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Abstract

We analyze a monopoly pricing model where information about the buyer’s

valuation is endogenous. Before the seller sets a price, both the buyer and

the seller receive private signals that may be informative about the buyer’s

valuation. The joint distribution of these signals, as a function of the valuation,

is optimally chosen by the players. In general, players have conflicting incentives

over the provision of information. As a modelling device, we assume that an

aggregation function determines the information structure from the choices

of the players, and we characterize the pure strategy equilibrium payoffs for a

natural class of aggregation functions. Every equilibrium payoff can be achieved

by an information structure that is the result of the seller trying to make both

players uninformed while the buyer tries to learn about his valuation. Price

discrimination is limited to the seller setting different prices for informed vs

uninformed buyers.
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1 Introduction

Recent advances in the economic analysis of monopoly, such as Bergemann, Brooks,

and Morris (2015) and Roesler and Szentes (2017), show that the impact of discrimina-

tory pricing on consumer and producer surplus critically depends on the information

available to both the seller and the buyer(s). Consequently, both parties may desire to

influence or manipulate this information, and moreover there may be a conflict of in-

terest regarding what information should be available. The idea that the information

structure arises endogenously through the potentially conflicting actions of multiple

parties raises several important questions. For example, what information does each

party want to have, and what information do they want the other to have? In case

they disagree, what information structure will result from their conflict? And given

that the information structure arises endogenously, to what extent can the seller price

discriminate? Our aim in this paper is to address these questions in a simple and

tractable framework.

Answering these questions is not straightforward because it is infeasible to model

all the possible ways each party can influence every piece of information provided.

Moreover, when the buyer and the seller have different incentives over the information

they wish to be provided, it is unclear how this conflict of interest will be resolved.

The recent information design literature has generated many insights about the infor-

mation structures that are likely to arise by carefully studying the incentives of some

(metaphorical or literal) information designer who can choose from all possible infor-

mation structures. However, with a few exceptions discussed in Section 2, only the

case of a single information designer has been considered. The conceptual challenge

of considering multiple designers is that ultimately they must decide on a single in-

formation structure, and any model of how a single information structure arises from

the decisions of multiple designers requires non-obvious modelling choices. In short,

there is a need for a general framework for modelling situations where the information

structure is the result of the actions of multiple interested parties; specific instances

of this framework must determine how conflicts between the parties are resolved.
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We consider such framework to study how optimally chosen information affects

monopoly pricing, the latter modelled in the standard way: the seller of a good,

produced with zero marginal cost, makes a take-it-or-leave-it price offer to a buyer

whose valuation is unknown and drawn from a finite set. Our point of departure

from the standard model is that before the seller makes a price offer, both the buyer

and the seller can take actions that determine the information they receive. In our

model, an information structure is a function from the set of unknown valuations to

a set of distributions over message profiles, consisting of one message for each player

which he receives privately.1 The information choices of the players will combine to

produce some information structure, but as a tractable reduced form representation

of the various actions players may take to influence this information structure, we

assume that each player (covertly) chooses the information structure directly and the

true information structure (that determines the information that each player actually

receives) is determined by an aggregation function that combines their choices.

As a concrete example, consider a provider of a new, untested product (e.g. a

healthcare provider offering a new treatment, a university offering a new course, a

financial services firm offering complex insurance or mortgage products). Suppose

that the provider must submit the product to a ratings agency, who scrutinizes it,

solicits feedback from a (representative) buyer, and releases information to both par-

ties.2 Each party may ask the ratings agency to provide information in a specific way.

In case these requests are contradictory, the agency may provide the information

according the buyer’s wishes or according to the seller’s wishes. Suppose that with

probability βb, the ratings agency favors the buyer and with remaining probability

βs, it favors the seller; this situation can be modelled by specifying an aggregation

function that maps the information structures chosen by the players into their convex

1To allow the players to acquire sufficiently rich information if they desire, we assume that the

set of possible messages for each player is the set of natural numbers.
2The introduction of an information intermediary is just one possible interpretation of the model.

In Section 4.1.4, we discuss an alternative interpretation where the buyer and seller communicate

directly with each other.

3



combination for fixed weights.3

The convex combination aggregator allows for rich information incentives. Full

information is possible if both players agree on a fully informative information struc-

ture (e.g. both the seller and the buyer ask the ratings agency to produce an honest

report). But each may prevent the other from full learning by choosing an informa-

tion structure that obfuscates the message of the other player, for example by sending

a message that is only supposed to be received in one state in every state (e.g. the

seller may pressure the ratings agency to certify the product regardless of its quality).

Nevertheless, the players have the option to choose information structures with dis-

joint supports, in which case they will know which information structure a message

comes from and interpret its meaning correctly. Whether they will do so depends on

how incentives play out in equilibrium.

For our main result, presented in Section 3, we will consider a class of aggre-

gation functions that includes the convex combination aggregator and characterize

the equilibrium payoffs of a monopoly pricing game where, before the seller makes a

price offer, the players choose their information in the way we have described. We

provide an interpretation of our model and discuss the assumptions we impose on the

aggregation function in Section 4. Under these assumptions, our model generates a

number of lessons about the implications of optimally chosen information structures

for monopoly pricing: (i) All equilibrium payoffs can be obtained using a specific class

of information structures where (ii) price discrimination is severely limited but (iii)

multiple prices can be supported in equilibrium. We now discuss each of these lessons

in turn.

In general, many kinds of information incentives may potentially shape equilibria.

First, there is buyer-learning: the buyer will try to learn whether he should accept

the seller’s offer. Second, there is buyer-obfuscation: if the seller sometimes gets a

3Since many ratings agencies and other information intermediaries exist in order to provide

advice to buyers while receiving kickbacks or commissions from sellers, it is unclear what their true

preferences are. Our convex combination aggregator is consistent with the simple assumption that

with some probability, the ratings agency’s preferences are fully aligned with the seller’s and with

remaining probability, its preferences are those of the buyer.
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message that makes the seller believe that the buyer’s valuation is low and leads the

seller to offer a low price, then the buyer may try to send this message. Third, there

is seller-obfuscation: if the buyer’s belief following some message is that his valuation

is high, then the seller may try to send this message. Finally, the seller may try to

learn the buyer’s valuation if the buyer is willing to accept higher prices when (he

knows that) his value is high.

In equilibrium, these incentives imply that the seller will offer a single price fol-

lowing all messages from his chosen information structure, which the buyer accepts,

and a (possibly different) single price following all messages from the buyer’s chosen

information structure, which the buyer accepts if his valuation is strictly larger than

the price and only if it is at least as large as the price. Moreover, as far as payoffs are

concerned, we may focus on equilibria where the buyer becomes informed about his

valuation only following messages from his chosen information structure; and where

the seller is always uninformed about the valuation but knows whether or not the

buyer is informed. In particular, it turns out that all pure strategy equilibrium pay-

offs can be achieved using an information structure that, through the aggregation

function, is the result of:

(a) The buyer choosing an information structure which informs him whether his

valuation is at least or at most the price and leaves the seller uninformed.

(b) The seller choosing an information structure which leaves both players unin-

formed.

(c) The players choosing information structures with disjoint supports so that they

know which player is responsible for each message they receive.

Under the assumptions we impose on our aggregation function, property (c) will

imply that it becomes common knowledge whether the buyer is informed about his

valuation. The seller sets price ps when he learns that the buyer is uninformed and

pb when he learns that the buyer is informed; we must have pb ≤ ps (otherwise the

buyer will pretend to be uninformed) and ps must be at most the expected valuation

(otherwise the uninformed buyer will not accept).
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That the buyer chooses an information structure which informs him whether his

valuation is at least or at most the price and leaves the seller uninformed is often

seen in reality. For example, this happens when someone tries some clothes at a store

without assistance from a salesperson.4 That the seller chooses an information struc-

ture where no information is transmitted is also often seen in reality. For example,

manufacturers will often take pre-orders before any reviews of the product have been

released; many sellers list items on eBay and other online marketplaces with only

very limited information;5 wine producers in Bordeaux sell their product en primeur

to négociants, before the wine is bottled and when the quality is still uncertain; and

restaurant menus are often short and uninformative.6 In each case, the buyer would

prefer to have more information, and sometimes may be successful in acquiring such

information (for example, a product reviewer may release an in-depth review that is

recognized by the buyer as being reliable).

That the seller sets the same price for all valuations is due to the difficulty of

credibly transmitting information when the information structure is designed by the

players themselves (without commitment) as in our framework. For example, if the

information structure is designed by the buyer, he will pretend to have whichever

valuation gets the lowest price, thus rendering the message that the seller receives

uninformative. Similarly, if the information structure is designed by the seller, he

will try to make the buyer believe that his valuation is greater than the price. In

4For a literary example, in Chapter 9 of Part I of Don Quixote by Miguel de Cervantes, the

narrator finds, by quietly browsing the notebooks and old papers that a boy was trying to sell, a

manuscript that continues the story of Don Quixote and, thus, finds that the value to him of that

manuscript is higher than the price the boy was asking for it.
5Moreover, sellers on eBay are allowed to make a single time-limited offer to any buyer who

views their listing; many sellers set these offers to be sent out automatically before any information

is exchanged.
6In an article entitled “Why a minimalist menu can ruin my meal”, published in the Financial

Times on 10 August 2023, the writer laments the trend towards “obfuscating and withholding all but

the most minimal information in the menu” which prevents him from making an informed choice.

In our model, information is withheld precisely so that the item can be sold to those who would not

have accepted if they were fully informed.
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reality, we often see, for example, marketing information provided by the seller that

is essentially uninformative as in our model.

A striking feature of our main result is that there is only one instance of price dis-

crimination: the price may be lower for informed buyers than for uninformed ones but

each is the same across valuations. This is a realistic feature: most service providers

offer better deals for (in some cases, all) customers who call them to negotiate, which

can be interpreted as the customer revealing that they are well informed about their

valuation.

Several pairs of prices, for informed and uninformed buyers, are possible in equi-

librium and this creates a multiplicity of equilibrium payoffs. For instance, when

the buyer is uninformed, the price is at most the expected valuation but there are

equilibria where it is lower; in fact it can be anything between the expected valuation

and the lowest valuation of the buyer. What prevents the seller from raising the price

in this case is that the buyer may rationally reject price changes by reasonably at-

tributing it to sellers who know that the valuation is low. In other words, an instance

of the classic lemons problem prevents the seller from adjusting the price in a way

that would be profitable if the buyer’s beliefs were fixed.

The multiplicity of equilibrium payoffs in our setting with optimal information

is nevertheless smaller than what several recent papers, discussed in Section 2, have

found when there is no requirement that the information is optimally chosen. As

discussed above, the requirement that the information structure is optimally chosen

imposes restrictions on what information can be exchanged, thus limiting the extent

of price discrimination.

The multiplicity of payoffs arises because of the possibility that an uncertain

buyer may become pessimistic about his valuation when faced with an unexpected

price change. It is then conceivable that this multiplicity may be eliminated by ruling

out the possibility that the price offer affects the buyer’s belief about his valuation. In

Section 4, we consider an equilibrium refinement that forces the buyer not to update

his belief based on price offers and show that under this refinement there does not

exist a pure strategy equilibrium. Roughly, the reason is that is when the buyer learns
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about his valuation, he will sometimes believe that his valuation is greater than the

expected valuation. With pure strategies, the seller can send the buyer a message

that makes him hold this belief. The refinement implies the buyer must then accept

a price greater than the expected valuation, so this deviation is profitable (since in

equilibrium, the seller cannot get more than the expected valuation, which is the total

surplus).

2 Related literature

Our paper is inspired by the information design literature but in contrast to, e.g.,

Kamenica and Gentzkow (2011) or Bergemann and Morris (2016), we decentralize the

role of the designer and relax the commitment assumption. In addition to monopoly

pricing, our model can be applied to other strategic situations where multiple players

design the information structure in a noncooperative way. For example, we have

applied our model in Carmona and Laohakunakorn (2023) to study a repeated game

where the monitoring structure is optimally chosen by the players themselves, and

in Carmona and Laohakunakorn (2024) to study correlated equilibrium where the

correlation structure is optimally chosen by the players themselves. Besides these two

papers, Gentzkow and Kamenica (2017) also consider the case of multiple information

designers. In their setting, multiple senders choose what information to communicate

to a single receiver who observes the realization of all information structures. In

contrast, in our model, each player is both a sender and a receiver simultaneously

and each observes only the realization of one information structure that aggregates

their information choice.

Especially relevant is Carroll (2019), who considers a setting that is conceptually

similar to ours. In Carroll (2019), an information game consists of the buyer and

seller taking actions, possibly sequentially, and eventually receiving informative sig-

nals about each other. Such interaction in information games is exactly what our

formalization intends to capture in reduced form; in this light, it is reassuring that,

for Carroll’s (2019) main result, the relevant information game for his analysis can be
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summarized by the players choosing between different information structures, which

in principle can be modelled using some aggregation function. However, his goal

is to find the mechanism that maximizes the players’ welfare under the worst-case

information game out of all possible games, whereas we consider a narrow class of

information games (summarized by aggregation functions satisfying our assumptions)

and characterize payoffs for the posted-price monopoly pricing mechanism.

Several recent papers have considered information design in a monopoly pricing

setting. Bergemann, Brooks, and Morris (2015) consider a model where the buyer

is fully informed and show that any feasible payoff such that the seller gets at least

the uniform monopoly profit can be supported in equilibrium for some information

provided to the seller. As an application of their characterization of extensions of

Bayes’ correlated equilibria to multi-stage games, Makris and Renou (2023) consider

all possible information structures in the monopoly setting (i.e. both the buyer and

the seller can become informed) and show that any feasible payoff such that the

seller gets at least the lowest valuation of the buyer can be supported in equilibrium.

Kartik and Zhong (2023) allow the seller’s cost also to be uncertain and characterize

the payoffs from all information structures, as well payoffs under different restrictions

on information structures. In contrast to these papers, we allow the players to choose

their information structure optimally.

Many papers have considered information structures that are optimal for either the

seller or the buyer(s). For example, Roesler and Szentes (2017) consider a model where

the seller is uninformed and find that under the buyer-optimal information structure,

the seller’s payoff is less than the uniform monopoly profit.7 Bergemann, Heumann,

Morris, Sorokin, and Winter (2022) consider the revenue-maximizing information

structure in a second price auction, and Bergemann, Heumann, and Morris (2023)

consider the bidder-optimal information structure in an optimal auction. Bobkova

7Moreover any feasible payoff such that the seller receives at least this amount can be supported

in equilibrium for some information provided to the buyer. Relatedly, Ravid, Roesler, and Szentes

(2022) consider a model where the buyer can a purchase a signal about his valuation, and they show

that as the cost of information goes to zero, equilibria converge to the Pareto-worst free-learning

equilibrium.
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(2024) compares the efficiency of different auctions when bidders can choose to learn

about different components of their value. In contrast, we consider a setting where

both the buyer and the seller receive information, the information structure is the

result of noncooperative optimal choices by both players, and the players can learn

about each other’s information as well as about the buyer’s valuation.

Finally, a few papers allow agents to learn about the learning of others. Pernoud

and Gleyze (2023) allow agents to acquire costly information and find that agents will

typically choose to learn about others’ preferences even when they are not directly

payoff relevant. Denti (2023) and Denti and Ravid (2023) consider a model where

players can learn, at a cost, directly about each other’s signals as well as the state, and

introduces an equilibrium concept which is robust to such information acquisition.8

Unlike in these papers, we assume that information acquisition actions are costless;

what prevents agents from choosing, for example, full information in our model is

that they are constrained by the information choices of others.

3 Model and main result

3.1 Model

A monopolist seller of a good makes a take-it-or-leave-it price offer to a buyer whose

valuation is unknown and who chooses to buy the good at that price or not. In

addition, before the seller makes a price offer, both the buyer and the seller choose

an information structure.

The set of players is represented by N = {b, s} with player b being the buyer and

player s being the seller. The buyer’s valuation of the seller’s good belongs to the

set V = {v1, . . . , vK} with 0 < v1 < · · · < vK ; it is unknown to both players, and its

prior distribution is ζ ∈ ∆(V ) which is fully supported.

Each player chooses an information design which sends messages to both players.

The set of messages each player i ∈ N can potentially receive is Mi = N. This

8See also Hellwig and Veldkamp (2009) who study a beauty contest game where agents can learn

about what others know.
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avoids imposing a bound on the number of different messages that each player can

receive; to avoid unnecessary technical complications, we focus on (arbitrary) finite

subsets of messages. Letting F be the set of finitely supported probability measures

on M =
∏

i∈N Mi = N2, an information design consists of a function ϕ : V → F .

Let Φ be the set of such functions. We use the following notation: For each m ∈ M ,

1m ∈ F denotes the probability measure degenerate on m and, for each γ ∈ F ,

supp(γ) denotes the support of γ and γMi
denotes the marginal of γ on Mi.

The players’ interaction is then described by the following extensive-form game

G. At the beginning of the game, each player i ∈ N chooses an information design

ϕi ∈ Φ. After all players have chosen their information designs, a profile of buyer’s

valuations and messages (v,m) ∈ V × M is realized according to ϕ ∈ ∆(V × M)

defined by setting, for each (v,m) ∈ V ×M ,

ϕ[v,m] = ζ[v]β(ϕb(v), ϕs(v))[m],

where β : F 2 → F is a function that aggregates the information choices of the players.

That is, if the buyer chooses information structure ϕb, the seller chooses information

structure ϕs and the buyer’s valuation is v, the message profile m is drawn from

β(ϕb(v), ϕs(v)).

Let (βb, βs) ∈ R2 such that βb > 0, βs > 0 and βb + βs = 1. The leading example

of an aggregation function in our framework is the convex combination aggregator:

β(γ, γ′) = βbγ+ βsγ
′; this can be interpreted as each player choosing the information

structure they want to be implemented and nature choosing who was successful. More

generally, βi will be interpreted as the power player i has to determine the information

structure. We will be interested in characterizing the equilibrium payoffs that can be

obtained by some aggregation function β : F 2 → F satisfying the following properties:

1. For each m ∈ M and (γ, γ′) ∈ F 2, if γ[m] = γ′[m] = 0, then β(γ, γ′)[m] = 0.

2. For each m ∈ M , γ ̸= 1m and γ̃ ∈ F :

(a) β(1m, γ̃)[m] > β(γ, γ̃)[m] and β(γ̃, 1m)[m] > β(γ̃, γ)[m],
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(b) β(1m, γ̃)[m
′] ≤ β(γ, γ̃)[m′] and β(γ̃, 1m)[m

′] ≤ β(γ̃, γ)[m′] for all m′ ̸= m,

with strict inequality if γ[m′] > 0.

3. For each (γb, γs) ∈ F 2, β(γb, γs)[supp(γb)] ≥ βb and β(γb, γs)[supp(γs)] ≥ βs.

Note that the convex combination aggregator satisfies the three properties.

Property 1 requires that if both players agree that some message profile should

arise with zero probability, then that message profile indeed arises with zero prob-

ability. Property 2 requires that if a player chooses to send a message profile with

probability 1, then the probability of that message profile should go up, and the

probability of all other message profiles should go down independently of the choice

of the other player. Property 3 requires that the realized message profile comes from

the seller’s information structure with probability at least βs and from the buyer’s

information structure with probability at least βb. Thus, βi can be thought of as the

amount of control player i has over the information structure in the sense that if he

chooses to send a particular message profile with probability 1, that message profile

will realize with probability at least βi.

