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Abstract

We analyze a monopoly pricing model where information about the buyer’s

valuation is endogenous. Before the seller sets a price, both the buyer and the

seller receive private signals that may be informative about the buyer’s valua-

tion. The joint distribution of these signals, as a function of the valuation, is

optimally chosen by the players. In general, players have conflicting incentives

over the provision of information. As a modelling device, we assume that an

aggregation function determines the information structure from the choices of

the players, and we characterize the equilibrium payoffs for a natural class of

aggregation functions. Every equilibrium payoff can be achieved by an infor-

mation structure that is the result of the seller trying to make both players

uninformed while the buyer tries to learn about his valuation. The seller can

only price discriminate (set prices that depend on his belief about the buyer’s

valuation) to the extent that the buyer is indifferent between these prices.
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1 Introduction

Recent advances in the economic analysis of monopoly, such as Bergemann, Brooks,

and Morris (2015) and Roesler and Szentes (2017), show that the impact of discrimina-

tory pricing on consumer and producer surplus critically depends on the information

available to both the seller and the buyer(s). Consequently, both parties may desire to

influence or manipulate this information, and moreover there may be a conflict of in-

terest regarding what information should be available. The idea that the information

structure arises endogenously through the potentially conflicting actions of multiple

parties raises several important questions. For example, what information does each

party want to have, and what information do they want the other to have? In case

they disagree, what information structure will result from their conflict? And given

that the information structure arises endogenously, to what extent can the seller price

discriminate? Our aim in this paper is to address these questions in a simple and

tractable framework.

Answering these questions is not straightforward because it is infeasible to model

all the possible ways each party can influence every piece of information provided.

Moreover, when the buyer and the seller have different incentives over the information

they wish to be provided, it is unclear how this conflict of interest will be resolved.

The recent information design literature has generated many insights about the infor-

mation structures that are likely to arise by carefully studying the incentives of some

(metaphorical or literal) information designer who can choose from all possible infor-

mation structures. However, with a few exceptions discussed in Section 2, only the

case of a single information designer has been considered. The conceptual challenge

of considering multiple designers is that ultimately they must decide on a single in-

formation structure, and any model of how a single information structure arises from

the decisions of multiple designers requires non-obvious modelling choices. In short,

there is a need for a general framework for modelling situations where the information

structure is the result of the actions of multiple interested parties; specific instances

of this framework must determine how conflicts between the parties are resolved.
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We consider such framework to study how optimally chosen information affects

monopoly pricing, the latter modelled in the standard way: the seller of a good,

produced with zero marginal cost, makes a take-it-or-leave-it price offer to a buyer

whose valuation is unknown and drawn from a finite set. Our point of departure from

the standard model is that before the seller makes a price offer, both the buyer and

the seller can take actions that determine the information they receive. In our model,

an information structure is a function from the set of unknown valuations to a set of

distributions over message profiles, consisting of one message for each player which

he receives privately.1 The information choices of the players will combine to produce

some information structure, but as a tractable reduced form representation of the

various actions players may take to influence this information structure, we assume

that (i) each player (covertly) chooses the information structure directly, (ii) the set

of possible messages is sufficiently rich as to not rule out any kind of information by

assumption, and (iii) the true information structure (that determines the information

that each player actually receives) is determined by an aggregation function that

combines their choices.2 An example of an aggregation function is one that maps the

information structures chosen by the players into their convex combination for given

strictly positive weights; it can be interpreted as each player trying to implement some

information structure and nature choosing who is successful, with each player being

successful with some fixed probability. We consider a class of aggregation functions

1For example, consider a seller who lists an object for sale on an online marketplace. Here each

player’s private message corresponds to the combination of the information provided by the listing,

all the messages they receive from the other player and all other information that is relevant about

either the value of the object or the beliefs of the other player.
2The seller’s choice of information structure represents, in reduced form, all the actions that he

takes to influence or manipulate the information that he and the buyer obtain, and likewise for the

buyer, and an interpretation of the aggregation function is that it is a model of how the conflict

between the buyer and the seller over the information they wish to be provided is resolved. The

assumption that information choices are made covertly reflects our interpretation that the messages

represent all the information the players receive. Thus, deviations can only be detected through

their effect on the distribution of messages, but which deviations are detected is an endogenous

feature of the model.
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that includes the “convex-combination” one and characterize the equilibrium payoffs

of a monopoly pricing game where the players choose their information in the way

we have described before the seller makes a price offer.3

Our results generate a number of lessons about the implications of optimally

chosen information structures for monopoly pricing: (i) All equilibrium payoffs can be

obtained using a specific class of information structures where (ii) price discrimination

is severely limited but (iii) multiple prices can be supported in equilibrium. Isolating

the effect of requiring information to be optimally chosen leads to (iv) a unique

equilibrium payoff and the conclusion that (v) the buyer is harmed by the seller’s

ability to price discriminate. We now discuss these lessons in turn.

Our main result shows that all pure strategy equilibrium payoffs can be achieved

using an information structure where the buyer sometimes becomes informed about

his valuation, and the seller knows only whether or not the buyer is informed; in

particular, the seller is always uninformed about the buyer’s valuation. The seller

will set one price when the buyer is uninformed and another (possibly different) price

when the buyer is informed. The buyer accepts when he is uninformed but accepts

only if his valuation is at least as large as the price offer when he is informed. Thus,

as far as the seller is concerned, it is better for both players to know nothing so he

extracts surplus by charging the expected value; this is easier than first degree price

discrimination which requires not only learning about the buyer’s valuation but also

credibly transmitting this information to the buyer. Thus, summing up:

(a) The buyer wants to learn about his valuation and wants the seller to know when

he is successful in doing so, but the buyer does not transmit any information to

the seller about his valuation.

(b) The seller does not want either player to learn about the buyer’s valuation, but

wants to know when the buyer is successful in doing so.

3As a solution concept we rely on Myerson and Reny (2020) who define sequential equilibrium

for infinite games – our game is infinite because the set of information structures each player chooses

from is a set of functions from valuations to distributions, and also because the seller can make any

price offer from an interval of real numbers.
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That the seller wants no information to be transmitted (or is unable to credibly

transmit information) is often seen in reality. For example, many sellers list items

on eBay with only very limited information;4 wine producers in Bordeaux sell their

product en primeur to négociants, before the wine is bottled and when the quality is

still uncertain; and restaurant menus are often short and uninformative.5 In each case,

the buyer would prefer to have more information, and sometimes may be successful in

acquiring such information (for example, a diner may ask the waiter to fully explain

the menu).

A striking feature of our main result is that there is only one instance of price dis-

crimination: the price may be lower for informed buyers than for uninformed ones but

each is the same across valuations. This is a realistic feature: most service providers

offer better deals for (in some cases, all) customers who call them to negotiate, which

can be interpreted as the customer revealing that they are well informed about their

valuation.

That the seller sets the same price for all valuations is due to the difficulty of

credibly transmitting information when the information structure is designed by the

players themselves (without commitment) as in our framework. For example, if the

information structure is designed by the buyer, he will pretend to have whichever

valuation gets the lowest price, thus rendering the message that the seller receives

uninformative. Similarly, if the information structure is designed by the seller, he

will try to make the buyer believe that his valuation is greater than the price. In

reality, we often see, for example, marketing information provided by the seller that

is essentially uninformative as in our model.

4Moreover, sellers on eBay are allowed to make a single time-limited offer to any buyer who

views their listing; many sellers set these offers to be sent out automatically before any information

is exchanged.
5In an article entitled “Why a minimalist menu can ruin my meal”, published in the Financial

Times on 10 August 2023, the writer laments the trend towards “obfuscating and withholding all but

the most minimal information in the menu” which prevents him from making an informed choice.

In our model, information is withheld precisely so that the item can be sold to those who would not

have accepted if they were fully informed.
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When mixed strategies are allowed, some price discrimination (across valuations)

is possible since the argument that the buyer will pretend to have whichever valuation

gets the lowest price breaks down: if the seller sets different distributions of prices

following different messages, the buyer may be indifferent between them and can

transmit information to the seller if different types randomize over messages with

different probabilities. This information then rationalizes the different distributions

of prices set by the seller. In other words, when mixed strategies are allowed, the buyer

may induce certain distributions of posterior beliefs for the seller, who can then engage

in third degree price discrimination. An interesting feature of this construction is that

it is only possible when the messages are partially informative, i.e. the seller does not

become fully informed. Thus, the requirement that information is provided optimally

by the players themselves rules out first degree price discrimination (something rarely

observed in real life). Moreover, although third degree price discrimination is possible,

it is limited by the requirement that the buyer must find it optimal to provide the

seller with the information required. For example, a seller may offer random discounts

to those who are part of a loyalty scheme, but the decision to sign up is the buyer’s.6

With the exception that the buyer may partially inform the seller about his valua-

tion, properties (a) and (b) underlying the optimal information structure continue to

hold with mixed strategies: the seller wants both parties to know nothing, the buyer

wants to know whether her valuation is greater than the price, and both of them want

the seller to know whether the buyer knows this.

Focusing again on the case of pure strategies, several pairs of prices, for informed

and uninformed buyers, are possible in equilibrium.7 For instance, when the buyer is

uninformed, the price is at most the expected valuation but there are equilibria where

it is lower; in fact it can be anything between the expected valuation and the lowest

valuation of the buyer. What prevents the seller from raising the price in this case

is that the buyer may rationally reject price changes by reasonably attributing it to

6Of course, this does not apply to (price) discrimination based on observable characteristics, such

as gender-based price disparities.
7With mixed strategies, we can have several sets of distributions of prices.
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sellers who know that the valuation is low. In other words, an instance of the classic

lemons problem prevents the seller from adjusting the price in a way that would be

profitable if the buyer’s beliefs were fixed. That prices may depend on convention

or social norms is realistic.8 This creates a multiplicity of equilibrium payoffs, which

is nevertheless smaller than what several recent papers, discussed in Section 2, have

found when there is no requirement that the information is optimally chosen.9 The

multiplicity of payoffs arises because of the possibility that an uncertain buyer may

become pessimistic when faced with an unexpected price change. This is a feature of

any model where the seller has some information that the buyer does not; it is not a

consequence of our requirement that the information structure is optimally chosen.10

We can rule out the possibility that the price offer affects the buyer’s belief about

his valuation – and isolate the effect of the requirement that the information structure

is optimally chosen – by considering an alternative model where the buyer knows his

own valuation, i.e. he is fully informed before engaging in the information game. For

this model, we show that as the set of possible messages becomes large, there is a

unique limit equilibrium payoff, which results from an information structure where

the seller tries to become fully informed,11 and the buyer wants the seller to learn

nothing. The former property is intuitive, but the latter is not obvious: for example,

8It is natural, for example, to think that a buyer may reject price increases that he perceives

as unfair. Our story implies that such a rejection can be made rationally, in the absence of any

considerations of fairness.
9With pure strategies, we find that the set of equilibrium payoffs is significantly smaller (has

lower dimension) than the set of feasible payoffs, but with mixed strategies, the set of equilibrium

payoffs is larger and approaches the set of feasible payoffs in the case where the seller has almost

perfect control over the information.
10Indeed, that there is an equilibrium where the seller sets the lowest possible price because an

uninformed buyer rejects all other prices even though they are less than that his expected valuation is

already established by, for example, Makris and Renou (2023) in a model with exogenous information.

However, this feature is absent from Bergemann, Brooks, and Morris (2015) (where the buyer is fully

informed) and Roesler and Szentes (2017) (where the seller is uninformed).
11To achieve this, the seller must play mixed strategies and randomize over the sets of messages

he uses otherwise the buyer can send him the message corresponding to the lowest valuation and

destroy the credibility of his information.
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Bergemann, Brooks, and Morris (2015) show that there are information structures

where both the buyer and seller do better than in the case where the seller learns

nothing. In contrast, our result implies that such information structures cannot be

optimally chosen by the buyer, and the best information structure the buyer can

credibly choose is for the seller to be uninformed. When the seller is uninformed, he

charges the same (uniform monopoly) price independently of the buyer’s valuation;

there is price discrimination only when the information structure is as the seller

desires, which makes the buyer worse off than when the seller has no information.

The version of our model with an informed buyer allows a direct comparison with

Bergemann, Brooks, and Morris (2015), since in their model the buyer is also fully

informed. The key difference is that in our model the information of the seller is the

result of optimal choices by both the buyer and the seller. In contrast to Bergemann,

Brooks, and Morris (2015), who find that every payoff such that the seller gets at least

the uniform monopoly profit can be supported in equilibrium, we find that there is

a unique equilibrium payoff. In contrast to their result that the welfare implications

of price discrimination depend on what information the seller has, we find that price

discrimination (given optimally chosen information) is always bad for the buyer.

Proofs of our main results are in the Appendix. Supplementary material to this

paper contains details for the alternative model with an informed buyer.12

2 Related literature

Our paper is inspired by the information design literature but in contrast to, e.g.,

Kamenica and Gentzkow (2011) or Bergemann and Morris (2016), we decentralize the

role of the designer and relax the commitment assumption. In addition to monopoly

pricing, our model can be applied to other strategic situations where multiple players

design the information structure in a noncooperative way. For example, we have

applied our model in Carmona and Laohakunakorn (2023) to study a repeated game

where the monitoring structure is optimally chosen by the players themselves, and

12The supplementary material is available at https://klaohakunakorn.com/imsm.pdf.
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in Carmona and Laohakunakorn (2024) to study correlated equilibrium where the

correlation structure is optimally chosen by the players themselves. Besides these two

papers, Gentzkow and Kamenica (2017) also consider the case of multiple information

designers. In their setting, multiple senders choose what information to communicate

to a single receiver who observes the realization of all information structures. In

contrast, in our model, each player is both a sender and a receiver simultaneously

and each observes only the realization of one information structure that aggregates

their information choices.

Several recent papers have considered information design in a monopoly pricing

setting. Bergemann, Brooks, and Morris (2015) consider a model where the buyer

is fully informed and show that any feasible payoff such that the seller gets at least

the uniform monopoly profit can be supported in equilibrium for some information

provided to the seller. Makris and Renou (2023) consider all possible information

structures (i.e. both the buyer and the seller can become informed) and show that

any feasible payoff such that the seller gets at least the lowest valuation of the buyer

can be supported in equilibrium. Kartik and Zhong (2023) allow the seller’s cost also

to be uncertain and characterize the payoffs from all information structures, as well

payoffs under different restrictions on information structures. In contrast to these

papers, we allow the players to choose their information structure optimally.

Many papers have considered information structures that are optimal for either the

seller or the buyer(s). For example, Roesler and Szentes (2017) consider a model where

the seller is uninformed and find that under the buyer-optimal information structure,

the seller’s payoff is less than the uniform monopoly profit.13 Bergemann, Heumann,

Morris, Sorokin, and Winter (2022) consider the revenue-maximizing information

structure in a second price auction, and Bergemann, Heumann, and Morris (2023)

consider the bidder-optimal information structure in an optimal auction. Bobkova

(2024) compares the efficiency of different auctions when bidders can choose to learn

about different components of their value. In contrast, we consider a setting where

13Moreover any feasible payoff such that the seller receives at least this amount can be supported

in equilibrium for some information provided to the buyer.
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both the buyer and the seller receive information, the information structure is the

result of noncooperative optimal choices by both players, and the players can learn

about each other’s information as well as about the buyer’s valuation.

In our model, information is free; several papers have considered related models

with costly information. For example, Ravid, Roesler, and Szentes (2022) consider a

model where the buyer can a purchase a signal about his valuation, and they show that

as the cost of information goes to zero, equilibria converge to the worst free-learning

equilibrium. Pernoud and Gleyze (2023) allow agents to acquire costly information

and find that agents will typically choose to learn about others’ preferences even

when they are not directly payoff relevant. Achim and Li (2024) study monopoly

pricing where the buyer can pay for expert advice and show that when the cost of

advice is low, the seller “prices in” the expert which makes the buyer worse off. We

abstract away from the cost of information since our goal is to demonstrate that

certain information structures may be difficult to support in equilibrium, even when

they can be freely chosen.

3 Model and main result

3.1 Model

A monopolist seller of a good makes a take-it-or-leave-it price offer to a buyer whose

valuation is unknown and who chooses to buy the good at that price or not. In

addition, before the seller makes a price offer, both the buyer and the seller choose

an information structure.

The set of players is represented by N = {b, s} with player b being the buyer and

player s being the seller. The buyer’s valuation of the seller’s good belongs to the

set V = {v1, . . . , vK} with 0 < v1 < · · · < vK ; it is unknown to both players, and its

prior distribution is ν ∈ ∆(V ) which is fully supported.

Each player chooses an information design. In the information design problems

we consider, the designer sends messages to both players. The set of messages each
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player i ∈ N can potentially receive is Mi = N. This avoids imposing a bound on

the number of different messages that the designer can send; to avoid unnecessary

technical complications, we focus on (arbitrary) finite subsets of messages. Letting

F be the set of finitely supported probability measures on M =
∏

i∈N Mi = N2,

an information design consists of a function ϕ : V → F . Let Φ be the set of such

functions.

The players’ interaction is then described by the following extensive-form game

G. At the beginning of the game, each player i ∈ N chooses an information design

ϕi ∈ Φ. After all players have chosen their information designs, a profile of buyer’s

valuations and messages (v,m) ∈ V × M is realized according to ϕ ∈ ∆(V × M)

defined by setting, for each (v,m) ∈ V ×M ,

ϕ[v,m] = ν[v]β(ϕb(v), ϕs(v))[m],

where β : F 2 → F is a function that aggregates the information choices of the players.

That is, if the buyer chooses information structure ϕb, the seller chooses information

structure ϕs and the buyer’s valuation is v, the message profile m is drawn from

β(ϕb(v), ϕs(v)).

We make the following assumptions on β:14

1. For each m ∈M and (γ, γ′) ∈ F 2, if γ[m] = γ′[m] = 0, then β(γ, γ′)[m] = 0.

2. For each m ∈M , γ ̸= 1m and γ̃ ∈ F :

(a) β(1m, γ̃)[m] > β(γ, γ̃)[m] and β(γ̃, 1m)[m] > β(γ̃, γ)[m],

(b) β(1m, γ̃)[m
′] ≤ β(γ, γ̃)[m′] and β(γ̃, 1m)[m

′] ≤ β(γ̃, γ)[m′] for all m′ ̸= m,

with strict inequality if γ[m′] > 0.

3. There exists βb, βs ∈ (0, 1) with βb + βs = 1 such that for each (γb, γs) ∈ F 2,

β(γb, γs)[supp(γb)] ≥ βb and β(γb, γs)[supp(γs)] ≥ βs.

14For each m ∈M , 1m ∈ F denotes the probability measure degenerate on m and, for each γ ∈ F ,

supp(γ) denotes the support of γ.
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Property 1 requires that if both players agree that some message profile should arise

with zero probability, then that message profile indeed arises with zero probability.

Property 2 is similar to an independence of irrelevant alternatives condition: if a

player chooses to send a message profile with probability 1, then the probability of

that message profile should go up, and the probability of all other message profiles

should go down independently of the choice of the other player. Property 3 requires

that the realized message profile comes from the seller’s information structure with

probability at least βs and from the buyer’s information structure with probability at

least βb, for some βb, βs ∈ (0, 1) with βb + βs = 1; in particular, if the players choose

information structures with disjoint supports, then βs (resp. βb) is the probability

that the realized message profile comes from the seller’s (resp. buyer’s) information

structure. The parameter βi can be interpreted as the amount of control player i has

over the true information structure.

An example of an aggregation function that satisfies our assumptions is β(γ, γ′) =

βbγ+βsγ
′, for some βb, βs ∈ (0, 1) with βb+βs = 1. It is actually the only example if

β extends (multi) linearly from degenerate distributions, i.e. if it satisfies β(γ, γ′) =∑
m∈supp(γ)

∑
m′∈supp(γ′) β(1m, 1m′) for each (γ, γ′) ∈ F 2. See Section 6 for a discussion

of the model and aggregation function, as well as further examples.

Each player i ∈ N observes mi ∈Mi and his choice ϕi ∈ Φ but neither mj nor ϕj

where j ̸= i. The seller then makes a price offer p ∈ [v1, vK ] to the buyer, and the

buyer chooses whether to accept (a = 1) or reject the offer (a = 0). Let V ∗ = [v1, vK ]

and A = {0, 1}; payoffs are as follows: For each (v, p, a) ∈ V × V ∗ × A,

us(p, a) = pa,

ub(v, p, a) = (v − p)a.

A pure strategy for the seller is πs = (π1
s , π

2
s) such that π1

s ∈ Φ and π2
s : N×Φ → V ∗

is measurable.15 A pure strategy for the buyer is πb = (π1
b , π

2
b ) such that π1

b ∈ Φ and

π2
b : N×Φ× V ∗ → A is measurable. A pure strategy is π = (πb, πs) and let Π be the

15The set F is endowed with the topology of the weak convergence of probability measures and

the corresponding Borel σ-algebra.
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set of pure strategies. We use sequential equilibrium, defined in Myerson and Reny

(2020), as our solution concept.16

Often, when we focus on pure strategies,17 we write ϕ∗
i = π1

i , p(ms) = π2
s(ms, ϕ

∗
s),

a(mb, p) = π2
b (mb, ϕ

∗
b , p) and a(mb,ms) = a(mb, p(ms)), where (mb,ms, p) ∈ N2 × V ∗.

Let Π∗ be the set of π ∈ Π such that a(mb, v1) = 1 for each mb ∈Mb and we focus on

π ∈ Π∗. This is a mild refinement since, upon receiving any message mb, the buyer

is certain that his valuation is at least v1 and thus is, at the very least, not worse off

by buying at price v1 than not buying.18

3.2 Examples

We present some examples of information structures and ask if they are optimal

for the players under specific assumptions about behavior in the resulting monopoly

pricing game. The examples feature V = {1, 2, 3, 4, 5} with ν uniform (hence, the

expected valuation is 3), and β(γ, γ′) = 0.5γ + 0.5γ′ for each (γ, γ′) ∈ F 2.

Example 1 The information structure ϕ : V → F such that

ϕ(v) = 1(v,v) for each v ∈ V

corresponds to full information. Suppose that, for each v, the seller makes the price

offer v which the buyer accepts. Then ϕ cannot be the information structure in equilib-

rium, i.e. it is not optimal for both players to choose ϕ since the seller has a profitable

deviation to choose an information structure ϕ′(v) = 1(5,5) for each v. Then the distri-

bution of messages is (0.5)1(v,v)+(0.5)1(5,5) for each v. Thus, with probability 0.5, the

seller will receive ms = v and get payoff
∑

v ν[v]v = 3 as in the proposed equilibrium;

however, with probability 0.5, the seller will get payoff 5 instead of 3.

16More precisely, π is a sequential equilibrium if it is a perfect conditional ε-equilibrium for every

ε > 0.
17See Section 4 for an analysis of mixed strategies.
18If we allow the seller to make price offers less than v1, then it can easily be shown that this

refinement must be satisfied in every equilibrium.
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Example 2 The information structure ϕ̂ : V → F such that

ϕ̂(v) =

1(1,1) if v ∈ {1, 2}

1(2,1) if v ∈ {3, 4, 5}

corresponds to a partially informed buyer and an uninformed seller. Here the buyer

learns whether his value is less than or at least 3, and the seller learns nothing.

Suppose that the seller makes a price offer that is accepted if mb = 2 and rejected

if mb = 1. Then ϕ̂ cannot be the information structure in equilibrium, since the

seller has a profitable deviation to choose an information structure ϕ′(v) = 1(2,1) for

each v. In this case, with probability 0.5, the seller’s price offer will be accepted with

probability 1 instead of 3
5
.

Example 3 The information structure ϕ̄ : V → F such that

ϕ̄(v) = 1(3,3) for each v ∈ V

corresponds to no information. Suppose that the seller makes a price offer p ∈ (1, 3]

which the buyer accepts. Then ϕ̄ cannot be the information structure in equilibrium

since the buyer has a profitable deviation to choose an information structure ϕ(v) =

1(v,3) for each v and to accept only if p ≤ v.

We now argue that there is an equilibrium where the buyer chooses the information

structure ϕ̂ and the seller chooses the information structure ϕ̄. First, we specify what

happens on the equilibrium path: suppose that ϕ∗
b = ϕ̂, ϕ∗

s = ϕ̄, p(1) = 3, p(3) = 3,

a(1, p) = 0 if p = 3, a(2, p) = 1 if p = 3 and a(3, p) = 1 if p = 3. Note that on the

equilibrium path, the seller receives messages 1 and 3 and the buyer receives messages

1, 2 and 3. Also, since the seller sets price 3 after messages 1 and 3, the buyer will

only see price 3 on the equilibrium path. Thus, the above is a complete description

of the strategy for on-path histories.

We now argue that the price offer 3 is optimal for the seller. Crucially, note that

any other price offer is off the equilibrium path and thus the belief following such

price offer cannot be determined by Bayes’ rule. In fact, it is possible to construct
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perturbations such that the buyer believes that he has valuation 1 after any unex-

pected price offer. Given such belief, we can specify that the buyer will only accept

1 (by assumption) and the equilibrium price offer, making the equilibrium price offer

optimal.

Similarly, to ensure that the information structures are optimally chosen, we can

construct perturbations such that following any zero probability message, the buyer

believes that his valuation is 1 and the seller believes that the buyer would accept

5 (and hence makes price offer 5). Thus, we only have to ensure that the players

do not want to deviate by sending different on-path messages to the other player. If

the buyer sends message 3 instead of 1 to the seller, the price is the same, and he is

making the correct decision ex post conditional on ϕ̂ being chosen, so ϕ̂ is optimal.

For the seller, conditional on ϕ̄ = 1(3,3) being chosen, he gets profit 3, which is the

same profit he can get by sending the buyer message 2 (after which the buyer also

accepts price 3) and higher than the profit he can get by sending the buyer message

1 (after which the buyer rejects all prices other than 1). Thus, ϕ̄ is optimal for the

seller.

Note that ϕ̄ and ϕ̂ send different messages to each player, so in this equilibrium,

the players know which information structure has been chosen. When the realized

message profile is sent by the seller, the price is 3 and the buyer accepts. When the

realized message profile is sent by the buyer, the price is 3 and the buyer accepts if and

only if his valuation is at least 3. In the next subsection, Theorem 1 will imply that

any equilibrium payoff can be achieved using a generalization of the above strategy,

with the price following the seller’s message being replaced by ps ∈ [1, 3] and the price

following the buyer’s message being replaced by pb ∈ [1, ps].

3.3 Main result

Let ∆0 = {(βb, βs) ∈ (0, 1)2 : βb + βs = 1} and, for each (βb, βs) ∈ ∆0, B(βb, βs)

denote the set of aggregation functions β satisfying Properties 1–3 and U∗(βb, βs) be

the set of payoffs of the sequential equilibria π ∈ Π∗ of the game with aggregation

function β for some β ∈ B(βb, βs).
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Theorem 1 For each (βb, βs) ∈ ∆0, (ub, us) belongs to U
∗(βb, βs) if and only if there

exists (pb, ps) ∈ (V ∗)2 and λ ∈ [0, 1] such that

ub = βs

(∑
v

ν[v]v − ps

)
+ βb

(∑
v≥pb

ν[v](v − pb)

)
(1)

us = βsps + βb

(
pb
∑
v>pb

ν[v] + pbν[pb]λ

)
, (2)

pb ≤ ps ≤
∑
v

ν[v]v and (3)

v1 ≤ pb
∑
v>pb

ν[v] + pbν[pb]λ. (4)

Theorem 1 implies that any pure strategy equilibrium payoff can be achieved by an

equilibrium with at most two prices, ps and pb. The price is ps when the message

comes from the seller’s information structure, which happens with probability βs, the

price is pb when the message comes from the buyer’s information structure, which

happens with probability βb, and these prices do not contain any information about

the buyer’s valuation.

Conditions (1) and (2) describe the payoffs from such equilibrium, given that the

buyer accepts ps, accepts pb whenever his valuation is greater than pb and rejects pb

whenever his valuation is less than pb. If the buyer’s valuation is exactly pb, he can

accept with any probability λ.19 Condition (3) requires that pb ≤ ps, otherwise the

buyer could deviate by sending the seller the message that results in ps, and that

ps ≤
∑

v ν[v]v, otherwise the buyer would not accept ps. Condition (4) requires that

the seller’s payoff following each message must be at least v1, since he can always

offer v1 which will be accepted.

The focus in Theorem 1 is on payoffs which has the advantage of abstracting

from details of equilibrium strategies that are not relevant to the players’ welfare.

To illustrate this point, note that (ub, us) such that ub =
∑

v ν[v]v − v1 and us = v1

is an equilibrium payoff (let pb = ps = v1 and λ = 1), which can be obtained

19Although the buyer is playing pure strategies, he can choose an (nondegenerate) information

structure that randomizes between sending himself two messages when his valuation is pb: one where

he accepts pb and another where he rejects pb.
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with an equilibrium strategy in which the seller makes price offer v1 regardless of

his information. This then implies that any information structure can be optimally

chosen by the players since then any price offer p > v1 is off the equilibrium path

and it is possible to construct perturbations such that the buyer optimally rejects

any p > v1, making v1 optimal for the seller and any information structure optimal

to each player. This multiplicity of equilibria is however irrelevant to players’ welfare

as all of them have the same payoff.

