gb;)
mj /BZ¢ZM [mz] + 6] ]ML

for each m; € M; and ¢; € S such that £;¢; v, [mi] + 5; L ¢JM il > 0.

We may assume that m; : M; x S — A(A;) is measurable as in the proof of
Theorem 1.

We define {7, p®}, as follows. The index set consists of o = (k, F, F) such that
k € N, F is a finite subset of N and F is a finite subset of S; this set is partially
ordered by defining (k:’,F’,ﬁ”) > (k, F, F) if /¥ >k F CF and F C F'. For each
a=(k,F, F), let

-1
ZZGFU(U¢61:~SUPP(¢MZ-))2 L
ZzeFu(u&FSupp(qui))

a__ o _
q; = T; X,

T =71 X 15,

" =k X Lt b e x 7+ (1 - 2k_1)1(L+2,L+2)7
p® = (1 -k Hg* + k37, and

p(@) = (1 — k™) (B + Bago) + k'™

Furthermore, let vx € A(X) be uniform on X whenever X is a finite set and let
% = (1= k7)) + k7 30p and 0% (ma, ) = (1 — k™2 (ma, @) + kg,
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for each (my;, ¢;) € M; x S.

Let € > 0. We have that the conditions (i)—(v) in the definition of perfect condi-
tional e-equilibrium hold by construction. We will show that condition (vi) holds for
some subnet of {7®, p“},. Some technical details of this argument are simplified by

our construction of {7 p®}, which is such that supp(7®) and supp(p®) are finite

for each . We define

Si(F,F) = (F U (Uyepsupp(dng) U{1,..., L+ 2}) x (F U{eli1<i< L})
which is the set of pairs (m;, ¢;) that can occur with strictly positive probability.
Indeed, if (m,¢) € N* x S is such that 7*[¢] > 0 and 3 ;e (e P () [m] > 0
then (m;, ¢;) € S;(F, F) for each i € N.

Recall that a = (k, F, F). In what follows, we will often fix F and F and take
limits as k — oo. Regarding condition (vi) (a), let 4,5 € N, j # i and ¢, € S. We
have that, for each finite subsets F' and F ofNand S , respectively,

m > Tl (Zpaw)[m]ui(w?va(m,@))=Zw1[¢JZ¢[m1ui<w<m,¢>>
m o) m

pEsupp(mh)
L

= %ZWH@]ZZ i, &%) [mlui (i (my, @), 75 (my, ¢%))
®i

=1 m

and that

lilgn Z (1 % 7TJ (Zp i(m*(m, ¢)))

¢Esupp(1¢/ ><7r1.’a)

= — ZZ QS“Qb uz Wz(mugb')?ﬂ-j(mj’qs;))'

=1 m

Hence, by considering « such that k£ > ky for some kg € N, it is enough to show that,
for each 1 < h < L,

L
ZZ ul m(mz,dﬁ) 71'] m],QSl ZZ ¢l;¢l uz Wz(mza¢) Wj(mjaqsé’)%

=1 m =1 m

which is equivalent to

%ZZ%[W]W(M(W,&) mi(mg, ¢;)) > 1 ZZ¢§[W]Ui(Wi(mia¢§),7Tj(mja¢§'))-
- o (3.4)



We have that £ 37 32 ofm]u;(mi(my, ¢1), 75 (m;, ¢})) = vi(c}) and that

LZZ¢ mlus(mi(my, 61), (M, 81)) =

=1 m

LZ(zM 0i(]) + G [L + 1J0i(0}) + (1= G, 1] = G, [L + 1)oi(5) ) =

AV LI/ | , i {150 L
o }]vi(ag)+¢;7MJ_[L+1]M(U§)+ (1— : ]HL ! —cb;,Mj[LH]) vi(05) =

where © = ¢\, [{1,..., L}] and 2’ = ¢ 5, [L + 1]. Thus, (3.4) holds if 2’ = 1; it also
holds when 2/ < 1 by (3.3).

Consider next condition (vi) (b). For each i,j € N, i # j, finite subset F' of N,
finite subset F' of S, (m;, ¢;) € Si(F, F) and ; € A(A;), we have that

y Essesuontal) T[] (ij (i 65) [y mgJus (i, 75 (my, ¢j))>
11m
¢ DD o ) AN

= ui(%> 5j)

if Biuanlma] + B F, 2050 — o and

 Dacmptrt 778 (S 2 (00 8oyl 77 5, 61) )
1m —
k ZQS] €supp(w 1’0‘ 7.‘.1'704 [¢J]p%/lz (¢Z7 ¢J) [m’t]

L ¢J M, [mi,my]
> Bl gl + By Dy~ — u; (i, w5 (my, ¢5))

m; /BZ¢ZM[mZ]+/BJ L ¢ L[ !

if Bi¢i g [mi] + B; L % ML[ il > 0. The latter case is clear since all terms in

the denominator of the fraction converge to zero except the one that converges to

Bitim; [mi] + B; L %MTH and similarly regarding the numerator.

In the former case, both the numerator and the denominator converge to zero

since B;¢; ar;, [mi| + B L ¢7 ML[mJ = 0. Multiplying each by k, it follows that all

. 1
terms converge to zero except the ones corresponding to the case where Wj’a = ¢}
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and p*(¢s, ;) = ¢*. If m; # L + 2, then

k=trm,) ifm; =L+ 2,

qa [mi7 m]] =
0 otherwise,
a5, [m;] = k~172[m;] and
di, [mi] ’

if m; = L + 2, then

KL+ 2] + kL4 2] +1 =2k ifmy; = L +2,
¢*[L+2,m;] =
k=t my) otherwise,
@ lL+2]=1—k7'+ k7 '77[L + 2] and
. ¢ [L+2,L+2
lim =
Fooogi L+ 2]

Thus,
) 2, €supp(r®) 7 [¢5] (ij P* (4, &5) [ma, myua(yi, 75 (my, ¢j))>
im
k Zd)jEsupp(W;’a) 7T;-’ [qu]p?\[/[z (¢27 ¢j) [mz]

L
1 _
=7 Zui(%lyﬂ-j([/ +2,0%)) = ui(i, ;).
=1
We will next show that 7;(m;, ¢;) solves
. Zqﬁjesupp(wjl-’a) 7r]1'7a[¢j] <Zm] pa<¢i7 ¢]) [mi’ m]]ul(727 7T32'7a(m]'7 ¢]))>
max lim " -
HEAA) K Zd)jESupp(wjl.’a) 7ij [(bj]le (¢17¢J)[m2]

for each i € N and (m;, ¢;) € S;(F, F).