We defer an interpretative discussion of the model and aggregation function, as

well as further examples, to Section 4. Here, we comment briefly on the assump-

tion that the information designs map into finitely supported distributions. Under

the convex combination aggregator, this implies that each player has the option of

learning when his information design is the one that was chosen by nature. Indeed, if

player i chooses ϕi such that ∪vsupp(ϕi,Mi
(v)) ⊆ N \ ∪vsupp(ϕj,Mi

(v)), where j ̸= i,

then whenever he receives a message mi ∈ ∪vsupp(ϕi,Mi
(v)) he knows that the true

information structure is ϕi.
9 Thus, he can deviate as if he fully controls the infor-

mation structure, which facilitates our arguments. With countably infinite supports,

each player can still deviate as if he controls the information structure with arbitrarily

high probability; hence we conjecture that, by using standard ε − δ arguments, our

results would continue to hold without the finite support assumption.

9Under properties 1 and 3, the same is true if ϕi(v) is a degenerate distribution for each v, and

property 2 implies that we can focus on such distributions when looking for profitable deviations.
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Each player i ∈ N observes mi ∈ Mi and his choice ϕi ∈ Φ but neither mj nor ϕj

where j ̸= i. The seller then makes a price offer p ∈ [v1, vK ] to the buyer, and the

buyer chooses whether to accept (a = 1) or reject the offer (a = 0). Let V ∗ = [v1, vK ]

and A = {0, 1}; payoffs are as follows: For each (v, p, a) ∈ V × V ∗ × A,

us(p, a) = pa,

ub(v, p, a) = (v − p)a.

A pure strategy for the seller is πs = (π1
s , π

2
s) such that π1

s ∈ Φ and π2
s : N×Φ → V ∗

is measurable.10 A pure strategy for the buyer is πb = (π1
b , π

2
b ) such that π1

b ∈ Φ and

π2
b : N×Φ× V ∗ → A is measurable. A pure strategy is π = (πb, πs) and let Π be the

set of pure strategies. We use sequential equilibrium, defined in Myerson and Reny

(2020), as our solution concept: π ∈ Π is a sequential equilibrium if it is a perfect

conditional ε-equilibrium for every ε > 0.11

We will focus on pure strategies and thus we often write ϕ∗
i = π1

i , p(ms) =

π2
s(ms, ϕ

∗
s), a(mb, p) = π2

b (mb, ϕ
∗
b , p) and a(mb,ms) = a(mb, p(ms)), where (mb,ms, p) ∈

N2 × V ∗. Let Π∗ be the set of π ∈ Π such that a(mb, v1) = 1 for each mb ∈ Mb and

we focus on π ∈ Π∗. This is a mild refinement since, upon receiving any message mb,

the buyer is certain that his valuation is at least v1 and thus is, at the very least, not

worse off by buying at price v1 than not buying.

3.2 Examples

We present some examples of information structures and ask if they are optimal

for the players under specific assumptions about behavior in the resulting monopoly

pricing game. The examples feature V = {1, 2, 3, 4, 5} with ζ uniform (hence, the

expected valuation is 3), and β(γ, γ′) = 0.5γ + 0.5γ′ for each (γ, γ′) ∈ F 2.

10The set F is endowed with the topology of the weak convergence of probability measures and

the corresponding Borel σ-algebra.
11Our main result, Theorem 1 below, characterizes sequential equilibrium payoffs and its proof

shows that the same characterization is valid for Nash equilibrium payoffs. This holds because

the proof of the necessity part of the theorem uses only the properties that sequential equilibrium

imposes on the equilibrium path, which are the same as in Nash equilibrium.
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Example 1 The information structure ϕ : V → F such that

ϕ(v) = 1(v,v) for each v ∈ V

corresponds to full information. Suppose that, for each v, the seller makes the price

offer v which the buyer accepts. Then ϕ cannot be the information structure in equilib-

rium, i.e. it is not optimal for both players to choose ϕ since the seller has a profitable

deviation to choose an information structure ϕ′(v) = 1(5,5) for each v. Then the distri-

bution of messages is (0.5)1(v,v)+(0.5)1(5,5) for each v. Thus, with probability 0.5, the

seller will receive ms = v and get payoff
∑

v ζ[v]v = 3 as in the proposed equilibrium;

however, with probability 0.5, the seller will get payoff 5 instead of 3.

Example 2 The information structure ϕ̂ : V → F such that

ϕ̂(v) =

1(1,1) if v ∈ {1, 2},

1(2,1) if v ∈ {3, 4, 5}

corresponds to a partially informed buyer and an uninformed seller. Here the buyer

learns whether his value is less than or at least 3, and the seller learns nothing.

Suppose that the seller makes a price offer that is accepted if mb = 2 and rejected

if mb = 1. Then ϕ̂ cannot be the information structure in equilibrium, since the

seller has a profitable deviation to choose an information structure ϕ′(v) = 1(2,1) for

each v. In this case, with probability 0.5, the seller’s price offer will be accepted with

probability 1 instead of 3
5
.

Example 3 The information structure ϕ̄ : V → F such that

ϕ̄(v) = 1(3,3) for each v ∈ V

corresponds to no information. Suppose that the seller makes a price offer p ∈ (1, 3]

which the buyer accepts. Then ϕ̄ cannot be the information structure in equilibrium

since the buyer has a profitable deviation to choose an information structure ϕ(v) =

1(v,3) for each v and to accept only if p ≤ v.
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We now argue that there is an equilibrium where the buyer chooses the information

structure ϕ̂ and the seller chooses the information structure ϕ̄. First, we specify what

happens on the equilibrium path: suppose that ϕ∗
b = ϕ̂, ϕ∗

s = ϕ̄, p(1) = 3, p(3) = 3

and, if p = 3, a(1, p) = 0 and a(2, p) = a(3, p) = 1. Note that on the equilibrium

path, the seller receives messages 1 and 3 and the buyer receives messages 1, 2 and 3.

Also, since the seller sets price 3 after messages 1 and 3, the buyer will only see price

3 on the equilibrium path. Thus, the above is a complete description of the strategy

for on-path histories.

We now argue that the price offer 3 is optimal for the seller. Crucially, note that

any other price offer is off the equilibrium path and thus the belief following such

price offer cannot be determined by Bayes’ rule. In fact, it is possible to construct

perturbations such that the buyer believes that he has valuation 1 after any unex-

pected price offer. Given such belief, we can specify that the buyer will only accept

1 (by assumption) and the equilibrium price offer, making the equilibrium price offer

optimal.

Similarly, to ensure that the information structures are optimally chosen, we can

construct perturbations such that following any zero probability message received

by the buyer, he believes that his valuation is 1; and following any zero probability

message received by the seller, he believes that the buyer would accept 5 (and hence

makes price offer 5).12 Thus, we only have to ensure that the players do not want

to deviate by sending different on-path messages to the other player. If the buyer

sends message 3 instead of 1 to the seller, the price is the same, and he is making the

correct decision ex post conditional on ϕ̂ being chosen, so ϕ̂ is optimal. For the seller,

conditional on ϕ̄ = 1(3,3) being chosen, he gets profit 3, which is the same profit he

12For example, consider a message profile m̃ = (m̃b, m̃s), which consists of messages that neither

player receives with positive probability in equilibrium. If the buyer believes that the seller’s most

likely deviation is to send message m̃b to the buyer when v = 1 and an equilibrium message otherwise,

then after receiving m̃b, the buyer will believe that v = 1. Likewise, if the seller believes that the

buyer’s most likely deviation is to send the message profile m̃ if v = 5 and an equilibrium message

profile otherwise, then after receiving m̃s, he will believe that the buyer received m̃b and believes

that v = 5.
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can get by sending the buyer message 2 (after which the buyer also accepts price 3)

and higher than the profit he can get by sending the buyer message 1 (after which

the buyer rejects all prices other than 1). Thus, ϕ̄ is optimal for the seller.

Note that ϕ̄ and ϕ̂ send different messages to each player, so in this equilibrium,

the players know which information structure has been chosen. When the realized

message profile is sent by the seller, the price is 3 and the buyer accepts. When the

realized message profile is sent by the buyer, the price is 3 and the buyer accepts if

and only if his valuation is at least 3.

In the next subsection, Theorem 1 will imply that any equilibrium payoff can

be achieved using a generalization of the above strategy, with the price following

the seller’s message being replaced by ps ∈ [1, 3], the price following the buyer’s

message being replaced by pb ∈ [1, ps], and the buyer’s information structure being

replaced by ϕ̂ such that ϕ̂(v) = 1(1,1) if v < pb, ϕ̂(v) = 1(2,1) if v > pb and ϕ̂(v) =

(1− λ)1(1,1) + λ1(2,1) for any λ ∈ [0, 1] if v = pb.

3.3 Main result

Our main result characterizes the payoffs that can arise in sequential equilibrium for

some aggregation function satisfying our assumptions. Let U∗ be the set of payoffs of

the sequential equilibria π ∈ Π∗ of any game with an aggregation function β satisfying

properties 1–3.13

Theorem 1 A payoff profile (ub, us) belongs to U∗ if and only if there exists (pb, ps) ∈
13Letting B denote the set of aggregation functions β satisfying Properties 1–3 (given (βb, βs)) and

U∗(β) the set of payoffs of the sequential equilibria π ∈ Π∗ of the game with aggregation function

β, then U∗ = ∪β∈BU
∗(β).
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(V ∗)2 and λ ∈ [0, 1] such that

ub = βs

(∑
v

ζ[v]v − ps

)
+ βb

(∑
v≥pb

ζ[v](v − pb)

)
, (1)

us = βsps + βb

(
pb
∑
v>pb

ζ[v] + pbζ[pb]λ

)
, (2)

pb ≤ ps ≤
∑
v

ζ[v]v and (3)

v1 ≤ pb
∑
v>pb

ζ[v] + pbζ[pb]λ. (4)

The proof of Theorem 1 establishes that, given any aggregation function satisfying

properties 1–3, there are at most two prices ps and pb in a pure strategy equilibrium.14

The price is ps when the message comes from the seller’s information structure, which

happens with probability βs, the price is pb when the message comes from the buyer’s

information structure, which happens with probability βb, and these prices do not

contain any information about the buyer’s valuation.

Conditions (1) and (2) describe the payoffs from such equilibrium, given that the

buyer accepts ps, accepts pb whenever his valuation is greater than pb and rejects pb

whenever his valuation is less than pb. If the buyer’s valuation is exactly pb, he can

accept with any probability λ.15 Condition (3) requires that pb ≤ ps, otherwise the

buyer could deviate by sending the seller the message that results in ps, and that

ps ≤
∑

v ζ[v]v, otherwise the buyer would not accept ps. Condition (4) requires that

the seller’s payoff following each message must be at least v1, since he can always

offer v1 which will be accepted.

Conversely, each payoff profile satisfying (1) and (2) for some (pb, ps, λ) ∈ (V ∗)2×
[0, 1] satisfying (3) and (4) is the payoff of a pure strategy equilibrium given some

aggregation function satisfying properties 1–3, namely the convex combination aggre-

gator.

14All proofs can be found in the Appendix.
15Although the buyer is playing pure strategies, he can choose a nondegenerate information struc-

ture that randomizes between sending himself two messages when his valuation is pb: one where he

accepts pb and another where he rejects pb.
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The focus in Theorem 1 is on payoffs which has the advantage of abstracting from

details of equilibrium strategies that are not relevant for the players’ welfare. To

illustrate this point, note that (ub, us) such that ub =
∑

v ζ[v]v − v1 and us = v1

is an equilibrium payoff (let pb = ps = v1 and λ = 1), which can be obtained

with an equilibrium strategy in which the seller makes price offer v1 regardless of

his information. This then implies that any information structure can be optimally

chosen by the players since then any price offer p > v1 is off the equilibrium path

and it is possible to construct perturbations such that the buyer optimally rejects any

p > v1, making v1 optimal for the seller and any information structure optimal for

each player. This multiplicity of equilibria is however irrelevant for players’ welfare

as all of them have the same payoff.

As already pointed out, it is possible to construct perturbations such that the

buyer optimally rejects price offers that are off the equilibrium path. This allows

multiple pairs of prices (pb, ps) to be supported in equilibrium and accounts for the

multiplicity of payoffs.

To better understand the extent of payoff multiplicity, we provide a further char-

acterization of the set U∗ of equilibrium payoffs in the case where the buyer accepts

when indifferent. We say that (ub, us) ∈ U∗ is represented by (pb, ps, λ) if (1) and (2)

hold for some (pb, ps, λ) ∈ (V ∗)2 × [0, 1] satisfying (3) and (4). We consider the set

U∗∗ of (ub, us) ∈ U∗ represented by (pb, ps, λ) with λ = 1.

Following a message from the seller’s information structure, the sum of payoffs

is the expected valuation (i.e. total surplus), which we denote by E =
∑

v∈V ζ[v]v.

In contrast, following a message from the buyer’s information structure, the buyer

accepts the price offer pb if and only if his valuation is at least pb. Equivalently, the

buyer accepts if and only if his valuation is greater than or equal to some vk ∈ V ,

with pb ∈ (vk−1, vk]. In addition, pb must satisfy pbZ(vk) ≥ v1 and pb ≤ E, where

Z(p) =
∑

v≥p ζ[v] is the probability that v ≥ p, for each p ∈ V ∗. Thus, letting

Ck = {p ∈ (vk−1, vk] : pZ(vk) ≥ v1 and p ≤ E} for each k ∈ {2, . . . , K},

it follows that the buyer will accept if and only if his valuation is at least vk whenever
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pb ∈ Ck for some k ∈ {2, . . . , K}. The case k = 1 is possible, i.e. the buyer accepts

for each valuation, but then pb = v1. To cover this case, let C1 = {v1}.
When pb ∈ Ck, the sum of payoffs following a message from the buyer’s information

structure is the surplus from selling to valuations vk and above, which we denote by

E(vk) =
∑

v≥vk
ζ[v]v. Thus, equilibrium payoffs (ub, us) in U∗∗ satisfy ub + us =

βsE + βbE(vk) for some k ∈ κ, where κ = {k ∈ {1, . . . , K} : Ck ̸= ∅}. In addition,

us satisfies the following bounds when pb ∈ Ck.
16 Let vk = inf Ck and v̄k = maxCk

for each k ∈ κ;17 since ps ≤ E and, when pb ∈ Ck, us = βsps + βbpbZ(vk), it

follows that us ≤ βsE + βbv̄kZ(vk). Furthermore, since pb ≤ ps, it follows that

us ≥ vk(βs + βbZ(vk)) and, in fact, us > vk(βs + βbZ(vk)) if vk = vk−1. Corollary 1

shows that these conditions completely characterize U∗∗.

Corollary 1 U∗∗ = ∪k∈κUk where, for each k ∈ κ such that vk > vk−1,

Uk ={(ub, us) ∈ R2 : ub + us = βsE + βbE(vk),

and vk(βs + βbZ(vk)) ≤ us ≤ βsE + βbv̄kZ(vk)}

and, for each k ∈ κ such that vk = vk−1,

Uk ={(ub, us) ∈ R2 : ub + us = βsE + βbE(vk),

and vk(βs + βbZ(vk)) < us ≤ βsE + βbv̄kZ(vk)}.

It is clear from Corollary 1 that social surplus us+ub is maximized when pb = v1 and

minimized when pb = E since E(vk) is decreasing in vk. In addition, letting p∗ be a

solution to maxp∈[v1,E] pZ(p), the seller’s payoff is maximized when (pb, ps) = (p∗, E)

and minimized when pb = ps = v1, i.e. for each k ∈ κ:

v1 ≤ vk(βs + βbZ(vk)) ≤ βsE + βbv̄kZ(vk) ≤ βsE + βbp
∗Z(p∗).

3.4 Two-type example

We illustrate the main logic of our arguments using an example where V = {1, 2}
and ζ is such that ζ[2] = x. Note that the expected value (and first degree price

16Since ub = βsE + βbE(vk)− us, these bounds could also be written in terms of ub.
17Note that Ck = (vk−1,min{E, vk}]∩[ v1

Z(vk)
,min{E, vk}], hence, vk ∈ Ck if and only if vk > vk−1.
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discrimination payoff) is 1+x. When x ≤ 0.5, the uniform monopoly price is v∗ = 1,

giving uniform monopoly payoff (u∗
b , u

∗
s) = (x, 1), and when x ≥ 0.5, the uniform

monopoly price is v∗ = 2, giving uniform monopoly payoff (u∗
b , u

∗
s) = (0, 2x). Recall

that Bergemann, Brooks, and Morris (2015) show that any feasible payoff such that

the seller gets at least the uniform monopoly profit can be supported under some

information structure such that the buyer is fully informed. Dropping the requirement

that the buyer must be fully informed, Makris and Renou (2023) show that any

feasible payoff where the seller gets at least v1 can be achieved. In our setting, in

contrast, the information structure must be chosen optimally by the players and this

implies that only a small subset of the payoffs identified by Makris and Renou (2023)

can be sustained in a pure strategy equilibrium.18

In any pure strategy equilibrium, there can be at most two prices which are

accepted: ps following a message profile from the seller’s information structure and

pb following a message profile from the buyer’s information structure. To see this,

suppose for simplicity that the buyer fully controls the information structure.19 If the

seller sets price p following ms and p′ > p following m′
s, then (m′

b,m
′
s) ∈ supp(ϕb(2))

for some m′
b.
20 But then the buyer has a profitable deviation to send message profile

(m′
b,ms) instead of (m′

b,m
′
s) when v = 2. Thus, there must be a unique price pb

that results from any message profile from the support of the buyer’s information

structure, and the buyer will accept pb = 1 (by assumption) and pb ∈ (1, 2) if and

only if v = 2. Moreover, this implies that if pb > 1, then xpb ≥ 1, otherwise the seller

18We note that as βs → 1, the set of equilibrium payoffs in our setting approaches the efficiency

frontier. Thus, relative to Makris and Renou (2023), our requirement that the information must be

optimal for the seller simply rules out inefficient outcomes (in the limit). As βb → 1, the relevant

comparison is with Ravid, Roesler, and Szentes (2022) who characterize equilibria with buyer-

optimal learning. However, since sequential equilibrium in our setting allows off-path inference (as

a consequence of the possibility that the seller becomes more informed than the buyer), we find a

larger set of equilibrium payoffs even as βb → 1.
19The assumptions on our aggregation function imply that each player can deviate as if he fully

controls the information structure.
20Since the buyer controls the information, he will never accept p′ when v = 1 and if p′ is never

accepted then it cannot be optimal for the seller.
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Figure 1: Equilibrium payoffs when V = {1, 2}, ζ[2] = x ∈ {0.4, 0.6, 0.8}, βb =
1
2

has a profitable deviation to set price 1 instead of pb.

Similar considerations imply that the seller would only choose to send message

profiles that result in the highest price being accepted; thus, there is a unique price ps

following any message from the seller’s information structure which is accepted. This

implies that ps ≤ 1 + x, otherwise the buyer will not find it optimal to accept, and

pb ≤ ps, otherwise the buyer has a profitable deviation to choose a message profile

from the seller’s information structure instead of his own to induce ps rather than pb.