We thus focus on payoffs and on the properties of equilibrium strategies that

support them. Focusing on the case λ = 1 for simplicity, Theorem 1 makes it clear

that there is a set of strategies, which differ only in the prices pb and ps that the seller

offers depending on which information design occurs, namely: (a) the buyer wants to

learn about his valuation (in particular, whether it is less than pb or at least pb) and

wants the seller to know when he is successful in doing so, but the buyer does not

transmit any information to the seller about his valuation, e.g. the buyer’s design ϕ∗
b

is such that ϕ∗
b(v) = 1(1,1) for each v < pb and ϕ

∗
b(v) = 1(2,1) for each v ≥ pb; (b) the

seller does not want either player to learn about the buyer’s valuation, but wants to

know when the buyer is successful in doing so, e.g. the seller’s design ϕ∗
s is such that

ϕ∗
s(v) = 1(3,3) for each v ∈ V ; (c) the seller sets price pb if he knows that the buyer has

been successful in learning about his valuation and ps otherwise; and (d) the buyer

accepts ps with probability one, and accepts pb with probability one if his valuation is

at least pb and zero if his valuation is less than pb. The strategy changes with pb and

ps but the resulting information structure is always the same; since ∪vsupp(ϕ∗
b,Mi

(v))

and ∪vsupp(ϕ∗
s,Mi

(v)) are disjoint, each player i can find out which information design

has occurred; each can conclude that the seller’s (resp. buyer’s) design has occurred

if he receives message mi = 3 (resp. mi < 3); in addition, upon receiving message

mb = 1 (resp. mb = 2), the buyer learns that his valuation is less than (resp. at least)

pb.

Theorem 1 and the above discussion make clear that prices do not depend on the

valuation and that they depend only on which information structure occurs. Since the

buyer is informed about his valuation if and only if his information structure realizes,
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it follows that price discrimination is limited to informed vs uninformed buyers; in

particular, it does not extend to high vs low valuation buyers.

As already pointed out, it is possible to construct perturbations such that the

buyer optimally rejects price offers that are off the equilibrium path. This, in par-

ticular, allows for prices ps lower than the buyer’s expected valuation to be offered

when the seller’s information design occurs. This accounts for the multiplicity of

equilibrium payoffs.

To better understand the extent of payoff multiplicity, we provide a further char-

acterization the set U∗(βb, βs) of equilibrium payoffs. It uses the following notation:

Let E =
∑

v∈V ν[v]v, E(p) =
∑

v≥p ν[v]v for each v1 ≤ p ≤ E, ν(p) =
∑

v≥p ν[v] for

each v1 ≤ p ≤ E,

Ck = {p ∈ (vk−1, vk] : pν(vk) ≥ v1 and p ≤ E} for each k ∈ {2, . . . , K},

C1 = {v1},

κ = {k ∈ {1, . . . , K} : Ck ̸= ∅},

vk = inf Ck and v̄k = maxCk for each k ∈ κ, and v0 = 0. Furthermore, let p∗ be

a solution of maxp∈[v1,E] pν(p). We say that (ub, us) ∈ U∗(βb, βs) is represented by

(pb, ps, λ) if (1) and (2) hold for some (pb, ps, λ) ∈ (V ∗)2 × [0, 1] satisfying (3) and

(4). Consider the set U∗∗(βb, βs) of (ub, us) ∈ U∗(βb, βs) represented by (pb, ps, λ) with

λ = 1. We then obtain the following corollary of Theorem 1.20

Corollary 1 For each (βb, βs) ∈ ∆0, U∗∗(βb, βs) = ∪k∈κUk where, for each k ∈ κ

such that vk > vk−1,

Uk ={(ub, us) ∈ R2 : ub + us = βsE + βbE(vk),

and vk(βs + βbν(vk)) ≤ us ≤ βsE + βbv̄kν(vk)}

and, for each k ∈ κ such that vk = vk−1,

Uk ={(ub, us) ∈ R2 : ub + us = βsE + βbE(vk),

and vk(βs + βbν(vk)) < us ≤ βsE + βbv̄kν(vk)}.

20See Section A.4 for an equivalent description of the element used in Corollary 1, which is useful

to actually draw the set of equilibrium payoffs.
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Figure 1: Equilibrium payoffs when V = {1, . . . , 5}, ν is uniform and βb = 1/2.

Furthermore, for each k ∈ κ,

βsE + βbE(vK) ≤ βsE + βbE(vk) ≤ βsE + βbE(v1),

βsE + βbv1 ≤ βsE + βbv̄kν(vk) ≤ βsE + βbp
∗ν(p∗) and

v1 ≤ vk(βs + βbν(vk)) ≤ βsE + βbp
∗ν(p∗).

Hence, U∗∗(βb, βs) is the union of parallel lines with slope −1 with upper endpoints

for us being minimized when pb = v1 and maximized when pb = p∗ and the lower

endpoints for us being minimized when pb = v1.
21 Figure 1 shows U∗∗(βb, βs) in the

case where V = {1, . . . , 5}, ν is uniform and βb = 1/2 (the three solid diagonal lines),

and contrasts it with the surplus triangle in Bergemann, Brooks, and Morris (2015)

(dashed triangle), Roesler and Szentes (2017) (dotted triangle) and Makris and Renou

(2023) (dashdot triangle).

21See Figure 2 in Section A.4 for an example where the lower endpoints for us are not maximized

when pb = p∗.
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The surplus triangle in Makris and Renou (2023) shows all the payoffs that can

be obtained for some information structure; it is the largest one since they consider

all possible information structures (Bergemann, Brooks, and Morris (2015) consider

those where the buyer is fully informed and Roesler and Szentes (2017) consider

those where the seller is uninformed).22 In our setting, by contrast, the information

structure must be chosen optimally by the players and this implies that only a small

subset of the payoffs identified by Makris and Renou (2023) can be sustained in a

pure strategy equilibrium.

4 Mixed strategies

In this section, we allow the players to mix, i.e. a strategy for the seller is πs = (π1
s , π

2
s)

such that π1
s ∈ ∆(Φ) and π2

s :Ms×Φ → ∆(V ∗) is measurable, a strategy for the buyer

is πb = (π1
b , π

2
b ) such that π1

b ∈ ∆(Φ) and π2
b :Mb×Φ×V ∗ → ∆(A) is measurable, and

a strategy is π = (πb, πs). We identify ∆(A) with the one-dimensional simplex and

write π2
b (mb, ϕb, p) to mean the probability that the buyer accepts following (mb, ϕb, p),

i.e. π2
b (mb, ϕb, p) = π2

b (mb, ϕb, p)[1].

Let Π̄ be the set of strategies, let Π̄∗ be the set of π ∈ Π̄ such that π2
b (mb, ϕb, v1) = 1

for each (mb, ϕb) ∈ Mb × Φ, and let Ū∗(βb, βs) be the set of payoffs of sequential

equilibria π ∈ Π̄∗ of the game with aggregation function β such that β(γ, γ′) =

βbγ + βsγ
′ for each γ, γ′ ∈ F . Recall that E =

∑
v ν[v]v.

Mixed strategies are useful in our model for at least the following reasons: First,

if an uninformed buyer accepts the price offer E with some probability p ∈ [v1/E, 1),

then the seller can randomize between offering E and pE (which is accepted with

22In Makris and Renou’s (2023) setting, payoffs where the seller gets v1 can be achieved using,

for example, an information structure where the seller but not the buyer knows the valuation. As

in our model, there are perturbations such that the buyer optimally rejects any off-path price offer

greater than v1. Thus, to achieve (E−v1, v1), the seller can set price v1 which the buyer accepts. To

achieve (0, v1), the seller can set price E which the buyer accepts with probability v1/E. The first

degree price discrimination payoff can be achieved with full information as usual. Then all other

payoffs can be achieved by taking convex combinations of these information structures.
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probability one). Note that the buyer’s payoff is zero when the price is E and (1−p)E

when the price is pE. By choosing appropriate weights on the randomization and

the probability of acceptance p, it turns out that following the seller’s information

structure being chosen, any feasible payoff can be supported in equilibrium.

Second, mixed strategies relax the requirements that the optimality of information

impose on the informativeness of the messages sent from the buyer’s information

structure. Without any optimality requirement, the buyer can induce any Bayes’s

plausible distribution of posterior beliefs (about the buyer’s valuation) for the seller.

As we have seen in Section 3, with the restriction to pure strategies, the optimality

requirements are so stringent that the only possible posterior belief that the buyer can

induce is the prior. With mixed strategies, however, some nondegenerate distributions

of posteriors will be possible. If the seller sets different distributions of prices following

different messages, buyers with different valuations may be indifferent between these

distributions, and hence willing to induce the posterior beliefs for the seller that in

turn rationalize the distributions of prices. Thus, following the buyer’s information

structure being chosen, mixed strategies allow the buyer to optimally induce certain

distributions of posterior beliefs for the seller, who must then set optimal prices given

each belief. This is consistent with real-life instances of price discrimination where

the information that the seller uses to price discriminate is provided by the buyer;

for example, Amazon Prime customers face different distributions of prices compared

with non-Prime customers.

Finally, by randomizing over the set of messages that a player sends to himself, it

becomes more difficult for his opponent to mimic his message (for example, the seller

cannot reliably send the buyer the message that corresponds to a high valuation if

the buyer randomizes over which message he uses to mean this), which further relaxes

some constraints that the equilibrium prices must satisfy.

For each sequential equilibrium,M v
s in the statement of the following theorem will

correspond to the set of messages that buyer type v sends to the seller with positive

probability, γ(ms) and µ(ms) to the price distribution and the seller’s posterior belief

after all such messages, ξ(v,ms) to the probability the buyer accepts v when indifferent
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after sending message ms to the seller, and τ to the distribution of posterior beliefs

of the seller induced by the buyer.

Theorem 2 For each (βb, βs) ∈ ∆0, u ∈ Ū∗(βb, βs) if and only if there exists:

(i) For each v ∈ V : M v
s ⊆Ms,

(ii) For each ms ∈ ∪vM v
s : γ(ms) ∈ ∆(V ∗) and µ(ms) ∈ ∆({v ∈ V : ms ∈M v

s })

(iii) For each v ∈ V and ms ∈M v
s : ξ(v,ms) ∈ [0, 1], and

(iv) τ ∈ ∆(∪vM v
s )

such that:

u = βs(u
s
b, u

s
s) + βb(u

b
b, u

b
s), (5)

(usb, u
s
s) ∈ {(ub, us) : v1 ≤ us ≤ E, 0 ≤ ub ≤ E − v1, us + ub ≤ E}, (6)

ubb =
∑
v

ν[v]
∑
p<v

γ(mv
s)[p](v − p) ≥

∑
v

ν[v]
∑
p<v

γ(h(v))[p](v − p) (7)

for each v 7→ mv
s such that mv

s ∈M v
s for each v ∈ V and h : V → ∪vM v

s ,

ubs =
∑

ms∈∪vMv
s

τ(ms)pms

( ∑
v>pms

µ(ms)[v] + µ(ms)[pms ]ξ(pms ,ms)
)

(8)

for each ms 7→ pms such that pms ∈ supp(γ(ms)) for each ms ∈ ∪vM v
s ,∑

ms∈Mv
s

τ(ms)µ(ms)[v] = ν[v] for each v ∈ V, (9)

p
(∑
v>p

µ(ms)[v] + µ(ms)[p]ξ(p,ms)
)
≥ v1 if ms ∈ ∪vM v

s and p ∈ supp(γ(ms)) (10)

uss ≥ v for each v ≤ min∪mssupp(γ(ms)) if u
s
b > 0, (11)

E ≥ v for each v ≤ min∪mssupp(γ(ms)) if u
s
b = 0. (12)

Since we focus in this section on the “convex-combination” aggregation function,

we can interpret each payoff u = βsu
s + βbu

b as consisting of us that arises when the

seller’s information structure is chosen and ub that arises when the buyer’s information

structure is chosen.
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Conditional on the seller’s information structure being chosen, any feasible payoff

where the seller gets at least v1 can be supported in mixed strategy equilibrium – this

is condition (6). For example, suppose that we wish to achieve some payoff (ūb, ūs),

with ūs ≥ v1. This can be achieved by the seller sending an uninformative message

to both players, making price offer ūs with probability ūb
E−ūs and price offer E with

remaining probability. Feasibility implies that ūb
E−ūs ∈ [0, 1]. If the buyer accepts E

with probability ūs
E
, accepts ūs with probability 1, and rejects all other price offers

except v1, then the seller gets ūs, both prices are optimal for the seller, and the buyer

gets ūb
E−ūs (E − ūs) = ūb.

23

In contrast, when the buyer’s information structure is chosen, the requirement

that such information structure is chosen optimally imposes restrictions on the payoffs

that can be achieved. In particular, after receiving a message ms from the buyer’s

information structure, if the seller sets a distribution of prices γ(ms), then he must be

indifferent between each price in the support of γ(ms) given his belief µ(ms) following

ms – this is condition (8). In general, the buyer can induce any distribution of beliefs

for the seller satisfying the Bayes’ plausibility constraint (9). However, each type of

buyer in the support of µ(ms) must also be willing to send message ms to the seller;

thus, supposing that each type v sends messages in M v
s with positive probability,

supp(µ(ms)) = {v ∈ V : ms ∈ M v
s } and all ms ∈ M v

s must give the same payoff to

type v as required by condition (7).

Condition (10) is the analogue of condition (4) from Theorem 1. Finally, to

understand conditions (11) and (12), note that buyer types v ≤ min∪mssupp(γ(ms))

are getting zero payoff conditional on the buyer’s information being chosen. Such

types could deviate by sending the seller a message from ∪v∈V,ϕs∈π1
s
supp(ϕs,Ms(v))

instead, i.e. by attempting to mimic the seller’s message. Conditions (11) and (12)

ensure that the lowest price following each of the seller’s messages is greater than all

such v so that these “mimicking deviations” are not profitable. Note that we only

need to be concerned with “mimicking deviations” from buyer types that get zero

payoff conditional on the buyer’s information being chosen. This is because with

23That rejecting all prices except E, ūs and v1 is optimal for the buyer relies on off-path beliefs.
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mixed strategies, the seller can randomize over the messages that he sends himself so

that these “mimicking deviations” are detected with high probability, making their

payoff arbitrarily close to zero.24

Remark 1 Theorem 2 implies that for each ū ∈ P = co({(0, v1), (0, E), (E−v1, v1)})

and ε > 0, there exists β̄s < 1 such that for βs > β̄s, there exists a mixed strategy

equilibrium payoff u such that ∥ū− u∥ < ε, i.e. for βs close 1, every payoff in P can

be approximated arbitrarily well in a mixed strategy equilibrium.

5 Informed buyer

We consider in this section the same setting as in Section 4 except that the buyer is

informed about his valuation, i.e. the buyer can condition his acceptance decision on

v.25 As in Bergemann, Brooks, and Morris (2015), we focus on strategies such that

the buyer buys if indifferent,26 which pins down the buyer’s second period strategy,

i.e.

π2
b (p, v) =

1 if v ≥ p,

0 otherwise

for each (v, p) ∈ V × V ∗. Note that the message of the buyer plays no role and,

for simplicity, we assume that only the seller receives a message, i.e. M = Ms. It

is also without loss of generality to assume that the seller will set prices in V . A

strategy for the buyer is then πb = π1
b such that π1

b ∈ ∆(Φ). A strategy for the seller

is πs = (π1
s , π

2
s) such that π1

s ∈ ∆(Φ) and π2
s : Ms × Φ → V is measurable. To avoid

technical difficulties, we focus on the case where both π1
b and π1

s have finite support.

Let Π̂ be the set of such strategies and let Û∗(βb, βs) be the set of payoffs of the

sequential equilibria π ∈ Π̂ when Ms = N of the game with aggregation function β

such that β(γ, γ′) = βbγ + βsγ
′.

24Thus, conditions (11) and (12) are weaker than the requirement that pb ≤ ps in Theorem 1.
25Proofs and some omitted details for this section can be found in the supplementary material.
26This is without loss by the standard argument that, for each ε > 0, the seller could offer v − ε,

which is accepted with probability 1 by type v. Note that this argument did not apply in previous

sections, since offering v − ε instead of v affects the buyer’s belief when he does not observe v.
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Recall that ν(p) =
∑

v≥p ν[v]. It turns out that unless the uniform monopoly

profit is v1, there is no sequential equilibrium when Ms = N.

Theorem 3 If maxv∈V vν(v) > v1, then Û
∗(βb, βs) = ∅ for each (βb, βs) ∈ ∆0.

The reason why there is no equilibrium when Ms = N is roughly as follows. In

any such equilibrium, the seller must get the first degree price discrimination payoff

whenever his information structure is chosen and must set the optimal price condi-

tional on the message being drawn from the buyer’s information structure whenever

the buyer’s information structure is chosen.27 It turns out that these requirements

cannot be satisfied at the same time, since first degree price discrimination implies

that there are some messages after which the seller sets price v1, but best responding

conditional on the buyer’s information structure being chosen means that some types

with valuation strictly greater than v1 must be getting zero payoff in equilibrium.28

Such types can profitably deviate by sending any message that leads to v1 with strictly

positive probability.

When |Ms| is large but finite, a similar argument implies that there is no equi-

librium in pure strategies. Now the issue is that when |Ms| is sufficiently large, the

seller can guarantee a payoff close to the one identified in the previous paragraph,

and thus there must be some message m̂ following which the seller sets price v1 with

probability 1 (because of the pure strategy assumption). But since the buyer can

always send m̂ to the seller, this implies that the price following every message from

the buyer’s information structure must be v1, which contradicts the seller’s (almost)

best responding to each message drawn from the buyer’s information structure.

27For instance, he can guarantee this payoff by choosing K = |V | messages m1, . . . ,mK that are

not being used by the buyer — which is possible since ∪vsupp(ϕ∗b(v)) is finite and Ms = N, —

sending message mk when the buyer’s valuation is vk (i.e. ϕs(vk) = 1mk), charging vk when he

receives message mk, and for any other message (which must come from the buyer’s information

structure) he can charge the best response conditional on the buyer’s information structure being

chosen.
28Since maxv∈V vν(v) > v1, the best response cannot be v1 for every message from the buyer’s

information structure. But if the best response is v̂ > v1 following some message m, then v̂ must

have sent message m which implies that v̂ gets zero payoff in equilibrium.
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The above argument suggests that the seller will want to prevent the buyer from

mimicking him; this can be done by encoding the messages of his information design

so that only he knows which valuation corresponds to which messages. This may

explain why real-world companies set prices based on certain consumer characteristics

without revealing what those characteristics are.

To explore the above incentive to obfuscate the meaning of messages and since

there does not exist an equilibrium when Ms is countably infinite, we focus instead

on the case where Ms is finite and |Ms| converges to infinity. For convenience, we

also focus on the generic case where v 7→ vν(v) has a unique maximizer, v∗; this is

then the uniform monopoly price.

For each (βb, βs) ∈ ∆0 and n ∈ N, let Gn(βb, βs) and Π̂n be, respectively, the

information-design game and the set of strategies π ∈ Π̂ when Ms = {1, . . . , n} and

β(γ, γ′) = βbγ + βsγ
′ for each γ, γ′ ∈ ∆(Ms). Let Un(βb, βs) be the set of payoffs

of sequential equilibria π ∈ Π̂n of Gn(βb, βs) and let Û(βb, βs) be the limit of the

sequence {Un(βb, βs)}∞n=1.
29 Recall that E =

∑
v ν[v]v.

Theorem 4 For each (βb, βs) ∈ ∆0, (ub, us) belongs to Û(βb, βs) if and only if

ub = βb
∑
v≥v∗

ν[v](v − v∗) and (13)

us = βsE + βbv
∗ν(v∗). (14)

Theorem 4 demonstrates that in a model where the buyer knows his valuation,

the limit equilibrium payoff is (generically) unique: with probability βs, the seller

becomes perfectly informed and first degree price discriminates; with probability βb,

the seller remains completely uninformed and sets the uniform monopoly price.

Thus, either there is no price discrimination – the price is the uniform monopoly

price regardless of the buyer’s valuation – or there is first degree price discrimination;

since the latter is worse for the buyer than the former, price discrimination (given

optimally chosen information) is always bad for the buyer. This contrasts with Berge-

mann, Brooks, and Morris’s (2015) result, according to which the buyer can obtain,

29See the supplementary material for more details on the definition of Û(βb, βs).
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for some information structure, a higher welfare than what he gets when the seller

sets the uniform monopoly price, i.e. price discrimination (without the optimality

requirement) can be good for the buyer.

The information structure needed to support the unique limit equilibrium payoff

has similar properties as when the buyer is uninformed, namely, the seller wants

to be as informed as the buyer, but the buyer wants the seller to know nothing.

Randomization is needed to obfuscate the messages: suppose that, e.g., the buyer

chooses ϕb(vk) = 1K+1 and the seller chooses ϕs(vk) = 1k for each k ∈ {1, . . . , K} and

sets a price equal to v∗ except when his message is k ∈ {1, . . . , K}, in which case he

sets a price equal to vk. Then the buyer would gain by choosing instead ϕb(v) = 11

for each v which then leads to a price of v1.

The seller can obfuscate the meaning of his messages easily by considering different

sets of K numbers in the message set Mn = {1, . . . , n}. This can be done by taking

a bijection ψ : {1, . . . , n} → {1, . . . , n}, in which case ψ(k) indicates that the buyer’s

valuation is vk. Thus, the seller can choose ϕs,ψ(vk) = 1ψ(k) for each k ∈ {1, . . . , K}

and randomize in an uniform way over the set of such ψ. Since the seller knows his

information design, he knows the function ψ used and can decode the message, i.e.

to charge vψ−1(m) when receiving message m ∈ ψ({1, . . . , K}); moreover, the seller

knows that any message m ̸∈ ψ({1, . . . , K}) must come from the buyer’s information

structure.

It is also important that the buyer obfuscates the meaning of the seller’s message.

To see this, suppose that, e.g., the buyer chooses ϕb(v) = 11 for each v ∈ V and the

seller chooses the above mixed strategy and, if ϕs,ψ realizes, sets a price equal to v∗

except when his message is m ∈ ψ({1, . . . , K}), in which case he sets a price equal to

vψ−1(m). When the buyer’s information design occurs, the seller gets a message m = 1

and should optimally set a price of v∗ but whenever 1 ∈ ψ({1, . . . , K}) and vψ−1(1) ̸=

v∗, thus with strictly positive probability, will set a non-optimal price. Thus, the

seller would gain by randomizing only over ψ such that 1 ̸∈ ψ({1, . . . , K}), which then

gives him a perfectly informative message whenever his information structure realizes.

The buyer can prevent the seller from becoming perfectly informed by randomizing
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uniformly over all messages, i.e. for each m ∈ Mn = {1, . . . , n}, to choose ϕb,m(v) =

1m for each v ∈ V with probability 1/n.

When n is large, the seller will be almost sure that the buyer’s valuation is vk

after receiving ψ(k); thus setting vk is optimal. Given the seller’s strategy, the buyer

is indifferent between all messages and thus uniform randomization is optimal. Given

the buyer’s strategy, the seller is indifferent between using any set of K messages and

uniform randomization over ψ is optimal.

Obfuscation by the seller prevents the buyer from manipulating the information

the seller uses to first degree price discriminate and, as already mentioned, may

correspond to the opacity of the set of buyer’s characteristics that real-world sellers

use to set prices. Obfuscation by the buyer prevents the seller from being certain of

the buyer’s valuation and may correspond to the reluctance of real-world buyers to

provide information to the seller.

6 Discussion and concluding remarks

In this paper we propose a model of the conflicting goals that monopolists and their

buyers have regarding the information available to them. In a variety of settings, we

show that the seller will attempt to become as informed as the buyer (but no more),

whereas the buyer will try to conceal his valuation from the seller. When the buyer is

initially uninformed, he will try to become informed about his valuation; furthermore,

both of them want it to be common knowledge whether or not the buyer succeeded

in doing so.

Price discrimination is limited by our requirement that the information must be

provided optimally by the buyer and the seller themselves. When the buyer is initially

uninformed, prices may depend on whether or not the buyer becomes informed about

his valuation but further price discrimination is limited by the requirement that the

buyer must find it optimal to provide the seller with the information required. In the

particular case of pure strategies, no further price discrimination is possible, i.e. price

discrimination is exactly limited to informed vs uninformed buyers. When the buyer
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is initially informed, the conflict between the seller and the buyer is stark: the seller

wants to become fully informed and the buyer wants the seller to know nothing. In

this case, price discrimination is always bad for the buyer.

There are sharper conclusions when the buyer is initially informed because an

informed buyer does not update his belief in response to different price offers. Our

conclusions also depend on how the conflict of interest between the buyer and the

seller over their information is resolved. The latter is captured in our setting by the

aggregation function and the former concerns the (lack of) restrictions imposed by

sequential equilibrium on how an initially uninformed buyer should update his belief

after unexpected price offers. In what follows, we provide a brief discussion of these

conceptual issues as well as some possible extensions of our framework.

(a) Aggregation function. The aggregation function determines the information

acquisition possibilities in our model. For example, if one wishes to assume that the

players are able to learn about the valuation, but not directly about each other’s be-

liefs about the valuation, then one can assume that the aggregation function satisfies,

for each γ, γ′ ∈ F , β(γ, γ′) = γMb
⊗ γ′Ms

. Under this specification, each player fully

controls the distribution of his own private message but is not able to directly learn

about the private message of his opponent since the messages are conditionally inde-

pendent. On the other hand, the properties we impose on the aggregation function

are meant to capture the possibility that players can influence, manipulate and learn

about each other’s information.

Aggregation functions satisfying properties 1–3 can be interpreted as nature choos-

ing a player i with probability βi and then the message being drawn from the support

of ϕi but not necessarily according to ϕi (satisfying some monotonicity requirement

as ϕi varies). In particular, properties 1–3 allow for some aggregation functions other

than the convex combination one.30 That Theorem 1 holds for any aggregation func-

30For example, let ≺ be the lexicographic order on N2 defined by m ≺ m′ if (i) m1 < m′
1 or (ii)

m1 = m′
1 and m2 < m′

2. For each γ ∈ F , let m(γ) ∈ N2 be such that γ[m(γ)] = maxm γ[m] and

there is no m̂ ∈ N2 such that γ[m̂] = maxm γ[m] and m̂ ≺ m(γ). Let 0 < ε < 1 and define, for each

γ, γ′ ∈ F , β(γ, γ′) = 1
2

(
(1− ε)1m(γ) + εγ

)
+ 1

2

(
(1− ε)1m(γ′) + εγ′

)
.
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tion in this class demonstrates that nothing depends on the true information structure

being exactly equal to the ones chosen by the players as in the convex combination

aggregation function. We assume the convex combination aggregation function in

Sections 4 and 5 for convenience, but it is possible that, as in the case of Theorem 1,

these results also hold for any aggregation function satisfying properties 1–3.

That nature picks each player i with probability βi is of course an extreme assump-

tion and it would be interesting to study the implications of alternative properties

of the aggregation function (representing different models of information acquisition)

for optimal price discrimination. Nevertheless, we view this as a simple and tractable

way of representing the control each player has on the information structure using a

single parameter.

(b) Possible refinements. Multiplicity in our model comes from the possibility

that the price offer can affect the buyer’s belief. In Section 5, we shut down this

possibility in the most extreme way, by assuming that the buyer is fully informed.

Alternatively, one could consider equilibrium refinements that put restrictions on the

buyer’s belief updating process as a result of price changes. Such restrictions may be

empirically motivated by how buyers react to price changes in real life.

(c) Other mechanisms. Our aim is to understand the impact of optimally chosen

information on classic mechanisms. Thus, we focus on a simple take-it-or-leave-it

monopoly pricing mechanism. An alternative approach would be to consider the seller

as a mechanism designer, who commits to a general mechanism that recommends a

distribution of information designs to the buyer and implements an allocation as

a function of the buyer’s reported realized information design and private message

and the seller’s own realized information design and private message. We leave this

interesting question for future work.
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Appendix: Proofs

A Proofs for Section 3

A.1 Preliminary Lemmas

Any sequential equilibrium π ∈ Π satisfies the following conditions on the equilibrium

path: ∑
v

ν[v]
∑
m

β(ϕ∗
b(v), ϕ

∗
s(v))[m]us(π

2(m,ϕ∗)) ≥

∑
v

ν[v]
∑
m

β(ϕ∗
b(v), ϕs(v))[m]us(π̂

2(m,ϕ∗
b , ϕs)),

(A.1)

for each ϕs ∈ Φ and π̂2
s :Ms × Φ → V ∗, where

π2(m,ϕ∗) = (π2
s(ms, ϕ

∗
s), π

2
b (mb, ϕ

∗
b , π

2
s(ms, ϕ

∗
s))) and

π̂2(m,ϕ∗
b , ϕs) = (π̂2

s(ms, ϕs), π
2
b (mb, ϕ

∗
b , π̂

2
s(ms, ϕs))),

∑
v

ν[v]
∑
m

β(ϕ∗
b(v), ϕ

∗
s(v))[m]ub(v, π

2(m,ϕ∗)) ≥

∑
v

ν[v]
∑
m

β(ϕb(v), ϕ
∗
s(v))[m]ub(v, π̂

2(m,ϕb, ϕ
∗
s)),

(A.2)

for each ϕb ∈ Φ and π̂2
b :Mb × Φ× V ∗ → A, where

π̂2(m,ϕb, ϕ
∗
s) = (π2

s(ms, ϕ
∗
s), π̂

2
b (mb, ϕb, π

2
s(ms, ϕ

∗
s))),

∑
v,mb

ϕ∗[v,mb,ms]∑
v̂,m̂b

ϕ∗[v̂, m̂b,ms]
us(π

2(m,ϕ∗)) ≥

∑
v,mb

ϕ∗[v,mb,ms]∑
v̂,m̂b

ϕ∗[v̂, m̂b,ms]
us(p, π

2
b (mb, ϕ

∗
b , p))

(A.3)

for each ms ∈ N such that
∑

v,mb
ϕ∗[v,mb,ms] > 0 and p ∈ V ∗, and∑

v,ms

ϕ∗[v,mb,ms]π
2
s(ms, ϕ

∗
s)[p]∑

v̂,m̂s
ϕ∗[v̂, mb, m̂s]π2

s(m̂s, ϕ∗
s)[p]

ub(v, p, π
2
b (mb, ϕ

∗
b , p)) ≥

∑
v,ms

ϕ∗[v,mb,ms]π
2
s(ms, ϕ

∗
s)[p]∑

v̂,m̂s
ϕ∗[v̂, mb, m̂s]π2

s(m̂s, ϕ∗
s)[p]

ub(v, p, a)

(A.4)
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for each mb ∈ N and p ∈ V ∗ such that
∑

v,ms
ϕ∗[v,mb,ms]π

2
s(ms, ϕ

∗
s)[p] > 0 and

a ∈ A.