If Bichins, [ma] + B S0 ¢] ML[ mil 0, then (3.5) follows because m;(m;, ¢;) = 0;

(3.5)

and ¢ is a Nash equlhbrlum
IF By an frs] + S0, 2
! Zcbj Gsupp(ﬂ;’a) 71-j,a [¢]] (Zm] pa((bi? ¢J) [mi? mj]ui (fy“ W?7a<mj’ (b])))
im
k qujesupp(ﬂl’o‘ Trl"a[qu]p%/[i(gbia ¢])[mz]

AZAUUZD) —+ L ¢ [mi,m;]
_ Z 6;5 [mi, my] + B; L ¢J ML[mJ wi(i, mi(my, ¢5))
i i [mi] + B L

L @4 [mi,my)

Z 61¢%[mzy m]] + ﬁ] T

¢ [m;]
m; ﬁz¢z M; [mz] + ﬁ] L = ML

) > 0, then

j(mj?¢§'>

= Uy Vi,
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459 [my,mj]

idi[mi,m; i S°F .
Since m;(m;, ¢;) € BR; (ij Bislmamsl 6 Sz 7 W-(mj,gzﬁé-)), it follows that

1
45]"]\/[1_ [m;] J

Biti, g, [mil+8; 1y i

(3.5) holds in this case.

The above arguments show that, for each finite subsets F' of N and F of S ,
condition 6 holds whenever k is sufficiently high. Specifically, condition 6 (a) holds
for each i € N whenever k > ky. For each i € N and (my, ¢;) € Si(F, F), there is
k(mi, ¢;) such that condition 6 (b) holds whenever k > k(m;, ¢;). Thus, let

k(F, F) = max {ko, max  max  k(m;, (bz)} :
€N (my,¢:)€Si (FF)

Since condition 6 (b) is trivially satisfied when
mled Y m0ilph (6 0) ] = 0,
¢;Esupp(m;**)

i.e. when i € N and (m;, ¢;) & Si(F, F), it follows that condition 6 holds whenever
k > k(F, F). This allows us to define the following subnet {7#( p?®}, of {7 p®},
such that condition 6 holds.

The index set of the subnet {7#™ p?(M} is the same as the one in the net

{7, p®}4. The function ¢ : n +— « is defined by setting, for each n = (k, F, ﬁ),

o(n) = (max{k,k(F,ﬁ’)} F, F) )

It is then clear that condition 6 holds and that, as required by the definition of a

subnet, for each «y, there exists 1y, e.g. 179 = ap, such that p(n) > ap for each n > ;.

3.3 Proof of Theorem 3.2

Let i € N and j # i. Let ¢* be such that u;(6") = min,en(q) ui(0).
Foreachie N and 1 <[ < L, let

¢ll = 1(l,L+1) and ¢12 = 1(L+1,l) and

1 L
7TiL’1 = zZld,L.
=1
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Foreachie Nand 1 <[ < L, let

i _
ol ifm; =1,

T (mi, @) = o ifmy; = L+1,

o) otherwise.

For each i,j € N, j # i and m; € M; \ {L + 1}, let
ngmj = 1(L+2,m]~)~

Then set
7T2-L’2(L +2,0,7) = ot
For each m; € M; and ¢; € S\ {¢! : 1 < [ < L} such that Bi¢; s [mi] +
B; L (b] ML[ mil =0, let ﬂiL’Q(mi,qﬁi) = 55.
For each (my, ¢;) € (M x S\{¢t : 1 <1< LPY\{(L+2,¢,") :m; € M;\{L+1}}
such that B ar,[mi] + 8; 31 ¢j = [ !

> 0, let 7r 2(my, ¢;) be a best-reply against

2 l
L] ™3 (ms. )

EL: Bigilmi, m;] + BJQS [m, my]
=1 my ﬁz¢zM [ml] + 6] L

We may assume that 7 : M; x S — A(A;) is measurable as in the proof of
Theorem 1.
Note that WL’Q(mi, ¢;) = 52 for each m; € M; and ¢; € S such that B;¢; ar,[ms] +

5, L ¢] 21, fmal _ — 0 and that mL’Q(mi, ¢;) is a best-reply against

ﬁz¢z ml7mj] + 5J¢ [m“mJ] 2 l
_; m; ng M[m]‘f‘ﬂ L d)]l\/f [ml]ﬂj(mj’gbj)'
J 1% ? J L

for each (m;, ¢;) € (M; x S)\{(L+2,¢;”) : m; € M;\{L+1}} such that B;¢; ar,[m;] +

B T, S s o

Let € > 0 and let L € N be such that, for each L > L,

- L-1 1
g; is a g—best—reply against 7 7+ zaj, and (3.6)
1 T R
1— =) w5 + —u(o?) — ui(co?) < =. .
L) uz(a)—l—LuZ(a ) —ui(o’) < 5 (3.7)

24



(1 . % - o/) vi(oh) + %Ui(agi) +a'vi(0h) < viloh) + g (3.8)
for each «, o € [0, 1] such that a + o/ = 1.

Let L > L. We define perturbations {7®, p®}, such that {7*}, converges to n*
as follows. The index set consists of a = (k, F, F) such that £ € N, F' is a finite
subset of N and F is a finite subset of S; this set is partially ordered by defining
(K,F'F")y> (k,F,F)if ¥ >k, F C F' and F C F’. Let vx € A(X) be uniform on
X whenever X is a finite set. For each a = (k, F, F), let

p*(0) = (1= k72)(B161 + Bago) + kv,
For each o = (k, F, F) and i € N, let T)(F, F) = (FU(Uyepsupp(onr,))) \{L +1},
Tt ==k r R - EY(E BT Y Lymi +kup.
m; €Ty (F,F)
For each o = (k,F,F), i€ N and (my,¢;) € M; x S, let

2,

7ri7 (mi7 ¢Z) - (1 - k_l)ﬂ-i?(mia gbl) + k_IUAi‘

We have that the conditions (i)—(v) hold by construction. We will show that
condition (vi) holds for some subnet of {7, p®},. Recall that a = (k, F, F). In what
follows, we often fix F' and F and take limits as k — oo.