Thus, we have argued that in any equilibrium, with probability βs, the seller will

set price ps ≤ 1 + x which is accepted; with probability βb, the seller will set price

pb ≤ ps which is accepted if and only if v ≥ pb; and either pb = 1 or xpb ≥ 1. In the

remainder of this section, we illustrate the payoffs that result from varying (pb, ps)

subject to the above constraints.21

First, note that pb = 1 and any ps ∈ [1, 1 + x] always satisfies the constraints,

resulting in payoffs βb(x, 1) + βs(1 + x − ps, ps), for ps ∈ [1, 1 + x]. In other words,

there are equilibria where the payoff is (x, 1) when the buyer’s information is chosen

and can be any (individually rational) efficient payoff when the seller’s information

21That any such (pb, ps) can be supported in equilibrium follows the arguments of Section 3.2:

we can specify that if the buyer receives a message from the seller’s information structure and price

offer other than ps or 1, he believes that his value is 1 and rejects; if he receives a message from

his own information structure and price offer other than pb or 1, he believes that his value is 1 and

rejects. Such beliefs are credible if the buyer believes that sellers who learn that the valuation is 1

are more likely to deviate.
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is chosen. This corresponds to the thick diagonal line that is a subset of the efficient

frontier in each of the three panels of Figure 1. In the notation of Corollary 1, these

are the payoffs belonging to U1, where ub + us = E.

If x < −1+
√
5

2
≈ 0.618, then [ 1

x
, 1 + x] = ∅ and, thus, there are no equilibrium

payoffs with pb > 1.22 In this case, all equilibrium payoffs are as described above,

illustrated in the left and middle panels of Figure 1. Note that when x ≥ 0.5, the

uniform monopoly price is v∗ = 2 and the seller’s payoff from setting pb close to 2 is

greater than 1; however, such pb violates the constraint pb ≤ ps.

On the other hand, when x ≥ −1+
√
5

2
, there are also equilibria where pb ∈ [ 1

x
, 1+x]

and ps ∈ [pb, 1+x], giving payoffs βb(x(2− pb), xpb)+βs(1+x− ps, ps). Note that for

such pb, only buyers with value v = 2 accept; hence the surplus is 2x, xpb of which

goes to the seller. Thus, in this case, there are additional equilibrium payoffs which

are convex combinations of (x(2− pb), xpb) (when the buyer’s information is chosen)

and any payoff on the efficient frontier where the seller gets at least pb (when the

seller’s information is chosen). This corresponds to the diagonal line away from the

efficient frontier in the right panel of Figure 1. In the notation of Corollary 1, these

are the payoffs belonging to U2, where ub + us = βbE(2) + βsE.

3.5 More than two types

A special feature of the two-type example is that the buyer always accepts when

pb ∈ V , since pb = 2 is not possible (it violates pb ≤ ps ≤ 1 + x) and when pb = 1,

the buyer accepts by assumption. In general, when pb ∈ V , it may be possible for the

buyer to accept with probability λ < 1 (from the seller’s perspective) by randomizing

over the messages he sends himself when pb = v. To illustrate this additional feature,

we return to the example from Section 3.2, with V = {1, 2, 3, 4, 5} and ζ uniform.

First, focusing on equilibrium payoffs represented by (pb, ps, λ) with λ = 1, note

that when pb ∈ (2, 3], these payoffs are βb

(
(3−pb)+(4−pb)+(5−pb)

5
, 3
5
pb

)
+ βs(3 − ps, ps),

for ps ∈ [pb, 3]. This corresponds to the leftmost line in the left panel of Figure 2.

22Since if pb > 1, we must have 1
x ≤ pb ≤ ps ≤ 1 + x.
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Figure 2: Equilibrium payoffs when V = {1, 2, 3, 4, 5}, ζ uniform, βb =
1
2

The bottom endpoint of this line is open because as pb → 2, the buyer’s acceptance

probability when v = 2 jumps from 0 to 1 in the limit; thus, the payoff represented

by (pb, ps, λ) = (2, 2, 1) is βb(
6
5
, 8
5
) + βs(1, 2), which is located on the middle line

directly above the bottom endpoint of the leftmost line. Allowing λ = 0, the payoff

represented by (pb, ps, λ) = (2, 2, 0) is βb(
6
5
, 6
5
) + βs(1, 2), the bottom endpoint of the

leftmost line, and as λ varies from 0 to 1, the payoffs represented by (2, 2, λ) lie on

the vertical line joining these two points.

Thus, when we allow all λ ∈ [0, 1], for pb = 2 and each ps ∈ [2, 3], we get payoffs

βb(
6
5
, ub

s) + βs(3− ps, ps), where u
b
s ∈ [6

5
, 8
5
], corresponding to the shaded region in the

right panel of Figure 2. In addition, when pb = 3, the buyer may also accept with

any probability λ ∈ [0, 1], giving payoffs βb(
3
5
, ub

s) + βs(0, 3), where ub
s ∈ [6

5
, 9
5
], which

correspond to the leftmost vertical line in the left panel of Figure 2.

As |V | → ∞ with ζ uniform, v1 = 1 and vK = 5, the set of equilibrium payoffs is

approximately equal to the set of payoffs illustrated in Figure 3. The shaded region

is a union of straight lines, each being the set of convex combinations of payoffs from

setting pb ∈ [1, 3] and points on the efficient frontier where the seller gets at least

pb. In this figure, the dotted blue line corresponds to payoffs following pb, for each

pb ∈ [1, 3]. For example, the red circle corresponds to the payoff when pb = 2.5 (the
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Figure 3: Equilibrium payoffs when |V | is large, ζ uniform, βb =
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2

uniform monopoly price in the limit), the red line on the efficient frontier corresponds

to payoffs when ps ∈ [2.5, 3], and the thick red line corresponds to convex combinations

of the payoff when pb = 2.5 with these payoffs on the efficient frontier. The set of

equilibrium payoffs is then (approximately) the union of such thick lines, as pb varies

from 1 to 3.23

4 Discussion

4.1 Interpretation of the model

Our model of joint information design consists of three key elements: (i) each player

chooses a joint information structure, (ii) the information structures are aggregated

into a single information structure that generates a message profile, and (iii) each

player observes only his private component of the message profile. We will discuss

each of these elements in turn.

23This is just an approximation because we are ignoring the possibility of varying λ, the effect of

which disappears as |V | → ∞.
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4.1.1 Choosing information structures

Information is received in the form of private messages. Returning to the example

from the introduction, the ratings agency may release a report to each of the parties

about its findings. It could issue a public quality rating, which is captured in our

model by perfectly correlated messages. A detailed report which is sufficient for

the customer to learn his value but does not provide any relevant information to

the seller is captured in our model as a perfectly informative message for the buyer

and an uninformative message for the seller (interpreting the buyer’s message as the

combination of the report and his private information about his preferences).

We assume that players choose information structures directly as a reduced form

representation of all the actions they can take to influence or manipulate the in-

formation they each receive. In particular, our model does not require information

to be released simultaneously. Indeed, the private message in our model is just a

summary of all the information received and the choice of information structure is

just a reduced form representation of the (possibly sequential) information acquisi-

tion/revelation actions. In the context of our example, if the seller tells the ratings

agency to accurately review the product and inform the buyer of its findings, and to

report back all the relevant circumstances of the buyer that is sufficient to determine

his valuation, that action is identified with choosing an information structure that

provides full information about the valuation to both parties. Of course, if the buyer

takes actions to prevent his valuation being revealed, such information structure will

not be realized.

The role of the aggregation function is to resolve the conflict between the parties

over the information they wish to be provided.

4.1.2 The aggregation function

When both players agree on some information structure they wish to be realized, each

can be viewed as an information designer picking his preferred information structure.

However, when there is disagreement, the aggregation function is a model of how this
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conflict is resolved.

The assumptions we make on the aggregation function permit a generalization of

the convex combination aggregator and can be interpreted as follows.

1. Property 1 reflects the idea that the players jointly control the information

structure. For example, it requires that the ratings agency may release some

information that is requested by the buyer or by the seller, but it does not

release information that no one asked for.24

Note that property 1 is an assumption on message profiles : it requires that

message profile m cannot arise if no player chooses a distribution with m in

its support, even though both mb and ms may belong to the supports of the

marginal distributions chosen by the players. For example, if the buyer wants

the message profile to be (1, 1) and the seller wants it to be (2, 2), property

1 implies that (1, 2) cannot arise, i.e. the messages will be perfectly correlated

and the players will learn each other’s message.

This assumption makes sense in situations where each player can control both

his own and the information of the other player equally well. For example,

when the ratings agency favours one party, then that party can control what

both players learn. This is the opposite extreme to the assumption that each

player controls his own information, but has no control over the information of

the other player.

2. Property 2 is a weak monotonicity requirement on the aggregation function

with respect to the information choices of the players. It implies that a choice

of a degenerate distribution can be interpreted as the player taking actions

to maximize the probability of a particular message profile being realized. For

example, the seller may want the ratings agency to give a good rating regardless

of the true state. The actions that he can take to maximize the probability of

the agency doing so is captured, in reduced form, by the choice of a degenerate

24Any information that is independently provided by the ratings agency can be reflected in the

prior.
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distribution on the message profile corresponding to the good rating in every

state.

3. In the particular case where the players choose information structures with dis-

joint supports, property 3 requires that βs (resp. βb) is the probability that

the realized message profile comes from the seller’s (resp. buyer’s) informa-

tion structure. The parameter βi can be interpreted as the amount of control

player i has over the true information structure. For example, βi may represent

the resourcefulness or skill of player i in persuading the ratings agency, or al-

ternatively the unmodelled preferences of the agency to favor one player over

another.

The assumption that βi does not depend on the information structure chosen

(and also that the aggregation function is the same in every state) is a sim-

plification that amounts to assuming that whether the information is provided

according to a player’s wishes does not depend on the content of the information

but on, e.g., the bargaining ability of the player.

If we restrict the players to choosing degenerate distributions, then properties 1–3

exactly characterize the convex combination aggregator. When all distributions are

allowed, the convex combination aggregator is the unique aggregation function sat-

isfying properties 1–3 that extends (multi) linearly from degenerate distributions,

i.e. that satisfies β(γ, γ′) =
∑

m∈supp(γ)
∑

m′∈supp(γ′) γ[m]γ′[m′]β(1m, 1m′) for each

(γ, γ′) ∈ F 2.

We end our discussion of the aggregation function by noting that properties 1

and 3 imply that each player has the ability to learn the buyer’s valuation for sure

with positive probability: Let mi ̸∈ ∪vsupp(ϕ−i,Mi
(v)) be a message that player i

never receives from the other player’s information structure. If player i chooses ϕi

such that supp(ϕi,Mi
(v)) = {mi} and mi ̸∈ supp(ϕi,Mi

(v′)) for all v′ ̸= v, then he

will receive mi with positive probability (by property 3) and believe that the buyer’s

valuation is v for sure (by property 1). A similar argument implies that each player

also has the ability (with positive probability) to become certain that the other player
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has received any given message. This feature of our model will be satisfied in our

example if whenever the ratings agency provides information according the seller’s

(resp. buyer’s) wishes, it is willing to inform the seller (resp. buyer) of this fact.

4.1.3 Observability

In our model, each player observes only his own private message (and not the true

information structure or the private message of the other player). This captures the

idea that players have the ability to covertly manipulate the information structure

and such deviations are detected only if the other player receives a message that he

was not expecting in equilibrium.

For example, consumers do not directly observe the interaction between the prod-

uct provider and the ratings agency, and will only detect a deviation if the agency

releases an unexpected report; otherwise, each player will interpret the information

under his equilibrium belief about the information structure.

Although the true information structure is not observed, under the convex com-

bination aggregator, the players can endogenously choose to learn which information

structure realizes by choosing information structures with disjoint supports.

For example, the seller may ask the ratings agency to release a superficial report

that is recognised as uninformative by both players, whereas the buyer may request

a detailed review that provides key information to the buyer but no new information

to the seller. Then on receiving the superficial report, both players will correctly

interpret it as uninformative; and on receiving the detailed review, the buyer will

know his valuation and the seller will know that the buyer is fully informed.

4.1.4 Alternative interpretation: unstructured communication

An alternative interpretation of our model is as a reduced-form description of un-

structured communication. For example, consider a seller negotiating directly with a

potential buyer over an object of initially unknown value to the buyer. Suppose that

learning takes place through a discussion between the two parties where each reveals

relevant facts to the other. In this case, a private message corresponds to the result
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of the conversation between the buyer and seller and any other information obtained

by, for example, inspecting the object.

If the seller tells the buyer all the relevant facts about the condition and history

of the object and asks nothing about the buyer, then he is choosing an information

structure where the buyer fully learns the valuation and the seller remains uninformed.

On the other hand, if the buyer shows no interest in the seller’s description and reveals

relevant facts about himself, then he is choosing an information structure where the

seller fully learns the valuation and the buyer remains uninformed.

This example is consistent with a more metaphorical interpretation of the aggre-

gation function. One can imagine a debate between the buyer and seller about the

value of the object, each providing the other with information. The debate concludes

with each player settling on some interpretation of the facts. Then βb can be viewed

as the debating skill or persuasiveness of the buyer, so that with probability βb, the

players end up believing the interpretation the buyer advocates, and with remaining

probability βs they agree on the seller’s interpretation.

4.2 Refinement

A key feature of the equilibria we construct to support Theorem 1 is that, on observing

an unexpected price, the buyer believes that his valuation is low. This feature can

arise in any model where the seller may have some information that the buyer does

not; it is not a consequence of our requirement that the information structure is

optimally chosen.25 In this section, we introduce a refinement which forces the buyer

not to update his belief based on price.

We define π ∈ Π∗ to be a sequential equilibrium with price-independent beliefs if

π is a sequential equilibrium and, in addition, following any on-path message mb ∈
25Indeed, that there is an equilibrium where the seller sets the lowest possible price because an

uninformed buyer rejects all other prices even though they are less than that his expected valuation is

already established by, for example, Makris and Renou (2023) in a model with exogenous information.

However, this feature is absent from Bergemann, Brooks, and Morris (2015) (where the buyer is fully

informed) and Roesler and Szentes (2017) (where the seller is uninformed).
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∪vsupp(ϕ
∗
Mb

(v)), the buyer’s belief about his valuation is the same for all p and is

equal to

E(v|mb) =

∑
v vζ[v]

∑
ms

β(ϕ∗
b(v), ϕ

∗
s(v))[mb,ms]∑

v ζ[v]
∑

ms
β(ϕ∗

b(v), ϕ
∗
s(v))[mb,ms]

(see Appendix B for a formal definition).26 It turns out that no pure strategy equi-

librium survives this refinement.

Theorem 2 There does not exist π ∈ Π∗ such that π is a sequential equilibrium with

price-independent beliefs.

We illustrate Theorem 2 in the two-type example. Suppose that x = 0.4 so that

E = 1.4 and v∗ = 1. Recall that in any equilibrium, ps ≤ E = 1.4. If pb = 1,

then the buyer accepts pb whatever message mb he receives. But there must be some

mb ∈ supp(ϕ∗
b,Mb

(1))∪supp(ϕ∗
b,Mb

(2)) such that E(v|mb) > E ≥ ps or E(v|mb) = E for

all mb ∈ supp(ϕ∗
b,Mb

(1))∪supp(ϕ∗
b,Mb

(2)). In the former case, the seller has a profitable

deviation to send message mb, offer price E(v|mb)−ε > ps which is accepted for sure.

In the latter case, the seller has a profitable deviation to offer E − ε > pb instead of

pb which is accepted for sure. The argument when pb > 1 is similar.27

The use of mixed strategies in the first period can restore existence. For example,

suppose that the buyer informs himself in the following way: he first picks a number y

at random from {1, . . . , Y } and then sends himself message y+v when his valuation v,

i.e. let ϕb,y(v) = 1(y+v,1) and the buyer chooses a mixed strategy π1
b = |Y |−1

∑Y
y=1 1ϕb,y

.

Following message ms = 1, the seller faces the demand curve of a fully informed

buyer; thus, pb = v∗ is optimal. However, when Y is sufficiently large, the buyer’s

use of mixed strategies prevents the seller from deviating by sending the message

corresponding to v = 2 because the seller does not know which y the buyer has

picked. For example, if the seller sends message Y + 2, with probability Y−1
Y

, the

buyer will observe an off-path message; in such case, the buyer is no longer required

26We follow Kartik and Zhong (2023) with the terminology of price-independent beliefs.
27If pb > 1, then the buyer accepts pb if and only if v = 2, i.e. supp(ϕb,Mb

(1))∩supp(ϕb,Mb
(2)) = ∅,

and following (mb, p) for mb ∈ supp(ϕb,Mb
(2)), the buyer must believe that his value is 2. But then

the seller has a profitable deviation to send mb and offer price 2− ε > ps which is accepted for sure.
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to believe that v = 2 according to the refinement. The use of randomization by the

buyer in this example implies that the meaning of each message is private to the

buyer.28

A Proofs for Section 3

We start by spelling out the equilibrium implications on the equilibrium path in

Section A.1. These will be used to establish general properties that any sequential

equilibrium in pure strategies must satisfy. The proof of Theorem 1 is then in Section

A.2 (necessity part) and Section A.3 (sufficiency part).

A.1 Preliminary Lemmas

Any sequential equilibrium π ∈ Π satisfies the following conditions on the equilibrium

path: ∑
v

ζ[v]
∑
m

β(ϕ∗
b(v), ϕ

∗
s(v))[m]us(π

2(m,ϕ∗)) ≥
∑
v

ζ[v]
∑
m

β(ϕ∗
b(v), ϕs(v))[m]us(π̂

2(m,ϕ∗
b , ϕs)),

(A.1)

for each ϕs ∈ Φ and π̂2
s : Ms × Φ → V ∗, where

π2(m,ϕ∗) = (π2
s(ms, ϕ

∗
s), π

2
b (mb, ϕ

∗
b , π

2
s(ms, ϕ

∗
s))) and

π̂2(m,ϕ∗
b , ϕs) = (π̂2

s(ms, ϕs), π
2
b (mb, ϕ

∗
b , π̂

2
s(ms, ϕs))),

∑
v

ζ[v]
∑
m

β(ϕ∗
b(v), ϕ

∗
s(v))[m]ub(v, π

2(m,ϕ∗)) ≥
∑
v

ζ[v]
∑
m

β(ϕb(v), ϕ
∗
s(v))[m]ub(v, π̂

2(m,ϕb, ϕ
∗
s)),

(A.2)

for each ϕb ∈ Φ and π̂2
b : Mb × Φ× V ∗ → A, where

π̂2(m,ϕb, ϕ
∗
s) = (π2

s(ms, ϕ
∗
s), π̂

2
b (mb, ϕb, π

2
s(ms, ϕ

∗
s))),

28A similar construction by Deb, Pai, and Said (2024) uses a deliberately vague language to

substitute commitment with public communication.
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∑
v,mb

ϕ∗[v,mb,ms]∑
v̂,m̂b

ϕ∗[v̂, m̂b,ms]
us(π

2(m,ϕ∗)) ≥

∑
v,mb

ϕ∗[v,mb,ms]∑
v̂,m̂b

ϕ∗[v̂, m̂b,ms]
us(p, π

2
b (mb, ϕ

∗
b , p))

(A.3)

for each ms ∈ N such that
∑

v,mb
ϕ∗[v,mb,ms] > 0 and p ∈ V ∗, and

∑
v,ms

ϕ∗[v,mb,ms]π
2
s(ms, ϕ

∗
s)[p]∑

v̂,m̂s
ϕ∗[v̂, mb, m̂s]π2

s(m̂s, ϕ∗
s)[p]

ub(v, p, π
2
b (mb, ϕ

∗
b , p)) ≥

∑
v,ms

ϕ∗[v,mb,ms]π
2
s(ms, ϕ

∗
s)[p]∑

v̂,m̂s
ϕ∗[v̂, mb, m̂s]π2

s(m̂s, ϕ∗
s)[p]

ub(v, p, a)

(A.4)

for each mb ∈ N and p ∈ V ∗ such that
∑

v,ms
ϕ∗[v,mb,ms]π

2
s(ms, ϕ

∗
s)[p] > 0 and

a ∈ A.