We will use the following notation: For each (ϕb, ϕs) ∈ Φ2 and v ∈ V , ϕ(v) =

β(ϕb(v), ϕs(v)). Furthermore, for each i, j ∈ N with i ̸= j, mi ∈ Mi and mj ∈ Mj,

Si(v) = supp(ϕi(v)), Si,Mj
(v,mi) = {mj : (mi,mj) ∈ Si(v)}, Si,Mi

(v,mj) = {mi :

(mi,mj) ∈ Si(v)}, Si,Mj
(v) = ∪mi∈Mi

Si,Mj
(v,mi), Si,Mi

(v) = ∪mj∈Mj
Si,Mi

(v,mj) and

S(v) = Sb(v) ∪ Ss(v). In particular, ϕ∗(v) = β(ϕ∗
b(v), ϕ

∗
s(v)), S

∗
i (v) = supp(ϕ∗

i (v)),

S∗
i,Mj

(v,mi) = {mj : (mi,mj) ∈ S∗
i (v)}, S∗

i,Mi
(v,mj) = {mi : (mi,mj) ∈ S∗

i (v)},

S∗
i,Mj

(v) = ∪mi∈Mi
S∗
i,Mj

(v,mi), S
∗
i,Mi

(v) = ∪mj∈Mj
S∗
i,Mi

(v,mj) and S∗(v) = S∗
b (v) ∪

S∗
s (v).

Lemma A.1 If π is a sequential equilibrium of G, then supp(ϕ∗
i (v)) ⊆ {m ∈ M :

ui(v, π
2(m,ϕ∗)) = supm′∈M ui(v, π

2(m′, ϕ∗))} for each i ∈ N and v ∈ V .

Proof. Suppose not; then there is i ∈ N , v′ ∈ V , m′ ∈ supp(ϕ∗
i (v

′)) and m∗ ∈M

such that ui(v
′, π2(m∗, ϕ∗)) > ui(v

′, π2(m′, ϕ∗)). We may assume in addition that

ui(v
′, π2(m∗, ϕ∗)) ≥ ui(v

′, π2(m,ϕ∗)) for all m ∈ S∗(v′) (it is always possible to choose

m∗ satisfying this condition since S∗(v′) is finite).

Consider first the case where i = s. Define ϕs by setting, for each v ∈ V and

m ∈M ,

ϕs(v)[m] =


1 if v = v′ and m = m∗,

0 if v = v′ and m ̸= m∗,

ϕ∗
s(v)[m] otherwise,

and let π̂2
s : Ms × Φ → V ∗ be such that π̂2

s(ms, ϕs) = π2
s(ms, ϕ

∗
s) for each ms ∈ Ms.

Then π̂2(m,ϕ∗
b , ϕs) = π2(m,ϕ∗) for each m ∈M , β(ϕ∗

b(v), ϕ
∗
s(v)) = β(ϕ∗

b(v), ϕs(v)) for

each v ̸= v′, β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m] = β(ϕ∗
b(v

′), 1m∗)[m] = 0 for each m ̸∈ S∗(v′) ∪ {m∗}
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(by Property 1) and∑
v

ν[v]
∑
m

(
β(ϕ∗

b(v), ϕs(v))[m]us(π̂
2(m,ϕ∗

b , ϕs))− β(ϕ∗
b(v), ϕ

∗
s(v))[m]us(π

2(m,ϕ∗))
)

=
∑
v

ν[v]
∑
m

us(π
2(m,ϕ∗))(β(ϕ∗

b(v), ϕs(v))[m]− β(ϕ∗
b(v), ϕ

∗
s(v))[m])

= ν[v′]
(
(β(ϕ∗

b(v
′), 1m∗)[m∗]− β(ϕ∗

b(v
′), ϕ∗

s(v
′))[m∗])us(π

2(m∗, ϕ∗))

−
∑

m∈S∗(v′)\{m∗,m′}

(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(ϕ∗
b(v

′), 1m∗)[m])us(π
2(m,ϕ∗))

− (β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m′]− β(ϕ∗
b(v

′), 1m∗)[m′])us(π
2(m′, ϕ∗))

)
≥ ν[v′]

((
β(ϕ∗

b(v
′), 1m∗)[m∗]− β(ϕ∗

b(v
′), ϕ∗

s(v
′))[m∗]

−
∑

m∈S∗(v′)\{m∗,m′}

(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(ϕ∗
b(v

′), 1m∗)[m])
)
us(π

2(m∗, ϕ∗))

− (β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m′]− β(ϕ∗
b(v

′), 1m∗)[m′])us(π
2(m′, ϕ∗))

)
= ν[v′]

(
β(ϕ∗

b(v
′), ϕ∗

s(v
′))[m′]− β(ϕ∗

b(v
′), 1m∗)[m′]

)(
us(π

2(m∗, ϕ∗))− us(π
2(m′, ϕ∗))

)
> 0

where the weak inequality follows because for all m ∈ S∗(v′) \ {m∗,m′},

us(π
2(m∗, ϕ∗)) ≥ us(π

2(m,ϕ∗)) and

β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(ϕ∗
b(v

′), 1m∗)[m] ≥ 0

(the latter by Property 2), the last equality follows because∑
m∈S∗(v′)\{m∗}

(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(ϕ∗
b(v

′), 1m∗)[m]) =

β(ϕ∗
b(v

′), 1m∗)[m∗]− β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m∗]

and hence

β(ϕ∗
b(v

′), 1m∗)[m∗]− β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m∗]

−
∑

m∈S∗(v′)\{m∗,m′}

(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(ϕ∗
b(v

′), 1m∗)[m]) =

β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m′]− β(ϕ∗
b(v

′), 1m∗)[m′],
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and the last inequality follows because

us(π
2(m∗, ϕ∗)) > us(π

2(m′, ϕ∗)) and

β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m′]− β(ϕ∗
b(v

′), 1m∗)[m′] > 0

by Property 2. But this is a contradiction since π is a sequential equilibrium of G.

The proof for the case i = b is analogous. Indeed, define ϕb by setting, for each

v ∈ V and m ∈M ,

ϕb(v)[m] =


1 if v = v′ and m = m∗,

0 if v = v′ and m ̸= m∗,

ϕ∗
b(v)[m] otherwise,

and let π̂2
b : Mb × Φ × V ∗ → A be such that π̂2

b (mb, ϕb, p) = π2
b (mb, ϕ

∗
b , p) for each

(mb, p) ∈Mb × V ∗. The remainder of the argument is as in the case i = s.

For each v ∈ V and ms ∈ Ms, let wb(v,ms) = maxa∈A ub(v, π
2
s(ms, ϕ

∗
s), a) and

BRb(v,ms) = {a ∈ A : ub(v, π
2
s(ms, ϕ

∗
s), a) = wb(v,ms)} be, respectively, the buyer’s

value function and best-reply correspondence. Analogously, for each mb ∈ Mb, let

ws(mb) = supp∈V ∗ us(p, π
2
b (mb, ϕ

∗
b , p)) and BRs(mb) = {p ∈ V ∗ : us(p, π

2
b (mb, ϕ

∗
b , p)) =

ws(mb)}. Furthermore, for each v ∈ V and mb ∈ Mb, let ws(v,mb) = ws(mb) and

BRs(v,mb) = BRs(mb).

Lemma A.2 If π is a sequential equilibrium of G, then

supp(ϕ∗
i (v)) ⊆ {m ∈M : wi(v,m−i) = sup

m′
−i∈M−i

wi(v,m
′
−i)

and π2
i (mi, ϕ

∗
i ) ∈ BRi(v,m−i)}

for each i ∈ N and v ∈ V , where π2
b (mb, ϕ

∗
b) = π2

b (mb, ϕ
∗
b , π

2
s(ms, ϕ

∗
s)) for each m ∈M .

Proof. Suppose not; then there is i ∈ N , v′ ∈ V , m′ ∈ supp(ϕ∗
i (v

′)) and m∗ ∈M

such that (i) wi(v
′,m∗

−i) > wi(v
′,m′

−i) or (ii) wi(v
′,m′

−i) = supm̂−i∈M−i
wi(v

′, m̂−i)

and π2
i (m

′
i, ϕ

∗
−i) ̸∈ BRi(v

′,m′
−i); in case (ii), let m∗ = m′. In addition, we may

assume that wi(v
′,m∗

−i) ≥ wi(v
′,m−i) for all m ∈ S∗(v′).
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Consider the case where i = b. Let a∗ ∈ BRb(v
′,m∗

s), m̄b ∈ Mb be such that

(m̄b,m
∗
s) ̸∈ S∗(v′),

ϕb(v) =

1(m̄b,m∗
s) if v = v′,

ϕ∗
b(v) otherwise,

and π̂2
b :Mb×Φ×V ∗ → A be such that π̂2

b (m̄b, ϕb, π
2
s(m

∗
s, ϕ

∗
s)) = a∗ and π̂2

b (mb, ϕb, p) =

π2
b (mb, ϕ

∗
b , p) for each (mb, p) ̸= (m̄b, π

2
s(m

∗
s, ϕ

∗
s)). Then π̂2(m,ϕb, ϕ

∗
s) = π2(m,ϕ∗) for

each m ∈ M such that mb ̸= m̄b, β(ϕ
∗
b(v), ϕ

∗
s(v)) = β(ϕb(v), ϕ

∗
s(v)) for each v ̸= v′,

β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m] = 0 for each m ̸∈ S∗(v′) and β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m] = 0 for each

m ̸∈ S∗(v′) ∪ {(m̄b,m
∗
s)} (by Property 1), (m̄b,m

∗
s) ̸∈ S∗(v′) and∑

v

ν[v]
∑
m

(
β(ϕb(v), ϕ

∗
s(v))[m]ub(v, π̂

2(m,ϕb, ϕ
∗
s))

−β(ϕ∗
b(v), ϕ

∗
s(v))[m]ub(v, π

2(m,ϕ∗))
)

= ν[v′]

(∑
m

(
β(1(m̄b,m∗

s), ϕ
∗
s(v

′))[m]ub(v
′, π̂2(m,ϕb, ϕ

∗
s))

−β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]ub(v
′, π2(m,ϕ∗))

))
= ν[v′]

(
β(1(m̄b,m∗

s), ϕ
∗
s(v

′))[m̄b,m
∗
s]wb(v

′,m∗
s)

−
∑

m∈S∗(v′)\{m′}

(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m])ub(v
′, π2(m,ϕ∗))

−(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m′]− β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m′])ub(v
′, π2(m′, ϕ∗))

)
≥ ν[v′]

((
β(1(m̄b,m∗

s), ϕ
∗
s(v

′))[m̄b,m
∗
s]

−
∑

m∈S∗(v′)\{m′}

(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m])
)
wb(v

′,m∗
s)

−(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m′]− β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m′])ub(v
′, π2(m′, ϕ∗))

)
= ν[v′]

(
β(ϕ∗

b(v
′), ϕ∗

s(v
′))[m′]− β(1(m̄b,m∗

s), ϕ
∗
s(v

′))[m′]
)

×
(
wb(v

′,m∗
s)− ub(v

′, π2(m′, ϕ∗))
)

where the weak inequality follows because for all m ∈ S∗(v′) \ {m′},

wb(v
′,m∗

s) ≥ wb(v
′,ms) ≥ ub(v

′, π2(m,ϕ∗)) and

β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(ϕ∗
b(v

′), 1(m̄b,m∗
s))[m] ≥ 0
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(the latter by Property 2), and the last equality follows because

β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m̄b,m
∗
s]−

∑
m∈S∗(v′)\{m′}

(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m])

= β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m′]− β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m′].

By Property 2, β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m′] − β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m′] > 0. If wb(v
′,m∗

s) >

wb(v
′,m′

s), then

wb(v
′,m∗

s)− ub(v
′, π2(m′, ϕ∗)) ≥ wb(v

′,m∗
s)− wb(v

′,m′
s) > 0;

if wb(v
′,m∗

s) = wb(v
′,m′

s), then π
2
b (m

′
b, ϕ

∗
b) ̸∈ BRb(v

′,m′
s) and

wb(v
′,m∗

s)− ub(v
′, π2(m′, ϕ∗)) > wb(v

′,m∗
s)− wb(v

′,m′
s) ≥ 0.

In either case, it follows that∑
v

ν[v]
∑
m

(β(ϕb(v), ϕ
∗
s(v))[m]ub(v, π̂

2(m,ϕb, ϕ
∗
s)) >∑

v

ν[v]
∑
m

(β(ϕ∗
b(v), ϕ

∗
s(v))[m]ub(v, π

2(m,ϕ∗)).

But this is a contradiction since π is a sequential equilibrium.

The proof for the case i = s is analogous. Let m̄s ∈ Ms be such that (m∗
b , m̄s) ̸∈

S∗(v′) and, for each k ∈ N, pk ∈ V ∗ be such that us(pk, π
2
b (m

∗
b , ϕ

∗
b , pk)) > ws(m

∗
b)−1/k.

Then let

ϕs(v) =

1(m∗
b ,m̄s) if v = v′,

ϕ∗
s(v) otherwise,

and π̂2
s :Ms × Φ → V ∗ be such that π̂2

s(m̄s, ϕs) = pk and π̂2
s(ms, ϕs) = π2

s(ms, ϕ
∗
s) for

each ms ̸= m̄s. An argument analogous to the one for the case i = b then shows that,

for each k ∈ N,∑
v

ν[v]
∑
m

(
β(ϕb(v), ϕ

∗
s(v))[m]ub(v, π̂

2(m,ϕb, ϕ
∗
s))− β(ϕ∗

b(v), ϕ
∗
s(v))[m]ub(v, π

2(m,ϕ∗))
)

≥ ν[v′]
(
β(ϕ∗

b(v
′), ϕ∗

s(v
′))[m′]− β(1(m̄b,m∗

s), ϕ
∗
s(v

′))[m′]
)(
wb(v

′,m∗
s)− ub(v

′, π2(m′, ϕ∗))
)

−1

k
ν[v′]β(ϕ∗

b(v
′), 1(m∗

b ,m̄s))[m
∗
b , m̄s].
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Since(
β(ϕ∗

b(v
′), ϕ∗

s(v
′))[m′]− β(1(m̄b,m∗

s), ϕ
∗
s(v

′))[m′]
)(
wb(v

′,m∗
s)− ub(v

′, π2(m′, ϕ∗))
)
> 0,

it follows that, for each k sufficiently large,∑
v

ν[v]
∑
m

(β(ϕ∗
b(v), ϕs(v))[m]ub(v, π̂

2(m,ϕ∗
b , ϕs)) >∑

v

ν[v]
∑
m

(β(ϕ∗
b(v), ϕ

∗
s(v))[m]ub(v, π

2(m,ϕ∗)).

But this is a contradiction since π is a sequential equilibrium.

A.2 Proof of Theorem 1

(Necessity) Let π ∈ Π∗ be a sequential equilibrium.

Lemma A.3 p(ms) = p(m′
s) for each ms,m

′
s ∈ ∪vS∗

s,Ms
(v) and a(mb, ps) = 1 for

each mb ∈ ∪vS∗
s,Mb

(v), where ps is the common value of p(ms) for ms ∈ ∪vS∗
s,Ms

(v).

Proof. Note first that maxm∗∈∪vS∗(v) us(π(m
∗)) > 0. Indeed, us(π(m

∗)) ≥ 0 for

each m∗ ∈ ∪vS∗(v) and if maxm∗∈∪vS∗(v) us(π(m
∗)) = 0, then us(π) = 0 by property

1. But then, letting π̂1
s = (ϕ∗

s, π̂
2
s) with π̂

2
s(ms, ϕ) = v1 for each (ms, ϕ) ∈Ms × Φ, we

have that

us(πb, π̂s) ≥
∑
v

ν[v]
∑

m∈S∗
s (v)

ϕ∗(v)[m]v1 ≥ βsv1 > 0 = us(π)

by property 3. But this is a contradiction to the assumption that π is a sequential

equilibrium.

Let ms,m
′
s ∈ ∪vS∗

s,Ms
(v) and let v, v′ ∈ V and mb,m

′
b ∈ Mb be such that

(ms,mb) ∈ S∗
s (v) and (m′

s,m
′
b) ∈ S∗

s (v
′). Then a(mb, p(ms)) = a(m′

b, p(m
′
s)) = 1

since otherwise maxm∗∈∪vS∗(v) us(π(m
∗)) = 0 by Lemma A.1. Hence, by Lemma A.1,

p(ms) = us(p(ms), a(mb, p(ms))) = max
m∗∈∪vS∗(v)

us(π(m
∗))

= us(p(m
′
s), a(m

′
b, p(m

′
s))) = p(m′

s)

and, since maxm∗∈∪vS∗(v) us(π(m
∗)) > 0, ps > 0. Thus, for each m̂b ∈ ∪vS∗

s,Mb
(v),

ps = maxm∗∈∪vS∗(v) us(π(m
∗)) = psa(m̂b, ps) and, hence, a(m̂b, ps) = 1.
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Lemma A.4 There exist v ∈ V and m ∈ S∗
b (v) such that a(mb, p(ms)) = 1 and

ϕ∗[v,m] > 0.

Proof. We will show that a(mb, p(ms)) = 1 for each m ∈ S∗
b (vK). This, together

with ν[vK ] > 0 and ϕ∗(vK)[S
∗
b (vK)] > 0 by property 3, implies the conclusion of the

lemma.

We have that p(ms) = ps and a(mb, p(ms)) = 1 for each m ∈ ∪vS∗
s (v) by Lemma

A.3 and ϕ∗(v)[S∗
s (v)] ≥ βs > 0 for each v ∈ V by property 3. Thus, for each v ∈ V ,

there exists mv ∈ S∗
s (v) such that p(mv

s) = ps, a(m
v
b , p(m

v
s)) = 1 and ϕ∗[v,mv

b ,m
v
s ] >

0.

We have that mv1
b such that

∑
(v,ms):p(ms)=ps

ϕ∗[v̂,mb, m̂s] ≥ ϕ∗[v1,m
v1
b ,m

v1
s ] > 0.

Thus, by (A.4),

0 ≤
∑

v,ms:p(m̂s)=ps

ϕ∗[v,mv1
b ,ms](v − ps) ⇔

ps ≤
∑

v vν[v]
∑

ms:p(m̂s)=ps
ϕ∗(v)[mv1

b ,ms]∑
v ν[v]

∑
ms:p(m̂s)=ps

ϕ∗(v)[mv1
b ,ms]

.

Hence, ps < vK since

ν[v1]
∑

ms:p(m̂s)=ps

ϕ∗(v1)[m
v1
b ,ms] ≥ ϕ∗(v1)[m

v1
b ,m

v1
s ] = ϕ∗[v1,m

v1
b ,m

v1
s ] > 0.

It follows from ps < vK that 0 < vK − ps = ub(vK ,m
vK ) ≤ ub(vK ,m) for each

m ∈ S∗
b (vK) by Lemma A.1. Thus, a(mb, p(ms)) = 1 for each m ∈ S∗

b (vK).

Lemma A.5 p(ms) = p(m′
s) for each m,m′ ∈ ∪v{m̃ ∈ S∗

b (v) : a(m̃b, p(m̃s)) = 1}.

Furthermore, letting pb be the common value of p(ms) for m ∈ ∪v{m̃ ∈ S∗
b (v) :

a(m̃b, p(m̃s)) = 1},

a(mb, pb) =

1 if v > pb,

0 if v < pb

for each v ∈ V and mb ∈ S∗
b,Mb

(v).

Proof. Let m,m′ ∈ ∪v{m̃ ∈ S∗
b (v) : a(m̃b, p(m̃s)) = 1} be such that p(ms) >

p(m′
s). Then let v, v′ ∈ V be such that (mb,ms) ∈ S∗

b (v), a(mb, p(ms)) = 1, (m′
b,m

′
s) ∈

S∗
b (v

′) and a(m′
b, p(m

′
s)) = 1.
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Consider a deviation by b to a strategy π̂b = (ϕb, π̂
2
b ) such that ϕb(v) = 1(m′

b,m
′
s),

ϕb(v̂) = ϕ∗
b(v̂) for each v̂ ∈ V \{v} and π̂2

b (m̂b, ϕb, p) = π2
b (m̂b, ϕ

∗
b , p) for each (m̂b, p) ∈

N× V ∗. This deviation is profitable since ub(π̂b, πs)− ub(π) equals

ν[v]
∑

m̃ ̸∈{m′,m}

(
β(ϕb(v), ϕ

∗
s(v))[m̃]− β(ϕ∗

b(v), ϕ
∗
s(v))[m̃]

)
ub(v, π

2(m̃))

+ ν[v]
(
β(ϕb(v), ϕ

∗
s(v))[m]− β(ϕ∗

b(v), ϕ
∗
s(v))[m]

)
ub(v, π

2(m))

+ ν[v]
(
β(ϕb(v), ϕ

∗
s(v))[m

′]− β(ϕ∗
b(v), ϕ

∗
s(v))[m

′]
)
ub(v, π

2(m′)).

Lemma A.1 implies that ub(π
2(m̃)) ≤ ub(π

2(m)) for each m̃ ̸∈ {m′,m} since m ∈

S∗
b (v). Furthermore, ub(v, π

2(m)) = v − p(ms) < v − p(m′
s) = ub(v, π

2(m′)). Thus,

ub(π̂b, πs)− ub(π) ≥

ν[v]
(
β(ϕb(v), ϕ

∗
s(v))[m

′]− β(ϕ∗
b(v), ϕ

∗
s(v))[m

′]
)
(ub(v, π

2(m′))− ub(v, π
2(m))) =

ν[v]
(
β(ϕb(v), ϕ

∗
s(v))[m

′]− β(ϕ∗
b(v), ϕ

∗
s(v))[m

′]
)
(p(ms)− p(m′

s)) > 0

since β(ϕb(v), ϕ
∗
s(v))[m

′] > β(ϕ∗
b(v), ϕ

∗
s(v))[m

′] by property 2. But this contradicts

the assumption that π is a sequential equilibrium.

Finally, let v ∈ V and mb ∈ S∗
b,Mb

(v). Then a(mb, pb) ∈ BRb(v,ms) for each

ms ∈ N such that (mb,ms) ∈ S∗
b (v) by Lemma A.2, hence a(mb, pb) = 1 if v > pb and

a(mb, pb) = 0 if v < pb.

For each v ∈ V , let β[v] =
∑

m∈S∗
s (v)

ϕ∗(v)[m]. Then∑
m∈S∗

b (v)\S∗
s (v)

ϕ∗(v)[m] = 1− β[v]

by property 1. If pb ∈ V , let

Λ = {m ∈ S∗
b (pb) \ S∗

s (pb) : a(mb, pb) = 1}, and

λ(1− β[pb]) =
∑
m∈Λ

ϕ∗(pb)[m];

if pb ̸∈ V , then let λ = 0. It follows by Lemmas A.3 and A.5 that

ub =
∑
v

ν[v]β[v](v − ps) +
∑
v≥pb

ν[v](1− β[v])(v − pb) and

us = ps
∑
v

ν[v]β[v] + pbν[pb](1− β[pb])λ+ pb
∑
v>pb

ν[v](1− β[v]).
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In the case where pb ̸= ps, it follows that, for each v ∈ V , S∗
s (v) ∩ S∗

b (v) = ∅

by Lemmas A.3 and A.5. Indeed, if m ∈ S∗
s (v) ∩ S∗

b (v), then p(ms) = ps and

a(mb, p(ms)) = 1 by Lemma A.3. Hence, Lemma A.5 implies that p(ms) = pb ̸=

ps = p(ms), a contradiction.

It then follows by property 3 that β[v] = βs and 1− β[v] = βb and, thus,

ub = βs

(∑
v

ν[v]v − ps

)
+ βb

(∑
v≥pb

ν[v](v − pb)

)
and

us = βsps + βb(pb
∑
v>pb

ν[v] + pbν[pb]λ).

Consider next the case pb = ps and let p = pb = ps. Then

ub =
∑
v>p

ν[v](v − p) +
∑
v≤p

ν[v]β[v](v − p) ≤
∑
v>p

ν[v](v − p) +
∑
v≤p

ν[v]βs(v − p)

= βs

(∑
v

ν[v]v − ps

)
+ βb

(∑
v≥pb

ν[v](v − pb)

)
and

us = p
∑
v>p

ν[v] + pν[p](β[p] + (1− β[p])λ) + p
∑
v<p

ν[v]β[v]

≥ p
∑
v>p

ν[v] + pν[p](βs + βbλ) + p
∑
v<p

ν[v]βs

= βsps + βb(pb
∑
v>pb

ν[v] + pbν[pb]λ).

For each v ∈ V , let β̂[v] =
∑

m∈S∗
b (v)

ϕ∗(v)[m]. Then∑
m∈S∗

s (v)\S∗
b (v)

ϕ∗(v)[m] = 1− β̂[v]

by property 1. If pb ∈ V , let

Λ̂ = {m ∈ S∗
b (pb) : a(mb, pb) = 1}, and (A.5)

λ̂β̂[pb] =
∑
m∈Λ̂

ϕ∗(pb)[m]; (A.6)

if pb ̸∈ V , then let λ̂ = 0. It follows by Lemmas A.3 and A.5 that

ub =
∑
v

ν[v](1− β̂[v])(v − ps) +
∑
v≥pb

ν[v]β̂[v](v − pb) and

us = ps
∑
v

ν[v](1− β̂[v]) + pbν[pb]β̂[pb]λ̂+ pb
∑
v>pb

ν[v]β̂[v].
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Then

ub =
∑
v>p

ν[v](v − p) +
∑
v≤p

ν[v](1− β̂[v])(v − p)

≥
∑
v>p

ν[v](v − p) +
∑
v≤p

ν[v](1− βb)(v − p)

= βs

(∑
v

ν[v]v − ps

)
+ βb

(∑
v≥pb

ν[v](v − pb)

)
and

us = p
∑
v>p

ν[v] + pν[p](β̂[p]λ̂+ (1− β̂[p])) + p
∑
v<p

ν[v](1− β̂[v])

≤ p
∑
v>p

ν[v] + pν[p](βbλ̂+ 1− βb) + p
∑
v<p

ν[v](1− βb)

= βsps + βb(pb
∑
v>pb

ν[v] + pbν[pb]λ̂).

It follows that

ub = βs

(∑
v

ν[v]v − ps

)
+ βb

(∑
v≥pb

ν[v](v − pb)

)
. (A.7)

Since λ ≥ 0 and λ̂ ≤ 1, we have that

βsps + βb(pb
∑
v>pb

ν[v]) ≤ us ≤ βsps + βb(pb
∑
v>pb

ν[v] + pbν[pb]).

Thus, for some λ∗ ∈ [0, 1],

us = βsps + βb(pb
∑
v>pb

ν[v] + λ∗pbν[pb]). (A.8)

Lemma A.6 ps ≥ pb, ps ≤
∑

v ν[v]v and

v1 ≤ pb
∑
v>pb

ν[v] + pbν[pb]λ
∗.

Proof. Let, by Lemma A.4, (v,m) ∈ V × M be such that m ∈ S∗
b (v) and

a(mb, p(ms)) = 1. Thus, us(π(m)) = pb by Lemma A.5. Let m′ ∈ ∪vS∗
s (v); then

us(π(m
′)) = ps by Lemma A.3. Hence, it follows by Lemma A.1 that ps ≥ pb.

We next show that ps ≤
∑

v ν[v]v. Suppose not; then ps >
∑

v ν[v]v. Let m̄b ∈Mb

be such that (m̄b,ms) ̸∈ ∪vS∗(v) for each ms ∈ Ms and m̄s ∈ Ms be such that, for

some mb ∈ Mb, (mb, m̄s) ∈ ∪vS∗
b (v) and a(mb, p(m̄s)) = 1. We have that m̄b exists
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since ∪vS∗(v) is finite, m̄s exists by Lemma A.4 and p(m̄s) = pb by Lemma A.5. Let

ϕb be defined by setting, for each v ∈ V ,

ϕb(v) =

ϕ
∗
b(v) if v < pb,

1(m̄b,m̄s) if v ≥ pb.