Regarding condition (vi) (a), let i,5 € N, j # i and ¢, € S. We have that, for
each finite subsets F and F of N and S, respectively,

lim Y 7] (pr)[m]ui(w?v“(m,@)) = 7Y dmlui(rt(m, )
¢pesupp(mh*) m & m

=—Zw“@ D= > (@ ) Imlus( Ay, 60). 7wy 65)

=1 m

and that

liin Z (1¢; X lea)[¢] (ZPQ(@ [m]u; (7> (m, ¢)))

1,
¢Esupp(1¢;><7rj “) m

- % Z Z(da gbé)[m]uz(ﬂ-f (my, &), 7er 2(mj7 Qbé))

=1 m
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Hence, by considering « such that k > kg for some ky € N, it is enough to show that,

foreach 1 < h < L,

L
T30 S0 ) (2 m ), 2 0m, 6)
=1 m
1 L
=7 D0 ) mlus(m P mi 60). 7 (my, ) <
=1 m
which is equivalent to
L
7503 bl me, 00, 7 oy, 66) >
1 lzl m (39)
72 > dlmlui(r A (my, 60), 7 mj 6)) - 5.
=1 m

We have that + 37 3" ¢l [m]u, (7] (mi, ¢7) LQ(mj,ngé-)) = v;(0?) and that

L S 2o, ) s ) =

=1 m

Lz( o 10(7) + 6 [L + 0i(0) + (1= 6 [ = 6, [L+ s(5) ) =

fmy (1L LY , ) . i (AL LY _Z,
7 vi(ag) + G, (L + 1vi(0}) + (1 — 7 — Bim, L+ 1]) vi(05).-
Thus, (3.9) holds by (3.8).
Consider next condition (vi) (b). Leti,j € N, i # j, F be a finite subset of N, F" be
a finite subset of S, (m;, ¢;) be such that 7, [¢;] Z¢ Esupp(ri®) [gb]}pM (¢iy 95)[ms] >
0 and 7; € A(A;) be given. We have

I Z(bjesupp(ﬂ';’a) 7_(_]1704[¢]] <Zm] pa(gb“ gb])[m’n m]]uz (/yza 7T]2'7a (m]7 gb])))
1m —
¥ Z(ﬁjESupp(ﬂ;’a) 7%1' o105, (i ) [mi]

ui(7i> 65)
. L ¢§’Mi [m;]
if /B’LQSLMI [mz] + /Bj =1 1 0, and
qujEsupp(W]l-’a) Trjl"a[(bj] (ij pa(¢i7 (bj)[m’i? mj]ul(,y“ ?a(mﬁ ¢J>))
m

i
L z@esupp vy T2 (B5105, (61, 65 m]

7 z iy ] + 7 (3 J

¢ [mz}
I=1 my ﬁz(sz [mz] + /8_] L ]ML
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if Bigiar, [m] + B L ¢J ML[ il > (. The latter case is clear since all terms in

the denominator of the fraction converge to zero except the one that converges to

Bitina; [mi] + B; L %MTH and similarly regarding the numerator.

In the former case, both the numerator and the denominator converge to zero

since Bidar, [mi] + B; SoF ¢] ML[W] = 0. Multiplying each by k, it follows that all

terms converge to zero except the ones corresponding to the case where ¢; = gbml and

S conpotaty T 185] (S, (00 65) i s, 72 (s 64))
S csupotet) T3 10108, (00, 65)m]
_ S, B s s, 657)
>, 8507 i, my)

wi(yi, 72 (L +2,87)) = w7y, 07).

lim
k

We will next show that 7 (m;, ¢;) solves

. z¢j€8upp(7r1.’°‘ 7.‘_1‘704[(?7] (zmj pa((bi? ¢J) [mi? mj]ul (’YZ’ ?a(mj7 (b])))
max lim 2
VEA(A) Kk Z¢]€Supp Lay Ty [¢J]pM (¢4, @5)[m]

(3.10)

for each i € N and (my, ¢;) such that 7, [¢;] qujESupp(W;,a) 7TJ1"°‘ (01051, (b4, @5)[mi] > 0.

If B3y ar, [mi] + B; Sor ¢] ML[ i = 0, then (3.10) follows because 7%(m;, ¢;) = 7

and &7 is a Nash equ1hbr1um

457 [ms]
If ﬂz¢z M; [mz] +ZL A
then

> 0 and (my, ¢;) & {(L+2,¢;7) : mj € M;\{L+1}},

I quj Esupp(wjl-’a) 71.]1'704 [(bj] (Zm] pa(¢’i7 ¢]) [mi? mj]ui (717 7T]2',a<mj7 ¢3)))
1m
k 2 g, esupp(rt) T o 10i10%, (61, 05) [ma]
L
Bigilmi, m;] + Bﬁb [m;, m;]
2>

L2
L quM[mz] w5 (my, 95)

mj Bz¢z M; ml] + 5] L
1% 1y 110 + J 2 1Y
(7@7 L /8 ¢ [m o ] B qi [”Zg Trim]l] jLQ(mja (ﬁé)
=1 my ﬁz¢zM [ml] + 5] JML
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[
@5, M

’ Biti,na, [mil+85 1y i

Since 7TiL72<mz‘>¢i> € BR, %ZlL:1 Zm Bigi[mi,mj|+B; 6, [mi,m;) ]W]I-"Q(mj, Qsé)), it fol-
lows that (3.10) holds in this case.
Finally, for (m;, #;) € {(L+2,¢;”) :m; € M; \ {L + 1}}, note that

1o Bi 7 [L+2,my] + Bidh (L +2,my]

- 7% (my, @)
s oy [L42] T I
L =1 ﬁz‘ﬁf)z‘,iﬁ [L+2] + B; 1L:1 ]’MZL[ 2

L
1
=7 2 (ms, 0))
=1

= Ag! + (1 - N)o?,

where

N 1 1fmj¢{1,,L},

1—-1/L ifm;e{l,...,L}.
Thus, 7*(L +2,¢,") = &/ is an S-best-reply against Aa? + (1 — )\)aj:.

The above arguments show that, for each finite subsets F of N and F of 9,
condition (vi) holds whenever k is sufficiently high. Specifically, condition (vi) (a)
holds for each i € N whenever k > ky. For each i € N and (m;, ¢;) such that

el Y meein (6 ¢5)[mi] > 0,
¢;j€supp(m;'®)
there is k(m;, ¢;) such that condition (vi) (b) holds whenever k > k(m;, ¢;). Thus,
let
k(F, F) = max {ko,max max k(mz,@)} .

1N (mg,¢i)

Since condition (vi) (b) is trivially satisfied when
mled Y (0ilpi (6 6yl = 0,
¢; Esupp(m;**)
it follows that condition (vi) holds whenever k > k(F, F'). This allows us to define
the following subnet {7#™ p?M} of {7 p*}, such that condition (vi) holds.
The index set of the subnet {7#™ p?M} "is the same as the one in the net

{7, p*}a. The function ¢ : n+— « is defined by setting, for each n = (k, F, F),
o(n) = (max {k, k(F,F)} P, F).
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It is then clear that condition (vi) holds and that, as required by the definition of a

subnet, for each g, there exists 19, e.g. 79 = g, such that p(n) > «aq for each n > 1.

4 More than two players

Consider a normal-form game G = (A;, u;);en where the set N of players is finite. The
number of players is n = |N| > 2. Let S be the set of finitely supported probability
measures on M =[], .y M; = N".