We will use the following notation: For each (ϕb, ϕs) ∈ Φ2 and v ∈ V , let

ϕ(v) = β(ϕb(v), ϕs(v)) be the distribution from which messages are drawn when

the buyer’s valuation is v and players’ choice of information designs are ϕb and ϕs.

In the remainder of this section, we establish properties of the messages that each

player sends with strictly positive probability. Thus, when the buyer’s valuation is

v and players’ choice of information designs are ϕb and ϕs, let, for each i, j ∈ N

with i ̸= j, mi ∈ Mi and mj ∈ Mj, Si(v) = supp(ϕi(v)) denote the support of

ϕi(v), i.e. the message profiles that player i sends with strictly positive probability,

Si,Mj
(v,mi) = {mj : (mi,mj) ∈ Si(v)} be the set of messages that player i sends

to player j with strictly positive probability when he sends message mi to himself,

Si,Mi
(v,mj) = {mi : (mi,mj) ∈ Si(v)} be the set of messages that player i sends him-

self with strictly positive probability when he sends messagemj to player j, Si,Mj
(v) =

∪mi∈Mi
Si,Mj

(v,mi) be the set of messages that player i sends to player j with strictly

positive probability, Si,Mi
(v) = ∪mj∈Mj

Si,Mi
(v,mj) be the set of messages that player

i sends himself with strictly positive probability and S(v) = Sb(v)∪Ss(v) be the set of

message profiles that some player sends with strictly positive probability. In partic-

ular, ϕ∗(v) = β(ϕ∗
b(v), ϕ

∗
s(v)), S

∗
i (v) = supp(ϕ∗

i (v)), S
∗
i,Mj

(v,mi) = {mj : (mi,mj) ∈
S∗
i (v)}, S∗

i,Mi
(v,mj) = {mi : (mi,mj) ∈ S∗

i (v)}, S∗
i,Mj

(v) = ∪mi∈Mi
S∗
i,Mj

(v,mi),

S∗
i,Mi

(v) = ∪mj∈Mj
S∗
i,Mi

(v,mj) and S∗(v) = S∗
b (v) ∪ S∗

s (v).
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Lemma A.1 shows that if a player i sends a message profile m with strictly positive

probability when the buyer’s valuation is v, then m is optimal for i at v in the sense

that the price and acceptance decision that m induces yields a payoff for i at v as

high as the price and acceptance decision that any other message m′ induces.

Lemma A.1 If π is a sequential equilibrium of G, then supp(ϕ∗
i (v)) ⊆ {m ∈ M :

ui(v, π
2(m,ϕ∗)) = supm′∈M ui(v, π

2(m′, ϕ∗))} for each i ∈ N and v ∈ V .

Proof. Suppose not; then there is i ∈ N , v′ ∈ V , m′ ∈ supp(ϕ∗
i (v

′)) and m∗ ∈ M

such that ui(v
′, π2(m∗, ϕ∗)) > ui(v

′, π2(m′, ϕ∗)). We may assume in addition that

ui(v
′, π2(m∗, ϕ∗)) ≥ ui(v

′, π2(m,ϕ∗)) for all m ∈ S∗(v′) (it is always possible to choose

m∗ satisfying this condition since S∗(v′) is finite).

Consider first the case where i = s. Define ϕs by setting, for each v ∈ V and

m ∈ M ,

ϕs(v)[m] =


1 if v = v′ and m = m∗,

0 if v = v′ and m ̸= m∗,

ϕ∗
s(v)[m] otherwise,

and let π̂2
s : Ms × Φ → V ∗ be such that π̂2

s(ms, ϕs) = π2
s(ms, ϕ

∗
s) for each ms ∈ Ms.

Then π̂2(m,ϕ∗
b , ϕs) = π2(m,ϕ∗) for each m ∈ M , β(ϕ∗

b(v), ϕ
∗
s(v)) = β(ϕ∗

b(v), ϕs(v)) for

each v ̸= v′, β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m] = β(ϕ∗
b(v

′), 1m∗)[m] = 0 for each m ̸∈ S∗(v′) ∪ {m∗}
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(by Property 1) and∑
v

ζ[v]
∑
m

(
β(ϕ∗

b(v), ϕs(v))[m]us(π̂
2(m,ϕ∗

b , ϕs))− β(ϕ∗
b(v), ϕ

∗
s(v))[m]us(π

2(m,ϕ∗))
)

=
∑
v

ζ[v]
∑
m

us(π
2(m,ϕ∗))(β(ϕ∗

b(v), ϕs(v))[m]− β(ϕ∗
b(v), ϕ

∗
s(v))[m])

= ζ[v′]
(
(β(ϕ∗

b(v
′), 1m∗)[m∗]− β(ϕ∗

b(v
′), ϕ∗

s(v
′))[m∗])us(π

2(m∗, ϕ∗))

−
∑

m∈S∗(v′)\{m∗,m′}

(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(ϕ∗
b(v

′), 1m∗)[m])us(π
2(m,ϕ∗))

− (β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m′]− β(ϕ∗
b(v

′), 1m∗)[m′])us(π
2(m′, ϕ∗))

)
≥ ζ[v′]

((
β(ϕ∗

b(v
′), 1m∗)[m∗]− β(ϕ∗

b(v
′), ϕ∗

s(v
′))[m∗]

−
∑

m∈S∗(v′)\{m∗,m′}

(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(ϕ∗
b(v

′), 1m∗)[m])
)
us(π

2(m∗, ϕ∗))

− (β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m′]− β(ϕ∗
b(v

′), 1m∗)[m′])us(π
2(m′, ϕ∗))

)
= ζ[v′]

(
β(ϕ∗

b(v
′), ϕ∗

s(v
′))[m′]− β(ϕ∗

b(v
′), 1m∗)[m′]

)(
us(π

2(m∗, ϕ∗))− us(π
2(m′, ϕ∗))

)
> 0

where the weak inequality follows because for all m ∈ S∗(v′) \ {m∗,m′},

us(π
2(m∗, ϕ∗)) ≥ us(π

2(m,ϕ∗)) and

β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(ϕ∗
b(v

′), 1m∗)[m] ≥ 0

(the latter by Property 2), the last equality follows because∑
m∈S∗(v′)\{m∗}

(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(ϕ∗
b(v

′), 1m∗)[m]) =

β(ϕ∗
b(v

′), 1m∗)[m∗]− β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m∗]

and hence

β(ϕ∗
b(v

′), 1m∗)[m∗]− β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m∗]

−
∑

m∈S∗(v′)\{m∗,m′}

(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(ϕ∗
b(v

′), 1m∗)[m]) =

β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m′]− β(ϕ∗
b(v

′), 1m∗)[m′],

34



and the last inequality follows because

us(π
2(m∗, ϕ∗)) > us(π

2(m′, ϕ∗)) and

β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m′]− β(ϕ∗
b(v

′), 1m∗)[m′] > 0

by Property 2. But this is a contradiction since π is a sequential equilibrium of G.

The proof for the case i = b is analogous. Indeed, define ϕb by setting, for each

v ∈ V and m ∈ M ,

ϕb(v)[m] =


1 if v = v′ and m = m∗,

0 if v = v′ and m ̸= m∗,

ϕ∗
b(v)[m] otherwise,

and let π̂2
b : Mb × Φ × V ∗ → A be such that π̂2

b (mb, ϕb, p) = π2
b (mb, ϕ

∗
b , p) for each

(mb, p) ∈ Mb × V ∗. The remainder of the argument is as in the case i = s.

Lemma A.2 builds on Lemma A.1 to give a stronger sense in which the mes-

sage profiles that a player sends with strictly positive probability are optimal. In-

deed, when the buyer’s valuation is v, then m is optimal for player i in the sense

that the message m−i sent to the other player maximizes i’s value function at v

and i’s choice following mi is a best-reply against −i’s choice following m−i. Thus,

for each v ∈ V and ms ∈ Ms, let wb(v,ms) = maxa∈A ub(v, π
2
s(ms, ϕ

∗
s), a) and

BRb(v,ms) = {a ∈ A : ub(v, π
2
s(ms, ϕ

∗
s), a) = wb(v,ms)} be, respectively, the buyer’s

value function and best-reply correspondence. Analogously, for each mb ∈ Mb, let

ws(mb) = supp∈V ∗ us(p, π
2
b (mb, ϕ

∗
b , p)) and BRs(mb) = {p ∈ V ∗ : us(p, π

2
b (mb, ϕ

∗
b , p)) =

ws(mb)}. Furthermore, for each v ∈ V and mb ∈ Mb, let ws(v,mb) = ws(mb) and

BRs(v,mb) = BRs(mb).

Lemma A.2 If π is a sequential equilibrium of G, then

supp(ϕ∗
i (v)) ⊆ {m ∈ M : wi(v,m−i) = sup

m′
−i∈M−i

wi(v,m
′
−i)

and π2
i (mi, ϕ

∗
i ) ∈ BRi(v,m−i)}

for each i ∈ N and v ∈ V , where π2
b (mb, ϕ

∗
b) = π2

b (mb, ϕ
∗
b , π

2
s(ms, ϕ

∗
s)) for each m ∈ M .
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Proof. Suppose not; then there is i ∈ N , v′ ∈ V , m′ ∈ supp(ϕ∗
i (v

′)) and m∗ ∈ M

such that (i) wi(v
′,m∗

−i) > wi(v
′,m′

−i) or (ii) wi(v
′,m′

−i) = supm̂−i∈M−i
wi(v

′, m̂−i)

and π2
i (m

′
i, ϕ

∗
−i) ̸∈ BRi(v

′,m′
−i); in case (ii), let m∗ = m′. In addition, we may

assume that wi(v
′,m∗

−i) ≥ wi(v
′,m−i) for all m ∈ S∗(v′).

Consider the case where i = b. Let a∗ ∈ BRb(v
′,m∗

s), m̄b ∈ Mb be such that

(m̄b,m
∗
s) ̸∈ S∗(v′),

ϕb(v) =

1(m̄b,m∗
s) if v = v′,

ϕ∗
b(v) otherwise,

and π̂2
b : Mb×Φ×V ∗ → A be such that π̂2

b (m̄b, ϕb, π
2
s(m

∗
s, ϕ

∗
s)) = a∗ and π̂2

b (mb, ϕb, p) =

π2
b (mb, ϕ

∗
b , p) for each (mb, p) ̸= (m̄b, π

2
s(m

∗
s, ϕ

∗
s)). Then π̂2(m,ϕb, ϕ

∗
s) = π2(m,ϕ∗) for

each m ∈ M such that mb ̸= m̄b, β(ϕ
∗
b(v), ϕ

∗
s(v)) = β(ϕb(v), ϕ

∗
s(v)) for each v ̸= v′,

β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m] = 0 for each m ̸∈ S∗(v′) and β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m] = 0 for each

m ̸∈ S∗(v′) ∪ {(m̄b,m
∗
s)} (by Property 1), (m̄b,m

∗
s) ̸∈ S∗(v′) and∑

v

ζ[v]
∑
m

(
β(ϕb(v), ϕ

∗
s(v))[m]ub(v, π̂

2(m,ϕb, ϕ
∗
s))

−β(ϕ∗
b(v), ϕ

∗
s(v))[m]ub(v, π

2(m,ϕ∗))
)

= ζ[v′]

(∑
m

(
β(1(m̄b,m∗

s), ϕ
∗
s(v

′))[m]ub(v
′, π̂2(m,ϕb, ϕ

∗
s))

−β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]ub(v
′, π2(m,ϕ∗))

))
= ζ[v′]

(
β(1(m̄b,m∗

s), ϕ
∗
s(v

′))[m̄b,m
∗
s]wb(v

′,m∗
s)

−
∑

m∈S∗(v′)\{m′}

(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m])ub(v
′, π2(m,ϕ∗))

−(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m′]− β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m′])ub(v
′, π2(m′, ϕ∗))

)
≥ ζ[v′]

((
β(1(m̄b,m∗

s), ϕ
∗
s(v

′))[m̄b,m
∗
s]

−
∑

m∈S∗(v′)\{m′}

(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m])
)
wb(v

′,m∗
s)

−(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m′]− β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m′])ub(v
′, π2(m′, ϕ∗))

)
= ζ[v′]

(
β(ϕ∗

b(v
′), ϕ∗

s(v
′))[m′]− β(1(m̄b,m∗

s), ϕ
∗
s(v

′))[m′]
)

×
(
wb(v

′,m∗
s)− ub(v

′, π2(m′, ϕ∗))
)
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where the weak inequality follows because for all m ∈ S∗(v′) \ {m′},

wb(v
′,m∗

s) ≥ wb(v
′,ms) ≥ ub(v

′, π2(m,ϕ∗)) and

β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(ϕ∗
b(v

′), 1(m̄b,m∗
s))[m] ≥ 0

(the latter by Property 2), and the last equality follows because

β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m̄b,m
∗
s]−

∑
m∈S∗(v′)\{m′}

(β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m]− β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m])

= β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m′]− β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m′].

By Property 2, β(ϕ∗
b(v

′), ϕ∗
s(v

′))[m′] − β(1(m̄b,m∗
s), ϕ

∗
s(v

′))[m′] > 0. If wb(v
′,m∗

s) >

wb(v
′,m′

s), then

wb(v
′,m∗

s)− ub(v
′, π2(m′, ϕ∗)) ≥ wb(v

′,m∗
s)− wb(v

′,m′
s) > 0;

if wb(v
′,m∗

s) = wb(v
′,m′

s), then π2
b (m

′
b, ϕ

∗
b) ̸∈ BRb(v

′,m′
s) and

wb(v
′,m∗

s)− ub(v
′, π2(m′, ϕ∗)) > wb(v

′,m∗
s)− wb(v

′,m′
s) ≥ 0.

In either case, it follows that∑
v

ζ[v]
∑
m

(β(ϕb(v), ϕ
∗
s(v))[m]ub(v, π̂

2(m,ϕb, ϕ
∗
s)) >∑

v

ζ[v]
∑
m

(β(ϕ∗
b(v), ϕ

∗
s(v))[m]ub(v, π

2(m,ϕ∗)).

But this is a contradiction since π is a sequential equilibrium.

The proof for the case i = s is analogous. Let m̄s ∈ Ms be such that (m∗
b , m̄s) ̸∈

S∗(v′) and, for each k ∈ N, pk ∈ V ∗ be such that us(pk, π
2
b (m

∗
b , ϕ

∗
b , pk)) > ws(m

∗
b)−1/k.

Then let

ϕs(v) =

1(m∗
b ,m̄s) if v = v′,

ϕ∗
s(v) otherwise,

and π̂2
s : Ms × Φ → V ∗ be such that π̂2

s(m̄s, ϕs) = pk and π̂2
s(ms, ϕs) = π2

s(ms, ϕ
∗
s) for

each ms ̸= m̄s. An argument analogous to the one for the case i = b then shows that,
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for each k ∈ N,∑
v

ζ[v]
∑
m

(
β(ϕ∗

b(v), ϕs(v))[m]us(π̂
2(m,ϕ∗

b , ϕs))− β(ϕ∗
b(v), ϕ

∗
s(v))[m]us(π

2(m,ϕ∗))
)

≥ ζ[v′]
(
β(ϕ∗

b(v
′), ϕ∗

s(v
′))[m′]− β(ϕ∗

b(v
′), 1(m∗

b ,m̄s))[m
′]
)(

ws(m
∗
b)− us(π

2(m′, ϕ∗))
)

−1

k
ζ[v′]β(ϕ∗

b(v
′), 1(m∗

b ,m̄s))[m
∗
b , m̄s].

Since(
β(ϕ∗

b(v
′), ϕ∗

s(v
′))[m′]− β(ϕ∗

b(v
′), 1(m∗

b ,m̄s))[m
′]
)(

ws(m
∗
b)− us(π

2(m′, ϕ∗))
)
> 0,

it follows that, for each k sufficiently large,∑
v

ζ[v]
∑
m

(β(ϕ∗
b(v), ϕs(v))[m]us(π̂

2(m,ϕ∗
b , ϕs)) >∑

v

ζ[v]
∑
m

(β(ϕ∗
b(v), ϕ

∗
s(v))[m]us(π

2(m,ϕ∗)).

But this is a contradiction since π is a sequential equilibrium.

A.2 Proof of Theorem 1: Necessity part

Let π ∈ Π∗ be a sequential equilibrium.

The following lemma shows that there is only one price ps that is induced from any

message that the seller sends himself with strictly positive probability. Furthermore,

the buyer accepts ps after any message that the seller sends him with strictly positive

probability. This is a consequence of the optimality of messages described in Lemma

A.1.

Lemma A.3 p(ms) = p(m′
s) for each ms,m

′
s ∈ ∪vS

∗
s,Ms

(v) and a(mb, ps) = 1 for

each mb ∈ ∪vS
∗
s,Mb

(v), where ps is the common value of p(ms) for ms ∈ ∪vS
∗
s,Ms

(v).

Proof. Note first that maxm∗∈∪vS∗(v) us(π
2(m∗, ϕ∗)) > 0. Indeed, us(π

2(m∗, ϕ∗)) ≥
0 for each m∗ ∈ ∪vS

∗(v) and if maxm∗∈∪vS∗(v) us(π
2(m∗, ϕ∗)) = 0, then us(π) = 0 by

property 1. But then, letting π̂1
s = (ϕ∗

s, π̂
2
s) with π̂2

s(ms, ϕ) = v1 for each (ms, ϕ) ∈
Ms × Φ, we have that us(πb, π̂s) = v1 > 0 = us(π) since the price v1 is accepted by
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the buyer with probability 1. But this is a contradiction to the assumption that π is

a sequential equilibrium.

Let ms,m
′
s ∈ ∪vS

∗
s,Ms

(v) and let v, v′ ∈ V and mb,m
′
b ∈ Mb be such that

(ms,mb) ∈ S∗
s (v) and (m′

s,m
′
b) ∈ S∗

s (v
′). Then a(mb, p(ms)) = a(m′

b, p(m
′
s)) = 1

since otherwise maxm∗∈∪vS∗(v) us(π
2(m∗, ϕ∗)) = 0 by Lemma A.1. Hence, by Lemma

A.1,

p(ms) = us(p(ms), a(mb, p(ms))) = max
m∗∈∪vS∗(v)

us(π
2(m∗, ϕ∗))

= us(p(m
′
s), a(m

′
b, p(m

′
s))) = p(m′

s)

and, since maxm∗∈∪vS∗(v) us(π
2(m∗, ϕ∗)) > 0, ps > 0. Thus, for each m̂b ∈ ∪vS

∗
s,Mb

(v),

ps = maxm∗∈∪vS∗(v) us(π
2(m∗, ϕ∗)) = psa(m̂b, ps) and, hence, a(m̂b, ps) = 1.

The next result is needed for Lemmas A.5 and A.6 below and simply shows that

there is message profile m that the buyer sends with strictly positive probability and

which induces him to accept the resulting price.

Lemma A.4 There exist v ∈ V and m ∈ S∗
b (v) such that a(mb, p(ms)) = 1.