Let ϕ(v) = β(ϕb(v), ϕ
∗
s(v)), Ss(v) = S∗

s (v) and Sb(v) = supp(ϕb(v)). Then Sb(v)∩

Ss(v) = ∅ for each v ∈ V . This is clear if v ≥ pb by the choice of m̄b. If v < pb and

m ∈ Sb(v)∩Ss(v) = S∗
b (v)∩S∗

s (v), then p(ms) = ps and a(mb, ps) = 1 by Lemma A.3.

Thus, by Lemma A.5, p(ms) = pb and, therefore, ps = pb. Furthermore, a(mb, pb) = 0

implying that 1 = a(mb, ps) = a(mb, pb) = 0, a contradiction.

It then follows that, for each v ∈ V ,

1 = ϕ(v)[Sb] + ϕ(v)[Ss] ≥ βb + βs = 1

by properties 1 and 3. Thus, ϕ(v)[Sb] = βb and ϕ(v)[Ss] = βs for each v ∈ V .

Consider π̂2
b defined by setting, for each (mb, ϕ̂, p) ∈ N× Φ× V ∗,

π̂2
b (mb, ϕ̂, p) =

1 if mb = m̄b,

0 otherwise.

Letting π̂b = (ϕ, π̂2
b ) and ûb = ub(π̂b, πs), it follows that

ûb =
∑
v

ν[v]

 ∑
m∈Sb(v)

ϕ(v)[m]ub(v, π̂
2(m)) +

∑
m∈Ss(v)

ϕ(v)[m]ub(v, π̂
2(m))

 .

We have that ub(v, π̂
2(m)) = 0 for each v ∈ V andm ∈ Ss(v) sincem ∈ Ss(v) = S∗

s (v)

implies that mb ̸= m̄b and, hence, π̂
2
b (mb, ϕb, ps) = 0. Similarly, ub(v, π̂

2(m)) = 0 for

each v < pb and m ∈ Sb(v) since m ∈ Sb(v) = S∗
b (v) implies that mb ̸= m̄b and, hence,

π̂2
b (mb, ϕb, ps) = 0. Furthermore, ub(v, π̂

2(m)) = v− pb for each v ≥ pb and m ∈ Sb(v)

since Sb(v) = (m̄b, m̄s) implies that p(m̄s) = pb and π̂
2
b (mb, ϕb, pb) = 1. Thus,

ûb =
∑
v≥pb

ν[v]ϕ(v)[Sb(v)](v − pb) = βb

(∑
v≥pb

ν[v](v − pb)

)

> βs

(∑
v

ν[v]v − ps

)
+ βb

(∑
v≥pb

ν[v](v − pb)

)
= ub
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since ps >
∑

v ν[v]v and βs > 0. But this is a contradiction since π is a sequential

equilibrium.

Finally, we show that v1 ≤ pb
∑

v>pb
ν[v] + pbν[pb]λ

∗. Suppose not; then v1 >

pb
∑

v>pb
ν[v] + pbν[pb]λ

∗. Let m̄s ∈ Ms be such that (mb, m̄s) ̸∈ ∪vS∗(v) for each

mb ∈ Mb and m̄b ∈ Mb be such that, for some ms ∈ Ms, (m̄b,ms) ∈ ∪vS∗
s (v).

We have that m̄s exists since ∪vS∗(v) is finite, m̄b exists since ∪vS∗
s (v) ̸= ∅ and

a(m̄b, ps) = 1 by Lemma A.3. Let ϕs be defined by setting, for each v ∈ V ,

ϕs(v) = 1(m̄b,m̄s).

Let ϕ(v) = β(ϕ∗
b(v), ϕs(v)), Sb(v) = S∗

b (v) and Ss(v) = supp(ϕs(v)). Then Sb(v)∩

Ss(v) = ∅ for each v ∈ V . It then follows that, for each v ∈ V ,

1 = ϕ(v)[Sb(v)] + ϕ(v)[Ss(v)] ≥ βb + βs = 1

by properties 1 and 3. Thus, ϕ(v)[Sb(v)] = βb and ϕ(v)[Ss(v)] = βs for each v ∈ V .

Consider π̂2
s defined by setting, for each (ms, ϕ̂) ∈ N× Φ× V ∗,

π̂2
s(ms, ϕ̂) =

ps if ms = m̄s,

v1 otherwise.

Letting π̂s = (ϕs, π̂
2
s) and ûs = us(πb, π̂s), it follows that

ûs =
∑
v

ν[v]

 ∑
m∈Sb(v)

ϕ(v)[m]us(π̂
2(m)) +

∑
m∈Ss(v)

ϕ(v)[m]us(π̂
2(m))

 .

We have that us(π̂
2(m)) = ps for each v ∈ V and m ∈ Ss(v) since then m = (m̄b, m̄s),

π̂2
s(m̄s, ϕs) = ps and a(m̄b, ps) = 1. Furthermore, us(π̂

2(m)) = v1 for each v ∈ V and

m ∈ Sb(v) since then ms ̸= m̄s, π̂
2
s(ms, ϕs) = v1 and a(mb, v1) = 1. Thus,

ûs = βsps + βbv1 > βsps + βb(pb
∑
v>pb

ν[v] + pbν[pb]λ
∗) = ub

since v1 > pb
∑

v>pb
ν[v] + pbν[pb]λ

∗ and βb > 0. But this is a contradiction since π is

a sequential equilibrium.

The necessity part of the theorem then follows from (A.7), (A.8) and Lemma A.6.
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(Sufficiency) Let (pb, ps) ∈ (V ∗)2 and λ ∈ [0, 1] be as in the statement of the theo-

rem, ub defined by (1) and us defined by (2). We will show that (ub, us) ∈ U∗(βb, βs) by

showing that there is a sequential equilibrium π ∈ Π∗ when the aggregation function

β is such that β(γ, γ′) = βbγ + βsγ
′ for each γ, γ′ ∈ F . It is clear that β ∈ B(βb, βs).

Let m̄b, m̄s ∈ M with m̄b
j ̸= m̄s

j for each j ∈ {s, b} and m̃b
b ∈ Mb \ {m̄b

b, m̄
s
b}. For

each v ∈ V , define

ϕ∗
s(v) = 1m̄s

and

ϕ∗
b(v) =


1m̄b if v > pb,

λ1m̄b + (1− λ)1(m̃b
b,m̄

b
s)

if v = pb,

1(m̃b
b,m̄

b
s)

if v < pb.

For each (mb,ms, p) ∈ N2 × V ∗, let

π2
s(ms, ϕ

∗
s) =


ps if ms = m̄s

s,

pb if ms = m̄b
s,

vK otherwise

and

π2
b (mb, ϕ

∗
b , p) =



1 if mb = m̄s
b and p ∈ {ps, pb}

1 if mb = m̄b
b and p = pb,

1 if p ≤ v1,

0 otherwise.

We will define perturbations such that whenever the buyer receives any price offer

other than pb following message m̄b
b, he believes that his value is v1. In addition,

whenever the buyer receives a zero-probability message following ϕ∗
b , he believes that

his value is v1 and whenever the seller receives a zero-probability message, he believes

that the buyer knows that his value is vK .

For each ms ∈ Ms and ϕs ̸= ϕ∗
s such that

∑
v ν[v](βsϕs(v) + βbϕ

∗
b(v))Ms [ms] = 0,

let π2
s(ms, ϕs) = vK .
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For each ms ∈ Ms and ϕs ̸= ϕ∗
s such that

∑
v ν[v](βsϕs(v) + βbϕ

∗
b(v))Ms [ms] > 0,

let π2
s(ms, ϕs) maximize

p
∑
mb

∑
v ν[v](βsϕs(v) + βbϕ

∗
b(v))[ms,mb]∑

v ν[v](βsϕs(v) + βbϕ∗
b(v))Ms [ms]

π2
b (mb, ϕ

∗
b , p).

For each (mb, p) ∈Mb×V ∗ and ϕb ̸= ϕ∗
b such that

∑
{ms:π2

s(ms,ϕ∗s)=p}
∑

v ν[v](βsϕ
∗
s(v)+

βbϕb(v))[mb,ms] > 0, let π2
b (mb, ϕb, p) = 1 if and only if:∑

{ms:π2
s(ms,ϕ∗s)=p}

∑
v ν[v](βsϕ

∗
s(v) + βbϕb(v))[ms,mb]v∑

{ms:π2
s(ms,ϕ∗s)=p}

∑
v ν[v](βsϕ

∗
s(v) + βbϕb(v))[mb,ms]

≥ p.

For each (mb, p) ∈Mb×V ∗ and ϕb ̸= ϕ∗
b such that

∑
{ms:π2

s(ms,ϕ∗s)=p}
∑

v ν[v](βsϕ
∗
s(v)+

βbϕb(v))[mb,ms] = 0, we will define π2
b (mb, ϕb, p) after the following net {πα, pα}α has

been defined, where,

1. for each α, pα : Φ2 → ∆(V ×M) is measurable and πα is a behavioral strategy,

i.e. παs = (π1,α
s , π2,α

s ) is such that π1,α
s ∈ ∆(Φ) and π2,α

s : N×Φ → ∆(V ∗) is measurable,

and παb = (π1,α
b , π2,α

b ) such that π1,α
b ∈ ∆(Φ) and π2,α

b : N × Φ × V ∗ → ∆(A) is

measurable.

Consider {πα, pα}α defined as follows: The index set consists of (k, F, F̂ , F̃ ) such

that k ∈ N, F is a finite subset of N, F̂ is a finite subset of Φ and F̃ is a finite subset

of V ∗; this set is partially ordered by defining (k′, F ′, F̂ ′, F̃ ′) ≥ (k, F, F̂ , F̃ ) if k′ ≥ k,

F ⊆ F ′, F̂ ⊆ F̂ ′ and F̃ ⊆ F̃ ′. If X is a finite set, let UX ∈ ∆(X) be uniform on X.

For each (F, F̂ , F̃ ), define:

Φ(F, F̂ ) = {ϕ ∈ F̂ : supp(ϕ) ⊆ F 2} and

P (F, F̂ , F̃ ) = F̃ ∪ {ps, pb, vK} ∪ {π2
s(ms, ϕs) : ms ∈ F ∪ {m̄b

s}, ϕs ∈ Φ(F, F̂ )}.

For each v ∈ V , define mv
s ∈ Ms \ {m̄b

s} such that v 7→ mv
s is one-to-one. For

each mb ∈ Mb, let ϕ
mb
s be such that ϕmb

s (v1) = 1(mb,m
v1
s ) and ϕmb

s (v) = 1(m̄b
b,m

v
s)

for

v ̸= v1 (i.e. ϕmb
s sends the seller message mv

s when the valuation is v and sends the

buyer message mb only if the valuation is v1; otherwise it sends the buyer message

m̄b
b). Let π

mb,α
s be such that πmb,1,α

s = ϕmb
s and πmb,2,α

s be such that πmb,2,α
s (mv1

s , ϕ
mb
s ) =

UP (F,F̂ ,F̃ ), π
mb,2,α
s (ms, ϕ

mb
s ) = pb forms ̸= mv1

s and πmb,2,α
s (ms, ϕs) = pb for allms ∈Ms
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and ϕs ̸= ϕmb
s . Let π̂αs be such that π̂1,α

s = UΦ(F,F̂ ) and π̂
2,α
s (ms, ϕs) = UP (F,F̂ ,F̃ ) for all

ms, ϕs. Let, for each t = 1, 2,

πt,αs = (1− j−1)πts + j−1(1− j−j)|F |−1
∑
mb∈F

πmb,t,α
s + j−1j−jπ̂t,αs ,

where j = max{k, |F |, |F̂ |, |F̃ |}.

For each v ∈ V , define mv
b ∈ Mb such that v 7→ mv

b is one-to-one. For each

ms ∈ Ms, let ϕms
b be such that ϕms

b (vK) = 1(mvK
b ,ms)

and ϕms
b (v) = 1(mv

b ,m̄
s
s) for

v ̸= vK . Let π
ms,1,α
b = ϕms

b . Let π̂1,α
b = UΦ(F,F̂ ). Let:

π1,α
b = (1− j−1)ϕ∗

b + j−1(1− j−j)|F |−1
∑
ms∈F

πms,1,α
b + j−1j−jπ̂1,α

b .

Let

pα(ϕ)[v,m] = (1− j−j)ν[v](βsϕs(v) + βbϕb(v))[m] + j−jUV×F 2 [v,m].

For each (mb, p) ∈Mb×V ∗ and ϕb ̸= ϕ∗
b such that

∑
{ms:π2

s(ms,ϕ∗s)=p}
∑

v ν[v](βsϕ
∗
s(v)+

βbϕb(v))[mb,ms] = 0, let π2
b (mb, ϕb, p) = 1 if and only if

lim
α

∫
Φ

(∑
(v,ms)

pα(ϕb, ϕs)[v,mb,ms]π
2,α
s (ms, ϕs)[p]v

)
dπ1,α

s [ϕs]∫
Φ

∑
(v,ms)

pα(ϕb, ϕs)[v,mb,ms]π
2,α
s (ms, ϕs)[p]dπ

1,α
s [ϕs]

≥ p.

Finally, let π̂2,α
b (mb, ϕb, p) = UA and π2,α

b (mb, ϕb, p) = (1 − j−1)π2
b (mb, ϕb, p) +

j−1π̂2,α
b (mb, ϕb, p) for each mb, ϕb, p.

It is clear that the following conditions hold:

2. For each i ∈ N , supB∈B(Φ) |π
1,α
i [B]− 1ϕ∗i [B]| → 0,31

sup
(m,ϕ)∈N×Φ,B∈B(V ∗)

|π2,α
s (m,ϕ)[B]− π2

s(m,ϕ)[B]| → 0, and

sup
(m,ϕ,p)∈N×Φ×V ∗,a∈A

|π2,α
b (m,ϕ, p)[a]− π2

b (m,ϕ, p)[a]| → 0,

3. For each i ∈ N , m ∈ N, ϕ ∈ Φ, p ∈ V ∗ and a ∈ A, there is ᾱ such that

π1,α
i [ϕ] > 0, π2,α

s (m,ϕ)[p] > 0 and π2,α
b (m,ϕ, p)[a] > 0 for each α ≥ ᾱ,

31We let B(Φ) denote the class of Borel measurable subsets of Φ and, for each ϕ ∈ Φ, 1ϕ denote

the probability measure on Φ degenerate at ϕ. Analogous definitions apply when Φ is replaced with

V ∗.
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4. supϕ∈Φ2,v∈V,B⊆M |pα(ϕ)[{v} ×B]− ν[v]
∑

i∈N βiϕi(v)[B]| → 0,

5. For each ϕ ∈ Φ2, v ∈ V and m ∈ M , there is ᾱ such that pα(ϕ)[v,m] > 0 for

each α ≥ ᾱ.

Note that, for each α and (ms, ϕb, ϕs) ∈ N×Φ2, supp(pα(ϕb, ϕs)), supp(π
1,α
b ), supp(π1,α

s )

and supp(π2,α
s (ms, ϕs)) are all finite. Moreover, if π1,α

b [ϕb] > 0 and π1,α
s [ϕs] > 0, then

ϕb ∈ Φα
b := {ϕ∗

b} ∪ {ϕms
b : ms ∈ F} ∪ Φ(F, F̂ ) and

ϕs ∈ Φα
s := {ϕ∗

s} ∪ {ϕmb
s : mb ∈ F} ∪ Φ(F, F̂ ).

If (ms, ϕs) ∈ N × Φ is such that
∑

ϕb∈Φ π
1,α
b [ϕb]p

α
Ms

(ϕb, ϕs)[ms] > 0, then ms ∈

∪vsupp(ϕs(v)Ms) ∪ {m̄b
s} ∪ F , and if (mb, ϕb, p) ∈ N× Φ× V ∗ is such that∑

ϕs∈supp(π1,α
s )

π1,α
s [ϕs]

∑
(v,ms)∈supp(pα(ϕb,ϕs))

pα(ϕb, ϕs)[v,mb,ms]π
2,α
s (ms, ϕs)[p] > 0,

then mb ∈ ∪vsupp(ϕb(v)Mb
) ∪ {m̄s

b} ∪ F and p ∈ P (F, F̂ , F̃ ).

Thus, to show that π is a sequential equilibrium, it suffices to show that the

following conditions hold for each ε > 0 and α:

6.(a) For each i ∈ N and ϕ′
i ∈ Φ,∑

ϕ∈supp(π1,α)

π1,α[ϕ]
∑

(v,m)∈V×N2

pα(ϕ)[v,m]ui(v, π
2,α(m,ϕ)) ≥

∑
ϕj∈supp(π1,α

j )

π1,α
j [ϕj]

∑
(v,m)∈V×N2

pα(ϕ′
i, ϕj)[v,m]ui(v, π

2,α(m,ϕ′
i, ϕj))− ε,

where π1,α =
∏

i∈N π
1,α
i , j ̸= i and, for each ϕ ∈ Φ2 and m ∈ N2, π2,α(m,ϕ) ∈

∆(V ∗ × A) is defined by setting, for each (p, a) ∈ V ∗ × A, π2,α(m,ϕ)[p, a] =

π2,α
s (ms, ϕs)[p]π

2,α
b (mb, ϕb, p)[a],

6.(b) For each (ms, ϕs) ∈ N × Φ such that π1,α
s [ϕs]

∑
ϕb∈Φ π

1,α
b [ϕb]p

α
Ms

(ϕb, ϕs)[ms] > 0

and p ∈ V ∗,∑
ϕb∈supp(π1,α

b ) π
1,α
b [ϕb]

(∑
(v,mb)

pα(ϕb, ϕs)[v,m]us(π
2,α(m,ϕ))

)
∑

ϕb∈supp(π1,α
b ) π

1,α
b [ϕb]pαMs

(ϕb, ϕs)[ms]
≥

∑
ϕb∈supp(π1,α

b ) π
1,α
b [ϕb]

(∑
(v,mb)

pα(ϕb, ϕs)[v,m]us(p, π
2,α
b (mb, ϕb, p))

)
∑

ϕb∈supp(π1,α
b ) π

1,α
b [ϕb]pαMs

(ϕb, ϕs)[ms]
− ε.
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6.(c) For each (mb, ϕb, p) ∈ N× Φ× V ∗ such that

π1,α
b [ϕb]

∑
ϕs∈supp(π1,α

s )

π1,α
s [ϕs]

∑
(v,ms)

pα(ϕs, ϕb)[v,mb,ms]π
2,α
s (ms, ϕs)[p] > 0

and a ∈ A,∑
ϕs∈supp(π1,α

s ) π
1,α
s [ϕs]

(∑
(v,ms)

pα(ϕb, ϕs)[v,m]π2,α
s (ms, ϕs)[p]ub(v, p, π

2,α
b (mb, ϕb, p))

)
∑

ϕs∈supp(π1,α
s ) π

1,α
s [ϕs]

∑
(v,ms)

pα(ϕs, ϕb)[v,m]π2,α
s (ms, ϕs)[p]

≥

∑
ϕs∈supp(π1,α

s ) π
1,α
s [ϕs]

(∑
(v,ms)

pα(ϕb, ϕs)[v,m]π2,α
s (ms, ϕs)[p]ub(v, p, a)

)
∑

ϕs∈supp(π1,α
s ) π

1,α
s [ϕs]

∑
(v,ms)

pα(ϕs, ϕb)[v,m]π2,α
s (ms, ϕs)[p]

− ε.

Let ε > 0. We will show that these conditions holds for some subnet of {πα, pα}α.

In particular, for each (F, F̂ , F̃ ), we will show that there exists a k(F, F̂ , F̃ ) such that

for each α = (k, F, F̂ , F̃ ) with k ≥ k(F, F̂ , F̃ ), condition 6 is satisfied.

Consider condition 6.(a) with i = s and ϕ′
i ∈ Φ. The left-hand side converges to

us = βbpb(
∑

v>pb
ν[v] + ν[pb]λ) + βsps and, when ε = 0, the right-hand side, for any

ϕ′
s ∈ Φ, is at most:

(1− j−1)3(1− j−j)
(
βbpb(

∑
v>pb

ν[v] + ν[pb]λ)

+βs
∑
v,m

ν[v]ϕ′
s(v)[mb,ms]π

2
s(ms, ϕ

′
s)π

2
b (mb, ϕ

∗
b , π

2
s(ms, ϕ

′
s))
)

+(1− (1− j−1)3(1− j−j))vK

≤ (1− j−1)3(1− j−j)

(
βbpb(

∑
v>pb

ν[v] + ν[pb]λ) + βs
∑
v,m

ν[v]ϕ′
s(v)[mb,ms]ps

)
+(1− (1− j−1)3(1− j−j))vK

since vK is the maximum payoff for the seller and π2
b (mb, ϕ

∗
b , π

2
s(ms, ϕ

′
s)) = 0 if

π2
s(ms, ϕ

′
s) > ps. Thus, the inequality holds (uniformly across ϕ′

i ∈ Φ) for each α

such that k (and hence j) is sufficiently large.

Consider next condition 6.(a) with i = b. The left-hand side converges to ub =

βb
∑

v≥pb ν[v](v − pb) + βs(
∑

v ν[v]v − ps) and, when ε = 0, the right-hand side, for
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any ϕ′
b ∈ Φ, is at most:

(1− j−1)3(1− j−j)
(
βb
∑
v,m

ν[v]ϕ′
b(v)[mb,ms](v − π2

s(ms, ϕ
∗
s))π

2
b (mb, ϕ

′
b, π

2
s(ms, ϕ

∗
s))

+βs(
∑
v

ν[v]v − ps)
)
+ (1− (1− j−1)3(1− j−j))vK

≤ (1− j−1)3(1− j−j)
(
βb
∑
v,m

ν[v]ϕ′
b(v)[mb,ms](v − pb)π

2
b (mb, ϕ

′
b, π

2
s(ms, ϕ

∗
s))

+βs(
∑
v

ν[v]v − ps)
)
+ (1− (1− j−1)3(1− j−j))vK

≤ (1− j−1)3(1− j−j)

(
βb
∑
v≥pb

ν[v](v − pb) + βs(
∑
v

ν[v]v − ps)

)
+(1− (1− j−1)3(1− j−j))vK

since vK is an upper bound on the buyer’s payoff and π2
s(ms, ϕ

∗
s) ≥ pb for each

ms ∈ Ms. Thus, the inequality holds (uniformly across ϕ′
i ∈ Φ) for each α such that

k (and hence j) is sufficiently large.

Let ka be such that condition 6.(a) holds for each α such that k ≥ ka.

Consider next condition 6.(b). We establish it by considering several cases.

Case 1: ϕs = ϕ∗
s and ms = m̄s

s. In the limit and when ε = 0, the inequality is

ps ≥ pπ2
b (m̄

s
b, ϕ

∗
b , p). It holds since pb ≤ ps and

pπ2
b (m̄

s
b, ϕ

∗
b , p) =

p if p = pb,

0 if p ̸= pb.

By similar arguments as for condition 6.(a), for sufficiently large k (and hence j), the

inequality in fact holds uniformly across all p ∈ V ∗. Let kb1 be such that condition

6.(b) holds for (ms, ϕs) = (m̄s
s, ϕ

∗
s) for α such that k ≥ kb1.

Case 2: ϕs = ϕ∗
s and ms = m̄b

s. In the limit and when ε = 0, the inequality is

pb(
∑
v>pb

ν[v] + ν[pb]λ) ≥ p
(∑
v<pb

ν[v]π2
b (m̃

b
b, ϕ

∗
b , p)

+ ν[pb](λπ
2
b (m̄

b
b, ϕ

∗
b , p) + (1− λ)π2

b (m̃
b
b, ϕ

∗
b , p)) +

∑
v>pb

ν[v]π2
b (m̄

b
b, ϕ

∗
b , p)

)
.

It holds since pb(
∑

v>pb
ν[v] + ν[pb]λ) ≥ v1 and its right-hand side is equal to v1 if

p = v1 and zero if p > v1 and p ̸= pb. Thus, the inequality holds for k sufficiently
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large (uniformly across p ∈ V ∗). Let kb2 be such that condition 6.(b) holds for

(ms, ϕs) = (m̄b
s, ϕ

∗
s) for α such that k ≥ kb2

Case 3: ϕs = ϕ∗
s and ms ̸∈ {m̄s

s, m̄
b
s}. Note that we only need to consider ms ∈ F

in this case since otherwise
∑

ϕb∈Φ π
1,α
b [ϕb]p

α
Ms

(ϕb, ϕs)[ms] = 0. Given that ms ∈ F ,

in the limit (as k → ∞, i.e. we can keep F fixed) and when ε = 0, the inequality is

vKπ
2
b (m

vK
b , ϕms

b , vK) ≥ pπ2
b (m

vK
b , ϕms

b , p).

We have that π2
b (m

vK
b , ϕms

b , vK) = 1 since ϕms
b (vK)[m

vK
b ,ms] > 0 and∑

v,m̂s
vν[v](βsϕ

∗
s(v) + βbϕ

ms
b (v))[mvK

b , m̂s]∑
v′,m′

s
ν[v′](βsϕ∗

s(v
′) + βbϕ

ms
b (v′))[mvK

b ,m′
s]

= vK .

Hence, the inequality holds in the limit and, thus, for k sufficiently large (uniformly

across p ∈ V ∗). For each ms ∈ F \ {m̄s
s, m̄

b
s}, let kb3(ms) be such that condi-

tion 6.(b) holds for (ms, ϕ
∗
s), for each α such that k ≥ kb3(ms), and let kb3(F ) =

maxms∈F\{m̄s
s,m̄

b
s} kb3(ms). Note that for all α = (k, F, F̂ , F̃ ) such that k ≥ kb3(F ),

condition 6.(b) holds for all (ms, ϕs) ∈ {(ms, ϕs) : ms ∈ F \ {m̄s
s, m̄

b
s}, ϕs = ϕ∗

s}.

Case 4: ϕs ̸= ϕ∗
s andms ∈Ms such that

∑
v,mb

ν[v](βbϕ
∗
b(v)+βsϕs(v))[mb,ms] > 0.

Note that we only have to consider ϕs ∈ Φα
s \ {ϕ∗

s} and Φα
s \ {ϕ∗

s} is finite. In the

limit and with ε = 0, the inequality is

π2
s(ϕs,ms)

∑
mb

∑
v ν[v](βsϕs(v) + βbϕ

∗
b(v))[ms,mb]∑

v ν[v](βsϕs(v) + βbϕ∗
b(v))Ms [ms]

π2
b (mb, ϕ

∗
b , π

2
s(ϕs,ms))

≥ p
∑
mb

∑
v ν[v](βsϕs(v) + βbϕ

∗
b(v))[ms,mb]∑

v ν[v](βsϕs(v) + βbϕ∗
b(v))Ms [ms]

π2
b (mb, ϕ

∗
b , p),

which holds by definition. For each (F, F̂ ), let kb4(F, F̂ ) be such that condition

6.(b) holds for all ϕs ∈ Φα
s \ {ϕ∗

s} and ms ∈ Ms such that
∑

v,mb
ν[v](βbϕ

∗
b(v) +

βsϕs(v))[mb,ms] > 0, for α = (k, F, F̂ , F̃ ) such that k ≥ kb4(F, F̂ ).

Case 5: ϕs ̸= ϕ∗
s andms ∈Ms such that

∑
v,mb

ν[v](βbϕ
∗
b(v)+βsϕs(v))[mb,ms] = 0.

This is as in case 3. For each (F, F̂ ), let kb5(F, F̂ ) be such that condition 6.(b) holds

for all such (ms, ϕs), for α = (k, F, F̂ , F̃ ) such that k ≥ kb5(F, F̂ ).

For each (F, F̂ ), let kb(F, F̂ ) = max{kb1, kb2, kb3(F ), kb4(F, F̂ ), kb5(F, F̂ )}.

Consider next condition 6.(c). We establish this condition by considering several

cases.
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Case 1: ϕb = ϕ∗
b , p = ps and mb = m̄s

b. Since π
2
b (m̄

s
b, ϕ

∗
b , ps) = 1, we may consider

a = 0. Thus, in the limit and with ε = 0, the inequality is
∑

v ν[v]v − ps ≥ 0, which

holds. Let kc1 be such that condition 6.(c) holds for (mb, ϕb, p) = (m̄s
b, ϕ

∗
b , ps), for α

such that k ≥ kc1.

Case 2: ϕb = ϕ∗
b , p = pb and mb = m̄b

b. Since π
2
b (m̄

b
b, ϕ

∗
b , pb) = 1, we may consider

a = 0. Thus, in the limit and with ε = 0, the inequality is∑
v>pb

ν[v](v − pb) + ν[pb]λ(pb − pb)∑
v>pb

ν[v] + ν[pb]λ
≥ 0,

which holds. Let kc2 be such that condition 6.(c) holds for (mb, ϕb, p) = (m̄b
b, ϕ

∗
b , pb),

for α such that k ≥ kc2.