We allow for §; = 0 for some ¢ € N, in which case only the players in supp(3) =
{i € N : 3; > 0} choose an information design ¢; € S. The players’ interaction is
then described by the following extensive-form game (G;4. At the beginning of the
game, each player ¢ € supp(f) chooses an information design ¢; € S. After all players
in supp(/) have chosen their information design, a profile of signals m € M is realized
according to ¢ € A(M) defined by setting, for each m € M,

= Y Bigilm

i€supp(B)

Each player i € N observes m; € M; and, if i € supp(/3), his choice ¢; € S, and then
chooses an action a; € A;. Player i’s payoff is then u;(ay, ..., a,).

A (behavioral) strategy for player i € supp(3) is m; = (7}, 7?) such that 7} € A(S)
and 72 : M; x S — A(A;) is measurable; and, for i € N \ supp(8), it is m; = 72 with
72 M; — A(A;). A strategy is m = (7,...,m,). Let IT be the set of strategies m
such that 7} € S (i.e. 7} is pure) for each i € supp() and we focus on 7 € II.

In the statement of Theorem 4.1, we use the convention that supp(¢;) = 0 for

each i & supp(f3) and let, for each ¢ € N, supp(5_;) = supp(f) \ {i}.

Theorem 4.1 For each n-player game G, ((qﬁ’{)iewpp(ﬂ), <(7Ti(ml-))mi65upp(¢;{i)> 'GN)

1s the outcome of a sequential equilibrium of G;q if and only if, for each i € N,
Ui(ﬂ',i(m,i)) = Hla]\)} U1<7T,l(ml_z)) and Wl(mz) € BRZ(W,l(m,Z)) (41)
m’_,eM*,

for each m € supp(¢;), and
Z]€supp BJ¢ [ml? 1]

mi(m;) solves maX wi(ay, m_i(m_y)) (4.2)
@ €A(A Z] csupp(B g, [17]
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for each m; € Uj€supp(ﬁ_i)supp(¢;,Mi)'

We use Theorem 4.1 to show that, in the Example of Section 4.7, (1—/5)(2,2,2)+
B5(0,0,3) is a sequential equilibrium payoff when min{25;,28,} > fs.

Let ¢ € {1,2} and m € supp(¢;). Then m;(m;) = A and 7_;(m_;) = (A, M) or
mi(m;) = B and m_;(m_;) = (B, M). In either case, m;(m;) € BR;(7_;(m_;)) and
vi(m_i(m_;)) =2 > v(w_;(m";)) for each m’ , € M*,.

Furthermore, for each m; € Ujesupp(s_)Supp(@;ay,) = {mi, my'}, mi(m;) solves

max Z L Fi0bm m]i] wi(a;, m_i(m—;)).

a;€A; o Zj;éi 5J¢;7Mz [m,

Indeed, if m; = m/, then m;(m;) = A and, letting j € {1,2} with j # 4, the maxi-

mization problem is

Biui(a;, (A, M)) + Bsui(a;, (A, L))

max ;

a; €A; 5]’ + B3
if i =1, a; = A yields 622%5 whereas a; = B yields 27 +6 ; thus, m(m}) solves the
maximization problem since 23, > f(s3; if i = 2, then a; = A yields A f}g whereas

= B yields 0; thus, ma(mj) solves the maximization problem. If m; = m!, the

maximization problem is

Biui(as, (B, M)) + Bsu(a;, (B, R))

max ;

a; €A; 5]’ + B3
ifi =1, a; = m(m!) = B yields 62%5 whereas a; = A yields 0; thus m;(m}) solves the
maximization problem; if i = 2, then a; = m;(m}) = B yields 512—?163 whereas a; = A

yields thus m;(m]) solves the maximization problem since 23, > (3.

B +/3 )
Consider next m € supp(¢3). Then ms3(m3) = L and m_3(m_3) = (A, A) or
m3(m3) = R and w_3(m_3) = (B, B). In either case, m3(m3) € BR3(m_3(m_3)) and
v3(m_3(m_3)) = 3 > v3(n_3(m’)) for each m’ ; € M*;. It follows that condition
(4.1) in Theorem 4.1 is satisfied.
Finally, note that Ujcqupp(s_s)Supp(9; ar,) = {3} and that m3(m3) = M solves
i3 B¢ s, m_s]
a3z€A3 — Zj;éB ﬁ]¢j,M3 [mg]
u3(A? A7 a3) + u3(Ba B: a3)
= max :
a3€A3 2

uz(az, m_3(m_3))
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Thus, condition (2) in Theorem 4.1 is also satisfied. Hence, it follows by Theo-
rem 4.1 that (1 — 53)(2,2,2) 4+ 53(0,0,3) is a sequential equilibrium payoff when
min{Qﬁl, 252} Z Bg.

4.1 Proof of the necessity part of Theorem 4.1

We start by noting the properties that sequential equilibrium imposes on the equilib-

rium outcome. Namely, for each sequential equilibrium 7 € II,

YO mlui(m(m)) = Y (6, 67 mui(wi(ms, ¢7), w-i(m ), (4.3)

for each i € supp(f), ¢, € S and «, : M; x S — A(4;), where (¢}, ¢*,) = Bid} +

1) —1

2 jesupp(a)\(iy 03?5 and

AL

5 o) 2 3 ) (41

for each i € N, m; € supp(¢},,) and a; € A;.

In each sequential equilibrium of G4, any player i € supp() must send optimal
messages m in the sense that they induce an action profile 7w(m) that maximizes
1’s payoff function. This is stated in Lemma 4.1 which is a preliminary result for

condition (4.1).

Lemma 4.1 If G is an n-player game and 7 is a sequential equilibrium of G4, then

supp(97) € {m € M : u;(m(m)) = sup,cp wi(w(m'))} for each i € supp(f).

Proof. Suppose not; then there is i € supp(f), m’ € supp(¢;) and m* € M such
that u;(m(m*)) > u;(w(m')). Define ¢, by setting, for each m € supp(¢;),

(

0 if m=m/,
¢ilm] = q ¢rm*] + ¢ [m’]  if m = m”*,
\ ¢F[m] otherwise,
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and let 7, : M; x S — A(A;) be such that 7}(m;, ¢;) = m;(m;, ¢7) for each m; € M;.
Then

> (@ ¢m ) mlus(wi(mi, ¢7), w-i(m-)) = Y &*[m]ui(w(m))

= 5:65 ) (wi (")) — wi(m(1m'))) > 0.

But this is a contradiction to (4.3) since 7 is a sequential equilibrium of G;;. =
The conclusion of Lemma 4.1 can be strengthened: for a message m to be opti-
mal, u;(m(m)) must achieve max,,, v;(m_;(m’;)) and, thus, m;(m;) be a best-reply to

F_i(m_i).
Lemma 4.2 If G is an n-player game and 7 is a sequential equilibrium of G4, then

supp(¢;) S {m € M : vi(n_i(m_;)) = sup w;(m_s(m’;))

and m;(m;) € BR;(m_;(m_;))}
for each i € supp(f).