Proof. We will show that a(mb, p(ms)) = 1 for each m ∈ S∗
b (vK).

We have that p(ms) = ps and a(mb, p(ms)) = 1 for each m ∈ ∪vS
∗
s (v) by Lemma

A.3 and ϕ∗(v)[S∗
s (v)] ≥ βs > 0 for each v ∈ V by property 3. Thus, for each v ∈ V ,

there exists mv ∈ S∗
s (v) such that p(mv

s) = ps, a(m
v
b , p(m

v
s)) = 1 and ϕ∗[v,mv

b ,m
v
s ] >

0.

We have that
∑

(v,ms):p(ms)=ps
ϕ∗[v,mv1

b ,ms] ≥ ϕ∗[v1,m
v1
b ,mv1

s ] > 0. Thus, by

(A.4),

0 ≤
∑

(v,ms):p(ms)=ps

ϕ∗[v,mv1
b ,ms](v − ps).

If ps = vK , (v − ps) ≤ 0 for all v and
∑

(v,ms):p(ms)=ps
ϕ∗[v,mv1

b ,ms](v − ps) ≤
ϕ∗[v1,m

v1
b ,mv1

s ](v1 − ps) < 0. Hence, ps < vK . It follows from ps < vK that

0 < vK − ps = ub(vK ,m
vK ) ≤ ub(vK ,m) for each m ∈ S∗

b (vK) by Lemma A.1.

Thus, a(mb, p(ms)) = 1 for each m ∈ S∗
b (vK).
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Lemma A.5 shows that there is only one price pb that is induced from any message

that the buyer sends the seller with strictly positive probability and which induces

him to accept at some valuation. Furthermore, the buyer accepts pb after any message

that he sends himself when his valuation is above pb and rejects pb after any message

that he sends himself when his valuation is below pb. This is a consequence of the

optimality of messages described in Lemmas A.1 and A.2.

Lemma A.5 p(ms) = p(m′
s) for each m,m′ ∈ ∪v{m̃ ∈ S∗

b (v) : a(m̃b, p(m̃s)) = 1}.
Furthermore, letting pb be the common value of p(ms) for m ∈ ∪v{m̃ ∈ S∗

b (v) :

a(m̃b, p(m̃s)) = 1},

a(mb, p(ms)) =

1 if v > pb,

0 if v < pb

for each v ∈ V and m ∈ S∗
b (v).

Proof. Let m,m′ ∈ ∪v{m̃ ∈ S∗
b (v) : a(m̃b, p(m̃s)) = 1} be such that p(ms) >

p(m′
s). Then let v, v′ ∈ V be such that (mb,ms) ∈ S∗

b (v), a(mb, p(ms)) = 1, (m′
b,m

′
s) ∈

S∗
b (v

′) and a(m′
b, p(m

′
s)) = 1.

Consider a deviation by b to a strategy π̂b = (ϕb, π̂
2
b ) such that ϕb(v) = 1(m′

b,m
′
s),

ϕb(v̂) = ϕ∗
b(v̂) for each v̂ ∈ V \{v} and π̂2

b (m̂b, ϕb, p) = π2
b (m̂b, ϕ

∗
b , p) for each (m̂b, p) ∈

N× V ∗. This deviation is profitable since ub(π̂b, πs)− ub(π) equals

ζ[v]
∑

m̸̃∈{m′,m}

(
β(ϕb(v), ϕ

∗
s(v))[m̃]− β(ϕ∗

b(v), ϕ
∗
s(v))[m̃]

)
ub(v, π

2(m̃, ϕ∗))

+ ζ[v]
(
β(ϕb(v), ϕ

∗
s(v))[m]− β(ϕ∗

b(v), ϕ
∗
s(v))[m]

)
ub(v, π

2(m,ϕ∗))

+ ζ[v]
(
β(ϕb(v), ϕ

∗
s(v))[m

′]− β(ϕ∗
b(v), ϕ

∗
s(v))[m

′]
)
ub(v, π

2(m′, ϕ∗)).

Lemma A.1 implies that ub(v, π
2(m̃, ϕ∗)) ≤ ub(v, π

2(m,ϕ∗)) for each m̃ ̸∈ {m′,m}
since m ∈ S∗

b (v). Furthermore, ub(v, π
2(m,ϕ∗)) = v − p(ms) < v − p(m′

s) =

ub(v, π
2(m′, ϕ∗)). Thus,

ub(π̂b, πs)− ub(π) ≥

ζ[v]
(
β(ϕb(v), ϕ

∗
s(v))[m

′]− β(ϕ∗
b(v), ϕ

∗
s(v))[m

′]
)
(ub(v, π

2(m′, ϕ∗))− ub(v, π
2(m,ϕ∗))) =

ζ[v]
(
β(ϕb(v), ϕ

∗
s(v))[m

′]− β(ϕ∗
b(v), ϕ

∗
s(v))[m

′]
)
(p(ms)− p(m′

s)) > 0
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since β(ϕb(v), ϕ
∗
s(v))[m

′] > β(ϕ∗
b(v), ϕ

∗
s(v))[m

′] by property 2. But this contradicts

the assumption that π is a sequential equilibrium.

Finally, let v ∈ V and m ∈ S∗
b (v). First, suppose that p(ms) = pb. Then

a(mb, pb) ∈ BRb(v,ms) by Lemma A.2, hence a(mb, pb) = 1 if v > pb and a(mb, pb) = 0

if v < pb. In case p(ms) ̸= pb, a(mb, p(ms)) = 0. By Lemma A.2, supm′
s
wb(v,m

′
s) = 0

and by Lemma A.4, there exists ms such that p(ms) = pb; hence v ≤ pb.

For each v ∈ V , let β[v] =
∑

m∈S∗
s (v)

ϕ∗(v)[m] be the ϕ∗(v)-probability of S∗
s (v).

Then ∑
m∈S∗

b (v)\S∗
s (v)

ϕ∗(v)[m] = 1− β[v]

by property 1. If pb ∈ V , let

Λ = {m ∈ S∗
b (pb) \ S∗

s (pb) : a(mb, pb) = 1}

be the set of message profiles that the buyer sends and the seller doesn’t at v = pb

and which induce acceptance of pb, and λ ∈ [0, 1] be the ϕ∗(pb)-probability of Λ

conditional on S∗
b (pb) \ S∗

s (pb), i.e.

λ(1− β[pb]) =
∑
m∈Λ

ϕ∗(pb)[m];

if pb ̸∈ V , then let λ = 0. We will show in what follows that, adjusting λ if necessary

to λ∗ (to be defined below), (1)–(4) in the statement of Theorem 1 hold for pb, ps and

λ∗.

It follows by Lemmas A.3 and A.5 that

ub =
∑
v

ζ[v]β[v](v − ps) +
∑
v≥pb

ζ[v](1− β[v])(v − pb) and

us = ps
∑
v

ζ[v]β[v] + pbζ[pb](1− β[pb])λ+ pb
∑
v>pb

ζ[v](1− β[v]).

In the case where pb ̸= ps, it follows that, for each v ∈ V , S∗
s (v) ∩ S∗

b (v) = ∅
by Lemmas A.3 and A.5. Indeed, if m ∈ S∗

s (v) ∩ S∗
b (v), then p(ms) = ps and

a(mb, p(ms)) = 1 by Lemma A.3. Hence, Lemma A.5 implies that p(ms) = pb ̸=
ps = p(ms), a contradiction.
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It then follows by property 3 that β[v] = βs and 1− β[v] = βb and, thus,

ub = βs

(∑
v

ζ[v]v − ps

)
+ βb

(∑
v≥pb

ζ[v](v − pb)

)
and

us = βsps + βb(pb
∑
v>pb

ζ[v] + pbζ[pb]λ).

Consider next the case pb = ps and let p = pb = ps. Then

ub =
∑
v>p

ζ[v](v − p) +
∑
v≤p

ζ[v]β[v](v − p) ≤
∑
v>p

ζ[v](v − p) +
∑
v≤p

ζ[v]βs(v − p)

= βs

(∑
v

ζ[v]v − ps

)
+ βb

(∑
v≥pb

ζ[v](v − pb)

)
and

us = p
∑
v>p

ζ[v] + pζ[p](β[p] + (1− β[p])λ) + p
∑
v<p

ζ[v]β[v]

≥ p
∑
v>p

ζ[v] + pζ[p](βs + βbλ) + p
∑
v<p

ζ[v]βs

= βsps + βb(pb
∑
v>pb

ζ[v] + pbζ[pb]λ).

For each v ∈ V , let β̂[v] =
∑

m∈S∗
b (v)

ϕ∗(v)[m]. Then∑
m∈S∗

s (v)\S∗
b (v)

ϕ∗(v)[m] = 1− β̂[v]

by property 1. If pb ∈ V , let

Λ̂ = {m ∈ S∗
b (pb) : a(mb, pb) = 1}, and (A.5)

λ̂β̂[pb] =
∑
m∈Λ̂

ϕ∗(pb)[m]; (A.6)

if pb ̸∈ V , then let λ̂ = 0. Thus, when pb ∈ V , λ̂ ∈ [0, 1] is the ϕ∗(pb)-probability of

Λ̂ conditional on S∗
b (pb) and Λ̂ is the set of message profiles that the buyer sends at

v = pb and which induce acceptance of pb.

It follows by Lemmas A.3 and A.5 that

ub =
∑
v

ζ[v](1− β̂[v])(v − ps) +
∑
v≥pb

ζ[v]β̂[v](v − pb) and

us = ps
∑
v

ζ[v](1− β̂[v]) + pbζ[pb]β̂[pb]λ̂+ pb
∑
v>pb

ζ[v]β̂[v].
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Then

ub =
∑
v>p

ζ[v](v − p) +
∑
v≤p

ζ[v](1− β̂[v])(v − p)

≥
∑
v>p

ζ[v](v − p) +
∑
v≤p

ζ[v](1− βb)(v − p)

= βs

(∑
v

ζ[v]v − ps

)
+ βb

(∑
v≥pb

ζ[v](v − pb)

)
and

us = p
∑
v>p

ζ[v] + pζ[p](β̂[p]λ̂+ (1− β̂[p])) + p
∑
v<p

ζ[v](1− β̂[v])

≤ p
∑
v>p

ζ[v] + pζ[p](βbλ̂+ 1− βb) + p
∑
v<p

ζ[v](1− βb)

= βsps + βb(pb
∑
v>pb

ζ[v] + pbζ[pb]λ̂).

It follows that

ub = βs

(∑
v

ζ[v]v − ps

)
+ βb

(∑
v≥pb

ζ[v](v − pb)

)
. (A.7)

Since λ ≥ 0 and λ̂ ≤ 1, we have that

βsps + βb(pb
∑
v>pb

ζ[v]) ≤ us ≤ βsps + βb(pb
∑
v>pb

ζ[v] + pbζ[pb]).

Thus, for some λ∗ ∈ [0, 1],

us = βsps + βb(pb
∑
v>pb

ζ[v] + λ∗pbζ[pb]). (A.8)

It follows by what has been shown above that (1) and (2) in the statement of

Theorem 1 hold. Letting λ∗ = λ in the case pb ̸= ps, we now establish conditions (3)

and (4).

Lemma A.6 ps ≥ pb, ps ≤
∑

v ζ[v]v and

v1 ≤ pb
∑
v>pb

ζ[v] + pbζ[pb]λ
∗.

Proof. Let, by Lemma A.4, (v,m) ∈ V × M be such that m ∈ S∗
b (v) and

a(mb, p(ms)) = 1. Thus, us(π
2(m,ϕ∗)) = pb by Lemma A.5. Let m′ ∈ ∪vS

∗
s (v); then

us(π
2(m′, ϕ∗)) = ps by Lemma A.3. Hence, it follows by Lemma A.1 that ps ≥ pb.
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We next show that ps ≤
∑

v ζ[v]v. Suppose not; then ps >
∑

v ζ[v]v. Let m̄b ∈ Mb

be such that (m̄b,ms) ̸∈ ∪vS
∗(v) for each ms ∈ Ms and m̄s ∈ Ms be such that, for

some mb ∈ Mb, (mb, m̄s) ∈ ∪vS
∗
b (v) and a(mb, p(m̄s)) = 1. We have that m̄b exists

since ∪vS
∗(v) is finite, m̄s exists by Lemma A.4 and p(m̄s) = pb by Lemma A.5. Let

ϕb be defined by setting, for each v ∈ V ,

ϕb(v) =

ϕ∗
b(v) if v < pb,

1(m̄b,m̄s) if v ≥ pb.

Let ϕ(v) = β(ϕb(v), ϕ
∗
s(v)), Ss(v) = S∗

s (v) and Sb(v) = supp(ϕb(v)). Then Sb(v)∩
Ss(v) = ∅ for each v ∈ V . This is clear if v ≥ pb by the choice of m̄b. If v < pb and

m ∈ Sb(v)∩Ss(v) = S∗
b (v)∩S∗

s (v), then p(ms) = ps and a(mb, ps) = 1 by Lemma A.3.

Thus, by Lemma A.5, p(ms) = pb and, therefore, ps = pb. Furthermore, a(mb, pb) = 0

implying that 1 = a(mb, ps) = a(mb, pb) = 0, a contradiction.

It then follows that, for each v ∈ V , ϕ(v)[Sb(v)] ≥ βb, ϕ(v)[Ss(v)] ≥ βb and

1 = ϕ(v)[Sb(v)] + ϕ(v)[Ss(v)] ≥ βb + βs = 1

by properties 1 and 3. Thus, ϕ(v)[Sb(v)] = βb and ϕ(v)[Ss(v)] = βs for each v ∈ V .

Consider π̂2
b defined by setting, for each (mb, ϕ̂, p) ∈ N× Φ× V ∗,

π̂2
b (mb, ϕ̂, p) =

1 if mb = m̄b,

0 otherwise.

Letting π̂b = (ϕb, π̂
2
b ) and ûb = ub(π̂b, πs), it follows that

ûb =
∑
v

ζ[v]

 ∑
m∈Sb(v)

ϕ(v)[m]ub(v, π̂
2(m,ϕb, ϕ

∗
s)) +

∑
m∈Ss(v)

ϕ(v)[m]ub(v, π̂
2(m,ϕb, ϕ

∗
s))

 .

We have that ub(v, π̂
2(m,ϕb, ϕ

∗
s)) = 0 for each v ∈ V and m ∈ Ss(v) since m ∈

Ss(v) = S∗
s (v) implies that mb ̸= m̄b and, hence, π̂2

b (mb, ϕb, ps) = 0. Similarly,

ub(v, π̂
2(m,ϕb, ϕ

∗
s)) = 0 for each v < pb andm ∈ Sb(v) sincem ∈ Sb(v) = S∗

b (v) implies

that mb ̸= m̄b and, hence, π̂2
b (mb, ϕb, ps) = 0. Furthermore, ub(v, π̂

2(m,ϕb, ϕ
∗
s)) =

v − pb for each v ≥ pb and m ∈ Sb(v) since Sb(v) = {(m̄b, m̄s)}, p(m̄s) = pb and
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π̂2
b (m̄b, ϕb, pb) = 1. Thus,

ûb =
∑
v≥pb

ζ[v]ϕ(v)[Sb(v)](v − pb) = βb

(∑
v≥pb

ζ[v](v − pb)

)

> βs

(∑
v

ζ[v]v − ps

)
+ βb

(∑
v≥pb

ζ[v](v − pb)

)
= ub

since ps >
∑

v ζ[v]v and βs > 0. But this is a contradiction since π is a sequential

equilibrium.

Finally, we show that v1 ≤ pb
∑

v>pb
ζ[v] + pbζ[pb]λ

∗. Suppose not; then v1 >

pb
∑

v>pb
ζ[v] + pbζ[pb]λ

∗. Let m̄s ∈ Ms be such that (mb, m̄s) ̸∈ ∪vS
∗(v) for each

mb ∈ Mb and m̄b ∈ Mb be such that, for some ms ∈ Ms, (m̄b,ms) ∈ ∪vS
∗
s (v).

We have that m̄s exists since ∪vS
∗(v) is finite, m̄b exists since ∪vS

∗
s (v) ̸= ∅ and

a(m̄b, ps) = 1 by Lemma A.3. Let ϕs be defined by setting, for each v ∈ V ,

ϕs(v) = 1(m̄b,m̄s).

Let ϕ(v) = β(ϕ∗
b(v), ϕs(v)), Sb(v) = S∗

b (v) and Ss(v) = supp(ϕs(v)). Then Sb(v)∩
Ss(v) = ∅ for each v ∈ V . It then follows that, for each v ∈ V , ϕ(v)[Sb(v)] ≥ βb,

ϕ(v)[Ss(v)] ≥ βs and

1 = ϕ(v)[Sb(v)] + ϕ(v)[Ss(v)] ≥ βb + βs = 1

by properties 1 and 3. Thus, ϕ(v)[Sb(v)] = βb and ϕ(v)[Ss(v)] = βs for each v ∈ V .

Consider π̂2
s defined by setting, for each (ms, ϕ̂) ∈ N× Φ,

π̂2
s(ms, ϕ̂) =

ps if ms = m̄s,

v1 otherwise.

Letting π̂s = (ϕs, π̂
2
s) and ûs = us(πb, π̂s), it follows that

ûs =
∑
v

ζ[v]

 ∑
m∈Sb(v)

ϕ(v)[m]us(π̂
2(m,ϕ∗

b , ϕs)) +
∑

m∈Ss(v)

ϕ(v)[m]us(π̂
2(m,ϕ∗

b , ϕs))

 .

We have that us(π̂
2(m,ϕ∗

b , ϕs)) = ps for each v ∈ V and m ∈ Ss(v) since then m =

(m̄b, m̄s), π̂
2
s(m̄s, ϕs) = ps and a(m̄b, ps) = 1. Furthermore, us(π̂

2(m,ϕ∗
b , ϕs)) = v1 for
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each v ∈ V and m ∈ Sb(v) since then ms ̸= m̄s, π̂
2
s(ms, ϕs) = v1 and a(mb, v1) = 1.

Thus,

ûs = βsps + βbv1 > βsps + βb(pb
∑
v>pb

ζ[v] + pbζ[pb]λ
∗) = us

since v1 > pb
∑

v>pb
ζ[v] + pbζ[pb]λ

∗ and βb > 0. But this is a contradiction since π is

a sequential equilibrium.

The necessity part of the theorem then follows from (A.7), (A.8) and Lemma A.6.

A.3 Proof of Theorem 1: Sufficiency part

Let (pb, ps) ∈ (V ∗)2 and λ ∈ [0, 1] be as in the statement of the theorem, ub defined

by (1) and us defined by (2). We will show that (ub, us) ∈ U∗ by showing that there

is a sequential equilibrium π ∈ Π∗ with payoff (ub, us) when the aggregation function

β is such that β(γ, γ′) = βbγ + βsγ
′ for each γ, γ′ ∈ F . It is clear that β ∈ B.