Case 3: ϕb = ϕ∗
b , p = pb and mb = m̃b

b. Since π
2
b (m̃

b
b, ϕ

∗
b , pb) = 0, we may consider

a = 1. Thus, in the limit and with ε = 0, the inequality is

0 ≥
∑

v<pb
ν[v](v − pb) + ν[pb](1− λ)(pb − pb)∑

v<pb
ν[v] + ν[pb](1− λ)

,

which holds. Let kc3 be such that condition 6.(c) holds for (mb, ϕb, p) = (m̃b
b, ϕ

∗
b , pb),

for α such that k ≥ kc3.

Case 4: ϕb = ϕ∗
b , p ̸∈ {ps, pb} and mb = m̄s

b. Note that we only have to consider

p ∈ P (F, F̂ , F̃ ) in this case. The strategy for the buyer is

π2
b (m̄

s
b, ϕ

∗
b , p) =

1 if p = v1,

0 if p > v1.

We have pα(ϕ∗
b , ϕ

∗
s)[v, m̄

s
b,ms]π

2,α
s (ms, ϕ

∗
s)[p] ≤ j−j for each v ∈ V and ms ∈Ms since

(βbϕ
∗
b(v) + βsϕ

∗
s(v))[m̄

s
b,ms] = 0 for ms ̸= m̄s

s and π
2
s(m̄

s
s, ϕ

∗
s)[p] = 0 implies:

ν[v](βbϕ
∗
b(v) + βsϕ

∗
s(v))[m̄

s
b,ms]π

2
s(ms, ϕ

∗
s)[p] = 0

and π
m̄s

b ,2,α
s (m̄s

s, ϕ
∗
s)[p] = 0 implies:

ν[v](βbϕ
∗
b(v) + βsϕ

∗
s(v))[m̄

s
b,ms]π

m̄s
b ,2,α

s (ms, ϕ
∗
s)[p] = 0.

If v ̸= v1, mb ̸= m̄s
b, or ms ̸= mv1

s , p
α(ϕ∗

b , ϕ
mb
s )[v, m̄s

b,ms]π
2,α
s (ms, ϕ

mb
s )[p] ≤ j−j.

This is as follows: (1) if mb ̸= m̄s
b, then (βbϕ

∗
b(v) + βsϕ

mb
s (v))[m̄s

b,ms] = 0 for each
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v ∈ V and ms ∈ Ms; (2) if mb = m̄s
b, ms = mv1

s and v ̸= v1, then (βbϕ
∗
b(v) +

βsϕ
m̄s

b
s (v))[m̄s

b,m
v1
s ] = 0; and (3) if mb = m̄s

b, ms ̸= mv1
s and v ∈ V , then (i) (βbϕ

∗
b(v)+

βsϕ
m̄s

b
s (v))[m̄s

b,ms] = 0 for each ms ̸∈ {mv′
s : v′ ∈ V }, (ii) π2

s(m
v′
s , ϕ

m̄s
b

s )[p] = 0 for

each v′ ∈ V (since π2
b (m̄

s
b, ϕ

∗
b , p) = 1 if and only if p ∈ {pb, ps} or p ≤ v1, and so

π2
s(m

v′
s , ϕ

m̄s
b

s ) = ps is optimal), and (iii) π
m̄s

b ,2,α
s (ms, ϕ

m̄s
b

s )[p] = 0 for each ms ̸= mv1
s and

πmb,2,α
s (ms, ϕ

m̄s
b

s )[p] = 0 for each mb ̸= m̄s
b and ms ∈Ms.

Finally, note that

π2,α
s (mv1

s , ϕ
m̄s

b
s )[p] = j−1(1− j−j)|F |−1

∑
mb∈F

πmb,2,α
s (mv1

s , ϕ
m̄s

b
s )[p] +O(j−j)

= j−1(1− j−j)|F |−1|P (F, F̂ , F̃ )|−1 +O(j−j)

since πmb,2,α
s (mv1

s , ϕ
m̄s

b
s ) = pb for all mb ̸= m̄s

b.

Thus, the denominator of the inequality is (ignoring terms that are O(j−j)):

(1− j−1)
∑
v,ms

pα(ϕ∗
b , ϕ

∗
s)[v, m̄

s
b,ms]π

2,α
s (ms, ϕ

∗
s)[p]

+j−1(1− j−j)|F |−1
∑
mb∈F

∑
v,ms

pα(ϕ∗
b , ϕ

mb
s )[v, m̄s

b,ms]π
2,α
s (ms, ϕ

mb
s )[p]

+j−1j−j|Φ(F, F̂ )|−1
∑

ϕ∈Φ(F,F̂ )

∑
v,ms

pα(ϕ∗
b , ϕ)[v, m̄

s
b,ms]π

2,α
s (ms, ϕ)[p]

= j−1(1− j−j)|F |−1(1− j−j)ν[v1]βsj
−1(1− j−j)|F |−1|P (F, F̂ , F̃ )|−1

Likewise, also ignoring terms that are O(j−j), the numerator of the right-hand (resp.

left-hand) side inequality is

j−1(1− j−j)|F |−1(1− j−j)ν[v1]βsj
−1(1− j−j)|F |−1|P (F, F̂ , F̃ )|−1(v1 − p)

when p > v1 (resp. p = v1).

Thus, when p > v1, the limit inequality (with a = 1 and ε = 0) is 0 ≥ v1 − p.

When p = v1, the limit inequality (with a = 0 and ε = 0) is v1 − v1 ≥ 0.

For each p ∈ P (F, F̂ , F̃ ) \ {ps, pb}, let kc4(p) be such that condition 6.(c) holds

for (m̄s
b, ϕ

∗
b , p), for each α = (k, F, F̂ , F̃ ) such that k ≥ kc4(p), and let kc4(F, F̂ , F̃ ) =

maxp∈P (F,F̂ ,F̃ ) kc4(p).

Case 5: ϕb = ϕ∗
b , p = pb < ps and mb = m̄s

b. Since π2
b (m̄

s
b, ϕ

∗
b , pb) = 1, we may

consider a = 0.
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We have that pα(ϕ∗
b , ϕ

∗
s)[v, m̄

s
b,ms]π

2,α
s (ms, ϕ

∗
s)[pb] ≤ j−j for each v ∈ V and

ms ̸= m̄s
s since (βbϕ

∗
b(v) + βsϕ

∗
s(v))[m̄

s
b,ms] = 0 for all ms ̸= m̄s

s. For ms = m̄s
s,

we have π2
s(m̄

s
s, ϕ

∗
s)[pb] = 0 but πmb,2,α

s (m̄s
s, ϕ

∗
s)[pb] = 1 for each mb ∈ Mb. Thus,

|F−1|
∑

mb
πmb,2,α
s (m̄s

s, ϕ
∗
s)[pb] = 1 and therefore π2,α

s (m̄s
s, ϕ

∗
s)[pb] = j−1(1− j−j).

Also, (βbϕ
∗
b(v) + βsϕ

mb
s (v))[m̄s

b,ms] > 0 only if mb = m̄s
b and ms ∈ {mv

s : v ∈

V }, and π2
s(m

v
s , ϕ

m̄s
b

s )[pb] = 0 for each v ∈ V (since π2
b (m̄

s
b, ϕ

∗
b , ps) = 1). Thus,∑

mb∈F
∑

v,ms
pα(ϕ∗

b , ϕ
mb
s )[v, m̄s

b,ms]π
2,α
s (ms, ϕ

mb
s )[pb] = O(j−1).

Thus, the denominator of the inequality is (ignoring terms that are O(j−j)):

(1− j−1)
∑
v,ms

pα(ϕ∗
b , ϕ

∗
s)[v, m̄

s
b,ms]π

2,α
s (ms, ϕ

∗
s)[pb]

+j−1(1− j−j)|F |−1
∑
mb∈F

∑
v,ms

pα(ϕ∗
b , ϕ

mb
s )[v, m̄s

b,ms]π
2,α
s (ms, ϕ

mb
s )[pb]

= (1− j−1)
∑
v

(1− j−j)ν[v]βsj
−1(1− j−j) + j−1(1− j−j)|F |−1O(j−1)

= (1− j−1)
∑
v

(1− j−j)ν[v]βsj
−1(1− j−j) +O(j−2)

= (1− j−1)(1− j−j)βsj
−1(1− j−j)

∑
v

ν[v] +O(j−2)

= (1− j−1)(1− j−j)βsj
−1(1− j−j) +O(j−2).

Similarly, ignoring terms that are O(j−j) and O(j−2), the numerator of the left-hand

side of the inequality is

(1− j−1)(1− j−j)βsj
−1(1− j−j)

∑
v

ν[v](v − pb).

Thus, the limit inequality is:∑
v

ν[v]v − pb ≥ 0.

Let kc5 be such that condition 6.(c) holds for (m̄s
b, ϕ

∗
b , pb) for each α such that k ≥ kc5.

Case 6: ϕb = ϕ∗
b , p ̸= pb and mb = m̄b

b. The strategy for the buyer is

π2
b (m̄

b
b, ϕ

∗
b , p) =

1 if p = v1,

0 if p > v1.
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By the same argument as in case 4, we have pα(ϕ∗
b , ϕ

∗
s)[v, m̄

b
b,ms]π

2,α
s (ms, ϕ

∗
s)[p] ≤

j−j for each v ∈ V and ms ∈Ms.

For each v ̸= v1, mb ̸= m̄b
b, or ms ̸= mv1

s , p
α(ϕ∗

b , ϕ
mb
s )[v, m̄b

b,ms]π
2,α
s (ms, ϕ

mb
s )[p] ≤

j−j. This is because (βbϕ
∗
b(v) + βsϕ

mb
s (v))[m̄b

b,m
v1
s ] = 0 if mb ̸= m̄b

b or v ̸= v1,

π
m′

b,2,α
s (ms, ϕ

mb
s )[p] = 0 for each ms ̸= mv1

s and mb,m
′
b ∈ Mb, π

mb,2,α
s (ms, ϕ

m̄b
b

s )[p] = 0

for eachmb ̸= m̄b
b andms ∈Ms, (βbϕ

∗
b(v)+βsϕ

m̄b
b

s (v))[m̄b
b,ms] = 0 for eachms ̸∈M∗ =

{mv
s : v ∈ V } ∪ {m̄b

s}, π2
s(ms, ϕ

m̄b
b

s )[p] = 0 for each ms ∈ M∗ (since π2
s(m

v
s , ϕ

m̄b
b

s ) = pb

is optimal for each v ∈ V and π2
s(m̄

b
s, ϕ

m̄b
b

s ) = pb), and if mb ̸= m̄b
b, (βbϕ

∗
b(v) +

βsϕ
mb
s (v))[m̄b

b,ms] = 0 for eachms ̸∈M ′ = {mv
s : v > v1}∪{m̄b

s} and π2
s(ms, ϕ

mb
s )[p] =

0 for each ms ∈ M ′ (since π2
s(m

v
s , ϕ

mb
s ) = pb is optimal for v > v1 and π2

s(m̄
b
s, ϕ

mb
s ) =

pb).

Finally, note that

π2,α
s (mv1

s , ϕ
m̄b

b
s )[p] = j−1(1− j−j)|F |−1

∑
mb∈F

πmb,2,α
s (mv1

s , ϕ
m̄b

b
s )[p] +O(j−j)

= j−1(1− j−j)|F |−1|P (F, F̂ , F̃ )|−1 +O(j−j).

Thus, the denominator of the inequality is (ignoring terms that are O(j−j)):

(1− j−1)
∑
v,ms

pα(ϕ∗
b , ϕ

∗
s)[v, m̄

b
b,ms]π

2,α
s (ms, ϕ

∗
s)[p]

+j−1(1− j−j)|F |−1
∑
mb∈F

∑
v,ms

pα(ϕ∗
b , ϕ

mb
s )[v, m̄b

b,ms]π
2,α
s (ms, ϕ

mb
s )[p]

= j−1(1− j−j)|F |−1(1− j−j)ν[v1]βsj
−1(1− j−j)|F |−1|P (F, F̂ , F̃ )|−1.

Likewise, also ignoring terms that are O(j−j), the numerator of the right-hand (resp.

left-hand) side inequality is

j−1(1− j−j)|F |−1(1− j−j)ν[v1]βsj
−1(1− j−j)|F |−1|P (F, F̂ , F̃ )|−1(v1 − p)

when p > v1 (resp. p = v1).

Thus, when p > v1, the limit inequality (with a = 1 and ε = 0) is 0 ≥ v1 − p.

When p = v1, the limit inequality (with a = 0 and ε = 0) is v1 − v1 ≥ 0.

For each p ∈ P (F, F̂ , F̃ ) \ {pb}, let kc6(p) be such that condition 6.(c) holds for

each (m̄b
b, ϕ

∗
b , p), for each α = (k, F, F̂ , F̃ ) such that k ≥ kc6(p), and let kc6(F, F̂ , F̃ ) =

maxp∈P (F,F̂ ,F̃ ) kc6(p).
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Case 7: ϕb = ϕ∗
b and mb ̸∈ {m̄b

b, m̃
b
b, m̄

s
b}. The strategy for the buyer is

π2
b (mb, ϕ

∗
b , p) =

1 if p = v1,

0 if p > v1.

In this case, pα(ϕ∗
b , ϕ

∗
s)[v,mb,ms]π

2,α
s (ms, ϕ

∗
s)[p] ≤ j−j for all v ∈ V and ms ∈ Ms,

and pα(ϕ∗
b , ϕ

m′
b

s )[v,mb,ms]π
2,α
s (ms, ϕ

m′
b

s )[p] ≤ j−j if m′
b ̸= mb, v ̸= v1, or ms ̸= mv1

s .

Thus, the denominator of the inequality is (ignoring terms that are O(j−j)):

(1− j−1)
∑
v,ms

pα(ϕ∗
b , ϕ

∗
s)[v,mb,ms]π

2,α
s (ms, ϕ

∗
s)[p]

+j−1(1− j−j)|F |−1
∑
m′

b∈F

∑
v,ms

pα(ϕ∗
b , ϕ

m′
b

s )[v,mb,ms]π
2,α
s (ms, ϕ

m′
b

s )[p]

= j−1(1− j−j)|F |−1(1− j−j)ν[v1]βsπ
2,α
s (mv1

s , ϕ
mb
s )[p].

Likewise, also ignoring terms that are O(j−j), the numerator of the right-hand (resp.

left-hand) side inequality is

j−1(1− j−j)|F |−1(1− j−j)ν[v1]βsπ
2,α
s (mv1

s , ϕ
mb
s )[p](v1 − p)

when p > v1 (resp. p = v1).

Thus, when p > v1, the limit inequality (with a = 1 and ε = 0) is 0 ≥ v1 − p.

When p = v1, the limit inequality (with a = 0 and ε = 0) is v1 − v1 ≥ 0.

Let kc7(F, F̂ , F̃ ) be such that condition 6.(c) holds for each (mb, ϕ
∗
b , p) such that

mb ∈ F \ {m̄b
b, m̃

b
b, m̄

s
b} and p ∈ P (F, F̂ , F̃ ), for each α = (k, F, F̂ , F̃ ) such that

k ≥ kc7(F, F̂ , F̃ ).

Case 8: For each mb ∈ Mb and ϕb ̸= ϕ∗
b , 6(c) holds in the limit by construction.

Let kc8(F, F̂ , F̃ ) be such that condition 6.(c) holds for each (mb, ϕb, p) such that

ϕb ∈ Φα
b \ {ϕ∗

b}, mb ∈ ∪vsupp(ϕb(v)Mb
) ∪ {m̄s

b} ∪ F and p ∈ P (F, F̂ , F̃ ), for each

α = (k, F, F̂ , F̃ ) such that k ≥ kc8(F, F̂ , F̃ ).

For each (F, F̂ , F̃ ), let

kc(F, F̂ , F̃ ) = max{kc1, kc2, kc3, kc4(F, F̂ , F̃ ), kc5, kc6(F, F̂ , F̃ ), kc7(F, F̂ , F̃ ), kc8(F, F̂ , F̃ )}.

The above arguments allow us to define the following subnet {πφ(η), pφ(η)}η of {πα, pα}α
such that condition 6 holds.
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The index set of the subnet {πφ(η), pφ(η)}η is the same as the one in the net

{πα, pα}α. The function φ : η 7→ α is defined by setting, for each η = (k, F, F̂ , F̃ ),

φ(η) = (max{ka, kb(F, F̂ ), kc(F, F̂ , F̃ )}, F, F̂ , F̃ ).

It is then clear that condition 6 holds and that, as required by the definition of a

subnet, for each α0, there exists η0, e.g. η0 = α0, such that φ(η) ≥ α0 for each η ≥ η0.

A.3 Proof of Corollary 1

It is clear that βsE + βbE(vK) ≤ βsE + βbE(vk) ≤ βsE + βbE(v1) for each k ∈

{1, . . . , K}. Note that, for each k ∈ {2, . . . , K} and p ∈ (vk−1, vk],

ν(p) =
∑
v≥p

ν[v] =
∑
v≥vk

ν[v] = ν(vk), and (A.9)

E(p) =
∑
v≥p

ν[v]v =
∑
v≥vk

ν[v]v = E(vk). (A.10)

When k = 1, ν(p) = ν(v1) and E(p) = E(v1) for each p ∈ C1 = {v1}. Thus, for each

k ∈ κ, βsE + βbv̄kν(vk) = βsE + βbv̄kν(v̄k) ≤ βsE + βbp
∗ν(p∗) since v̄k ≤ E by the

definition of Ck and v̄kν(v̄k) ≤ p∗ν(p∗) by the definition of p∗. Thus, we also have

that vk(βs + βbν(vk)) ≤ v̄k(βs + βbν(v̄k)) ≤ βsE + βbp
∗ν(p∗).

Moreover, for each k ∈ κ, βsE + βbv̄kν(vk) ≥ βsE + βbv1 by the definition of

Ck. Since vk ≥ v1 and vkν(vk) ≥ v1, the latter since vk = limj pj for some sequence

{pj}∞j=1 such that pj ∈ Ck for each j ∈ N, it follows that vk(βs + βbν(vk)) ≥ v1.

(Sufficiency) Let (ûb, ûs) ∈ ∪k∈κUk and let k ∈ κ be such that (ûb, ûs) ∈ Uk. If

vk > vk−1 (respectively, vk = vk−1), then Ck = [vk, v̄k] (resp. Ck = (vk, v̄k]) by the

definition of Ck.

Consider two cases: (a) ûs ≤ v̄k(βs + βbν(vk)) and (b) ûs > v̄k(βs + βbν(vk)).

In case (a), let pb be such that ûs = pb(βs + βbν(vk)). Then pb ∈ Ck since, by the

definition of Uk and of case (a),

vk(βs + βbν(vk)) ≤ ûs ≤ v̄k(βs + βbν(vk))

58



(resp. vk(βs+βbν(vk)) < ûs ≤ v̄k(βs+βbν(vk))). In case (b), let pb = v̄k. In either case,

pb ∈ Ck and it follows by (A.9) and the definition of Ck that pbν(pb) = pbν(vk) ≥ v1

i.e. (4) holds.

Let ps =
ûs−βbpbν(vk)

βs
. Then it follows by (1), (2), (A.9), (A.10) and the definition

of Uk that, in either case,

us = βsps + βbpbν(pb) = βsps + βbpbν(vk) = ûs

and

ub = βs(E − ps) + βb(E(pb)− pbν(pb))

= βsE − ûs + βbpbν(vk) + βbE(vk)− βbpbν(vk)

= βsE + βbE(vk)− ûs = ûb.

It remains to show that (3) holds. Since ps =
ûs−βbpbν(vk)

βs
, we have that ps ≥ pb

if and only if ûs ≥ pb(βs + βbν(vk)). This inequality holds in case (a) since then

ûs = pb(βs + βbν(vk)). It also holds in case (b) since then pb = v̄k and, by the

definition of case (b), ûs > v̄k(βs + βbν(vk)).

It follows from ps = ûs−βbpbν(vk)
βs

that ps ≤ E holds if and only if ûs ≤ βsE +

βbpbν(vk). This inequality holds in case (a) since then ûs = pb(βs + βbν(vk)) and

pb ≤ E, the latter because pb ∈ Ck. It also holds in case (b) since then pb = v̄k and

ûs ≤ βsE + βbv̄kν(vk), the latter because (ûb, ûs) ∈ Uk.

It follows from the above that (ûb, ûs) is represented by (pb, ps, 1) and, hence,

(ûb, ûs) ∈ U∗∗(βb, βs). Since (ûb, ûs) is arbitrary, it follows that ∪k∈κUk ⊆ U∗∗(βb, βs).

(Necessity) Let (ûb, ûs) ∈ U∗∗(βb, βs) and let (pb, ps) ∈ (V ∗)2 be such that (ûb, ûs)

is represented by (pb, ps, 1). Since {{v1},
(
(vk−1, vk]

)
1<k≤K} is a partition of V ∗, let

k = 1 if pb = v1 and k ∈ {2, . . . , K} be such that pb ∈ (vk−1, vk] otherwise. Recall that

ν(pb) = ν(vk) and E(pb) = E(vk) by (A.9) and (A.10) respectively. Then pb ∈ Ck by

(3) and (4). Hence, vk ≤ pb ≤ v̄k and, if vk ̸∈ Ck i.e. vk = vk−1, vk < pb ≤ v̄k.

By (1) and (2), ûb = βs(E− ps) + βb(E(vk)− pbν(vk)), ûs = βsps+ βbpbν(vk) and,

hence,

ûb + ûs = βsE + βbE(vk). (A.11)
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Since ps ≤ E by (3),

ûs = βsps + βbpbν(vk)

≤ βsE + βbv̄kν(vk).
(A.12)

Moreover,

ûs = βsps + βbpbν(vk)

≥ pb(βs + βbν(vk))

≥ vk(βs + βbν(vk))

(A.13)

and, if vk ̸∈ Ck i.e. vk = vk−1,

ûs > vk(βs + βbν(vk)). (A.14)

It then follows by (A.11)–(A.14) that (ûb, ûs) ∈ Uk.

A.4 Characterization for Corollary 1

An equivalent description of the elements used in Corollary 1, which is useful to

actually draw the set of equilibrium payoffs, is as follow. Let κ̂ = {1} ∪ {k ∈

{2, . . . , K} : vk−1 < E} and define, for each k ∈ κ̂, v∗k = min{vk, E}. Then

κ = {k ∈ κ̂ : v∗kν(vk) ≥ v1} and, for each k ∈ κ, v̄k = v∗k and

vk =


v1 if k = 1,

v1
ν(vk)

if k > 1 and v1
ν(vk)

≥ vk−1

vk−1 if k > 1 and v1
ν(vk)

< vk−1

as shown in Claims 1–3 below.

Claim 1 κ = {k ∈ κ̂ : v∗kν(vk) ≥ v1}.

Proof. We have that 1 ∈ κ and that 1 ∈ {k ∈ κ̂ : v∗kν(vk) ≥ v1}, the latter since

1 ∈ κ̂ and v∗1 = v1.

Thus, consider k > 1. If Ck ̸= ∅, let p ∈ Ck; hence, p ∈ (vk−1, vk], pν(vk) ≥ v1

and p ≤ E. Then vk−1 < p ≤ E and p ≤ v∗k, implying respectively that k ∈ κ̂ and

v∗kν(vk) ≥ pν(vk) ≥ v1.
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Conversely, let k > 1 be such that vk−1 < E and v∗kν(vk) ≥ v1. If vk ≤ E, then

v∗k = vk and vk ∈ Ck; if vk > E, then v∗k = E and E ∈ Ck.

Claim 2 v̄k = v∗k for each k ∈ κ.

Proof. This is clear when k = 1 since C1 = {v1} and v∗1 = v1. Thus, assume that

k > 1. If vk ≤ E, then v∗k = vk and vk ∈ Ck; hence, v̄k = vk = v∗k. If vk > E, then

v∗k = E and E ∈ Ck (as in the proof of Claim 1); hence, v̄k = E = v∗k.

Claim 3 For each k ∈ κ,

vk =


v1 if k = 1,

v1
ν(vk)

if k > 1 and v1
ν(vk)

≥ vk−1

vk−1 if k > 1 and v1
ν(vk)

< vk−1.

Proof. This is clear when k = 1 since C1 = {v1}. Thus, assume that k > 1. We

then have that p ≥ v1
ν(vk)

and p > vk−1 for each p ∈ Ck.

Consider first the case where v1
ν(vk)

≥ vk−1 and suppose that there is α > v1
ν(vk)

such that p ≥ α for each p ∈ Ck. Then α ≤ E, αν(vk) > v1, α ≤ vk and α > vk−1.

Letting ε > 0 be such that α− ε > v1
ν(vk)

, it follows that α− ε ≤ E, (α− ε)ν(vk) > v1,

α − ε ≤ vk and α − ε > vk−1 (since α − ε > v1
ν(vk)

≥ vk−1). Hence, α − ε ∈ Ck,

contradicting p ≥ α for each p ∈ Ck. Thus, vk =
v1

ν(vk)
.

Consider next the case where v1
ν(vk)

< vk−1 and suppose that there is α > vk−1 such

that p ≥ α for each p ∈ Ck. Then α ≤ E, αν(vk) > v1, α ≤ vk and α > vk−1. Letting

ε > 0 be such that α − ε > vk−1, it follows that α − ε ≤ E, (α − ε)ν(vk) > v1 (since

α− ε > vk−1 >
v1

ν(vk)
), α− ε ≤ vk and α− ε > vk−1. Hence, α− ε ∈ Ck, contradicting

p ≥ α for each p ∈ Ck. Thus, vk = vk−1.

The case in Figure 2, where V = {1, . . . , 5}, ν(1) = 0.1, ν(2) = ν(3) = ν(4) = 0.2,

ν(5) = 0.3 and βs = 1/2, provides an example where the lower endpoints for us are

not maximized when pb = p∗.
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Figure 2: Equilibrium payoffs when V = {1, . . . , 5}, ν(1) = 0.1, ν(2) = ν(3) = ν(4) =

0.2, ν(5) = 0.3 and βb = 1/2.

B Proofs for Section 4

B.1 Preliminary Lemmas

Any sequential equilibrium π ∈ Π̄ satisfies the following condition on the equilibrium

path: ∑
ϕb

π1
b [ϕb]

∑
v

ν[v]
∑
m

(βbϕb(v) + βsϕs(v))[m]us(π
2(m,ϕb, ϕs)) ≥

∑
ϕb

π1
b [ϕb]

∑
v

ν[v]
∑
m

(βbϕb(v) + βsϕ
′
s(v))[m]us(π̂

2(m,ϕb, ϕ
′
s)),

(B.1)

for each ϕs ∈ supp(π1
s), ϕ

′
s ∈ Φ and π̂2

s :Ms × Φ → V ∗, where

π2(m,ϕb, ϕs) = (π2
s(ms, ϕs), π

2
b (mb, ϕb, π

2
s(ms, ϕs))) and

π̂2(m,ϕb, ϕ
′
s) = (π̂2

s(ms, ϕ
′
s), π

2
b (mb, ϕb, π̂

2
s(ms, ϕ

′
s))),

∑
ϕs

π1
s [ϕs]

∑
v

ν[v]
∑
m

(βbϕb(v) + βsϕs(v))[m]ub(v, π
2(m,ϕb, ϕs)) ≥

∑
ϕs

π1
s [ϕs]

∑
v

ν[v]
∑
m

(βbϕ
′
b(v) + βsϕs(v))[m]ub(v, π̂

2(m,ϕ′
b, ϕs)),

(B.2)
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for each ϕb ∈ supp(π1
b ), ϕ

′
b ∈ Φ and π̂2

b :Mb × Φ× V ∗ → A, where

π̂2(m,ϕ′
b, ϕs) = (π2

s(ms, ϕs), π̂
2
b (mb, ϕ

′
b, π

2
s(ms, ϕs))),

∑
v,mb,ϕb

π1
b [ϕb]ν[v](βbϕb(v) + βsϕs(v))[mb,ms]∑

v̂,m̂b,ϕ̂b
π1
b [ϕ̂b]ν[v̂](βbϕb(v̂) + βsϕ̂s(v̂))[m̂b,ms]

us(p, π
2
b (mb, ϕb, p)) ≥

∑
v,mb,ϕb

π1
b [ϕb]ν[v](βbϕb(v) + βsϕs(v))[mb,ms]∑

v̂,m̂b,ϕ̂b
π1
b [ϕ̂b]ν[v̂](βbϕb(v̂) + βsϕ̂s(v̂))[m̂b,ms]

us(p
′, π2

b (mb, ϕb, p
′))

(B.3)

for each ϕs ∈ supp(π1
s), ms ∈ N such that∑

v,mb,ϕb

π1
b [ϕb]ν[v](βbϕb(v) + βsϕs(v))[mb,ms] > 0,

p ∈ supp(π2
s(ms, ϕs)) and p

′ ∈ V ∗, and∑
v,ms,ϕs

π1
s [ϕs]ν[v](βbϕb(v) + βsϕs(v))[mb,ms]π

2
s(ms, ϕs)[p]∑

v̂,m̂s,ϕ̂s
π1
s [ϕ̂s]ν[v̂](βbϕb(v̂) + βsϕs(v̂))[mb, m̂s]π2

s(m̂s, ϕ̂s)[p]
ub(v, p, a) ≥

∑
v,ms,ϕs

π1
s [ϕs]ν[v](βbϕb(v) + βsϕs(v))[mb,ms]π

2
s(ms, ϕs)[p]∑

v̂,m̂s,ϕ̂s
π1
s [ϕ̂s]ν[v̂](βbϕb(v̂) + βsϕ̂s(v̂))[mb, m̂s]π2

s(m̂s, ϕ̂s)[p]
ub(v, p, a

′)

(B.4)

for each ϕb ∈ supp(π1
b ), mb ∈ N and p ∈ V ∗ such that∑

v,ms,ϕs

π1
s [ϕs]ν[v](βbϕb(v) + βsϕs(v))[mb,ms]π

2
s(ms, ϕs)[p] > 0,

a ∈ supp(π2
b (mb, ϕb, p)) and a

′ ∈ A.