Proof. Suppose not; then there is i € supp(8), m’ € supp(¢;) and m* € M such
that (i) vi(m—i(m?;)) > vi(m_i(m’;)) or (ii) vi(m—i(m’;)) = supy,_en_, vi(m—i())
and m;(m}) & BR;(m_;(m’;)); in case (ii), let m* = m’. Let af € BR;(m_;(m*,)),
m; & supp(qS*Mi), o = Limim* ) and 7, : M; x S — A(A;) be such that = (m;, ¢;) = af
and (m;, ;) = m;(my, ¢}) for each m; # m;. Then

Z(¢;?¢ii>[ Jus(mi(mi, 1), 7—s(m—i)) = > &"[m]ui(m(m))

- Z@ (i, 60), m-i(m_)) = 3 6 mhus((m)
= 5 (m(ai Tami)) = Y ilmlur(m))

mesupp(¢F)

= B (vi(r (™)) = wilx(m))
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because u;(w(m)) = u;(w(m’)) for each m € supp(¢;) by Lemma 4.1 as m’ € supp(¢;).
Thus, if v;(7_;(mZ;)) > vi(7_i(m’;)), then v;(7_;(m~;)) —ui(7(m')) = vi(m_;(M~;)) —
v )) > 0 i wilr(m*,)) = (i), then mi(m]) & BR,(ni(m’)) and
vi(m_i(m*,)) —wi(w(m’)) > v;(m_;(m*,)) —vi(m_;(m";)) > 0. In either case, it follows
that 3, (¢}, ¢%) [mlui(mi(mi, ¢7), mi(m—)) = 32, ¢*[mlui(m(m)) > 0. But this is a
contradiction to (4.3) since 7 is a sequential equilibrium. m

Lemma 4.2 implies that m;(m;) is a best-reply against 7_;(m_;) whenever m €

supp(¢;) and i € supp(f). We will now show that if, in addition,

m; € Ujesupp(ﬁ,i)supp(ﬂﬁ;,Mi ) )

then 7;(m;) solves

Z]esupp 5J¢ [ml? ]

max wi(ag, m_i(m_y)).
a; EA(A;) mzl zjesupp(ﬁ_i) 6] Qsj,Mi[ z]

Thus, whenever m; € supp(¢;) N (Ujesupp(s_)SUPP(Pj ar,)); mi(m;) solves player 4’s
expected payoff conditional on his information design ¢; being chosen and also con-
ditional on it not being chosen. The reason for this is that player i can always
differentiate the messages he receives from himself from those that he receives from
the other players: if m € supp(¢;) is such that m;(m;) does not maximize i’s expected
payoff conditional on his information design ¢} not being chosen, then player ¢ would
gain by deviating from ¢ by simply sending a message (m;, m_;) with probability
one for some m; ¢ supp(¢y,,). If he receives message m;, then he can be sure that his
information design has not been chosen and can choose a solution to that problem
in response to m;; if he receives message m;, then the can be sure that his informa-
tion design has been chosen and choose m;(m;), which is a best-reply against m_;, in

response to m;.
Lemma 4.3 If G is an n-player game and 7 is a sequential equilibrium of Giq, then

supp(¢}) C {m € M : m; & Ujesupp(s_)SUPP(9; ar,) or mi(m;) solves
Z esupp )ﬁ]¢ [m27 Z]

max Ui(%‘, W—i(m—i))}
aiEA(Ai) Z]ESUPP /ngb] M; [ml]

for each i € supp(p).
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Proof. Suppose not; then there is ¢ € supp(f) and m’ € supp(¢;) such that
m; € Ujesupp(s_)SUPP(@] r,) and m;(m;) does not solve

Zjesupp /BJ¢ [m m_; ]
A il 0, T—i(M—;)). 4.5
airen&a(A") mz ZJ'ESUPP(,Bfi) Bi ¢j,Mi [m;] wilas, Ti(m-;)) (4.5)

—1

Let af be a solution to problem (4.5), m; & supp(¢y,), @i = lm;m ) and 7 :
M; x S — A(A;) be such that

a; if m; =m!

17

mi(mi, @) = § m(ml) if my = s,

mi(m;) otherwise.

Then

D (@ o) mlus(wi(mi, ¢7), mi(m—y)) = D & [m]ui(w(m))

= Bi(wm) = > ilmui(r(m)

mesupp(¢;)
Y Y almhm (wila, mi(m o) = wilm(md), 7 i(m)) )
j€supp(B—;)  Mm—i

= X B gl me] (walat mmo) = ), w(m))

Jje€supp(B-i)
where the last equality follows by Lemma 4.1 since m’ € supp(¢;). Since m;(m}) does
not solve problem (4.5) but a; does, it follows that

Jesupp(ﬁ ﬁ]¢*[ -] wi(al, m_;(m_;)) — u;(m;(ml), 7_;(m_;
D S g (v ) = ) i m ) > 0

and, since m; € Ujesupp(s_ )supp( M)
S 8D ailmim] (il wi(mo) = wilmiml), wi(m-)) ) > 0.
jesupp(B—;)  M—i

Hence, Y (¢, o) [m]u;(7i(m;, @), m—i(m—;)) — >, ¢*[m]u;(w(m)) > 0. But this is
a contradiction to (4.3) since 7 is a sequential equilibrium of G;;. =
It follows by Lemmas 4.2 and 4.3 that, for each sequential equilibrium outcome,
i € N and m € supp(¢;), condition (4.1) in Theorem 4.1 holds and 7;(m;) solves
Zjesupp(ﬁ ﬁ3¢ [mi, m ]

max Z w; (o, m_;(m_;
€A T ZJ€supp ﬂj iji[ml] e mbm)
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whenever m; € Ujesupp(s_)SUpPP(¢; 5y,) and, hence,

m; € Supp(¢:) n (UjESupp(B_i)Supp(gb;,Mi))'

In fact, regarding (4.1), note that if i € supp(f) and m € supp(¢;), then m; €
supp(gb”j\/[j) for each j € N and, thus, m € M*. Hence,

vi(m—i(m—)) < max vi(mi(m’;)) < Sup im—i(m’;)) = vi(m-i(m-)).

Condition (4.4) implies that, for each i € N, m;(m;) solves

csupp(p_) D195 1M, s
A de pp(B—i) I 3[* ](U/Z'(Odi77rfl'<m*i))
a; €A(A;) m_; Zjesupp(ﬁ—i) Bj M [mi]

whenever m; € Ujcsupp(s_,)SUpP(®] ar,) \ supp(¢;). This, together with what has been

shown in the previous paragraph, shows that condition (4.2) in Theorem 4.1 holds.