We will construct a sequential equilibrium π with the desired payoff. A sequential

equilibrium is, by definition, a perfect conditional ε-equilibrium for each ε > 0 and

this requires the existence of a net {πα, pα}α such that the following six properties

hold. The first five require that {πα}α is a net of strategies converging to π that

assigns strictly positive probability to each choice of information design, price offer

and acceptance decision sufficiently far in its tail, and {pα}α is a net of nature’s

choices regarding the probability distribution of message profiles for each profile of

information designs (ϕb, ϕs) that converges to ζ ⊗ (βbϕb + βsϕs) and assigns strictly

positive probability to each message profile sufficiently far in its tail:

1. For each α, pα : Φ2 → ∆(V ×M) is measurable and πα is a behavioral strategy,29

29I.e. πα
s = (π1,α

s , π2,α
s ) is such that π1,α

s ∈ ∆(Φ) and π2,α
s : N × Φ → ∆(V ∗) is measurable, and

πα
b = (π1,α

b , π2,α
b ) such that π1,α

b ∈ ∆(Φ) and π2,α
b : N× Φ× V ∗ → ∆(A) is measurable.
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2. For each i ∈ N , supB∈B(Φ) |π1,α
i [B]− 1ϕ∗

i
[B]| → 0,30

sup
(m,ϕ)∈N×Φ,B∈B(V ∗)

|π2,α
s (m,ϕ)[B]− π2

s(m,ϕ)[B]| → 0, and

sup
(m,ϕ,p)∈N×Φ×V ∗,a∈A

|π2,α
b (m,ϕ, p)[a]− π2

b (m,ϕ, p)[a]| → 0,

3. For each i ∈ N , m ∈ N, ϕ ∈ Φ, p ∈ V ∗ and a ∈ A, there is ᾱ such that

π1,α
i [ϕ] > 0, π2,α

s (m,ϕ)[p] > 0 and π2,α
b (m,ϕ, p)[a] > 0 for each α ≥ ᾱ,

4. supϕ∈Φ2,v∈V,B⊆M |pα(ϕ)[{v} ×B]− ζ[v]
∑

i∈N βiϕi(v)[B]| → 0,

5. For each ϕ ∈ Φ2, v ∈ V and m ∈ M , there is ᾱ such that pα(ϕ)[v,m] > 0 for

each α ≥ ᾱ.

A final condition requires that, for each α, πα is such that the payoff that each player

obtains by following it at each information set which is reached with strictly positive

probability is within ε of his maximum payoff conditional on that information set:

6.(a) For each i ∈ N and ϕ′
i ∈ Φ,∑

ϕ∈supp(π1,α)

π1,α[ϕ]
∑

(v,m)∈V×N2

pα(ϕ)[v,m]ui(v, π
2,α(m,ϕ)) ≥

∑
ϕj∈supp(π1,α

j )

π1,α
j [ϕj]

∑
(v,m)∈V×N2

pα(ϕ′
i, ϕj)[v,m]ui(v, π

2,α(m,ϕ′
i, ϕj))− ε,

where π1,α =
∏

i∈N π1,α
i , j ̸= i and, for each ϕ ∈ Φ2 and m ∈ N2, π2,α(m,ϕ) ∈

∆(V ∗ × A) is defined by setting, for each (p, a) ∈ V ∗ × A, π2,α(m,ϕ)[p, a] =

π2,α
s (ms, ϕs)[p]π

2,α
b (mb, ϕb, p)[a],

6.(b) For each (ms, ϕs) ∈ N × Φ such that π1,α
s [ϕs]

∑
ϕb∈Φ π1,α

b [ϕb]p
α
Ms

(ϕb, ϕs)[ms] > 0

and p ∈ V ∗,∑
ϕb∈supp(π1,α

b ) π
1,α
b [ϕb]

(∑
(v,mb)

pα(ϕb, ϕs)[v,m]us(π
2,α(m,ϕ))

)
∑

ϕb∈supp(π1,α
b ) π

1,α
b [ϕb]pαMs

(ϕb, ϕs)[ms]
≥

∑
ϕb∈supp(π1,α

b ) π
1,α
b [ϕb]

(∑
(v,mb)

pα(ϕb, ϕs)[v,m]us(p, π
2,α
b (mb, ϕb, p))

)
∑

ϕb∈supp(π1,α
b ) π

1,α
b [ϕb]pαMs

(ϕb, ϕs)[ms]
− ε.

30We let B(Φ) denote the class of Borel measurable subsets of Φ and, for each ϕ ∈ Φ, 1ϕ denote

the probability measure on Φ degenerate at ϕ. Analogous definitions apply when Φ is replaced with

V ∗.
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6.(c) For each (mb, ϕb, p) ∈ N× Φ× V ∗ such that

π1,α
b [ϕb]

∑
ϕs∈supp(π1,α

s )

π1,α
s [ϕs]

∑
(v,ms)

pα(ϕs, ϕb)[v,mb,ms]π
2,α
s (ms, ϕs)[p] > 0

and a ∈ A,∑
ϕs∈supp(π1,α

s ) π
1,α
s [ϕs]

(∑
(v,ms)

pα(ϕb, ϕs)[v,m]π2,α
s (ms, ϕs)[p]ub(v, p, π

2,α
b (mb, ϕb, p))

)
∑

ϕs∈supp(π1,α
s ) π

1,α
s [ϕs]

∑
(v,ms)

pα(ϕs, ϕb)[v,m]π2,α
s (ms, ϕs)[p]

≥

∑
ϕs∈supp(π1,α

s ) π
1,α
s [ϕs]

(∑
(v,ms)

pα(ϕb, ϕs)[v,m]π2,α
s (ms, ϕs)[p]ub(v, p, a)

)
∑

ϕs∈supp(π1,α
s ) π

1,α
s [ϕs]

∑
(v,ms)

pα(ϕs, ϕb)[v,m]π2,α
s (ms, ϕs)[p]

− ε.

We define π by first specifying that the seller chooses an information design that

does not depend on the buyer’s valuation and sends a constant message profile m̄s.

On the equilibrium path, the seller will set price ps following message m̄s
s and the

buyer will accept price ps following message m̄s
b.

We specify the information design of the buyer in such a way that, for each player

i, the messages that he can receive are different from m̄s
i . The seller will receive

only one message m̄b
s ̸= m̄s

s; the buyer will receive one of two messages, m̄b
b ̸= m̄s

b

and m̃b
b ̸∈ {m̄b

b, m̄
s
b}, depending on whether his valuation is larger or smaller than pb.

Specifically, the message profile is m̄b if v > pb and (m̃b
b, m̄

b
s) if v < pb; furthermore, if

v = pb, then the message profile is m̄b with probability λ and (m̃b
b, m̄

b
s) with probability

1− λ. On the equilibrium path, the seller will set price pb following message m̄b
s; the

buyer will accept price pb if his message is m̄b
b and reject price pb if his message is m̃b

b.

We will then define perturbations such that, following ϕ∗
b , whenever the buyer

receives any price offer other than pb following message m̄b
b (or other than {pb, ps}

following message m̄s
b), he believes that his value is v1.

31 In addition, whenever the

buyer receives a zero-probability message following ϕ∗
b , he believes that his value is

v1 and whenever the seller receives a zero-probability message, he believes that the

buyer knows that his value is vK and hence sets price vK .

31After the off-path history (m̄s
b, ϕ

∗
b , pb), our perturbations will imply that the buyer’s belief is∑

v ζ[v]v and so we specify that the buyer accepts following this history; this does not create any

incentive for the seller to deviate by offering pb since pb ≤ ps.
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Defining strategies. More formally, let m̄b, m̄s ∈ M with m̄b
j ̸= m̄s

j for each

j ∈ {s, b} and m̃b
b ∈ Mb \ {m̄b

b, m̄
s
b}. For each v ∈ V , define

ϕ∗
s(v) = 1m̄s

and

ϕ∗
b(v) =


1m̄b if v > pb,

λ1m̄b + (1− λ)1(m̃b
b,m̄

b
s)

if v = pb,

1(m̃b
b,m̄

b
s)

if v < pb.

For each (mb,ms, p) ∈ N2 × V ∗, let

π2
s(ms, ϕ

∗
s) =


ps if ms = m̄s

s,

pb if ms = m̄b
s,

vK otherwise

and

π2
b (mb, ϕ

∗
b , p) =



1 if mb = m̄s
b and p ∈ {ps, pb}

1 if mb = m̄b
b and p = pb,

1 if p = v1,

0 otherwise.

The above specifies the strategy of each player i following his own design ϕ∗
i and

next we specify each player’s strategy following his choice of a design different from

ϕ∗
i . For the seller, as above, we specify that whenever he receives a zero-probability

message, he believes that the buyer knows that his value is vK ; if he receives a

nonzero-probability message, then he best-replies given the conditional probability of

the buyer’s acceptance.

For each ms ∈ Ms and ϕs ̸= ϕ∗
s such that

∑
v ζ[v](βbϕ

∗
b(v) + βsϕs(v))Ms [ms] = 0,

let π2
s(ms, ϕs) = vK .

For each ms ∈ Ms and ϕs ̸= ϕ∗
s such that

∑
v ζ[v](βbϕ

∗
b(v) + βsϕs(v))Ms [ms] > 0,

let π2
s(ms, ϕs) maximize

p
∑
mb

∑
v ζ[v](βbϕ

∗
b(v) + βsϕs(v))[mb,ms]∑

v ζ[v](βbϕ∗
b(v) + βsϕs(v))Ms [ms]

π2
b (mb, ϕ

∗
b , p).
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Let P ∗ = {pb, ps, v1}; since π2
b (mb, ϕ

∗
b , p) = 0 for all p ̸∈ P ∗ and mb ∈ Mb, the

maximum is attained over P ∗.

We may assume that π2
s : Ms × Φ → V ∗ is measurable. Note first that Ms × Φ =

∪3
r=1Br with

B1 = Ms × {ϕ∗
s},

B2 = {(ms, ϕs) ∈ (Ms \ {m̄b
s})× (Φ \ {ϕ∗

s}) :
∑
v

ζ[v]ϕs(v)Ms [ms] = 0},

B3 = {(ms, ϕs) ∈ (Ms \ {m̄b
s})× (Φ \ {ϕ∗

s}) :
∑
v

ζ[v]ϕs(v)Ms [ms] > 0}

∪ ({m̄b
s} × (Φ \ {ϕ∗

s})).

Indeed, B1 is closed, B3 is open and B2 is the intersection of the closed set {(ms, ϕs) ∈
Ms×Φ :

∑
v ζ[v]ϕs(v)Ms [ms] = 0} with the open set (Ms \ {m̄b

s})× (Φ \ {ϕ∗
s}). Then,

for each measurable B ⊆ V ∗, note that (π2
s)

−1(B) ∩B1 = C1 ∪ C2 ∪ C3, where:

C1 =

{(m̄b
s, ϕ

∗
s)} if B ∩ {pb} ̸= ∅,

∅ otherwise,

C2 =

{(m̄s
s, ϕ

∗
s)} if B ∩ {ps} ̸= ∅,

∅ otherwise,

C3 =

{(ms, ϕ
∗
s) : ms ̸∈ {m̄b

s, m̄
s
s}} if B ∩ {vK} ̸= ∅,

∅ otherwise.

Thus, (π2
s)

−1(B) ∩ B1 is the union of measurable sets, and hence, measurable. For

each measurable B ⊆ V ∗, (π2
s)

−1(B) ∩ B2 = B2 if vK ∈ B and (π2
s)

−1(B) ∩ B2 = ∅
otherwise; hence (π2

s)
−1(B) ∩ B2 is measurable. Finally, regarding (π2

s)
−1(B) ∩ B3,

for each (ms, ϕs) ∈ B3, let f : B3 × P ∗ → [0, 1] be defined by setting, for each

(ms, ϕs) ∈ B3 and p ∈ P ∗,

f(ms, ϕs, p) =
∑
mb

∑
v ζ[v](βbϕ

∗
b(v) + βsϕs(v))[mb,ms]∑

v ζ[v](βbϕ∗
b(v) + βsϕs(v))Ms [ms]

π2
b (mb, ϕ

∗
b , p),

and let χ : B3 ⇒ P ∗ be defined by χ(ms, ϕs) = argmaxp∈P ∗ pf(ms, ϕs, p). Note that

for each p ∈ P ∗, χl({p}) = {(ms, ϕs) ∈ B3 : pf(ms, ϕs, p) ≥ p′f(ms, ϕs, p
′) for all p′ ∈
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P ∗} is closed in B3, and hence measurable. Thus, χ is weakly measurable and has

a measurable selection by the Kuratowski-Ryll-Nardzewski Selection Theorem (e.g.

Aliprantis and Border (2006, Theorem 18.13, p. 600)).

For the buyer, if he receives a nonzero-probability message-price pair, then he

best-replies given the conditional expected valuation. For each (mb, p) ∈ Mb × V ∗

and ϕb ̸= ϕ∗
b such that

∑
{ms:π2

s(ms,ϕ∗
s)=p}

∑
v ζ[v](βsϕ

∗
s(v) + βbϕb(v))[mb,ms] > 0, let

π2
b (mb, ϕb, p) = 1 if and only if:∑

{ms:π2
s(ms,ϕ∗

s)=p}
∑

v ζ[v](βbϕb(v) + βsϕ
∗
s(v))[mb,ms]v∑

{ms:π2
s(ms,ϕ∗

s)=p}
∑

v ζ[v](βbϕb(v) + βsϕ∗
s(v))[mb,ms]

≥ p. (A.9)

For each (mb, p) ∈ Mb×V ∗ and ϕb ̸= ϕ∗
b such that

∑
{ms:π2

s(ms,ϕ∗
s)=p}

∑
v ζ[v](βsϕ

∗
s(v)+

βbϕb(v))[mb,ms] = 0, we will define π2
b (mb, ϕb, p) after the following net {πα, pα}α has

been defined.

Defining perturbations. Consider {πα, pα}α defined as follows: The index

set consists of (τ, T, T̂ , T̃ ) such that τ ∈ N, T is a finite subset of N, T̂ is a finite

subset of Φ and T̃ is a finite subset of V ∗; this set is partially ordered by defining

(τ ′, T ′, T̂ ′, T̃ ′) ≥ (τ, T, T̂ , T̃ ) if τ ′ ≥ τ , T ⊆ T ′, T̂ ⊆ T̂ ′ and T̃ ⊆ T̃ ′. If X is a finite

set, let UX ∈ ∆(X) be uniform on X. Let

j = max{τ, |T |, |T̂ |, |T̃ |}.

The perturbation pα of nature’s choice is such that pα(ϕ)[v,m] is ζ[v](βbϕb(v)[m]+

βsϕs(v)[m]) with probability 1− 1
jj

and uniform on V × T 2 otherwise:

pα(ϕ)[v,m] = (1− j−j)ζ[v](βbϕb(v) + βsϕs(v))[m] + j−jUV×T 2 [v,m].

Players will be more likely to make mistakes than nature; thus beliefs off-the-

equilibrium path will come from perturbations to players’ strategies. The perturba-

tion of the seller’s strategy is such that the most likely scenario in which (an off-path)

message mb and price p can occur is when v = v1 and a seller’s information design

that reveals that v is indeed v1 realizes. This can be achieved by defining, for each

mb ∈ Mb, ϕ
mb
s so that it sends the seller a message perfectly revealing the buyer’s

valuation (e.g. message mv
s when the valuation is v) and sends the buyer message mb
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only if the valuation is v1; otherwise it sends the buyer message m̄b
b. We then make

ϕmb
s followed by a second period strategy where the seller sets a random price the

most likely mistake of the seller that results in the buyer receiving message mb and

price p.

Formally, for each (T, T̂ , T̃ ), define:

Φ(T, T̂ ) = {ϕ ∈ T̂ : supp(ϕ) ⊆ T 2} and

P (T, T̂ , T̃ ) = T̃ ∪ {ps, pb, vK} ∪ {π2
s(ms, ϕs) : ms ∈ T ∪ {m̄b

s}, ϕs ∈ Φ(T, T̂ )}.

For each v ∈ V , define mv
s ∈ Ms \ {m̄b

s} such that v 7→ mv
s is one-to-one. For each

mb ∈ Mb, let ϕ
mb
s be such that ϕmb

s (v1) = 1(mb,m
v1
s ) and ϕmb

s (v) = 1(m̄b
b,m

v
s)

for v ̸= v1.

Let πmb,α
s be such that πmb,1,α

s = ϕmb
s and πmb,2,α

s be such that πmb,2,α
s (mv1

s , ϕmb
s ) =

UP (T,T̂ ,T̃ ), π
mb,2,α
s (ms, ϕ

mb
s ) = pb for ms ̸= mv1

s and πmb,2,α
s (ms, ϕs) = pb for all ms ∈ Ms

and ϕs ̸= ϕmb
s . Let π̂α

s be such that π̂1,α
s = UΦ(T,T̂ ) and π̂2,α

s (ms, ϕs) = UP (T,T̂ ,T̃ ) for all

ms, ϕs. Let, for each t = 1, 2,

πt,α
s = (1− j−1)πt

s + j−1(1− j−j)|T |−1
∑
mb∈T

πmb,t,α
s + j−1j−jπ̂t,α

s .

The perturbation of the buyer’s strategy is analogous. The most likely scenario

in which a message ms can occur is when v = vK and a buyer’s information design

that reveals that v is indeed vK realizes. This can be achieved by defining, for each

ms ∈ Ms, ϕ
ms
b so that it sends the buyer a message perfectly revealing the buyer’s

valuation (e.g. message mv
b when the valuation is v) and sends the seller message ms

only if the valuation is vK ; otherwise it sends the seller message m̄s
s.

For each v ∈ V , define mv
b ∈ Mb \ {m̄s

b} such that v 7→ mv
b is one-to-one. For

each ms ∈ Ms, let ϕ
ms
b be such that ϕms

b (vK) = 1(mvK
b ,ms)

and ϕms
b (v) = 1(mv

b ,m̄
s
s) for

v ̸= vK . Let π
ms,1,α
b = ϕms

b . Let π̂1,α
b = UΦ(T,T̂ ). Let:

π1,α
b = (1− j−1)ϕ∗

b + j−1(1− j−j)|T |−1
∑
ms∈T

πms,1,α
b + j−1j−jπ̂1,α

b .

It remains to complete the definition of π2
b and to define π2,α

b . Regarding the for-

mer, for each (mb, p) ∈ Mb×V ∗ and ϕb ̸= ϕ∗
b such that

∑
{ms:π2

s(ms,ϕ∗
s)=p}

∑
v ζ[v](βsϕ

∗
s(v)+
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βbϕb(v))[mb,ms] = 0, let π2
b (mb, ϕb, p) = 1 if and only if

lim
α

∫
Φ

(∑
(v,ms)

pα(ϕb, ϕs)[v,mb,ms]π
2,α
s (ms, ϕs)[p]v

)
dπ1,α

s [ϕs]∫
Φ

∑
(v,ms)

pα(ϕb, ϕs)[v,mb,ms]π
2,α
s (ms, ϕs)[p]dπ

1,α
s [ϕs]

≥ p. (A.10)

Finally, let π̂2,α
b (mb, ϕb, p) = UA and π2,α

b (mb, ϕb, p) = (1 − j−1)π2
b (mb, ϕb, p) +

j−1π̂2,α
b (mb, ϕb, p) for each mb, ϕb, p.