Lemma B.1 If π is a sequential equilibrium of G, then∑
ϕb

π1
b [ϕb]us(π

2(m,ϕb, ϕs)) ≥
∑
ϕb

π1
b [ϕb]us(π

2(m′, ϕb, ϕs))

for each ϕs ∈ supp(π1
s), v ∈ V , m ∈ supp(ϕs(v)) and m

′ ∈M .

Proof. Suppose not; then there is ϕ̃s ∈ supp(π1
s), ṽ ∈ V , m̃ ∈ supp(ϕ̃s(ṽ)) and

m′ ∈ M such that
∑

ϕb
π1
b [ϕb]us(π

2(m′, ϕb, ϕ̃s)) >
∑

ϕb
π1
b [ϕb]us(π

2(m̃, ϕb, ϕ̃s)). Define

ϕs by setting, for each v ∈ V and m ∈ supp(ϕ̃s(v)),

ϕs(v)[m] =


0 if v = ṽ and m = m̃,

ϕ̃s(ṽ)[m
′] + ϕ̃s(ṽ)[m̃] if v = ṽ and m = m′,

ϕ̃s(v)[m] otherwise,
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and let π̂2
s : Ms × Φ → V ∗ be such that π̂2

s(ms, ϕs) = π2
s(ms, ϕ̃s) for each ms ∈ Ms.

Then π̂2(m,ϕb, ϕs) = π2(m,ϕb, ϕ̃s) for each ϕb ∈ Φ and m ∈M , and∑
ϕb

π1
b [ϕb]

(∑
v

ν[v]
∑
m

(
(βbϕb(v) + βsϕs(v))[m]us(π̂

2(m,ϕb, ϕs))

− (βbϕb(v) + βsϕ̃s(v))[m]us(π
2(m,ϕb, ϕ̃s))

))

=
∑
ϕb

π1
b [ϕb]

(∑
v

ν[v]
∑
m

us(π
2(m,ϕb, ϕ̃s))

(βbϕb(v)[m] + βsϕs(v)[m]− βbϕb(v)[m]− βsϕ̃s(v)[m])

)
= ν[ṽ]βsϕ̃s(ṽ)[m̃]

∑
ϕb

π1
b [ϕb]

(
us(π

2(m′, ϕb, ϕ̃s))− us(π
2(m̃, ϕb, ϕ̃s))

)
> 0.

But this is a contradiction since π is a sequential equilibrium of G.

For each ϕs ∈ supp(π1
s), let u

s
s(ϕs) be the common value of

∑
ϕb
π1
b [ϕb]us(π

2(m,ϕb, ϕs))

for each m ∈ supp(ϕs(v)) and v ∈ V .

Lemma B.2 If π is a sequential equilibrium of G, then

uss(ϕs) = uss(ϕ
′
s)

for each ϕs, ϕ
′
s ∈ supp(π1

s).

Proof. Suppose not; then uss(ϕs) > uss(ϕ
′
s) for some ϕs, ϕ

′
s ∈ supp(π1

s). Note that

(B.1) holds as an equality for such ϕs and ϕ
′
s. Letting

ubs(ϕs) = βb
∑
ϕb

π1
b [ϕb]

∑
v

ν[v]
∑
m

ϕb(v)[m]us(π
2(m,ϕb, ϕs))

and analogously for ubs(ϕ
′
s), it follows from (B.1) and Lemma B.1 that

us(π) = βbu
b
s(ϕs) + βsu

s
s(ϕs) = βbu

b
s(ϕ

′
s) + βsu

s
s(ϕ

′
s).

Hence, ubs(ϕs) < ubs(ϕ
′
s).

Let m̂ ∈ ∪vsupp(ϕs(v)) and m̄s ̸∈ ∪v∈V,i∈N,ϕi∈supp(π1
i )
supp(ϕi,Ms(v)). Then define

ϕ̄(v) = 1(m̂b,m̄s) for each v ∈ V and let π̄2
s be such that π̄2

s(m̄s, ϕ̄s) = π2
s(m̂s, ϕs) and,

for each ms ̸= m̄s, π̄
2
s(ms, ϕ̄s) = π2

s(ms, ϕ
′
s). Letting π̄s = (ϕ̄s, π̄

2
s), it follows that

us(π̄s, πb) = βbu
b
s(ϕ

′
s) + βsu

s
s(ϕs) > βbu

b
s(ϕs) + βsu

s
s(ϕs) = us(π),
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a contradiction.

Lemma B.3 If π is a sequential equilibrium of G, then∑
ϕb

π1
b [ϕb]us(p, π

2
b (mb, ϕb, p)) ≥

∑
ϕb

π1
b [ϕb]us(p

′, π2
b (mb, ϕb, p

′))

for each ϕs ∈ supp(π1
s), v ∈ V , m ∈ supp(ϕs(v)), p ∈ supp(π2

s(ms, ϕs)) and p
′ ∈ V ∗.

Proof. Suppose not; then there is ϕ̂s ∈ supp(π1
s), v̂ ∈ V , m̂ ∈ supp(ϕ∗

i (v))

p̂ ∈ supp(π2
s(m̂s, ϕ̂s)) and p

′ ∈ V ∗ such that∑
ϕb

π1
b [ϕb]us(p̂, π

2
b (m̂b, ϕb, p̂)) <

∑
ϕb

π1
b [ϕb]us(p

′, π2
b (m̂b, ϕb, p

′)).

We may assume that

max
p∈supp(π2

s(m̂s,ϕ̂s))

∑
ϕb

π1
b [ϕb]us(p, π

2
b (m̂b, ϕb, p)) ≤

∑
ϕb

π1
b [ϕb]us(p

′, π2
b (m̂b, ϕb, p

′))

since if this latter inequality does not hold, we can replace p′ with any solution to

maxp∈supp(π2
s(m̂s,ϕ̂s))

∑
ϕb
π1
b [ϕb]us(p, π

2
b (m̂b, ϕb, p). Hence,

∑
ϕb

π1
b [ϕb]us(π

2(m̂, ϕb, ϕs)) =
∑

p∈supp(π2
s(m̂s,ϕ̂s))

(∑
ϕb

π1
b [ϕb]us(p, π

2
b (m̂b, ϕb, p))

)

<
∑
ϕb

π1
b [ϕb]us(p

′, π2
b (m̂b, ϕb, p

′)).

(B.5)

Let m̄s ̸∈ ∪vsupp(ϕMs(v)),

ϕs(v) =

1(m̂b,m̄s) if v = v̂,

ϕ̂s(v) otherwise,

and π̂2
s : Ms × Φ → V ∗ be such that π̂2

s(m̄s, ϕs) = p′ and π̂2
s(ms, ϕs) = π2

s(ms, ϕ̂s) for

each ms ̸= m̄s. Then π̂2(m,ϕb, ϕs) = π2(m,ϕb, ϕ̂s) for each ϕb ∈ Φ and m ∈ M such
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that ms ̸= m̄s. Thus,∑
ϕb

π1
b [ϕb]

∑
v

ν[v]
∑
m

(
(βbϕb(v) + βsϕs(v))[m]us(π̂

2(m,ϕb, ϕs))

−(βbϕb(v) + βsϕ̂s(v))[m]us(π
2(m,ϕb, ϕ̂s))

)
= ν[v′]βs

∑
ϕb

π1
b [ϕb]

(∑
m

ϕs(v
′)[m]us(π̂

2(m,ϕb, ϕs))−
∑
m

ϕ̂s(v
′)[m]us(π

2(m,ϕb, ϕ̂s))

)
= ν[v′]βs

∑
ϕb

π1
b [ϕb]

(
us(p

′, π2
b (m̂b, ϕb))−

∑
m∈supp(ϕ̂s(v′))

ϕ̂s(v
′)[m]us(π

2(m,ϕb, ϕ̂s)
)

= ν[v′]βs
∑
ϕb

π1
b [ϕb]

(
us(p

′, π2
b (m̂b, ϕb))− us(π

2(m̂, ϕb, ϕ̂s))
)
> 0

because
∑

ϕb
π1
b [ϕb]us(π

2(m,ϕb, ϕ̂s)) =
∑

ϕb
π1
b [ϕb]us(π

2(m̂, ϕb, ϕ̂s)) for eachm ∈ supp(ϕ̂s(v
′))

by Lemma B.1. But this is a contradiction since π is a sequential equilibrium.

Lemma B.4 For each p ∈ V ∗, ϕs, ϕ
′
s ∈ supp(π1

s), v, v
′ ∈ V and m,m′ ∈ M such

that m ∈ ϕs(v), m
′ ∈ ϕs(v

′) and p ∈ supp(π2
s(ms, ϕs)) ∩ supp(π2

s(m
′
s, ϕ

′
s)),∑

ϕb

π1
b [ϕb]π

2
b (mb, ϕb, p) =

∑
ϕb

π1
b [ϕb]π

2
b (m

′
b, ϕb, p).

Proof. It follows by Lemmas B.2 and B.3 that

p
∑
ϕb

π1
b [ϕb]π

2
b (mb, ϕb, p) =

∑
ϕb

π1
b [ϕb]us(p, π

2
b (mb, ϕb, p)) = uss

=
∑
ϕb

π1
b [ϕb]us(p, π

2
b (m

′
b, ϕb, p) = p

∑
ϕb

π1
b [ϕb]π

2
b (m

′
b, ϕb, p).

Since p ≥ v1 > 0, the conclusion follows.

Define γs ∈ ∆(V ∗) by setting

γs =
∑
ϕs

π1
s [ϕs]

∑
v

ν[v]
∑
m

ϕs(v)[m]π2
s(ms, ϕs)

and, for each p ∈ supp(γs), let a(p) be the common value of
∑

ϕb
π1
b [ϕb]π

2
b (mb, ϕb, p).

Define γs(v) ∈ ∆(V ∗) by setting, for each v ∈ V ,

γs(v) =
∑
ϕs

π1
s [ϕs]

∑
m

ϕs(v)[m]π2
s(ms, ϕs)

The above then implies the following lemma.
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Lemma B.5 uss = pa(p) = p′a(p′) for each p, p′ ∈ supp(γs) and

usb =
∑
v

ν[v]v
∑
p

γs(v)[p]a(p)− uss.

Note that Lemma B.5 is consistent with any (uss, u
s
b) such that v1 ≤ uss ≤ E,

0 ≤ usb ≤ E − v1 and uss + usb ≤ E. To see this, fix (ūs, ūb) satisfying ūs ∈ [v1, E] and

ūb = δ(E − ūs) for some δ ∈ [0, 1]. Set, for each v ∈ V , γs(v) = δ1ūs + (1 − δ)1E.

Let a(ūs) = 1 and a(E) = ūs/E. Then uss = ūsa(ūs) = Ea(E) = ūs and usb =

E(δa(ūs) + (1− δ)a(E))− uss = E(δ + (1− δ)ūs/E)− uss = δ(E − ūs) = ūb.

Lemma B.6 For each v ∈ V , p ∈ supp(γs(v)), ms ∈ supp(ϕs(v)) and ϕb ∈ supp(π1
b ),∑

v,ms,ϕs

π1
s [ϕs]ν[v]ϕs(v)[mb,ms]π

2
s(ms, ϕs)[p]ub(v, p, a) ≥

∑
v,ms,ϕs

π1
s [ϕs]ν[v]ϕs(v)[mb,ms]π

2
s(ms, ϕs)[p]ub(v, p, a

′)
(B.6)

for each a ∈ supp(π2
b (mb, ϕb, p)) and a

′ ∈ A.

Proof. Suppose not; then let v̄ ∈ V , p̄ ∈ supp(γs(v)), m̄s ∈ supp(ϕs(v)), ϕb ∈

supp(π1
b ), a ∈ supp(π2

b (m̄b, ϕb, p̄)) and a′ ∈ A be such that (B.6) fails. Let f :

∪vsupp(ϕb,Mb
(v)) →

(
∪v∈V,ϕs∈supp(π1

s)
supp(ϕs,Mb

(v))
)c

be 1-1. For each v ∈ V , mb ∈

f(∪vsupp(ϕb,Mb
(v))) and ms ∈ ∪vsupp(ϕb,Ms(v)), define

ϕ̄b(v)[mb,ms] = ϕb(v)[f
−1(mb),ms].

Furthermore, let π̄2
b be such that, for each p ∈ V ∗,

π̄2
b (ms, ϕ̄b, p) =


a′ if ms = m̄s and p = p̄,

π2
b (f

−1(mb), ϕs, p) if mb ∈ f(∪vsupp(ϕb,Mb
(v))),

π2
b (mb, ϕs, p) otherwise.

Let π̄1
b = 1ϕ̄. Then ub(π̄b, πs) > ub(π), which is a contradiction since π is a sequential

equilibrium.

The following lemmas characterize the payoffs that could arise when the realized

message profile belongs to the support of the buyer’s information structure.
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Lemma B.7 If π is a sequential equilibrium of G, then∑
ϕs

π1
s [ϕs]ub(v, π

2(m,ϕb, ϕs)) ≥
∑
ϕs

π1
s [ϕs]ub(v, π

2(m′, ϕb, ϕs))

for each ϕb ∈ supp(π1
b ), v ∈ V , m ∈ supp(ϕb(v)) and m

′ ∈M .

Proof. Suppose not; then there is ϕ̃b ∈ supp(π1
b ), ṽ ∈ V , m̃ ∈ supp(ϕ̃b(ṽ)) and

m′ ∈ M such that
∑

ϕs
π1
s [ϕs]ub(ṽ, π

2(m′, ϕ̃b, ϕs)) >
∑

ϕs
π1
s [ϕs]ub(ṽ, π

2(m̃, ϕ̃b, ϕs)).

Define ϕb by setting, for each v ∈ V and m ∈ supp(ϕ̃b(v)),

ϕb(v)[m] =


0 if v = ṽ and m = m̃,

ϕ̃b(ṽ)[m
′] + ϕ̃b(ṽ)[m̃] if v = ṽ and m = m′,

ϕ̃b(v)[m] otherwise,

and let π̂2
b : Mb × Φ × V ∗ → A be such that π̂2

b (mb, ϕb, p) = π2
b (mb, ϕ̃b, p) for each

(mb, p) ∈ Mb × V ∗. Then π̂2(m,ϕb, ϕs) = π2(m, ϕ̃b, ϕs) for each m ∈ M and ϕs ∈ Φ,

and ∑
ϕs

π1
s [ϕs]

(∑
v

ν[v]
∑
m

(
(βbϕb(v) + βsϕs(v))[m]ub(v, π̂

2(m,ϕb, ϕs))

− (βbϕ̃b(v) + βsϕs(v))[m]ub(v, π
2(m,ϕb, ϕ̃s))

))

=
∑
ϕs

π1
s [ϕs]

(∑
v

ν[v]
∑
m

ub(v, π
2(m, ϕ̃b, ϕs))

(βbϕb(v)[m] + βsϕs(v)[m]− βbϕ̃b(v)[m]− βsϕs(v)[m])

)
= ν[ṽ]βbϕ̃b(ṽ)[m̃]

∑
ϕs

π1
s [ϕs]

(
ub(ṽ, π

2(m′, ϕ̃b, ϕs))− ub(π
2(m̃, ϕ̃b, ϕs))

)
> 0.

But this is a contradiction since π is a sequential equilibrium of G.

Define, for each v ∈ V and ϕb ∈ supp(π1
b ), u

b
b(v, ϕb) as the common value of∑

ϕs
π1
s [ϕs]ub(v, π

2(m,ϕb, ϕs)) for each m ∈ supp(ϕb(v)).

Lemma B.8 If π is a sequential equilibrium of G, then

ubb(v, ϕb) = ubb(v, ϕ
′
b)

for each v ∈ V and ϕb, ϕ
′
b ∈ supp(π1

b ).
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Proof. Suppose not; then ubb(v̂, ϕb) > ubb(v̂, ϕ
′
b) for some v̂ ∈ V and ϕb, ϕ

′
b ∈

supp(π1
b ). Note that (B.2) holds as an equality for such ϕb and ϕ

′
b. Letting

usb(v, ϕb) = βs
∑
ϕs

π1
s [ϕs]

∑
m

ϕs(v)[m]ub(v, π
2(m,ϕb, ϕs))

and analogously for usb(ϕ
′
b), it follows from (B.2) and Lemma B.7 that

ub(π) =
∑
v

ν[v]
(
βbu

b
b(v, ϕb) + βsu

s
b(v, ϕb)

)
=
∑
v

ν[v]
(
βbu

b
b(v, ϕ

′
b) + βsu

s
b(v, ϕ

′
b)
)
.

Let m̂ ∈ supp(ϕb(v̂)) and m̄b ̸∈ ∪v∈V,i∈N,ϕi∈supp(π1
i )
supp(ϕi,Mb

(v)). Then define

ϕ̄b(v) =

1(m̄b,m̂s) if v = v̂,

ϕb(v) otherwise

for each v ∈ V and let π̄2
b be such that π̄2

b (m̄b, ϕ̄b) = π2
b (m̂b, ϕb) and, for each mb ̸= m̄b,

π̄2
b (mb, ϕ̄b) = π2

b (mb, ϕ
′
b). Letting π̄b = (ϕ̄b, π̄

2
b ), it follows that

ub(π̄b, πs) =
∑
v ̸=v̂

ν[v]
(
βbu

b
b(v, ϕ

′
b) + βsu

s
b(v, ϕ

′
b)
)
+ ν[v̂]

(
βbu

b
b(v̂, ϕb) + βsu

s
b(v̂, ϕ

′
b)
)

>
∑
v

ν[v]
(
βbu

b
b(v, ϕ

′
b) + βsu

s
b(v, ϕ

′
b)
)
= ub(π),

a contradiction.

Lemma B.9 If π is a sequential equilibrium of G, then

π2
b (mb, ϕb, p) =

1 if p < v,

0 if p > v

for each ϕb ∈ supp(π1
b ), ϕs ∈ supp(π1

s), v ∈ V , m ∈ supp(ϕb(v)) and p ∈ supp(π2
s(ms, ϕs)).

Proof. Note first that, for each v ∈ V and ϕb ∈ supp(π1
b ),

ubb(ϕb) =
∑
ϕs

πs1[ϕs]
∑

p∈supp(π2
s(ms,ϕs)):p<v

π2
s(ms, ϕs)[p](v − p)π2

b (mb, ϕb, p)

+
∑
ϕs

πs1[ϕs]
∑

p∈supp(π2
s(ms,ϕs)):p>v

π2
s(ms, ϕs)[p](v − p)π2

b (mb, ϕb, p).
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where m ∈ supp(ϕb(v)).

Suppose that the conclusion of the lemma fails. Then there is ϕ̂b ∈ supp(π1
b ), ϕ̂s ∈

supp(π1
s), v̂ ∈ V , m̂ ∈ supp(ϕ̂b(v̂)) and p̂ ∈ supp(π2

s(m̂s, ϕ̂s)) such that π2
b (m̂b, ϕ̂b, p̂) <

1 if p̂ < v̂ or π2
b (m̂b, ϕ̂b, p̂) > 0 if p̂ > v̂.

Consider the case p̂ < v̂. Let m̄b ̸∈ ∪v∈V,i∈N,ϕi∈supp(π1
i )
supp(ϕi,Mb

(v)) and define

ϕ̄b(v) =

1(m̄b,m̂s) if v = v̂,

ϕb(v) otherwise

for each v ∈ V and let π̄2
b be such that π̄2

b (m̄b, ϕ̄b) = 1 and, for each mb ̸= m̄b,

π̄2
b (mb, ϕ̄b) = π2

b (mb, ϕ̂b). Let

ūbb(v̂, ϕ̂b) =
∑
ϕs ̸=ϕ̂s

πs1[ϕs]
∑

p∈supp(π2
s(m̂s,ϕs)):p<v

π2
s(m̂s, ϕs)[p](v − p)π2

b (m̂b, ϕ̂b, p)

+ πs1[ϕ̂s]
( ∑
p∈supp(π2

s(m̂s,ϕ̂s))\{p̂}:p<v

π2
s(m̂s, ϕ̂s)[p](v − p)π2

b (m̂b, ϕ̂b, p)

+ π2
s(m̂s, ϕ̂s)[p̂](v − p)

)
+
∑
ϕs

πs1[ϕs]
∑

p∈supp(π2
s(ms,ϕs)):p>v

π2
s(ms, ϕs)[p](v − p)π2

b (mb, ϕb, p);

then ūbb(v̂, ϕ̂b) > ubb(v̂, ϕ̂b).

Letting π̄b = (ϕ̄b, π̄
2
b ), it follows that

ub(π̄b, πs) =
∑
v ̸=v̂

ν[v]
(
βbu

b
b(v, ϕ̂b) + βsu

s
b(v, ϕ̂b)

)
+ ν[v̂]

(
βbū

b
b(v̂, ϕ̂b) + βsu

s
b(v̂, ϕ̂b)

)
>
∑
v

ν[v]
(
βbu

b
b(v, ϕ̂b) + βsu

s
b(v, ϕ̂b)

)
= ub(π),

a contradiction.

Finally, the case p̂ > v̂. In this case, let π̄2
b be such that π̄2

b (m̄b, ϕ̄b) = 0 and, for

each mb ̸= m̄b, π̄
2
b (mb, ϕ̄b) = π2

b (mb, ϕ̂b).

Lemma B.10 If π is a sequential equilibrium of G, ms ∈ ∪v∈V,ϕb∈supp(π1
b )
supp(ϕb,Ms(v))

and ϕs ∈ supp(π1
s), then each p ∈ supp(π2

s(ms, ϕs)) solves

max
p′∈V ∗

p′
∑

v,ϕb,mb

ν[v]π1
b [ϕb]ϕb(v)[mb,ms]∑

v̂,ϕ̂b,m̂b
ν[v̂]π1

b [ϕ̂b]ϕ̂b(v̂)[m̂b,ms]
π2
b (mb, ϕb, p

′). (B.7)
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Proof. Let ϕs ∈ supp(π1
s) and ms ∈ ∪v∈V,ϕb∈supp(π1

b )
supp(ϕb,Ms(v)). The conclu-

sion of the lemma holds when ms ̸∈ ∪v∈V,ϕs∈supp(π1
s)
supp(ϕs,Ms(v) by (B.3). Thus,

assume that ms ∈ ∪v∈V,ϕs∈supp(π1
s)
supp(ϕs,Ms(v) and suppose that the conclusion of

the lemma does not hold. Then there is v′ ∈ V , ϕs ∈ supp(π1
s), m

′ ∈ supp(ϕs(v
′))

such that ms ∈ ∪v∈V,ϕb∈supp(π1
b )
supp(ϕb,Ms(v)) and p

′ ∈ supp(π2
s(m

′
s, ϕs)) that does not

solve problem (B.7).

Let p∗ be a solution to problem (B.7); then

p∗
∑

v,ϕb,mb

ν[v]π1
b [ϕb]ϕb(v)[mb,m

′
s]∑

v̂,ϕ̂b,m̂b
ν[v̂]π1

b [ϕ̂b]ϕ̂b(v̂)[m̂b,m′
s]
π2
b (mb, ϕb, p

∗) >

∑
p∈supp(π2

s(m
′
s,ϕs))

π2
s(m

′
s, ϕs)[p]

(
p
∑

v,ϕb,mb

ν[v]π1
b [ϕb]ϕb(v)[mb,m

′
s]∑

v̂,ϕ̂b,m̂b
ν[v̂]π1

b [ϕ̂b]ϕ̂b(v̂)[m̂b,m′
s]
π2
b (mb, ϕb, p

′)

)
.

(B.8)

Let m̄s ̸∈ ∪v,i∈N,ϕi∈supp(π1
i )
supp(ϕi,Ms(v)). Define ϕ̄s ∈ Φ by setting, for each v ∈ V

and m ∈M ,

ϕ̄s(v)[m] =



1 if v = v′ and m = (m′
b, m̄s),

0 if v = v′ and m ̸= (m′
b, m̄s),

0 if v ̸= v′ and ms = m′
s,

ϕs(v)[mb,m
′
s] if v ̸= v′ and ms = m̄s,

ϕs(v)[m] otherwise

and let π̄2
s :Ms × Φ → V ∗ be such that, for each ms ∈Ms,

π̄2
s(ms, ϕ̄s) =


p∗ if ms = m′

s,

π2
s(m

′
s, ϕs) if ms = m̄s,

π2
s(ms, ϕs) otherwise.

Then, letting π̄s = (ϕ̄s, π̄
2
s), it follows by Lemma B.1 (recall that m′ ∈ supp(ϕs(v

′)))

that

us(π̄s, πb)− us(π) = βb
∑
ϕb

π1
b [ϕb]

∑
v

ν[v]
∑
mb

ϕb(v)[mb,m
′
s](

p∗π2
b (mb, ϕb, p

∗)−
∑

p∈supp(π2
s(m

′
s,ϕs))

π2
s(m

′
s, ϕs)[p]pπ

2
b (mb, ϕb, p)

)
.
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It then follows by (B.8) that us(π̄s, πb) > us(π). But this is a contradiction since π is

a sequential equilibrium of G.

Lemmas B.9 and B.10 imply the following: Fix ϕs ∈ supp(π1
s) and, for each

ms ∈ ∪(v,ϕb)∈V×supp(π1
b )
supp(ϕb,Ms(v)), let pms ∈ supp(π2

s(ms, ϕs)). Then

pms

∑
v,ϕb,mb

ν[v]π1
b [ϕb]ϕb(v)[mb,ms]π

2
b (mb, ϕb, pms)

= p
∑

v,ϕb,mb

ν[v]π1
b [ϕb]ϕb(v)[mb,ms]π

2
b (mb, ϕb, p)

for each ϕ′
s ∈ supp(π1

s) and p ∈ supp(π2
s(ms, ϕ

′
s)). Thus,

ubs =
∑
ms

pms

( ∑
v>pms

ν[v]
∑
ϕb

π1
b [ϕb]

∑
mb

ϕb(v)[mb,ms]

+ ν[pms ]
∑
ϕb

π1
b [ϕb]

∑
mb

ϕb(pms)[mb,ms]π
2
b (mb, ϕb, pms)

)
.

For eachms ∈ ∪(v,ϕb)∈V×supp(π1
b )
supp(ϕb,Ms(v)) and p ∈ ∪ϕs∈supp(π1

s)
supp(π2

s(ms, ϕs)),

let

γ(ms)[p] =
∑
ϕs

π1
s [ϕs]π

2
s(ms, ϕs)[p].

The following lemma is a consequence of Lemma B.7.

Lemma B.11 If π is a sequential equilibrium of G, v ∈ V , ms,m
′
s ∈ ∪ϕb∈supp(π1

b )
supp(ϕb,Ms(v))

and m̂s ∈ ∪(v̂,ϕb)∈V×supp(π1
b )
supp(ϕb,Ms(v̂)), then∑

p<v

γ(ms)[p](v − p) =
∑
p<v

γ(m′
s)[p](v − p) ≥

∑
p<v

γ(m̂s)[p](v − p).

Proof. Let ϕb, ϕ
′
b ∈ supp(π1

b ) andmb,m
′
b ∈Mb be such that (mb,ms) ∈ supp(ϕb(v))

and (m′
b,m

′
s) ∈ supp(ϕ′

b(v)). Then, by Lemma B.9,∑
ϕs

π1
s [ϕs]ub(v, π

2((mb,ms), ϕb, ϕs) =
∑
p

∑
ϕs

π1
s [ϕs]π

2
s(ms, ϕs)[p](v − p)π2

b (mb, ϕb, p)

=
∑
p<v

γ(ms)[p](v − p), and

∑
ϕs

π1
s [ϕs]ub(v, π

2((m′
b,m

′
s), ϕ

′
b, ϕs) =

∑
p

∑
ϕs

π1
s [ϕs]π

2
s(m

′
s, ϕs)[p](v − p)π2

b (m
′
b, ϕ

′
b, p)

=
∑
p<v

γ(m′
s)[p](v − p).
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Lemma B.7 implies that
∑

p<v γ(ms)[p](v − p) =
∑

p<v γ(m
′
s)[p](v − p).

Suppose that
∑

p<v γ(m̂s)[p](v − p) >
∑

p<v γ(ms)[p](v − p). Then let m̄b ∈ Mb

be such that m̄b ̸∈ supp(ϕi,Mb
(v′)) for each i ∈ N , ϕi ∈ supp(π1

i ) and v
′ ∈ V . Let ϕ̄b

be such that

ϕ̄b(v
′) =

1(m̄b,m̂s) if v′ = v,

ϕb(v
′) otherwise

and π̄2
b be such that

π̄2
b (m̄b, ϕ̄b, p) =

1 if p < v,

0 if p > v,

and π̄2
b (ms, ϕ̄b, p) = π2

b (ms, ϕ̄b, p) for each ms ̸= m̄s and p ∈ V ∗. Letting π̄b = (ϕ̄b, π̄
2
b ),

we have that

ub(π̄
2
b , πs)− ub(π) = βbν[v]

(∑
p<v

γ(m̂s)[p](v − p)−
∑
p<v

γ(ms)[p](v − p)

)
> 0.