4.2 Proof of the sufficiency part of Theorem 4.1

Let ((gb;‘)iesupp(g), <(ﬂi(mi))mi€5“pp(¢7wi))Z-GN> be such that conditions (4.1) and (4.2)
in Theorem 4.1 hold; we will show that it is the outcome of a sequential equilibrium.

We will construct a sequential equilibrium 7 with the desired outcome. To this
end, consider {7® p“}, defined as follows: The index set consists of a« = (k, F, F )
such that k € N, F is a finite subset of N and F is a finite subset of S; this set is
partially ordered by defining (&', F', F') > (k, F, F)if k¥’ > k, F C F' and FF C F'. If

X is a finite set, let vx € A(X) be uniform on X. For each ¢ € N, let

supp(¢; 5,) if @ € supp(B),

m;
supp(¢yy,)  if @ & supp(B),
¢ [mi,m—i] s
ST if i € supp(f)
(jz[m—z] = d)i’Mi[ :

ZjESuPP(ﬂ) B]d); [mi’m_i] LY
>, coupp(5) Bi%y ar, 7] if 7 ¢ supp(3),
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for each m_; € M_;, and for each a = (k, F, ﬁ’), let
2_l11
91

o ZZGFU(U¢EpSUPp(¢Mi))
p—

ZleFu(U¢EFSUPp(¢N1i))

a a —
q9; = T; X s,

T _HT

JEN
DI
j€supp(B)
=n" ) g,
JEN
p =1 -k =k )¢ + k1" + k%7, and
@) ==k D B+ kT
j€supp(B)

For each m; & supp(¢}y,), set mi(m;, ¢7) = mi(m;) if i € supp(B) and m;(m;) =
m;i(m;) if @ & supp(p); hence, m;(m;) is defined for each i € N and m; € M.
For each i € supp(3), m; € M; and ¢; # ¢F such that
Bidi a; ] + Z Bi @5 a,[mi] = 0,
Jj€supp(B-i)
let m;(mg, ¢5) = mi(M).
For each i € supp(f), m; € M; and ¢; # ¢; such that
Bitiar, [mi] + Z Bi @5 a,[mi] > 0,
Jj€supp(B—i)
let m;(m;, ¢;) be a best-reply against
Z 62(252 ml7 + Z]Esupp(ﬁ ﬁ](b [mza z]
Bitbim; [mZ] + Z]ESUpp B_) Bj gbj,Mi [m]

We may assume that m; : M; xS — A(A4;) is measurable. Note first that M; x S =

W_i(m_i).

U3_, B, with

By = {(mi, di) - ¢ = ¢},
By = {(mi, ) : i # ¢; and Bidy ar, [mmi] + Z Bi®jar,Imi] = 0} and

J€supp(B-i)
By = {(mi, &:) : ¢; # ¢} and Bigpar[mi] + Y B ar,lma] > 0}

jesupp(B_;)
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For each r € {1,2,3}, B, is measurable. Indeed, B is closed, B, is the intersec-
tion of an open set, {(m;, ¢;) : ¢; # ¢F}, with a closed set, {(m;, ¢;) : Bidinr[mi] +
> jesupp(5_i) Bi®ar[ma] = 0}, and Bg is open. Then, for each measurable B C A(4;),
7; {(B) N By is measurable since 7; '(B) N By is countable. Regarding 7; *(B) N Ba:
Let f: M; x S — A(A_;) be defined by setting, for each (m;, ¢;) € Bs, f(my, ¢;) =
Yo g e S (). Letting BR: 1 A(A-) = A(4) be
player i’s best-reply correspondence in G, define ¥ : M; x S = A(A4;) by setting, for

each (m;, ¢;) € Bs, V(m;, ¢;) = BR;(f(mi, ¢;)). Since A(A;) is compact, f is con-

tinuous and BR; is upper hemicontinuous, it follows that U is upper hemicontinuous
and, hence, measurable (and, thus, weakly measurable). Hence, ¥ has a measurable
selection by the Kuratowski-Ryll-Nardzewski Selection Theorem (e.g. Aliprantis and
Border (2006, Theorem 18.13, p. 600)). Finally, for each measurable B C A(A;),
7,1 (B) = By if m(m;) € B and 7; ' (B) = 0 otherwise; thus 7; '(B) N By is measur-

able.

Furthermore, let

T = (1= K )y + kv and 72 (mi, 67) = (1= k™ )milms, &) + Ko,

7

if 7+ € supp(p). For each i ¢ supp(3), let

7'('»2’&(777/2') = (1 — kil)m(mi) + ]{3711},42..

1

Let ¢ > 0. We have that the following conditions in the definition of perfect

conditional e-equilibrium hold by construction:

1. For each o, m® is a strategy and p® : S® — A(M) is measurable,

2. For each i € supp(f), suppep(s) |7 [B] — lg:[B]| — 0 and

sup |72 (s, 1)) — mi(ma, éi)]ai]] — 0,2
(my,pi)EM; x S,a;€A;

3. For each i € supp(p), m; € M;, ¢; € S and a; € A;, there is & such that

7% ¢ > 0 and 7% (my, ¢s)[a;] > 0 for each a > @,

2We let B(S) denote the class of Borel measurable subsets of S and, for each ¢ € S, 1, denote

the probability measure on S degenerate at ¢.
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6.

7.

. For each i € N \ supp(s

. For each i € N \ supp(f3), sup,,.c s, a,e4, |7Ti27a(mi)[a’i] — mi(ma)[ag]| — 0,

m; € M; and a; € A;, there is & such that

),
72%(m;)[a;) > 0 for each a > a,

7

SUPgesn penr [P (O)[B] = Xicsupp(s) Pi®il Bl = 0, and

For each ¢ € S™ and m € M, there is @ such that p®(¢)[m] > 0 for each a > a.

Note also that, for each «, supp(7®) and supp(p®) are finite. We define

SiF,F) = ((F U (Ugepsupp(6ar,)) U (Ujcapp(s 5u0p(67.,)) ) % F)

U ((F U (Uge psupp (o)) U (UjEsupp(B)Supp(¢;,Mi))> x {¢i }>

for each ¢ € supp(f) and

Si(F,F) = F U (Uyepsupp(dar,)) U (Ujesupp(s)supP(S5.11,))

for each i € N \ supp(B). If (m,¢) € N* x S™ is such that 7'?[¢] > 0 and

> gresupp(riy PO (@)[m] > 0, then (my, ¢;) € Si(F, F) for each i € supp(f) and
m; € Si(F, F) for each i € N \ supp(/3).