Let P̂ = {ps, pb, vK} and note that π2
s(ms, ϕ

∗
s) ∈ P̂ for each ms ∈ Ms. Thus,{

(ϕb,mb, p) ∈ (Φ \ {ϕ∗
b})×Mb × V ∗ :∑

{ms:π2
s(ms,ϕ∗

s)=p}

∑
v

ζ[v](βbϕb(v) + βsϕ
∗
s(v))[mb,ms] > 0 and (A.9) holds

}
is measurable since it equals

∪mb∈Mb,p∈P̂

({
ϕb ∈ Φ \ {ϕ∗

b} :
∑

{ms:π2
s(ms,ϕ∗

s)=p}

∑
v

ζ[v](βbϕb(v) + βsϕ
∗
s(v))[mb,ms] > 0

}
∩
{
ϕb ∈ Φ : (A.9) holds

})
× {(mb, p)},{

ϕb ∈ Φ \ {ϕ∗
b} :

∑
{ms:π2

s(ms,ϕ∗
s)=p}

∑
v

ζ[v](βbϕb(v) + βsϕ
∗
s(v))[mb,ms] > 0

}
is open and

{ϕb ∈ Φ : (A.9) holds}

is closed. The set{
(ϕb,mb, p) ∈ (Φ \ {ϕ∗

b})×Mb × V ∗ :∑
{ms:π2

s(ms,ϕ∗
s)=p}

∑
v

ζ[v](βbϕb(v) + βsϕ
∗
s(v))[mb,ms] = 0 and (A.10) holds

}
is also measurable since it equals the intersection of the complement of

∪mb∈Mb,p∈P̂

{
ϕb ∈ Φ \ {ϕ∗

b} :
∑

{ms:π2
s(ms,ϕ∗

s)=p}

∑
v

ζ[v](βbϕb(v) + βsϕ
∗
s(v))[mb,ms] > 0

}
× {(mb, p)}

with the closed set
{
(ϕb,mb, p) ∈ Φ × Mb × V ∗ : (A.10) holds

}
and the open set

Φ \ {ϕ∗
b} ×Mb × V ∗.
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Proof that the conditions of sequential equilibrium are satisfied. Let

ε > 0. We have that conditions 1–5 in the definition of perfect conditional ε-

equilibrium hold by construction. Conditions 6.(b) and 6.(c) are imposed on positive

probability histories given α; to that end, it will be useful to note that our construc-

tion of {πα, pα}α is such that, for each α and (ms, ϕb, ϕs) ∈ N×Φ2, supp(pα(ϕb, ϕs)),

supp(π1,α
b ), supp(π1,α

s ) and supp(π2,α
s (ms, ϕs)) are all finite. Moreover, if π1,α

b [ϕb] > 0

and π1,α
s [ϕs] > 0, then

ϕb ∈ Φα
b := {ϕ∗

b} ∪ {ϕms
b : ms ∈ T} ∪ Φ(T, T̂ ) and

ϕs ∈ Φα
s := {ϕ∗

s} ∪ {ϕmb
s : mb ∈ T} ∪ Φ(T, T̂ ).

If (ms, ϕs) ∈ N × Φ is such that
∑

ϕb∈Φ π1,α
b [ϕb]p

α
Ms

(ϕb, ϕs)[ms] > 0, then ms ∈
∪vsupp(ϕs(v)Ms) ∪ {m̄b

s} ∪ T , and if (mb, ϕb, p) ∈ N× Φ× V ∗ is such that∑
ϕs∈supp(π1,α

s )

π1,α
s [ϕs]

∑
(v,ms)∈supp(pα(ϕb,ϕs))

pα(ϕb, ϕs)[v,mb,ms]π
2,α
s (ms, ϕs)[p] > 0,

then mb ∈ ∪vsupp(ϕb(v)Mb
) ∪ {m̄s

b} ∪ T and p ∈ P (T, T̂ , T̃ ).

We will show that condition 6 holds for some subnet of {πα, pα}α. In particular,

for each (T, T̂ , T̃ ), we will show that there exists a τ(T, T̂ , T̃ ) such that for each

α = (τ, T, T̂ , T̃ ) with τ ≥ τ(T, T̂ , T̃ ), condition 6 is satisfied.

Consider condition 6.(a) with i = s and ϕ′
i ∈ Φ. The left-hand side converges to

us = βbpb(
∑

v>pb
ζ[v] + ζ[pb]λ) + βsps and, when ε = 0, the right-hand side, for any

ϕ′
s ∈ Φ, is at most:

(1− j−1)3(1− j−j)
(
βbpb(

∑
v>pb

ζ[v] + ζ[pb]λ)

+βs

∑
v,m

ζ[v]ϕ′
s(v)[mb,ms]π

2
s(ms, ϕ

′
s)π

2
b (mb, ϕ

∗
b , π

2
s(ms, ϕ

′
s))
)

+(1− (1− j−1)3(1− j−j))vK

≤ (1− j−1)3(1− j−j)

(
βbpb(

∑
v>pb

ζ[v] + ζ[pb]λ) + βs

∑
v,m

ζ[v]ϕ′
s(v)[mb,ms]ps

)
+(1− (1− j−1)3(1− j−j))vK

since vK is the maximum payoff for the seller and π2
b (mb, ϕ

∗
b , π

2
s(ms, ϕ

′
s)) = 0 if
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π2
s(ms, ϕ

′
s) > ps. Thus, the inequality holds (uniformly across ϕ′

i ∈ Φ) for each α

such that τ (and hence j) is sufficiently large.

Consider next condition 6.(a) with i = b. The left-hand side converges to ub =

βb

∑
v≥pb

ζ[v](v − pb) + βs(
∑

v ζ[v]v − ps) and, when ε = 0, the right-hand side, for

any ϕ′
b ∈ Φ, is at most:

(1− j−1)3(1− j−j)
(
βb

∑
v,m

ζ[v]ϕ′
b(v)[mb,ms](v − π2

s(ms, ϕ
∗
s))π

2
b (mb, ϕ

′
b, π

2
s(ms, ϕ

∗
s))

+βs(
∑
v

ζ[v]v − ps)
)
+ (1− (1− j−1)3(1− j−j))vK

≤ (1− j−1)3(1− j−j)
(
βb

∑
v,m

ζ[v]ϕ′
b(v)[mb,ms](v − pb)π

2
b (mb, ϕ

′
b, π

2
s(ms, ϕ

∗
s))

+βs(
∑
v

ζ[v]v − ps)
)
+ (1− (1− j−1)3(1− j−j))vK

≤ (1− j−1)3(1− j−j)

(
βb

∑
v≥pb

ζ[v](v − pb) + βs(
∑
v

ζ[v]v − ps)

)
+(1− (1− j−1)3(1− j−j))vK

since vK is an upper bound on the buyer’s payoff and π2
s(ms, ϕ

∗
s) ≥ pb for each

ms ∈ Ms. Thus, the inequality holds (uniformly across ϕ′
i ∈ Φ) for each α such that

τ (and hence j) is sufficiently large.

Let τa be such that condition 6.(a) holds for each α such that τ ≥ τa.

Consider next condition 6.(b). We establish it by considering several cases.

Case 1: ϕs = ϕ∗
s and ms = m̄s

s. In the limit and when ε = 0, the inequality is

ps ≥ pπ2
b (m̄

s
b, ϕ

∗
b , p). It holds since pb ≤ ps and

pπ2
b (m̄

s
b, ϕ

∗
b , p) =

p if p = pb,

0 if p ̸= pb.

By similar arguments as for condition 6.(a), for sufficiently large τ (and hence j), the

inequality in fact holds uniformly across all p ∈ V ∗. Let τb1 be such that condition

6.(b) holds for (ms, ϕs) = (m̄s
s, ϕ

∗
s) for α such that τ ≥ τb1.
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Case 2: ϕs = ϕ∗
s and ms = m̄b

s. In the limit and when ε = 0, the inequality is

pb(
∑
v>pb

ζ[v] + ζ[pb]λ) ≥ p
(∑

v<pb

ζ[v]π2
b (m̃

b
b, ϕ

∗
b , p)

+ ζ[pb](λπ
2
b (m̄

b
b, ϕ

∗
b , p) + (1− λ)π2

b (m̃
b
b, ϕ

∗
b , p)) +

∑
v>pb

ζ[v]π2
b (m̄

b
b, ϕ

∗
b , p)

)
.

It holds since pb(
∑

v>pb
ζ[v] + ζ[pb]λ) ≥ v1 and its right-hand side is equal to v1 if

p = v1 and zero if p > v1 and p ̸= pb. Thus, the inequality holds for τ sufficiently

large (uniformly across p ∈ V ∗). Let τb2 be such that condition 6.(b) holds for

(ms, ϕs) = (m̄b
s, ϕ

∗
s) for α such that τ ≥ τb2

Case 3: ϕs = ϕ∗
s and ms ̸∈ {m̄s

s, m̄
b
s}. Note that we only need to consider ms ∈ T

in this case since otherwise
∑

ϕb∈Φ π1,α
b [ϕb]p

α
Ms

(ϕb, ϕs)[ms] = 0. Given that ms ∈ T , in

the limit (as τ → ∞, i.e. we can keep T fixed) and when ε = 0, the inequality is

vKπ
2
b (m

vK
b , ϕms

b , vK) ≥ pπ2
b (m

vK
b , ϕms

b , p).

We have that π2
b (m

vK
b , ϕms

b , vK) = 1 since ϕms
b (vK)[m

vK
b ,ms] > 0 and∑

v,m̂s
vζ[v](βbϕ

ms
b (v) + βsϕ

∗
s(v))[m

vK
b , m̂s]∑

v′,m′
s
ζ[v′](βbϕ

ms
b (v′) + βsϕ∗

s(v
′))[mvK

b ,m′
s]

= vK .

Hence, the inequality holds in the limit and, thus, for τ sufficiently large (uniformly

across p ∈ V ∗). For each ms ∈ T \ {m̄s
s, m̄

b
s}, let τb3(ms) be such that condi-

tion 6.(b) holds for (ms, ϕ
∗
s), for each α such that τ ≥ τb3(ms), and let τb3(T ) =

maxms∈T\{m̄s
s,m̄

b
s} τb3(ms). Note that for all α = (τ, T, T̂ , T̃ ) such that τ ≥ τb3(T ),

condition 6.(b) holds for all (ms, ϕs) ∈ {(ms, ϕs) : ms ∈ T \ {m̄s
s, m̄

b
s}, ϕs = ϕ∗

s}.
Case 4: ϕs ̸= ϕ∗

s andms ∈ Ms such that
∑

v,mb
ζ[v](βbϕ

∗
b(v)+βsϕs(v))[mb,ms] > 0.

Note that we only have to consider ϕs ∈ Φα
s \ {ϕ∗

s} and Φα
s \ {ϕ∗

s} is finite. In the

limit and with ε = 0, the inequality is

π2
s(ϕs,ms)

∑
mb

∑
v ζ[v](βbϕ

∗
b(v) + βsϕs(v))[mb,ms]∑

v ζ[v](βbϕ∗
b(v) + βsϕs(v))Ms [ms]

π2
b (mb, ϕ

∗
b , π

2
s(ϕs,ms))

≥ p
∑
mb

∑
v ζ[v](βbϕ

∗
b(v) + βsϕs(v))[mb,ms]∑

v ζ[v](βbϕ∗
b(v) + βsϕs(v))Ms [ms]

π2
b (mb, ϕ

∗
b , p),

which holds by definition. For each (T, T̂ ), let τb4(T, T̂ ) be such that condition

6.(b) holds for all ϕs ∈ Φα
s \ {ϕ∗

s} and ms ∈ Ms such that
∑

v,mb
ζ[v](βbϕ

∗
b(v) +

βsϕs(v))[mb,ms] > 0, for α = (τ, T, T̂ , T̃ ) such that τ ≥ τb4(T, T̂ ).
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Case 5: ϕs ̸= ϕ∗
s andms ∈ Ms such that

∑
v,mb

ζ[v](βbϕ
∗
b(v)+βsϕs(v))[mb,ms] = 0.

This is as in case 3. For each (T, T̂ ), let τb5(T, T̂ ) be such that condition 6.(b) holds

for all such (ms, ϕs), for α = (τ, T, T̂ , T̃ ) such that τ ≥ τb5(T, T̂ ).

For each (T, T̂ ), let τb(T, T̂ ) = max{τb1, τb2, τb3(T ), τb4(T, T̂ ), τb5(T, T̂ )}.
Consider next condition 6.(c). We establish this condition by considering several

cases.

Case 1: ϕb = ϕ∗
b , p = ps and mb = m̄s

b. Since π2
b (m̄

s
b, ϕ

∗
b , ps) = 1, we may consider

a = 0. Thus, in the limit and with ε = 0, the inequality is
∑

v ζ[v]v − ps ≥ 0, which

holds. Let τc1 be such that condition 6.(c) holds for (mb, ϕb, p) = (m̄s
b, ϕ

∗
b , ps), for α

such that τ ≥ τc1.

Case 2: ϕb = ϕ∗
b , p = pb and mb = m̄b

b. Since π2
b (m̄

b
b, ϕ

∗
b , pb) = 1, we may consider

a = 0. Thus, in the limit and with ε = 0, the inequality is∑
v>pb

ζ[v](v − pb) + ζ[pb]λ(pb − pb)∑
v>pb

ζ[v] + ζ[pb]λ
≥ 0,

which holds. Let τc2 be such that condition 6.(c) holds for (mb, ϕb, p) = (m̄b
b, ϕ

∗
b , pb),

for α such that τ ≥ τc2.

Case 3: ϕb = ϕ∗
b , p = pb and mb = m̃b

b. Since π2
b (m̃

b
b, ϕ

∗
b , pb) = 0, we may consider

a = 1. Thus, in the limit and with ε = 0, the inequality is

0 ≥
∑

v<pb
ζ[v](v − pb) + ζ[pb](1− λ)(pb − pb)∑

v<pb
ζ[v] + ζ[pb](1− λ)

,

which holds. Let τc3 be such that condition 6.(c) holds for (mb, ϕb, p) = (m̃b
b, ϕ

∗
b , pb),

for α such that τ ≥ τc3.

Case 4: ϕb = ϕ∗
b , p ̸∈ {ps, pb} and mb = m̄s

b. Note that we only have to consider

p ∈ P (T, T̂ , T̃ ) in this case. The strategy for the buyer is

π2
b (m̄

s
b, ϕ

∗
b , p) =

1 if p = v1,

0 if p > v1.

We have pα(ϕ∗
b , ϕ

∗
s)[v, m̄

s
b,ms]π

2,α
s (ms, ϕ

∗
s)[p] ≤ j−j for each v ∈ V and ms ∈ Ms since

(βbϕ
∗
b(v) + βsϕ

∗
s(v))[m̄

s
b,ms] = 0 for ms ̸= m̄s

s and π2
s(m̄

s
s, ϕ

∗
s)[p] = 0 implies:

ζ[v](βbϕ
∗
b(v) + βsϕ

∗
s(v))[m̄

s
b,ms]π

2
s(ms, ϕ

∗
s)[p] = 0
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and π
m̄s

b ,2,α
s (m̄s

s, ϕ
∗
s)[p] = 0 implies:

ζ[v](βbϕ
∗
b(v) + βsϕ

∗
s(v))[m̄

s
b,ms]π

m̄s
b ,2,α

s (ms, ϕ
∗
s)[p] = 0.

If v ̸= v1, mb ̸= m̄s
b, or ms ̸= mv1

s , pα(ϕ∗
b , ϕ

mb
s )[v, m̄s

b,ms]π
2,α
s (ms, ϕ

mb
s )[p] ≤ j−j.

This is as follows: (1) if mb ̸= m̄s
b, then (βbϕ

∗
b(v) + βsϕ

mb
s (v))[m̄s

b,ms] = 0 for each

v ∈ V and ms ∈ Ms; (2) if mb = m̄s
b, ms = mv1

s and v ̸= v1, then (βbϕ
∗
b(v) +

βsϕ
m̄s

b
s (v))[m̄s

b,m
v1
s ] = 0; and (3) if mb = m̄s

b, ms ̸= mv1
s and v ∈ V , then (i) (βbϕ

∗
b(v)+

βsϕ
m̄s

b
s (v))[m̄s

b,ms] = 0 for each ms ̸∈ {mv′
s : v′ ∈ V }, (ii) π2

s(m
v′
s , ϕ

m̄s
b

s )[p] = 0 for

each v′ ∈ V (since π2
b (m̄

s
b, ϕ

∗
b , p) = 1 if and only if p ∈ {pb, ps} or p ≤ v1, and so

π2
s(m

v′
s , ϕ

m̄s
b

s ) = ps is optimal), and (iii) π
m̄s

b ,2,α
s (ms, ϕ

m̄s
b

s )[p] = 0 for each ms ̸= mv1
s and

πmb,2,α
s (ms, ϕ

m̄s
b

s )[p] = 0 for each mb ̸= m̄s
b and ms ∈ Ms.

Finally, note that

π2,α
s (mv1

s , ϕ
m̄s

b
s )[p] = j−1(1− j−j)|T |−1

∑
mb∈T

πmb,2,α
s (mv1

s , ϕ
m̄s

b
s )[p] +O(j−j)

= j−1(1− j−j)|T |−1|P (T, T̂ , T̃ )|−1 +O(j−j)

since πmb,2,α
s (mv1

s , ϕ
m̄s

b
s ) = pb for all mb ̸= m̄s

b.

Thus, the denominator of the inequality is (ignoring terms that are O(j−j)):

(1− j−1)
∑
v,ms

pα(ϕ∗
b , ϕ

∗
s)[v, m̄

s
b,ms]π

2,α
s (ms, ϕ

∗
s)[p]

+j−1(1− j−j)|T |−1
∑
mb∈T

∑
v,ms

pα(ϕ∗
b , ϕ

mb
s )[v, m̄s

b,ms]π
2,α
s (ms, ϕ

mb
s )[p]

+j−1j−j|Φ(T, T̂ )|−1
∑

ϕ∈Φ(T,T̂ )

∑
v,ms

pα(ϕ∗
b , ϕ)[v, m̄

s
b,ms]π

2,α
s (ms, ϕ)[p]

= j−1(1− j−j)|T |−1(1− j−j)ζ[v1]βsj
−1(1− j−j)|T |−1|P (T, T̂ , T̃ )|−1

Likewise, also ignoring terms that are O(j−j), the numerator of the right-hand (resp.

left-hand) side inequality is

j−1(1− j−j)|T |−1(1− j−j)ζ[v1]βsj
−1(1− j−j)|T |−1|P (T, T̂ , T̃ )|−1(v1 − p)

when p > v1 (resp. p = v1).
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Thus, when p > v1, the limit inequality (with a = 1 and ε = 0) is 0 ≥ v1 − p.

When p = v1, the limit inequality (with a = 0 and ε = 0) is v1 − v1 ≥ 0.

For each p ∈ P (T, T̂ , T̃ ) \ {ps, pb}, let τc4(p) be such that condition 6.(c) holds

for (m̄s
b, ϕ

∗
b , p), for each α = (τ, T, T̂ , T̃ ) such that τ ≥ τc4(p), and let τc4(T, T̂ , T̃ ) =

maxp∈P (T,T̂ ,T̃ ) τc4(p).

Case 5: ϕb = ϕ∗
b , p = pb < ps and mb = m̄s

b. Since π2
b (m̄

s
b, ϕ

∗
b , pb) = 1, we may

consider a = 0.

We have that pα(ϕ∗
b , ϕ

∗
s)[v, m̄

s
b,ms]π

2,α
s (ms, ϕ

∗
s)[pb] ≤ j−j for each v ∈ V and

ms ̸= m̄s
s since (βbϕ

∗
b(v) + βsϕ

∗
s(v))[m̄

s
b,ms] = 0 for all ms ̸= m̄s

s. For ms = m̄s
s,

we have π2
s(m̄

s
s, ϕ

∗
s)[pb] = 0 but πmb,2,α

s (m̄s
s, ϕ

∗
s)[pb] = 1 for each mb ∈ Mb. Thus,

|T−1|∑mb
πmb,2,α
s (m̄s

s, ϕ
∗
s)[pb] = 1 and therefore π2,α

s (m̄s
s, ϕ

∗
s)[pb] = j−1(1− j−j).