But this is a contradiction since π is a sequential equilibrium. Thus,
∑

p<v γ(m̂s)[p](v−

p) ≤
∑

p<v γ(ms)[p](v − p).

B.2 Proof of Theorem 2

B.2.1 Necessity

For each v ∈ V , let M v
s = ∪ϕb∈supp(π1

b )
supp(ϕb,Ms(v)) and for each ms ∈ M v

s , let

µ(ms) ∈ ∆(V ) and τ(ms) ∈ (0, 1] be such that:

µ(ms)[v] =

∑
ϕb,mb

ν[v]π1
b [ϕb]ϕb(v)[mb,ms]∑

v̂,ϕ̂b,m̂b
ν[v̂]π1

b [ϕ̂b]ϕ̂b(v̂)[m̂b,ms]

τ(ms) =
∑

v̂,ϕ̂b,m̂b

ν[v̂]π1
b [ϕ̂b]ϕ̂b(v̂)[m̂b,ms]

In words, conditional on the buyer’s information structure being chosen, µ(ms) is the

seller’s belief following ms and τ(ms) is the probability that the seller receives ms.

Note that v ∈ supp(µ(ms)) if and only if ms ∈M v
s .

As is standard, the expected posterior belief is equal to the prior.
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Lemma B.12
∑

ms∈Mv
s
τ(ms)µ(ms)[v] = ν[v] for each v ∈ V .

Proof. By definition:∑
ms∈Mv

s

τ(ms)µ(ms)[v] =
∑

ms∈Mv
s

∑
v̂,ϕ̂b,m̂b

ν[v̂]π1
b [ϕ̂b]ϕ̂b(v̂)[m̂b,ms]

∑
ϕb,mb

ν[v]π1
b [ϕb]ϕb(v)[mb,ms]∑

v̂,ϕ̂b,m̂b
ν[v̂]π1

b [ϕ̂b]ϕ̂b(v̂)[m̂b,ms]

=
∑

ms∈Mv
s ,ϕb,mb

ν[v]π1
b [ϕb]ϕb(v)[mb,ms]

=
∑

ϕb,mb,ms

ν[v]π1
b [ϕb]ϕb(v)[mb,ms] = ν[v].

The next lemma shows that seller must get the same payoff from any price in the

support of γ(ms), given his belief µ(ms).

Lemma B.13 For each ms ∈ ∪vM v
s and p, p′ ∈ supp(γ(ms)):

p
(∑
v>p

µ(ms)[v] + µ(ms)[p]ξ
)
= p′

(∑
v>p′

µ(ms)[v] + µ(ms)[p
′]ξ′
)

(B.9)

for some ξ, ξ′ ∈ [0, 1].

Proof. By Lemma B.9 and Lemma B.10, we have, for ms ∈ ∪vM v
s and p, p′ ∈

supp(γ(ms)):

p
∑

v,ϕb,mb

ν[v]π1
b [ϕb]ϕb(v)[mb,ms]∑

v̂,ϕ̂b,m̂b
ν[v̂]π1

b [ϕ̂b]ϕ̂b(v̂)[m̂b,ms]
π2
b (mb, ϕb, p)

= p′
∑

v,ϕb,mb

ν[v]π1
b [ϕb]ϕb(v)[mb,ms]∑

v̂,ϕ̂b,m̂b
ν[v̂]π1

b [ϕ̂b]ϕ̂b(v̂)[m̂b,ms]
π2
b (mb, ϕb, p

′)

⇐⇒ p
∑
v>p

∑
ϕb,mb

ν[v]π1
b [ϕb]ϕb(v)[mb,ms]∑

v̂,ϕ̂b,m̂b
ν[v̂]π1

b [ϕ̂b]ϕ̂b(v̂)[m̂b,ms]
+ p

∑
ϕb,mb

ν[p]π1
b [ϕb]ϕb(p)[mb,ms]∑

v̂,ϕ̂b,m̂b
ν[v̂]π1

b [ϕ̂b]ϕ̂b(v̂)[m̂b,ms]
π2
b (mb, ϕb, p)

= p′
∑
v>p′

∑
ϕb,mb

ν[v]π1
b [ϕb]ϕb(v)[mb,ms]∑

v̂,ϕ̂b,m̂b
ν[v̂]π1

b [ϕ̂b]ϕ̂b(v̂)[m̂b,ms]
+ p′

∑
ϕb,mb

ν[p′]π1
b [ϕb]ϕb(p

′)[mb,ms]∑
v̂,ϕ̂b,m̂b

ν[v̂]π1
b [ϕ̂b]ϕ̂b(v̂)[m̂b,ms]

π2
b (mb, ϕb, p

′)

⇐⇒ p
(∑
v>p

µ(ms)[v] + µ(ms)[p]ξ
)
= p′

(∑
v>p′

µ(ms)[v] + µ(ms)[p
′]ξ′
)
,

for some ξ, ξ′ ∈ [0, 1].

Let ξ : V ∗ × ∪vM v
s → [0, 1] be such that (B.9) holds for each ms ∈ ∪vM v

s and

p, p′ ∈ supp(γ(ms)), with ξ(p,ms) in place of ξ and ξ(p′,ms) in place of ξ′.32

32Note that when p ̸∈ V or ms ̸∈ Mp
s , ξ(p,ms) can be defined in an arbitrary way as ξ does not

appear in (B.9) in that case.

74



Then, letting pms ∈ supp(γ(ms)) for each ms ∈ ∪vM v
s , we have

ubs =
∑

ms∈∪vMv
s

τ(ms)pms

( ∑
v>pms

µ(ms)[v] + µ(ms)[pms ]ξ(pms ,ms)
)
.

Moreover, Lemma B.10 implies that pms

(∑
v>pms

µ(ms)[v]+µ(ms)[pms ]ξ(pms ,ms)
)
≥

v1 for each ms ∈ ∪vM v
s .

Regarding ubb, by Lemma B.11, for each v ∈ V , ms,m
′
s ∈ M v

s and m̂s ∈ ∪vM v
s ,∑

p<v γ(ms)[p](v − p) =
∑

p<v γ(m
′
s)[p](v − p) ≥

∑
p<v γ(m̂s)[p](v − p). Thus, letting

mv
s ∈M v

s for each v and h : V → ∪vM v
s ,

ubb =
∑
v

ν[v]
∑
p<v

γ(mv
s)[p](v − p) ≥

∑
v

ν[v]
∑
p<v

γ(h(v))[p](v − p).

Regarding us = (usb, u
s
s), we must have uss+u

s
b ≤ E (by feasibility), usb ≥ 0 (because

the buyer can reject every offer greater than v1), and u
s
s ≥ v1 (because the seller can

offer v1 which is accepted with probability 1).

Finally, the next two lemmas establish the necessity of (11) and (12).

Lemma B.14 E ≥ v for each v ≤ min∪mssupp(γ(ms)) if u
s
b = 0.

Proof. It follows from usb = 0 that uss ≤ E. Let p∗ ∈ supp(γs) solve maxp∈supp(γs) a(p).

Then Lemma B.5 and usb = 0 implies that uss =
∑

v ν[v]v
∑

p γs(v)[p]a(p) ≤ a(p∗)E.

Thus, a(p∗) ≥ uss/E. Lemma B.5 also implies that uss = p∗a(p∗) ≥ p∗uss/E, hence

p∗ ≤ E.

Let v ∈ V be such that v ≤ min∪mssupp(γ(ms)) and suppose that v > E. Since

type v of the buyer gets a zero payoff due to v ≤ min∪mssupp(γ(ms)), the buyer can

deviate by sending ϕb ∈ supp(π1
b ) and changing ϕb(v) such that the message of the

sender leads to p∗ with strictly positive probability, which he then accepts to get a

payoff of v − p∗ ≥ v − E > 0.

Lemma B.15 uss ≥ v for each v ≤ min∪mssupp(γ(ms)) if u
s
b > 0.

Proof. Let p∗ ∈ supp(γs) solve maxp∈supp(γs) a(p). Then a(p
∗) = 1. Indeed,

usb =
∑

v,ϕs,ms,p

ν[v]π1
s [ϕs]ϕs,Ms(v)[ms]π

2
s(ms, ϕs)[p]a(p)(v − p).
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Thus, if a(p∗) = 0, then a(p) = 0 for each p ∈ supp(γs) and u
s
b = 0, a contradiction.

Moreover, if 0 < a(p∗) < 1, then∑
v,ms,ϕs

π1
s [ϕs]ν[v]ϕs,Ms(v)[ms]π

2
s(ms, ϕs)[p](v − p) = 0

by Lemma B.6 and, hence, usb = 0, a contradiction. Thus, a(p∗) = 1.

Then Lemma B.5 implies that uss = p∗a(p∗) = p∗.

Let v ∈ V be such that v ≤ min∪mssupp(γ(ms)) and suppose that v > uss. Since

type v of the buyer gets a zero payoff due to v ≤ min∪mssupp(γ(ms)), the buyer can

deviate by sending ϕb ∈ supp(π1
b ) and changing ϕb(v) such that the message of the

sender leads to p∗ with strictly positive probability, which he then accepts to get a

payoff of v − p∗ = v − uss > 0.

The above discussion implies the necessity direction of Theorem 2.

B.2.2 Sufficiency

The following lemma will be used to construct an equilibrium with the desired payoff.

Lemma B.16 For each v, there exists η(v) ∈ ∆(M v
s ) such that:

ν[v]η(v)[ms]∑
v′ ν[v

′]η(v′)[ms]
= µ(ms)[v]∑

v′

ν[v′]η(v′)[ms] = τ(ms).

Proof. For each v ∈ V and ms ∈M v
s , define η(v)[ms] =

µ(ms)[v]τ(ms)
ν[v]

. Then we have:

∑
v′

ν[v′]η(v′)[ms] =
∑
v′

ν[v′]
µ(ms)[v

′]τ(ms)

ν[v′]
=
∑
v′

µ(ms)[v
′]τ(ms) = τ(ms)

and hence ν[v]η(v)[ms]∑
v′ ν[v

′]η(v′)[ms]
= ν[v]η(v)[ms]

τ(ms)
= µ(ms)[v]. Finally, by condition (9),

∑
ms∈Mv

s

η(v)[ms] =
∑

ms∈Mv
s

µ(ms)[v]τ(ms)

ν[v]
= 1,

and so η(v) ∈ ∆(M v
s ) as required.

Let M v
s , (γ(ms))(ms∈∪vMv

s ), (µ(ms))ms∈∪vMv
s
, τ ∈ ∆(∪vM v

s ), and ξ be as in the

statement of the theorem, and let u be such that conditions (5)–(9) hold. DefineM b
s =
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∪vM v
s . We will show that u ∈ Ū∗(βb, βs) by constructing a sequential equilibrium

π ∈ Π̄∗ with payoff u.

First period strategy. Let Y ∈ N be such that

(i) Y ≥
∑

v |M v
s |,

(ii) (
∑

v |M v
s |)Y −1vK < v1 and

(iii) Y −1(vK − uss) <
∑

p<v γ(m
v
s)[p](v − p) for each v > min∪ms∈Mb

s
supp(γ(ms)),

where mv
s ∈M v

s .
33

For the seller: For each y ∈ {1, . . . , Y }, let ϕs,y be such that ϕs,y(v) = 1(Y+1,y) for

all v ∈ V (i.e. the seller sends message y to himself and Y + 1 to the buyer). Let

Φs = {ϕs,y ∈ Φ : y ∈ {1, . . . , Y }}. Let π1
s = Y −1

∑Y
y=1 ϕs,y.

For the buyer: The buyer will send messages inM b
s = ∪vM v

s to the seller, with type

v sending messages inM v
s ; assume without loss of generality thatM b

s∩{1, . . . , Y } = ∅.

For each v, define M v
b ⊆ Mb such that for v ̸= v′, M v

b ∩M v′

b = ∅, |M v
b | = |M v

s |, and

assume that ∪vM v
b ⊆ {1, . . . , Y }.34 Let Jv = |M v

b | and, for each v ∈ V , enumerate

M v
b = {mv

b,1, . . . ,m
v
b,Jv} and M v

s = {mv
s,1, . . . ,m

v
s,Jv} so that mv

b,j corresponds to m
v
s,j.

Let Ψ be the set of all bijections ψ : {1, . . . , Y } → {1, . . . , Y }. Let ϕb,ψ : V → F

be such that ϕb,ψ(v) =
∑Jv

j=1 η(v)[m
v
s,j]1(ψ(mv

b,j),m
v
s,j)

for each v ∈ V and let π1
b =

|Ψ|−1
∑

ψ ϕb,ψ. Let Φb = {ϕb,ψ ∈ Φ : ψ ∈ Ψ}.

Second period strategy. For each (ms, ϕs) ∈Ms × Φs, let:

π2
s(ms, ϕs) =



usb
E−uss

1uss + (1− usb
E−uss

)1E if ϕs = ϕs,y and ms = y,

γ(ms) if ms ∈M b
s ,

1vK otherwise.

(B.10)

For convenience, define δ =
usb

E−uss
; when uss = E, let δ = 1.

33Note that (7) implies that if (iii) holds for some mv
s ∈Mv

s , then it holds for all mv
s ∈Mv

s . Also,

when v > min∪ms∈Mb
s
supp(γ(ms)), then for ms such that v > min supp(γ(ms)),

∑
p<v γ(m

v
s)[p](v−

p) ≥
∑
p<v γ(ms)[p](v− p) > 0, where the weak inequality follows from (7); thus (iii) is satisfied for

sufficiently large Y .
34Note that | ∪v Mv

b | =
∑
v |Mv

s | ≤ Y by condition (i) in the definition of Y .
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For each ms ∈ M b
s , define Pms = supp(γ(ms)) and for each (mb, ϕb, p) ∈ Mb ×

Φb × V ∗, let:

π2
b (mb, ϕb, p) =



1 if p = v1

1 if ϕb = ϕb,ψ, ψ
−1(mb) = mv

b,j, p ∈ Pmv
s,j

and p < v

ξ(v,mv
s,j) if ϕb = ϕb,ψ, ψ

−1(mb) = mv
b,j, p ∈ Pmv

s,j
and p = v

1 if mb = Y + 1 and p = uss [only for case δ > 0]

uss/E if mb = Y + 1 and p = E [only for case δ < 1]

0 otherwise.

(B.11)

For convenience, define Pb = ∪ms∈Mb
s
Pms .

For each ϕs ̸∈ Φs andms ̸∈M b
s such that

∑
v ν[v]ϕs(v)Ms [ms] = 0, let π2

s(ms, ϕs) =

1vK . For each ϕs ̸∈ Φs and ms ∈ Ms such that
∑

v ν[v]ϕs(v)Ms [ms] > 0 or ms ∈ M b
s ,

let π2
s(ms, ϕs) = 1p for some p that solves:

max
p∈P ∗

p|Ψ|−1
∑
ψ

∑
mb

∑
v ν[v](βbϕb,ψ(v) + βsϕs(v))[mb,ms]∑
v ν[v](βbϕb,ψ(v) + βsϕs(v))Ms [ms]

π2
b (mb, ϕb,ψ, p), (B.12)

where P ∗ = Pb ∪ {v1, uss, E}. Note that since π2
b (mb, ϕb,ψ, p) = 0 for all p ̸∈ P ∗,

π2
s(ms, ϕs) also maximizes the above expression over ∆(V ∗).

We may assume that π2
s : Ms × Φ → ∆(V ∗) is measurable. Note first that

Ms × Φ = ∪3
r=1Br with

B1 =Ms × Φs,

B2 = {(ms, ϕs) ∈ (Ms \M b
s )× Φ \ Φs :

∑
v

ν[v]ϕs(v)Ms [ms] = 0},

B3 = {(ms, ϕs) ∈ (Ms \M b
s )× Φ \ Φs :

∑
v

ν[v]ϕs(v)Ms [ms] > 0} ∪M b
s × Φ \ Φs).

Indeed, B1 is closed, B3 is open and B2 is the intersection of the closed set {(ms, ϕs) ∈

Ms×Φ :
∑

v ν[v]ϕs(v)Ms [ms] = 0} with the open set (Ms \M b
s )× (Φ \Φs). Then, for
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each measurable B ⊆ ∆(V ∗), note that (π2
s)

−1(B) ∩B1 = C1 ∪ C2 ∪ C3, where:

C1 =

M
b
s × Φs if B ∩ Pb ̸= ∅,

∅ otherwise

C2 =

{(y, ϕs,y) : y ∈ {1, . . . , Y }} if B ∩ {uss, E} ≠ ∅,

∅ otherwise

C3 =

{(ms, ϕs,y) : y ∈ {1, . . . , Y } and ms ̸= y} if B ∩ {vK} ≠ ∅,

∅ otherwise

Thus, (π2
s)

−1(B) ∩ B1 is the union of measurable sets, and hence, measurable. For

each measurable B ⊆ ∆(V ∗), (π2
s)

−1(B)∩B2 = B2 if vK ∈ B and (π2
s)

−1(B)∩B2 = ∅

otherwise; hence (π2
s)

−1(B) ∩ B2 is measurable. Finally, regarding (π2
s)

−1(B) ∩ B3,

for each (ms, ϕs) ∈ B3, let f : B3 × P ∗ → [0, 1] be defined by setting, for each

(ms, ϕs) ∈ B3 and p ∈ P ∗,

f(ms, ϕs, p) = |Ψ|−1
∑
ψ

∑
mb

∑
v ν[v](βbϕb,ψ(v) + βsϕs(v))[mb,ms]∑
v ν[v](βbϕb,ψ(v) + βsϕs(v))Ms [ms]

π2
b (mb, ϕb,ψ, p),

and let χ : B3 ⇒ P ∗ be defined by χ(ms, ϕs) = argmaxp∈P ∗ pf(ms, ϕs, p). Note that

for each p ∈ P ∗, χl({p}) = {(ms, ϕs) ∈ B3 : pf(ms, ϕs, p) ≥ p′f(ms, ϕs, p
′) for all p′ ∈

P ∗} is closed in B3, and hence measurable. Thus, χ is weakly measurable and has

a measurable selection by the Kuratowski-Ryll-Nardzewski Selection Theorem (e.g.

Aliprantis and Border (2006, Theorem 18.13, p. 600)).

For each ϕb ̸∈ Φb and (mb, p) ∈Mb×V ∗ such that Y −1
∑Y

y=1

∑
v,ms

ν[v](βbϕb(v)+

βsϕs,y(v))[mb,ms]π
2
s(ms, ϕs,y)[p] > 0, let π2

b (mb, ϕb, p) = 1 if

Y −1
∑Y

y=1

∑
v,ms

ν[v](βbϕb(v) + βsϕs,y(v))[mb,ms]π
2
s(ms, ϕs,y)[p]v

Y −1
∑Y

y=1

∑
v,ms

ν[v](βbϕb(v) + βsϕs,y(v))[mb,ms]π2
s(ms, ϕs,y)[p]

≥ p (B.13)

and π2
b (mb, ϕb, p) = 0 otherwise.

For each ϕb ̸∈ Φb and (mb, p) ∈Mb×V ∗ such that Y −1
∑Y

y=1

∑
v,ms

ν[v](βbϕb(v)+

βsϕs,y(v))[mb,ms]π
2
s(ms, ϕs,y)[p] = 0, we will define π2

b (mb, ϕb, p) after the following

net {πα, pα}α has been defined, where,
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1. for each α, pα : Φ2 → ∆(V ×M) is measurable and πα is a strategy.

Defining perturbations. Consider {πα, pα}α defined as follows: The index set

consists of (k, F, F̂ , F̃ ) such that k ∈ N, F is a finite subset of N, F̂ is a finite

subset of Φ and F̃ is a finite subset of V ∗; this set is partially ordered by defining

(k′, F ′, F̂ ′, F̃ ′) ≥ (k, F, F̂ , F̃ ) if k′ ≥ k, F ⊆ F ′, F̂ ⊆ F̂ ′ and F̃ ⊆ F̃ ′. If X is a finite

set, let UX ∈ ∆(X) be uniform on X. For each (F, F̂ , F̃ ), define:

Φ(F, F̂ ) = {ϕ ∈ F̂ : supp(ϕ) ⊆ F 2} and

P (F, F̂ , F̃ ) = F̃ ∪ {uss, E, vK} ∪ Pb ∪ (∪ms∈F∪Mb
s ,ϕs∈Φ(F,F̂ )supp(π

2
s(ms, ϕs))).

For each mb ∈ Mb, let ϕ
mb
s be such that ϕmb

s (v1) = 1(mb,1) and ϕ
mb
s (vk) = 1(Y+1,k)

for vk ̸= v1 (i.e. ϕ
mb
s sends the seller message k when the value is vk and sends the buyer

message mb only if the value is v1; otherwise it sends the buyer message Y + 1). Let

πmb,α
s be such that πmb,1,α

s = ϕmb
s and πmb,2,α

s be such that πmb,2,α
s (1, ϕmb

s ) = UP (F,F̂ ,F̃ )

and πmb,2,α
s (ms, ϕs) = 1v1 for all (ms, ϕs) ̸= (1, ϕmb

s ). Let π̂αs be such that π̂1,α
s =

UΦ(F,F̂ ) and π̂
2,α
s (ms, ϕs) = UP (F,F̂ ,F̃ ) for all ms, ϕs. Let, for each t = 1, 2,

πt,αs = (1− j−1)πts + j−1(1− j−j)|F |−1
∑
mb∈F

πmb,t,α
s + j−1j−jπ̂t,αs ,

where j = max{k, |F |, |F̂ |, |F̃ |}.

For each ms ∈Ms, let ϕ
ms
b be such that ϕms

b (vK) = 1(K,ms) and ϕ
ms
b (vk) = 1(k,Y+1)

for vk ̸= vK (i.e. ϕms
b sends the buyer message k when the value is vk and sends the

seller message ms only if the value is vK ; otherwise it sends the seller message Y +1).

Let πms,1,α
b = ϕms

b . Let π̂1,α
b = UΦ(F,F̂ ). Let:

π1,α
b = (1− j−1)π1

b + j−1(1− j−j)|F |−1
∑
ms∈F

πms,1,α
b + j−1j−jπ̂1,α

b .

Let

pα(ϕ)[v,m] = (1− j−j)ν[v](βsϕs(v) + βbϕb(v))[m] + j−jUV×F 2 [v,m].

Note that, for each α and (ϕb, ϕs,ms) ∈ Φ2 × Ms, supp(pα(ϕb, ϕs)), supp(π1,α
b ),

supp(π1,α
s ), and supp(π2,α

s (ms, ϕs))) are finite.
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For each ϕb ̸∈ Φb and (mb, p) ∈Mb×V ∗ such that Y −1
∑Y

y=1

∑
v,ms

ν[v](βbϕb(v)+

βsϕs,y(v))[mb,ms]π
2
s(ms, ϕs,y)[p] = 0, let π2

b (mb, ϕb, p) = 1 if

lim
α

∫
Φ

∑
(v,ms)

pα(ϕb, ϕs)[v,mb,ms]π
2,α
s (ms, ϕs)[p]vdπ

1,α
s [ϕs]∫

Φ

∑
(v,ms)

pα(ϕb, ϕs)[v,mb,ms]π
2,α
s (ms, ϕs)[p]dπ

1,α
s [ϕs]

≥ p (B.14)

and π2
b (mb, ϕb, p) = 0 otherwise.

Finally, let π̂2,α
b (mb, ϕb, p) = UA and π2,α

b (mb, ϕb, p) = (1 − j−1)π2
b (mb, ϕb, p) +

j−1π̂2,α
b (mb, ϕb, p) for each (mb, ϕb, p). Let P̂ = {uss, E, vK} ∪ Pb and note that

∪y,mssupp(π
2
s(ms, ϕs,y)) ⊆ P̂ . Thus, {(ϕb,mb, p) ∈ (Φ \ Φb)×Mb × V ∗ :

Y −1
∑Y

y=1

∑
v,ms

ν[v](βbϕb(v)+βsϕs,y(v))[mb,ms]π
2
s(ms, ϕs,y)[p] > 0 and (B.13) holds}

is measurable since it equals

∪mb∈Mb,p∈P̂

(
{ϕb : Φ \ Φb : Y

−1

Y∑
y=1

∑
v,ms

ν[v](βbϕb(v) + βsϕs,y(v))[mb,ms]π
2
s(ms, ϕs,y)[p] > 0}

∩ {ϕb ∈ Φ : (B.13) holds}
)
× {(mb, p)},

{ϕb : Φ \ Φb : Y
−1

Y∑
y=1

∑
v,ms

ν[v](βbϕb(v) + βsϕs,y(v))[mb,ms]π
2
s(ms, ϕs,y)[p] > 0}

is open and

{ϕb ∈ Φ : (B.13) holds}

is closed. The set {(ϕb,mb, p) ∈ (Φ \Φb)×Mb × V ∗ : Y −1
∑Y

y=1

∑
v,ms

ν[v](βbϕb(v) +

βsϕs,y(v))[mb,ms]π
2
s(ms, ϕs,y)[p] = 0 and (B.14) holds} is also measurable since it

equals the intersection of the complement of {(ϕb,mb, p) ∈ (Φ \ Φb)×Mb × V ∗ :

Y −1
∑Y

y=1

∑
v,ms

ν[v](βbϕb(v)+βsϕs,y(v))[mb,ms]π
2
s(ms, ϕs,y)[p] > 0}, the latter being

equal to

∪mb∈Mb,p∈P̂ {ϕb : Φ \ Φb : Y
−1

Y∑
y=1

∑
v,ms

ν[v](βbϕb(v) + βsϕs,y(v))[mb,ms]π
2
s(ms, ϕs,y)[p] > 0}

× {(mb, p)},

and the closed set

∪mb∈Mb,p∈P̂{ϕb ∈ Φ : (B.14) holds} × {(mb, p)}.

The above argument regarding the openness and closedness of certain sets uses (some

of) the following conditions, which clearly hold:
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2. For each i ∈ N , supB∈B(Φ) |π
1,α
i [B]− π1

i [B]| → 0,

sup
(m,ϕ)∈Ms×Φ,B∈B(V ∗)

|π2,α
s (m,ϕ)[B]− π2

s(m,ϕ)[B]| → 0, and

sup
(m,ϕ,p)∈Mb×Φ×V ∗,a∈A

|π2,α
b (m,ϕ, p)[a]− π2

b (m,ϕ, p)[a]| → 0,

3. For each i ∈ N , m ∈ N, ϕ ∈ Φ, p ∈ V ∗ and a ∈ A, there is ᾱ such that

π1,α
i [{ϕ}] > 0, π2,α

s (m,ϕ)[{p}] > 0 and π2,α
b (m,ϕ, p)[a] > 0 for each α ≥ ᾱ,

4. supϕ∈Φ2,v∈V,B⊆M |pα(ϕ)[{v} ×B]− ν[v]
∑

i∈N βiϕi(v)[B]| → 0,

5. For each ϕ ∈ Φ2, v ∈ V and m ∈ M , there is ᾱ such that pα(ϕ)[v,m] > 0 for

each α ≥ ᾱ.

Note that if ϕb ∈ supp(π1,α
b ) and ϕs ∈ supp(π1,α

s ), then

ϕb ∈ Φα
b := Φb ∪ {ϕms

b : ms ∈ F} ∪ Φ(F, F̂ ) and

ϕs ∈ Φα
s := Φs ∪ {ϕmb

s : mb ∈ F} ∪ Φ(F, F̂ ).