Thus, to show that 7 is a perfect conditional e-equilibrium, it remains to show

that

8.

for each «,

(a) For each i € supp(f) and ¢} € S,

> Tl (Zpa(sb)[m]ui(WQ’a(m,qﬁ))) >

pesupp(mwl:e)
> (g x7i)el (ZPO‘(@[m]Ui(WZ’“(m,cb))) -,
¢€supp(1¢; XWE?) m

1’ o 1,a 17a — 17&
where 75 = HzEsupp(B) Uy and 1¢; Xy = 1¢; X Hj€supp(ﬁ)\{i} oo

(b) For each i € supp(53), (mq, ¢;) € M; x S such that

el > wosphy, (6i 6i)[mi] > 0

D—i Esupp(”l_’?)
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and a; € A;,

Z¢>,,'€Supp(7r17’ia) ﬂ-i’ia [¢—1] (Zm_l pa(¢i’ ¢—Z) [mi; m—i]uz’ (7.‘.2,01 (m, ¢)))
ZQS_iESupp(ﬂ'i’?) ﬂ{fé [gb—l]pﬁl@ (sz, ¢—z) [mi]

o comptrtey T 0] (S, 100 6 mim_Juas, 70 (m i, 6-2)))
Z(ﬁ_iesupp(ﬁl_’?) ﬂ-i’za [gb—z]p?\‘@ (¢Z7 gb—z) [mz]

>

(¢) For each i € N \ supp(3), m; € M; such that

ST el (8)mi] > 0

pEsupp(mh)
and a; € A;,
S ccapntriony 18] (X, P (@)ims, m_ifus (72 (m, 9)) )
> pesupp(ria) TOIDS, (@) [m]
S sceupnriny 18] (S, 0 (0)mi, mfus(a, 725 (m i, 6-) )
> sesupp(rta) TOIDG, (0) [my]

We will show that condition 8 holds for some subnet of {7 p®},. Recall that o =

>

—E&.

(k, F, F) In what follows, we will often fix F and F and take limits as k — oo.
Regarding condition 8 (a), let i € supp(f) and ¢, € S. We have that, for each

finite subsets F and F' of N and S , respectively,

k
pEsupp(rh*)

lim Z (@) (Z () [m]u; (7> (m, ¢))> = Z ¢*[m]u;(m(m))

m

and that
lm Y (L x ) (Zpaw)[m]ui(w?va(m, >>> -
¢Esupp(ly xmh®)

> (867 ) Imui(mi(m, ¢)), m_i(m_y)).

m

m

Hence, by considering « such that & > kg for some ky € N, it is enough to show that

> ¢t mlui(m(m)) = (¢, 6% ) [mua(mi(ma, &), 7_i(m_s)),

m

39



which is equivalent to
> Gimlui(w(m)) = > gilmlu(mi(mi, ¢)), 7i(m ). (4.6)

For each j € N and m; € M;, mj(m;) € {m;(m}) : m) € supp(¢d},,)} since m;(m;) =

m;(m;) whenever m; & supp(¢j,,). Thus, by (4.1),

Z¢ uz Uy mz>¢> 7r—z m—z < Zgb vz 7T—z z))
< max  v(m_;(m_ Zqzﬁ m))

m_;€M*,
and, hence, (4.6) holds. It then follows that condition 8 (a) also holds.
Consider condition 8 (b) and (c). For each i € supp(f), finite subset F' of N, finite
subset F of S, (m;,¢;) € Si(F, F) and v; € A(A;), we have that

Z(b_iEsupp(ﬂi’f‘) WE@'O[[QS—Z'] (Zm,z a(¢ia ¢—i)[mi>m ]ul(%7 ( —i Qb )))
z¢,i€supp(ﬂi’f‘) 7T1 a[¢ ]pM ((blu (b*l)[ml]

Zgbm“ = ui (i, m—i(m—;))

@, M; ml

if qubz M; [mz] + Z]Esupp(,@ BJQb] M; [mz] = O and
Z(bfiESupp(rrl’Q) 7T1—7ia[¢*i] (z:m,Z pa(¢i7 (bfl) [mi7 m_ ]uz(’}/u (TTI, 7,)))

lim — — _
b 6 sesupp(nle) i [O—ilPSy, (di, 9—i)[mi]
Z /Bl¢l m;, m + Z]Esupp B_i) Bj(b*' [mi7 z]
qubz M; [mz] + Z jéEsupp(B /BJ¢] M; [ml]

if @Cbz M, M) + Z]ESupp o Bi5 [m;] > 0. The latter case is clear since all terms

lim
2

wi (i, i (M)

in the denominator of the fraction converge to zero except the one that converges to
Bidi (i) + 3 jeupp(s_) Bi®5ar [mi] and similarly regarding the numerator.

In the former case, both the numerator and the denominator converge to zero
since Bigin, [Mi] + 3 jequpp(s_ i) Bi®5.m; [ma] = 0. Multiplying each by , it follows that
all terms converge to zero except the ones corresponding to the case where 7TJ1~ = oy
for each j # ¢ and p*(¢;, ¢* ;) = ¢*. Furthermore, for each m_; € M_;,

q°[mi,m_i] = (n) 7 (g7 [mi, m—i] + Z q; [mi, m—i]),

jesupp(B)\{i}
qi'[mi, m—s] = 7" [mi]q[m_;] and

q;[mi,m—_;] = 0 for each j € supp(B) \ {i},
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the latter since m; ¢ supp(¢;y,). Hence, ¢°[mi,m-i] = ()77 {milgilm-] and
qi, [mi] = (n')~'72Im;]. Thus,

qa [mia m—i]

C_IJO\Z- [m;]

¢;k [mi> m—i]

=Gl = g

Similarly, for each i & supp(3), finite subset F' of N, finite subset F' of S, m; €
Si(F, F) and ~; € A(A;), we have that

5 Z¢esupp(7r1’a) (9] (me (@) [mi, m_i|ui (i, W%ia(m—i, ¢—i))>
1m =
k Z(i)ésupp(wl’a) mhe [¢]p%41 (¢) [ml]
Zjesupp(ﬁ) BJ¢; [, m—i] (s . )

> couonter B0 0] wi(Yi, mi(m—))

m_jg

if Zjaupp(ﬁ) Bi 3, M; [m;] = 0, and

I Z¢esupp(ﬂ1,a) mhe 9] (Zm, (@) [mi, m_ijui (i, W%?(mfu ¢7i))>
im =
k Z(besupp(frl’a) mhe [(b]p%/ll ((b) [ml]

2 jesupp(s) B30 [ma m—i]

Zjesupp(ﬁ) Bi ;Mz [m]

wi (i, T_i(m_;))

m_jg

if > coupp(s) i@ [mu] > 0. The latter case is as in the case ¢ € supp(8). In
the former case, both the numerator and the denominator converge to zero since
> jesupp(8) Bi %5 ar, [ma] = 0; furthermore, g, [m;] = 0 for the same reason. Multiplying
each by k2, it follows that all terms converge to zero except the ones corresponding
to the case where 7le»’a = ¢ for each j # i and p®(¢i, ¢*;) = ¢*. Furthermore, for
each m_; € M_;,