Also, (βbϕ
∗
b(v) + βsϕ

mb
s (v))[m̄s

b,ms] > 0 only if mb = m̄s
b and ms ∈ {mv

s : v ∈
V }, and π2

s(m
v
s , ϕ

m̄s
b

s )[pb] = 0 for each v ∈ V (since π2
b (m̄

s
b, ϕ

∗
b , ps) = 1). Thus,∑

mb∈T
∑

v,ms
pα(ϕ∗

b , ϕ
mb
s )[v, m̄s

b,ms]π
2,α
s (ms, ϕ

mb
s )[pb] = O(j−1).

Thus, the denominator of the inequality is (ignoring terms that are O(j−j)):

(1− j−1)
∑
v,ms

pα(ϕ∗
b , ϕ

∗
s)[v, m̄

s
b,ms]π

2,α
s (ms, ϕ

∗
s)[pb]

+j−1(1− j−j)|T |−1
∑
mb∈T

∑
v,ms

pα(ϕ∗
b , ϕ

mb
s )[v, m̄s

b,ms]π
2,α
s (ms, ϕ

mb
s )[pb]

= (1− j−1)
∑
v

(1− j−j)ζ[v]βsj
−1(1− j−j) + j−1(1− j−j)|T |−1O(j−1)

= (1− j−1)
∑
v

(1− j−j)ζ[v]βsj
−1(1− j−j) +O(j−2)

= (1− j−1)(1− j−j)βsj
−1(1− j−j)

∑
v

ζ[v] +O(j−2)

= (1− j−1)(1− j−j)βsj
−1(1− j−j) +O(j−2).

Similarly, ignoring terms that are O(j−j) and O(j−2), the numerator of the left-hand

side of the inequality is

(1− j−1)(1− j−j)βsj
−1(1− j−j)

∑
v

ζ[v](v − pb).

Thus, the limit inequality is:∑
v

ζ[v]v − pb ≥ 0.
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Let τc5 be such that condition 6.(c) holds for (m̄s
b, ϕ

∗
b , pb) for each α such that τ ≥ τc5.

Case 6: ϕb = ϕ∗
b , p ̸= pb and mb = m̄b

b. The strategy for the buyer is

π2
b (m̄

b
b, ϕ

∗
b , p) =

1 if p = v1,

0 if p > v1.

By the same argument as in case 4, we have pα(ϕ∗
b , ϕ

∗
s)[v, m̄

b
b,ms]π

2,α
s (ms, ϕ

∗
s)[p] ≤

j−j for each v ∈ V and ms ∈ Ms.

For each v ̸= v1, mb ̸= m̄b
b, or ms ̸= mv1

s , pα(ϕ∗
b , ϕ

mb
s )[v, m̄b

b,ms]π
2,α
s (ms, ϕ

mb
s )[p] ≤

j−j. This is because (βbϕ
∗
b(v) + βsϕ

mb
s (v))[m̄b

b,m
v1
s ] = 0 if mb ̸= m̄b

b or v ̸= v1,

π
m′

b,2,α
s (ms, ϕ

mb
s )[p] = 0 for each ms ̸= mv1

s and mb,m
′
b ∈ Mb, π

mb,2,α
s (ms, ϕ

m̄b
b

s )[p] = 0

for eachmb ̸= m̄b
b andms ∈ Ms, (βbϕ

∗
b(v)+βsϕ

m̄b
b

s (v))[m̄b
b,ms] = 0 for eachms ̸∈ M∗ =

{mv
s : v ∈ V } ∪ {m̄b

s}, π2
s(ms, ϕ

m̄b
b

s )[p] = 0 for each ms ∈ M∗ (since π2
s(m

v
s , ϕ

m̄b
b

s ) = pb

is optimal for each v ∈ V and π2
s(m̄

b
s, ϕ

m̄b
b

s ) = pb), and if mb ̸= m̄b
b, (βbϕ

∗
b(v) +

βsϕ
mb
s (v))[m̄b

b,ms] = 0 for eachms ̸∈ M ′ = {mv
s : v > v1}∪{m̄b

s} and π2
s(ms, ϕ

mb
s )[p] =

0 for each ms ∈ M ′ (since π2
s(m

v
s , ϕ

mb
s ) = pb is optimal for v > v1 and π2

s(m̄
b
s, ϕ

mb
s ) =

pb).

Finally, note that

π2,α
s (mv1

s , ϕ
m̄b

b
s )[p] = j−1(1− j−j)|T |−1

∑
mb∈T

πmb,2,α
s (mv1

s , ϕ
m̄b

b
s )[p] +O(j−j)

= j−1(1− j−j)|T |−1|P (T, T̂ , T̃ )|−1 +O(j−j).

Thus, the denominator of the inequality is (ignoring terms that are O(j−j)):

(1− j−1)
∑
v,ms

pα(ϕ∗
b , ϕ

∗
s)[v, m̄

b
b,ms]π

2,α
s (ms, ϕ

∗
s)[p]

+j−1(1− j−j)|T |−1
∑
mb∈T

∑
v,ms

pα(ϕ∗
b , ϕ

mb
s )[v, m̄b

b,ms]π
2,α
s (ms, ϕ

mb
s )[p]

= j−1(1− j−j)|T |−1(1− j−j)ζ[v1]βsj
−1(1− j−j)|T |−1|P (T, T̂ , T̃ )|−1.

Likewise, also ignoring terms that are O(j−j), the numerator of the right-hand (resp.

left-hand) side inequality is

j−1(1− j−j)|T |−1(1− j−j)ζ[v1]βsj
−1(1− j−j)|T |−1|P (T, T̂ , T̃ )|−1(v1 − p)
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when p > v1 (resp. p = v1).

Thus, when p > v1, the limit inequality (with a = 1 and ε = 0) is 0 ≥ v1 − p.

When p = v1, the limit inequality (with a = 0 and ε = 0) is v1 − v1 ≥ 0.

For each p ∈ P (T, T̂ , T̃ ) \ {pb}, let τc6(p) be such that condition 6.(c) holds for

each (m̄b
b, ϕ

∗
b , p), for each α = (τ, T, T̂ , T̃ ) such that τ ≥ τc6(p), and let τc6(T, T̂ , T̃ ) =

maxp∈P (T,T̂ ,T̃ ) τc6(p).

Case 7: ϕb = ϕ∗
b and mb ̸∈ {m̄b

b, m̃
b
b, m̄

s
b}. The strategy for the buyer is

π2
b (mb, ϕ

∗
b , p) =

1 if p = v1,

0 if p > v1.

In this case, pα(ϕ∗
b , ϕ

∗
s)[v,mb,ms]π

2,α
s (ms, ϕ

∗
s)[p] ≤ j−j for all v ∈ V and ms ∈ Ms,

and pα(ϕ∗
b , ϕ

m′
b

s )[v,mb,ms]π
2,α
s (ms, ϕ

m′
b

s )[p] ≤ j−j if m′
b ̸= mb, v ̸= v1, or ms ̸= mv1

s .

Thus, the denominator of the inequality is (ignoring terms that are O(j−j)):

(1− j−1)
∑
v,ms

pα(ϕ∗
b , ϕ

∗
s)[v,mb,ms]π

2,α
s (ms, ϕ

∗
s)[p]

+j−1(1− j−j)|T |−1
∑
m′

b∈T

∑
v,ms

pα(ϕ∗
b , ϕ

m′
b

s )[v,mb,ms]π
2,α
s (ms, ϕ

m′
b

s )[p]

= j−1(1− j−j)|T |−1(1− j−j)ζ[v1]βsπ
2,α
s (mv1

s , ϕmb
s )[p].

Likewise, also ignoring terms that are O(j−j), the numerator of the right-hand (resp.

left-hand) side inequality is

j−1(1− j−j)|T |−1(1− j−j)ζ[v1]βsπ
2,α
s (mv1

s , ϕmb
s )[p](v1 − p)

when p > v1 (resp. p = v1).

Thus, when p > v1, the limit inequality (with a = 1 and ε = 0) is 0 ≥ v1 − p.

When p = v1, the limit inequality (with a = 0 and ε = 0) is v1 − v1 ≥ 0.

Let τc7(T, T̂ , T̃ ) be such that condition 6.(c) holds for each (mb, ϕ
∗
b , p) such that

mb ∈ T \ {m̄b
b, m̃

b
b, m̄

s
b} and p ∈ P (T, T̂ , T̃ ), for each α = (τ, T, T̂ , T̃ ) such that

τ ≥ τc7(T, T̂ , T̃ ).

Case 8: For eachmb ∈ Mb and ϕb ̸= ϕ∗
b , 6(c) holds in the limit by construction. Let

τc8(T, T̂ , T̃ ) be such that condition 6.(c) holds for each (mb, ϕb, p) such that ϕb ∈ Φα
b \
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{ϕ∗
b}, mb ∈ ∪vsupp(ϕb(v)Mb

)∪{m̄s
b}∪T and p ∈ P (T, T̂ , T̃ ), for each α = (τ, T, T̂ , T̃ )

such that τ ≥ τc8(T, T̂ , T̃ ).

For each (T, T̂ , T̃ ), let

τc(T, T̂ , T̃ ) = max{τc1, τc2, τc3, τc4(T, T̂ , T̃ ), τc5, τc6(T, T̂ , T̃ ), τc7(T, T̂ , T̃ ), τc8(T, T̂ , T̃ )}.

The above arguments allow us to define the following subnet {πφ(η), pφ(η)}η of {πα, pα}α
such that condition 6 holds.

The index set of the subnet {πφ(η), pφ(η)}η is the same as the one in the net

{πα, pα}α. The function φ : η 7→ α is defined by setting, for each η = (τ, T, T̂ , T̃ ),

φ(η) = (max{τa, τb(T, T̂ ), τc(T, T̂ , T̃ )}, T, T̂ , T̃ ).

It is then clear that condition 6 holds and that, as required by the definition of a

subnet, for each α0, there exists η0, e.g. η0 = α0, such that φ(η) ≥ α0 for each η ≥ η0.

A.4 Proof of Corollary 1

It is clear that βsE + βbE(vK) ≤ βsE + βbE(vk) ≤ βsE + βbE(v1) for each k ∈
{1, . . . , K}. Note that, for each k ∈ {2, . . . , K} and p ∈ (vk−1, vk],

Z(p) =
∑
v≥p

ζ[v] =
∑
v≥vk

ζ[v] = Z(vk), and (A.11)

E(p) =
∑
v≥p

ζ[v]v =
∑
v≥vk

ζ[v]v = E(vk). (A.12)

When k = 1, Z(p) = Z(v1) and E(p) = E(v1) for each p ∈ C1 = {v1}. Thus, for each
k ∈ κ, βsE + βbv̄kZ(vk) = βsE + βbv̄kZ(v̄k) ≤ βsE + βbp

∗Z(p∗) since v̄k ≤ E by the

definition of Ck and v̄kZ(v̄k) ≤ p∗Z(p∗) by the definition of p∗. Thus, we also have

that vk(βs + βbZ(vk)) ≤ v̄k(βs + βbZ(v̄k)) ≤ βsE + βbp
∗Z(p∗).

Moreover, for each k ∈ κ, βsE + βbv̄kZ(vk) ≥ βsE + βbv1 by the definition of

Ck. Since vk ≥ v1 and vkZ(vk) ≥ v1, the latter since vk = limj pj for some sequence

{pj}∞j=1 such that pj ∈ Ck for each j ∈ N, it follows that vk(βs + βbZ(vk)) ≥ v1.

(Sufficiency) Let (ûb, ûs) ∈ ∪k∈κUk and let k ∈ κ be such that (ûb, ûs) ∈ Uk. If

vk > vk−1 (respectively, vk = vk−1), then Ck = [vk, v̄k] (resp. Ck = (vk, v̄k]) by the

definition of Ck.
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Consider two cases: (a) ûs ≤ v̄k(βs + βbZ(vk)) and (b) ûs > v̄k(βs + βbZ(vk)).

In case (a), let pb be such that ûs = pb(βs + βbZ(vk)). Then pb ∈ Ck since, by the

definition of Uk and of case (a),

vk(βs + βbZ(vk)) ≤ ûs ≤ v̄k(βs + βbZ(vk))

(resp. vk(βs + βbZ(vk)) < ûs ≤ v̄k(βs + βbZ(vk))). In case (b), let pb = v̄k. In

either case, pb ∈ Ck and it follows by (A.11) and the definition of Ck that pbZ(pb) =

pbZ(vk) ≥ v1 i.e. (4) holds.

Let ps =
ûs−βbpbZ(vk)

βs
. Then it follows by (1), (2), (A.11), (A.12) and the definition

of Uk that, in either case,

us = βsps + βbpbZ(pb) = βsps + βbpbZ(vk) = ûs

and

ub = βs(E − ps) + βb(E(pb)− pbZ(pb))

= βsE − ûs + βbpbZ(vk) + βbE(vk)− βbpbZ(vk)

= βsE + βbE(vk)− ûs = ûb.

It remains to show that (3) holds. Since ps = ûs−βbpbZ(vk)
βs

, we have that ps ≥ pb

if and only if ûs ≥ pb(βs + βbZ(vk)). This inequality holds in case (a) since then

ûs = pb(βs + βbZ(vk)). It also holds in case (b) since then pb = v̄k and, by the

definition of case (b), ûs > v̄k(βs + βbZ(vk)).

It follows from ps = ûs−βbpbZ(vk)
βs

that ps ≤ E holds if and only if ûs ≤ βsE +

βbpbZ(vk). This inequality holds in case (a) since then ûs = pb(βs + βbZ(vk)) and

pb ≤ E, the latter because pb ∈ Ck. It also holds in case (b) since then pb = v̄k and

ûs ≤ βsE + βbv̄kZ(vk), the latter because (ûb, ûs) ∈ Uk.

It follows from the above that (ûb, ûs) is represented by (pb, ps, 1) and, hence,

(ûb, ûs) ∈ U∗∗. Since (ûb, ûs) is arbitrary, it follows that ∪k∈κUk ⊆ U∗∗.

(Necessity) Let (ûb, ûs) ∈ U∗∗ and let (pb, ps) ∈ (V ∗)2 be such that (ûb, ûs)

is represented by (pb, ps, 1). Since {{v1},
(
(vk−1, vk]

)
1<k≤K

} is a partition of V ∗, let

k = 1 if pb = v1 and k ∈ {2, . . . , K} be such that pb ∈ (vk−1, vk] otherwise. Recall that
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Z(pb) = Z(vk) and E(pb) = E(vk) by (A.11) and (A.12) respectively. Then pb ∈ Ck

by (3) and (4). Hence, vk ≤ pb ≤ v̄k and, if vk ̸∈ Ck i.e. vk = vk−1, vk < pb ≤ v̄k.

By (1) and (2), ûb = βs(E−ps)+βb(E(vk)−pbZ(vk)), ûs = βsps+βbpbZ(vk) and,

hence,

ûb + ûs = βsE + βbE(vk). (A.13)

Since ps ≤ E by (3),

ûs = βsps + βbpbZ(vk)

≤ βsE + βbv̄kZ(vk).
(A.14)

Moreover,

ûs = βsps + βbpbZ(vk)

≥ pb(βs + βbZ(vk))

≥ vk(βs + βbZ(vk))

(A.15)

and, if vk ̸∈ Ck i.e. vk = vk−1,

ûs > vk(βs + βbZ(vk)). (A.16)

It then follows by (A.13)–(A.16) that (ûb, ûs) ∈ Uk.

B Refinement

Let µα
b (ϕ

∗
b ,mb, p) ∈ ∆(V × Φ × Ms) be the buyer’s belief after observing his choice

ϕ∗
b , the message mb she received and the price p set by the seller, given (πα, pα).

Define π ∈ Π∗ to be a sequential equilibrium with price-independent beliefs if π is

a sequential equilibrium and, in addition, the defining net {πα, pα} satisfies, for each

(mb, p) ∈ ∪vS
∗
Mb

(v)× V ∗, limα µ
α
b (ϕ

∗
b ,mb, p) = µb(ϕ

∗
b ,mb, p) ∈ ∆(V ×Φ×Ms), where

p 7→ µb,V (ϕ
∗
b ,mb, p) is constant, i.e. the buyer’s beliefs about v does not depend on p.

In particular, this implies that for each mb ∈ ∪vS
∗
Mb

(v),∑
v

vµb,V (ϕ
∗
b ,mb, p)[v] = E(v|mb) (B.1)
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for all p ∈ V ∗, where E(v|mb) is the buyer’s expected valuation conditional on mb.

Note also that the expectation of the conditional expected valuations E(v|mb), with

mb ∈ ∪vS
∗
Mb

(v), is the expected valuation, i.e.∑
mb∈∪vS∗

Mb
(v)

γ[mb]E(v|mb) = E, (B.2)

where, for each mb ∈ ∪vS
∗
Mb

(v), γ[mb] =
∑

v ζ[v]
∑

ms
β(ϕ∗

b(v), ϕ
∗
s(v))[mb,ms] is the

probability of mb.

B.1 Proof of Theorem 2

The following lemma shows that it cannot be that E(v|mb) = E for each mb ∈
∪vS

∗
Mb

(v) since if so, then the seller would gain by setting a price slightly below E

regardless of his message, which would be accepted.

Lemma B.1 There exists mb ∈ ∪vS
∗
Mb

(v) such that E(v|mb) > E.

Proof. If not, then E(v|mb) = E for each mb ∈ ∪vS
∗
Mb

(v) by (B.2). We have that

us = βsps + βbpb(
∑

v>pb
ζ[v] + λζ[pb]) ≤ βsE + βbpb

∑
v≥pb

ζ[v] < E. Hence, let ε > 0

be such that E − ε > us and E − ε ̸= pb. Let p
∗ = E − ε.

By (B.1), for each mb ∈ ∪vS
∗
Mb

(v),∑
v

µb,V (ϕ
∗
b ,mb, p

∗)[v](v − p∗) = E(v|mb)− p∗ = E − (E − ε) = ε > 0

and, hence, a(mb, p
∗) = 1.

Consider π̂2
s such that π̂2

s(ms, ϕ
∗
s) = E−ε for each ms ∈ Ms. Letting π̂s = (ϕ∗

s, π̂
2
s)

and ûs = us(πb, π̂s), it follows that

ûs − us = p∗ − us = E − ε− us > 0.

But this is a contradiction since π is a sequential equilibrium.

We conclude the proof of Theorem 2 by showing that the seller can increase his

payoff after his design is chosen by sending message mb such that E(v|mb) > E to

the buyer and charging a price slightly below E(v|mb).
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Let m∗
b ∈ ∪vS

∗
Mb

(v) be such that E(v|m∗
b) > E. Let ε > 0 be such that E(v|m∗

b)−
ε > E and p∗ = E(v|m∗

b)− ε.

It follows by (B.1) that∑
v

µb,V (ϕ
∗
b ,m

∗
b , p

∗)[v](v − p∗) = E(v|m∗
b)− p∗ > 0

and, hence, a(m∗
b , p

∗) = 1. By Lemma A.6, ps ≤ E < p∗. Letting m ∈ ∪vS
∗
s (v), it

follows that ws(mb) = ps < p∗ = ws(m
∗
b), contradicting Lemma A.2.
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