Thus, to show that π is a sequential equilibrium, it suffices to show that the

following conditions hold for each ε > 0 and α:

6.(a) For each i ∈ N and ϕ′
i ∈ Φ,∫

Φ2

∑
(v,m)∈supp(pα(ϕ))

pα(ϕ)[v,m]ui(v, π
2,α(m,ϕ))dπ1,α[ϕ] ≥∫

Φ

∑
(v,m)∈supp(pα(ϕ′i,ϕj))

pα(ϕ′
i, ϕj)[v,m]ui(v, π

2,α(m,ϕ′
i, ϕj))dπ

1,α
j [ϕj]− ε,

where π1,α =
∏

i∈N π
1,α
i , j ̸= i and, for each ϕ ∈ Φ2 and m ∈ M , π2,α(m,ϕ) ∈

∆(V ∗ × A) is defined by setting, for each (p, a) ∈ V ∗ × A, π2,α(m,ϕ)[p, a] =

π2,α
s (ms, ϕs)[p]π

2,α
b (mb, ϕb, p)[a],

6.(b) For each (ms, ϕs) ∈Ms×Φα
s such that

∑
ϕb∈supp(π1,α

b ) p
α(ϕb, ϕs)Ms [ms]π

1,α
b [ϕb] > 0

and p ∈ V ∗,∑
ϕb∈supp(π1,α

b ) π
1,α
b [ϕb]

∑
(v,mb)

pα(ϕb, ϕs)[v,m]us(π
2,α(m,ϕ))∑

ϕb∈supp(π1,α
b ) π

1,α
b [ϕb]pα(ϕb, ϕs)Ms [ms]

≥∑
ϕb∈supp(π1,α

b ) π
1,α
b [ϕb]

∑
(v,mb)

pα(ϕb, ϕs)[v,m]us(p, π
2,α
b (mb, ϕb, p))∑

ϕb∈supp(π1,α
b ) π

1,α
b [ϕb]pα(ϕb, ϕs)Ms [ms]

− ε.
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6.(c) For each (mb, ϕb, p) ∈Mb × Φα
b × V ∗ such that∫

Φ

∑
(v,ms)∈supp(pα(ϕb,ϕs))

pα(ϕs, ϕb)[v,mb,ms]π
2,α
s (ms, ϕs)[p]dπ

1,α
s [ϕs] > 0

and a ∈ A,∫
Φ

∑
(v,ms)

pα(ϕb, ϕs)[v,mb,ms]π
2,α
s (ms, ϕs)[p]ub(v, p, π

2,α
b (mb, ϕb, p))dπ

1,α
s [ϕs]∫

Φ

∑
(v,ms)

pα(ϕs, ϕb)[v,mb,ms]π
2,α
s (ms, ϕs)[p]dπ

1,α
s [ϕs]

≥∫
Φ

∑
(v,ms)

pα(ϕb, ϕs)[v,mb,ms]π
2,α
s (ms, ϕs)[p]ub(v, p, a)dπ

1,α
s [ϕs]∫

Φ

∑
(v,ms)

pα(ϕs, ϕb)[v,mb,ms]π
2,α
s (ms, ϕs)[p]dπ

1,α
s [ϕs]

− ε.

Note that if (ms, ϕs) is such that
∑

ϕb∈supp(π1,α
b ) p

α(ϕb, ϕs)Ms [ms]π
1,α
b [ϕb] > 0, then

ms ∈ ∪vsupp(ϕs(v)Ms) ∪M b
s ∪ F , and if (mb, ϕb, p) is such that∫

Φ

∑
(v,ms)∈supp(pα(ϕb,ϕs))

pα(ϕs, ϕb)[v,mb,ms]π
2,α
s (ms, ϕs)[p]dπ

1,α
s [ϕs] > 0,

then mb ∈ ∪vsupp(ϕb(v)Mb
) ∪ {Y + 1} ∪ F and p ∈ P (F, F̂ , F̃ ).

Proof that the conditions of sequential equilibrium are satisfied. Let

ε > 0. We will show that these conditions holds for some subnet of {πα, pα}α. In

particular, for each (F, F̂ , F̃ ), we will show that there exists a k(F, F̂ , F̃ ) such that

for each α = (k, F, F̂ , F̃ ) with k ≥ k(F, F̂ , F̃ ), condition 6 is satisfied.

Consider condition 6.(a) with i = s. The left-hand side converges to us = βsu
s
s +

βbu
b
s. When ε = 0, the right-hand side of the inequality, for any ϕ′

s ∈ Φ, is at most

(where for each ms, p
′(ms) ∈ supp(π2

s(ms, ϕ
′
s)):

(1− j−1)3(1− j−j)
(
βs|Ψ|−1

∑
ψ

∑
v,m

ν[v]ϕ′
s(v)[mb,ms]p

′(ms)π
2
b (mb, ϕb,ψ, p

′(ms)) + βbu
b
s

)
+(1− (1− j−1)3(1− j−j))vK

≤ (1− j−1)3(1− j−j)

(
βs
∑
v,m

ν[v]ϕ′
s(v)[mb,ms]u

s
s + βbu

b
s

)
+(1− (1− j−1)3(1− j−j))vK ,

since vK is the maximum payoff for the seller and (i) formb ̸= Y +1: if p = v1, then for

each ψ, v1π
2
b (mb, ϕb,ψ, v1) = v1 ≤ uss and if p > v1, then |Ψ|−1

∑
ψ pπ

2
b (mb, ϕb,ψ, p) ≤

83



| ∪vM v
b |Y −1p < v1 ≤ uss;

35 and (ii) for mb = Y +1, for each ψ, Eπ2
b (Y +1, ϕb,ψ, E) =

E(uss/E) = uss, u
s
sπ

2
b (Y + 1, ϕb,ψ, u

s
s) = uss, and pπ2

b (Y + 1, ϕb,ψ, p) = 0 for all p ̸∈

{uss, E}.36 Thus, the inequality holds (uniformly across ϕ′
i ∈ Φ) for each α such that

k (and hence j) is sufficiently large.

Consider next condition 6.(a) with i = b. The left-hand side converges to ub =

βbu
b
b + βsu

s
b. Let v 7→ mv

s be such that mv
s ∈ M v

s for each v ∈ V . When ε = 0, the

right-hand side of the inequality, for any ϕ′
b ∈ Φ, is at most:

(1− j−1)3(1− j−j)
(
βsu

s
b +

βb
∑
v,m

ν[v]ϕ′
b(v)[mb,ms]Y

−1

Y∑
y=1

∫
V ∗
(v − p)π2

b (mb, ϕ
′
b, p)dπ

2
s(ms, ϕs,y)[p]

)
+(1− (1− j−1)3(1− j−j))vK

≤ (1− j−1)3(1− j−j)

(
βsu

s
b + βb

∑
v,m

ν[v]ϕ′
b(v)[mb,ms]

∑
p<v

γ(mv
s)[p](v − p)

)
+(1− (1− j−1)3(1− j−j))vK

≤ (1− j−1)3(1− j−j)

(
βsu

s
b + βb

∑
v

ν[v]
∑
p<v

γ(mv
s)[p](v − p)

)
+(1− (1− j−1)3(1− j−j))vK

since vK is an upper bound on the buyer’s payoff and for each (v,mb,ms) ∈ V ×

M , Y −1
∑Y

y=1

∫
V ∗(v − p)π2

b (mb, ϕ
′
b, p)dπ

2
s(ms, ϕs,y)[p] ≤

∑
p<v γ(m

v
s)[p](v − p). The

latter follows because for each ms ̸∈ M b
s , π

2
s(ms, ϕs,y) = 1vK for each y ̸= ms and

π2
s(ms, ϕs,y) = δ1uss + (1− δ)1E for y = ms by (B.10), and thus

(i) for v ≤ minPb, Y
−1
∑Y

y=1

∫
V ∗(v−p)π2

b (mb, ϕ
′
b, p)dπ

2
s(ms, ϕs,y)[p] ≤ (1−Y −1)(v−

vK)π
2
b (mb, ϕ

′
b, vK)+Y

−1(δ(v−uss)π2
b (mb, ϕ

′
b, u

s
s)+(1−δ)(v−E)π2

b (mb, ϕ
′
b, E)) ≤ 0

since E ≥ uss ≥ v by (6) and (11),37

35Since for each mb, |Ψ|−1|{ψ : mb ∈ ψ(∪vMv
b )}| ≤ | ∪v Mv

b |Y −1, π2
b (mb, ϕb,ψ, p) = 0 for p > v1

andmb such thatmb ̸∈ ψ(∪vMv
b ) by (B.11), and |∪vMv

b |Y −1p ≤ v1 by condition (ii) in the definition

of Y .
36If δ = 1, then Eπ2

b (Y + 1, ϕb,ψ, E) = 0 and if δ = 0, then ussπ
2
b (Y + 1, ϕb,ψ, u

s
s) = 0.

37When δ = 0, i.e. when usb = 0, note that v ≤ E is sufficient for the conclusion (i.e. there is no

need to require v ≤ uss), and this weaker condition follows from (12).
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(ii) for v > minPb, Y
−1
∑Y

y=1

∫
V ∗(v−p)π2

b (mb, ϕ
′
b, p)dπ

2
s(ms, ϕs,y)[p] ≤ (1−Y −1)(v−

vK)π
2
b (mb, ϕ

′
b, vK) + Y −1(vK − uss) <

∑
p<v γ(m

v
s)[p](v − p) by condition (iii) in

the definition of Y ,

and forms ∈M b
s , π

2
s(ms, ϕs,y) = γ(ms) for each y, and

∑
p γ(ms)[p](v−p)π2

b (mb, ϕ
′
b, p) ≤∑

p<v γ(ms)[p](v−p) ≤
∑

p<v γ(m
v
s)[p](v−p) by (7). Thus, the inequality holds (uni-

formly across ϕ′
i ∈ Φ) for each α such that k (and hence j) is sufficiently large.

Let ka be such that condition 6.(a) holds for each α such that k ≥ ka.

Consider next condition 6.(b). We establish it by considering several cases.

Case 1: ϕs = ϕs,y and ms = y. In the limit and when ε = 0, the inequality is

uss ≥ p|Ψ|−1
∑

ψ π
2
b (0, ϕb,ψ, p). It holds since u

s
s ≥ v1 (because u

s
s ∈ V ∗) and by (B.11):

p|Ψ|−1
∑
ψ

π2
b (0, ϕb,ψ, p) =



uss if p = uss [and δ > 0],

uss if p = E [and δ < 1],

v1 if p = v1 and

0 otherwise.

Thus, the inequality holds in the limit. By similar arguments as for condition 6.(a),

for sufficiently large k (and hence j), the inequality in fact holds uniformly across

all y ∈ {1, . . . , Y } and p ∈ V ∗. Let kb1 be such that condition 6.(b) holds for all

(ms, ϕs) ∈ {(y, ϕs,y) : y ∈ {1, . . . , Y }}, for α such that k ≥ kb1.

Case 2: ϕs ∈ Φs and ms = mv
s,j. In the limit and when ε = 0, the inequality is:∑

p∈supp(γ(ms))

γ(ms)[p]p
(∑
v>p

µ(ms)[v] + µ(ms)[p]ξ(p,ms)
)

≥ p|Ψ|−1
∑
ψ

(∑
v

µ(ms)[v]π
2
b (ψ(m

v
b,j), ϕb,ψ, p)

)
.

By (8), it suffices to show that, for some pms ∈ supp(γ(ms)):

pms

( ∑
v>pms

µ(ms)[v] + µ(ms)[pms ]ξ(pms ,ms)
)

≥ p|Ψ|−1
∑
ψ

(∑
v

µ(ms)[v]π
2
b (ψ(m

v
b,j), ϕb,ψ, p)

)
.
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This holds since for p ∈ supp(γ(ms)), the right hand side is p
(∑

v>p µ(ms)[v] +

µ(ms)[p]ξ(p,ms)
)
by (B.11), which is equal to the left hand side by (8); for p = v1,

the right hand side is v1 ≤ pms

(∑
v>pms

µ(ms)[v] + µ(ms)[pms ]ξ(pms ,ms)
)
by (10);

and for p ̸∈ supp(γ(ms))∪{v1}, the right hand side is 0 by (B.11). Thus, the inequality

holds for k sufficiently large (uniformly across ms ∈ M b
s , ϕs ∈ Φs and p ∈ V ∗). Let

kb2 be such that condition 6.(b) holds for all (ms, ϕs) ∈ M b
s × Φs, for α such that

k ≥ kb2.

Case 3: ϕs = ϕs,y and ms ̸∈ {y}∪M b
s . Note that we only need to consider ms ∈ F

in this case (since otherwise
∑

ϕb∈supp(π1,α
b ) p

α(ϕb, ϕs)Ms [ms]π
1,α
b [ϕb] = 0). Given that

ms ∈ F , in the limit (as k → ∞, i.e. we can keep F fixed) and when ε = 0, the

inequality is

vKπ
2
b (K,ϕ

ms
b , vK) ≥ pπ2

b (K,ϕ
ms
b , p).

We have that π2
b (K,ϕ

ms
b , vK) = 1 by (B.13) since ϕms

b (vK)[K,ms] > 0 and

Y −1
∑Y

y=1

∑
v,m̂s

vν[v](βbϕ
ms
b (v) + βsϕs,y(v))[K, m̂s]

Y −1
∑Y

y=1

∑
v′,m′

s
ν[v′](βbϕ

ms
b (v′) + βsϕs,y(v′))[K,m′

s]
= vK .

Hence, for ms ∈ F , the inequality holds in the limit and, thus, for each k sufficiently

large (uniformly across y ∈ {1, . . . , Y } \ {ms} and p ∈ V ∗). For each ms ∈ F \M b
s ,

let kb3(ms) be such that condition 6.(b) holds for all ϕs,y such that y ̸= ms, for each

α such that k ≥ kb3(ms), and let kb3(F ) = maxms∈F\Mb
s
kb3(ms). Note that for all

α = (k, F, F̂ , F̃ ) such that k ≥ kb3(F ), condition 6.(b) holds for all (ms, ϕs) such that

ms ∈ F \M b
s and ϕs = ϕs,y for y ̸= ms.

Case 4: ϕs ̸∈ Φs and ms ∈ Ms such that
∑

v ν[v]ϕs(v)Ms [ms] > 0 or ms ∈ M b
s .

Note that we only need to consider ϕs ∈ Φα
s \ Φs in this case and that Φα

s \ Φs is

finite. In the limit and with ε = 0, the inequality is (in this case π2
s(ms, ϕs) is a pure

strategy)

π2
s(ms, ϕs)|Ψ|−1

∑
ψ

∑
mb

∑
v ν[v](βbϕb,ψ(v) + βsϕs(v))[mb,ms]∑
v ν[v](βbϕb,ψ(v) + βsϕs(v))Ms [ms]

π2
b (mb, ϕb,ψ, π

2
s(ms, ϕs))

≥ p|Ψ|−1
∑
ψ

∑
mb

∑
v ν[v](βbϕb,ψ(v) + βsϕs(v))[mb,ms]∑
v ν[v](βbϕb,ψ(v) + βsϕs(v))Ms [ms]

π2
b (mb, ϕb,ψ, p),
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which holds by (B.12). For each (F, F̂ ), let kb4(F, F̂ ) be such that condition 6.(b)

holds for all ϕs ∈ Φα
s \Φs andms ∈Ms such that

∑
v ν[v]ϕs(v)Ms [ms] > 0 orms ∈M b

s ,

for α = (k, F, F̂ , F̃ ) such that k ≥ kb4(F, F̂ ).

Case 5: ϕs ̸∈ Φs and ms ̸∈ M b
s such that

∑
v ν[v]ϕs(v)Ms [ms] = 0. This is as in

case 3. For each (F, F̂ ), let kb5(F, F̂ ) be such that condition 6.(b) holds for all such

(ms, ϕs), for α = (k, F, F̂ , F̃ ) such that k ≥ kb5(F, F̂ ).

For each (F, F̂ ), let kb(F, F̂ ) = max{kb1, kb2, kb3(F ), kb4(F, F̂ ), kb5(F, F̂ )}.

Consider next condition 6.(c). We establish this condition by considering several

cases.

Case 1: ϕb ∈ Φb, p ∈ {uss, E} and mb = Y + 1.38 First, consider p = uss. Since

π2
b (0, ϕb, u

s
s) = 1, we may consider a = 0. Thus, in the limit and with ε = 0, the

inequality is
∑

v ν[v]v − uss ≥ 0, which holds.

For p = E, π2
b (Y +1, ϕb, E) = uss/E; thus, we need to show that a ∈ {0, 1} results

in the same payoff. In the limit and with ε = 0, both actions give 0 payoff, and thus

the inequality holds.

Let kc1 be such that condition 6.(c) holds for all (mb, ϕb, p) ∈ {Y +1}×Φb×{uss, E},

for α such that k ≥ kc1.

Case 2: ϕb = ϕb,ψ, p ∈ supp(γ(mv
s,j)) and mb = ψ(mv

b,j). First, let p < v. Since

π2
b (ψ(m

v
b,j), ϕb,ψ, p) = 1, we may consider a = 0. Thus, in the limit and with ε = 0, the

inequality is v − p ≥ 0, which holds. Next, let p > v. Since π2
b (ψ(m

v
b,j), ϕb,ψ, p) = 0,

we may consider a = 1. Thus, in the limit and with ε = 0, the inequality is 0 ≥ v−p,

which holds. Finally, let v = p. Since π2
b (ψ(m

v
b,j), ϕb,ψ, v) = ξ(p,mv

s,j), we need to

show that both actions give the same payoff. In the limit and with ε = 0, both actions

give 0 payoff and so the inequality holds. Let kc2 be such that condition 6.(c) holds

for {(ψ(mv
b,j), ϕb,ψ, p) : ψ ∈ Ψ, v ∈ V, j ∈ {1, . . . , Jv}, p ∈ supp(mv

s,j)}, for α such that

k ≥ kc2.

Case 3: ϕb ∈ Φb, p ̸∈ {uss, E} and mb = Y +1. Note that we only need to consider

p ∈ P (F, F̂ , F̃ ) in this case.

38If δ = 0 (resp. δ = 1), then p = uss (resp. p = E) belongs to case 3 below.
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The strategy for the buyer is

π2
b (Y + 1, ϕb, p) =

1 if p = v1,

0 if p > v1.

When p = v1, π
2
b (Y +1, ϕb, p) = 1 gives payoff at least 0, which is also the payoff from

a = 0; thus the inequality holds (in the limit).

We now consider the case p > v1. In this case

Y −1

Y∑
y=1

pα(ϕb, ϕs,y)[v, Y + 1,ms]π
2,α
s (ms, ϕs,y)[p] ≤ j−j

for each v ∈ V and ms ∈Ms since for each y ∈ {1, . . . , Y }, (βbϕb(v) + βsϕs,y(v))[Y +

1,ms] = 0 for ms ̸= y and π2
s(y, ϕs,y)[p] = 0 implies:

ν[v](βbϕb(v) + βsϕs,y(v))[Y + 1,ms]π
2
s(ms, ϕs,y)[p] = 0

and πY+1,2,α
s (y, ϕs,y)[p] = 0 implies:

ν[v](βbϕb(v) + βsϕs,y(v))[Y + 1,ms]π
Y+1,2,α
s (ms, ϕs,y)[p] = 0.

If v ̸= v1, mb ̸= Y + 1, or ms ̸= 1, pα(ϕb, ϕ
mb
s )[v, Y + 1,ms]π

2,α
s (ms, ϕ

mb
s )[p] ≤ j−j.

This is as follows: (1) if mb ̸= Y + 1, then (βbϕb(v) + βsϕ
mb
s (v))[Y + 1,ms] = 0

for each v ∈ V and ms ∈ Ms; (2) if mb = Y + 1, ms = 1 and v ̸= v1, then

(βbϕb(v) + βsϕ
Y+1
s (v))[Y + 1, 1] = 0; and (3) if mb = Y + 1, ms ̸= 1 and v ∈

V , then (i) (βbϕb(v) + βsϕ
Y+1
s (v))[Y + 1,ms] = 0 for each ms ̸∈ {1, . . . , K}, (ii)

π2
s(k

′, ϕY+1
s )[p] = 0 for each k′ ∈ {1, . . . , K} (since, for each ψ, π2

b (Y + 1, ϕb,ψ, p) = 1

if and only if p ∈ {uss, E, v1}, and so supp(π2
s(k

′, ϕY+1
s )) ⊆ {uss, E, v1}), and (iii)

πY+1,2,α
s (ms, ϕ

Y+1
s )[p] = 0 for each ms ̸= 1 and πmb,2,α

s (ms, ϕ
Y+1
s )[p] = 0 for each

mb ̸= Y + 1 and ms ∈Ms.

Finally, note that

π2,α
s (1, ϕY+1

s )[p] = j−1(1− j−j)|F |−1
∑
mb∈F

πmb,2,α
s (1, ϕY+1

s )[p] +O(j−j)

= j−1(1− j−j)|F |−1|P (F, F̂ , F̃ )|−1 +O(j−j)

88



since πmb,2,α
s (1, ϕY+1

s ) = 1v1 for all mb ̸= Y + 1.

Thus, the denominator of the inequality is (ignoring terms that are O(j−j)):

(1− j−1)Y −1

Y∑
y=1

∑
v,ms

pα(ϕb, ϕs,y)[v, Y + 1,ms]π
2,α
s (ms, ϕs,y)[p]

+j−1(1− j−j)|F |−1
∑
mb∈F

∑
v,ms

pα(ϕb, ϕ
mb
s )[v, Y + 1,ms]π

2,α
s (ms, ϕ

mb
s )[p]

+j−1j−j|Φ(F, F̂ )|−1
∑

ϕs∈Φ(F,F̂ )

∑
v,ms

pα(ϕb, ϕs)[v, Y + 1,ms]π
2,α
s (ms, ϕs)[p]

= j−1(1− j−j)|F |−1(1− j−j)ν[v1]βsj
−1(1− j−j)|F |−1|P (F, F̂ , F̃ )|−1

Likewise, also ignoring terms that are O(j−j), the numerator of the right-hand side

of the inequality is

j−1(1− j−j)|F |−1(1− j−j)ν[v1]βsj
−1(1− j−j)|F |−1|P (F, F̂ , F̃ )|−1(v1 − p).

Thus, the limit inequality (with a = 1 and ε = 0) is 0 ≥ v1 − p. For each

p ∈ P (F, F̂ , F̃ ) \ {uss, E}, let kc3(p) be such that condition 6.(c) holds for each

(mb, ϕb, p) ∈ {Y + 1} × Φb × {p}, for each α = (k, F, F̂ , F̃ ) such that k ≥ kc3(p),

and let kc3(F, F̂ , F̃ ) = maxp∈P (F,F̂ ,F̃ ) kc3(p).

Case 4: ϕb = ϕb,ψ, p ̸∈ supp(γ(mv
s,l)) and mb = ψ(mv

b,l). The strategy for the

buyer is

π2
b (ψ(m

v
b,l), ϕb,ψ, p) =

1 if p = v1,

0 if p > v1.

Again, we focus on the case p > v1.

By the same argument as in case 3, we have that for each v ∈ V and ms ∈ Ms,

Y −1
∑Y

y=1

∑
y p

α(ϕb,ψ, ϕs,y)[v, ψ(m
v
b,l),ms]π

2,α
s (ms, ϕs,y)[p] ≤ j−j.

For each v ̸= v1, mb ̸= ψ(mv
b,l), or ms ̸= 1,

pα(ϕb,ψ, ϕ
mb
s )[v, ψ(mv

b,l),ms]π
2,α
s (ms, ϕ

mb
s )[p] ≤ j−j.

This is because (βbϕb,ψ(v) + βsϕ
mb
s (v))[ψ(mv

b,l), 1] = 0 if mb ̸= ψ(mv
b,l) or v ̸= v1,

π
m′

b,2,α
s (ms, ϕ

mb
s )[p] = 0 for each ms ̸= 1 and mb,m

′
b ∈ Mb, π

mb,2,α
s (ms, ϕ

ψ(mv
b,l)

s )[p] = 0

for each mb ̸= ψ(mv
b,l) and ms ∈ Ms, (βbϕb,ψ(v) + βsϕ

ψ(mv
b,l)

s (v))[ψ(mv
b,l),ms] = 0 for
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each ms ̸∈M∗ = {1, . . . , K} ∪ {mv
s,l}, π2

s(ms, ϕ
ψ(mv

b,l)
s )[p] = 0 for each ms ∈M∗ (since

π2
s(ms, ϕ

ψ(mv
b,l)

s ) = v1 is optimal for eachms ∈ {1, . . . , K}39 and supp(π2
s(m

v
s,l, ϕ

ψ(mv
b,l)

s )) ⊆

supp(γ(mv
s,l)), and if mb ̸= ψ(mv

b,l), (βbϕb,ψ(v) + βsϕ
mb
s (v))[ψ(mv

b,l),ms] = 0 for each

ms ̸= mv
s,l and π

2
s(m

v
s,l, ϕ

mb
s )[p] = 0.

Finally, note that

π2,α
s (1, ϕ

ψ(mv
b,l)

s )[p] = j−1(1− j−j)|F |−1
∑
mb∈F

πmb,2,α
s (1, ϕ

ψ(mv
b,l)

s )[p] +O(j−j)

= j−1(1− j−j)|F |−1|P (F, F̂ , F̃ )|−1 +O(j−j).

Thus, the denominator of the inequality is (ignoring terms that are O(j−j)):

(1− j−1)Y −1

Y∑
y=1

∑
v,ms

pα(ϕb,ψ, ϕs,y)[v, ψ(m
v
b,l),ms]π

2,α
s (ms, ϕs,y)[p]

+j−1(1− j−j)|F |−1
∑
mb∈F

∑
v,ms

pα(ϕb,ψ, ϕ
mb
s )[v, ψ(mv

b,l),ms]π
2,α
s (ms, ϕ

mb
s )[p]

= j−1(1− j−j)|F |−1(1− j−j)ν[v1]βsj
−1(1− j−j)|F |−1|P (F, F̂ , F̃ )|−1.

Likewise, also ignoring terms that are O(j−j), the numerator of the right-hand side

of the inequality is

j−1(1− j−j)|F |−1(1− j−j)ν[v1]βsj
−1(1− j−j)|F |−1|P (F, F̂ , F̃ )|−1(v1 − p).

Thus, the limit inequality (with a = 1 and ε = 0) is 0 ≥ v1 − p. For each

p ∈ P (F, F̂ , F̃ ) \ supp(γ(mv
s,l)), let kc4(p) be such that condition 6.(c) holds for

{(ψ(mv
b,l), ϕb,ψ, p) : ψ ∈ Ψ, v ∈ V, l ∈ {1, . . . , Jv}, p ̸∈ supp(γ(mv

s,l)}, for each

α = (k, F, F̂ , F̃ ) such that k ≥ kc4(p), and let kc4(F, F̂ , F̃ ) = maxp∈P (F,F̂ ,F̃ ) kc4(p).

Case 5: ϕb = ϕb,ψ and mb ̸∈ ψ(∪vM v
b ) ∪ {Y + 1}. The strategy for the buyer is

π2
b (mb, ϕb,ψ, p) =

1 if p = v1,

0 if p > v1.

We focus on the case p > v1.

39From the perspective of the seller, when the buyer receives message ψ(mv
b,l), he will reject any

p > v1 with probability at least | ∪v Mv
b |Y −1, giving payoff at most | ∪v Mv

b |Y −1vK < v1
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In this case, Y −1
∑Y

y=1 p
α(ϕb,ψ, ϕs,y)[v,mb,ms]π

2,α
s (ms, ϕs,y)[p] ≤ j−j for all v ∈ V

and ms ∈ Ms, and p
α(ϕb,ψ, ϕ

m′
b

s )[v,mb,ms]π
2,α
s (ms, ϕ

m′
b

s )[p] ≤ j−j if m′
b ̸= mb, v ̸= v1,

or ms ̸= 1.

Thus, the denominator of the inequality is (ignoring terms that are O(j−j)):

(1− j−1)Y −1

Y∑
y=1

∑
v,ms

pα(ϕb,ψ, ϕs,y)[v,mb,ms]π
2,α
s (ms, ϕs,y)[p]

+j−1(1− j−j)|F |−1
∑
m′

b∈F

∑
v,ms

pα(ϕb,ψ, ϕ
m′

b
s )[v,mb,ms]π

2,α
s (ms, ϕ

m′
b

s )[p]

= j−1(1− j−j)|F |−1(1− j−j)ν[v1]βsπ
2,α
s (1, ϕmb

s )[p].

Likewise, also ignoring terms that are O(j−j), the numerator of the right-hand side

of the inequality is

j−1(1− j−j)|F |−1(1− j−j)ν[v1]βsπ
2,α
s (1, ϕmb

s )[p](v1 − p).

Thus, the limit inequality (with a = 1 and ε = 0) is 0 ≥ v1 − p. Let kc5(F, F̂ , F̃ )

be such that condition 6.(c) holds for each (mb, ϕb,ψ, p) such that ψ ∈ Ψ, mb ∈

F \ (ψ(∪vM v
b ) ∪ {Y + 1}) and p ∈ P (F, F̂ , F̃ ), for each α = (k, F, F̂ , F̃ ) such that

k ≥ kc5(F, F̂ , F̃ ).

Case 6: For each mb ∈ Mb and ϕb ̸∈ Φb, 6.(c) holds in the limit by construction.

Let kc6(F, F̂ , F̃ ) be such that condition 6.(c) holds for each ϕb ∈ Φα
b \ Φb, mb ∈

∪vsupp(ϕb(v)Mb
) ∪ {Y + 1} ∪ F and p ∈ P (F, F̂ , F̃ ), for each α = (k, F, F̂ , F̃ ) such

that k ≥ kc6(F, F̂ , F̃ ).

For each (F, F̂ , F̃ ), let

kc(F, F̂ , F̃ ) = max{kc1, kc2, kc3(F, F̂ , F̃ ), kc4(F, F̂ , F̃ ), kc5(F, F̂ , F̃ ), kc6(F, F̂ , F̃ )}.

The above arguments allow us to define the following subnet {πφ(η), pφ(η)}η of

{πα, pα}α such that condition 6 holds.

The index set of the subnet {πφ(η), pφ(η)}η is the same as the one in the net

{πα, pα}α. The function φ : η 7→ α is defined by setting, for each η = (k, F, F̂ , F̃ ),

φ(η) = (max{ka, kb(F, F̂ ), kc(F, F̂ , F̃ )}, F, F̂ , F̃ ).

It is then clear that condition 6 holds and that, as required by the definition of a

subnet, for each α0, there exists η0, e.g. η0 = α0, such that φ(η) ≥ α0 for each η ≥ η0.
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