G [mi,m—] = n= (g7 [ma, mi] + Z g5 [mi, m—]),

JeN
qi'[mi, m—s] = 7" [mi]q;[m_;] and

Q?[mia m_;] = 0 for each j # i,

the latter since m; ¢ supp(¢j,,). Thus,

- [m_] _ ZjEsupp(B) Bj(b;[mum—z]

ZJ'esupp(ﬁ) BJ¢;,Mi [mi]

(ja [mi7 m—i]

gy, [l
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We will next show that m;(m;, ¢;) solves

Zd)_iesupp(wl_’f‘) WE? [¢—l] (Zm,l pa(¢ia ¢—i)[mi7 m— ]ul<7w ( —1i ¢ )))

max lim

HEA(A) K Z¢,i65upp(ﬂi’?) ﬂ-i’? [Qﬁ*l]p?\/[l ((bw (bfZ)[ml]
(4.7)
for each i € supp(8), m; € M;, ¢; € S, and m;(m;) solves
Y scwapntrioy ™8] (L, 2@, o (35, 725 (i, 6-) )
max lim - - (4.8)
TEA(A;) K Ztﬁésupp(wl’o‘) d 7a[¢]pMi<¢) [mz]

for each i & supp(8) and m; € M;.
We first establish (4.7). If 8;¢iar, (] + 32 cqupp(s_) i@, n,[mi] = 0, then

T contaty T 0] (S 1600l s 725 0n1,6-4)))

1m

k Z¢>,¢€supp(7r17’f‘) ﬂ-i’za [(é—l]p(])\éll (gbz, ¢—Z) [ml]
Z¢ e m).

zM ml

Since m;(my, ¢;) = mi(m;) and m;(m;) € BR;(m_;(m_;)) for each m_; € M_; such that
(m;, m_;) € supp(¢F) by (4.1), it follows that (4.7) holds in this case.
IE Bidinr [mu] + 32 s cqupp(s_s) Bi®j s [mu] > 0 and ¢; # ¢7, then

o comppirtey T 10 (S, 100 60 mim_ s, 70 (m i, 6-2)))
Zqﬁ ZESupp(ﬂ'l’?) 1—1 [(b ]pM (¢17¢ )[ml]

ﬁ’bgb’b[mzy m_; + Z jE€supp(B B_yqb [m,, Z] - | |
Z 61(252 Mi [mz] + Z]Gsupp B-i) ﬁj ¢j,Mi [mz] Z(%’ e (mil))

lim
k

o Z Bidilmi, m i) + 3 s cqupp(a_) B [mi, m_i]
= U; | Vi 5z¢zM [mz] + Zjesupp 63 i M, [ml]

m_; (m_z)

61¢1[mz m_ 1]+2J€supp(,8 )/Bjd) [mz m—z]
m—g ﬁl¢z M, [ml]-"_Z]Esupp(B B](b] M; [ml]

Since m;(m;, ¢;) is optimal against > m_i(m_;), it
follows that (4.7) holds in this case.
Finally, consider the case where ¢; = ¢! and

Bii g, [mi] + Z Bi @5 a, [mi] > 0.

j€supp(B—¢)
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Note that it is enough to show that
> 6 Im] (us(m(m)) — wias, mi(m_))) >0 (4.9)
for each a; € A; and ?hz;t
Z ¢" [m] (wi(m(m)) — wi(as, m_i(m-;)))
- Zﬂz wi(m(m)) — wi(ai, —i(m—;)))
+Z > Bigslm) (wi(r(m) — wilas, mi(m_))).

—i jesupp(B-i)
We have that u;(w(m)) > w;(a;, m—;(m_;)) for each m_; such that ¢;[m]| > 0 by (4.1);

moreover, for each m_; such that ¢5[m| > 0 for some j € supp(3_;), then
m; € UjESupP(Bfi)Supp(qb;,Mi)

and, hence, > > i s Big5m [ (ui(m(m)) — wi(a;, 7—i(m_;))) > 0 by (4.2).
Thus, (4.9) holds and so does (4.7).
We next establish (4.8). If 37 sy 8507 a,[mi] = 0, then it follows that

- cupptri ™ 10] (S 27 (0) s s 727 om0
1]?1 Z¢Esupp Lay Wl’a[Cb]pMi (¢)[mi]
Z]Esupp ngb [ml’ Z]

= ui(as, m_i(m_y)).

ZjESUpp(ﬁ ﬂ] ¢j,Mi [ml]

Since m;(m;) = m;(m;), it follows by (4.2) that (4.8) holds in this case.

m_;

I coupp(s) Bi¥5ar [ma] > 0, then it is enough to establish (4.9). For each a; € 4;,

we have that
Z¢ m)) — uilas, 7_i(m_,)))
- Z > Bg (m(m)) — ui(ai, m-i(m-;))) >0

m—; jesupp(B)
by (4.2). Thus, (4.9) holds and so does (4.8).
The above arguments show that, for each finite subsets F of N and F of 9,

condition 8 holds whenever k is sufficiently high. Specifically, condition 8 (a) holds
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for each ¢ € N whenever k > kq. For each i € supp(f) and (my;,¢;) € Si(F, F),
there is k(m;, ¢;) such that condition 8 (b) holds whenever k& > k(m;, ¢;). For each
i € N\ supp(B) and m; € S;(F, F), there is k(m;) such that condition 8 (c) holds
whenever k > k(m;). Thus, let

k(F, F) = max {ko, max max  k(m;, ¢;), max max k(mz)} :

iEsupp(ﬂ) (mz,@)ESZ(F,F) iEN\Supp(ﬁ) mi€S¢(F,F)

Since condition 8 (b) is trivially satisfied when

(6] Z w2 pilphy, (61, d—i)[mi] = 0,

¢—i€supp(7"1§f)

i.e. when i € supp(8) and (m;, ¢;) & Si(F,F), and that condition 8 (c) is trivially
satisfied when >, 0 T @lpSy, (@) [mi] = 0, ie. when i € N \ supp(5) and
m; & S;(F, F), it follows that condition 8 holds whenever k > k(F, F). This allows us
to define the following subnet {7¢™ p?M}, of {7, p®}, such that condition 8 holds.

The index set of the subnet {7¢™ p#M}  is the same as the one in the net

{7, p*}4. The function ¢ : 1 — « is defined by setting, for each n = (k, F, F),

w(n) = <max{k,k:(F, F)} F F) )

It is then clear that condition 8 holds and that, as required by the definition of a

subnet, for each ay, there exists 19, e.g. 19 = g, such that p(n) > «aq for each n > 1.
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