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Abstract

We introduce a framework and stability notion for large many-to-one match-

ing markets in distributional form with occupational choice. Occupational

choice means that each individual can choose which side of the market to belong

to and implies that the sets of agents to match are determined endogenously.

Our model generalizes the setting and stability notion of Greinecker and Kah

(2021), which focused on one-to-one matching and did not allow for occupa-

tional choice. We show that stable matchings exist under mild assumptions;

in particular, both complementarities and externalities can be accommodated.

Applications include Gale and Shapley’s (1962) roommate problem with non-

atomic participants and the frameworks of Lucas (1978), Rosen (1982), Gari-

cano and Rossi-Hansberg (2004) and Garicano and Rossi-Hansberg (2006).
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1 Introduction

This paper establishes the existence of many-to-one stable matchings in large markets

with complementarities, externalities and occupational choice. Having all these fea-

tures present simultaneously in the same model is important for at least the following

reasons.

Labor markets match a large number of workers and managers in a many-to-

one way, since there are typically many workers matched with a firm or manager.

Unlike in other scenarios, such as college applications or the marriage market, where

the groups to match are determined a priori, being a worker or a manager is up to

the individuals to decide and depends on the actual matching that takes place in the

labor market. Thus, real-world labor matchings typically feature occupational choice,

many-to-one matching and a large number of participants.

Complementarities and externalities also arise naturally in labor markets. For

example, managers typically want to hire workers with complementary skills and

recent graduates may prefer to enter the same industry as their peers. In addition,

knowledge spillovers may imply that the productivity of a manager depends on the

aggregate quality of those who take managerial roles according to the matching.

Thus, a model that aims to capture relevant features of real-world labor mar-

kets should be able to accomodate complementarities, externalities and occupational

choice. As we discuss in Section 2, prior work has established the existence of stable

matchings in models that contain a strict subset of these elements.

Our framework for large many-to-one matching markets with occupational choice

is sufficiently general to have several important special cases and, thus, to provide a

unified view of existing and future work on issues featuring such elements. It gener-

alizes the two-sided one-to-one matching setting in distributional form of Greinecker

and Kah (2021) (GK henceforth) by adding many-to-one matching and occupational

choice; in particular, our existence result implies existence in GK’s one-to-one match-

ing market.1

1In Section 6.1, we show that GK’s setting can be represented as a special case of our gen-
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In addition, we show how several classical models that feature occupational choice,

many-to-one matching and a large number of participants, such as those of Lucas

(1978), Rosen (1982), Garicano and Rossi-Hansberg (2004) and Garicano and Rossi-

Hansberg (2006), can be seen as particular cases of our framework. These models

also feature a continuum of types, which can be accomodated in our framework.

To illustrate the flexibility of our setting and its technical advantages, we provide a

detailed analysis of Rosen’s (1982) model. We show that stable matchings exist even

though some of the assumptions of our general existence result do not hold and we

fully characterize stable matchings.

Our setting is not restricted to the analysis of labor markets but has many other

possible applications. We illustrate this by formalizing a non-atomic version of Gale

and Shapley’s (1962) roommate problem as a special case of our setting – in fact,

one in which individuals are indifferent between the two occupations – and we show

that our existence results imply the existence of stable matchings for the non-atomic

roommate problem.

We present our model and stability notion in Section 4 after a brief literature re-

view in Section 2 and a motivating example in Section 3. This example illustrates that

stability in the presence of occupational choice differs considerably from the stability

notion for two-sided many-to-one matching markets. This happens because individu-

als no longer have a fixed occupation and, therefore, stability is about someone being

unable to find a better match even if this involves a change of occupation.

Our existence results are in Section 5. In particular, we show that stable match-

ings exist in markets with occupational choice whenever preferences are rational and

continuous and the set of feasible measures that managers can match with is bounded

eral framework and that, specialized to this setting, our stability notion coincides with theirs. In

Appendix B.1, we generalize these findings by introducing a new two-sided many-to-one matching

model that generalizes GK to allow for many-to-one matching (but not occupational choice). We

show that this model is also a particular case of our framework and, specialized to this setting, our

stability notion coincides with other stability concepts for two-sided markets where both sides are

large, such as Azevedo and Hatfield’s (2018) (see Appendix B.12 for the comparison with Azevedo

and Hatfield (2018)).
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and rich.2 Thus, we can accommodate externalities as long as preferences depend on

the matching in a continuous way and we do not impose any substitutability require-

ment – complementarities cause no problem for existence in our model. In addition,

as is standard in models with a continuum of agents, preferences are not required to

be convex.

Section 6 contains applications of our framework to marriage markets (Section

6.1), the roommate problem (Section 6.2) and Rosen’s (1982) model (Section 6.3),

and a brief discussion of the settings of Lucas (1978), Garicano and Rossi-Hansberg

(2004) and Garicano and Rossi-Hansberg (2006). Section 7 contains some concluding

remarks. The proofs of our results are in Appendix A. Some additional details are in

Appendix B.

2 Literature review

There have been many recent advances in the formalization and analysis of large

matching markets without occupational choice. These include, among others, Azevedo

and Leshno (2016), Fisher and Hafalir (2016), Ashlagi, Kanoria, and Leshno (2017),

Eeckhout and Kircher (2018), Fuentes and Tohmé (2018), Nöldeke and Samuelson

(2018) and Che and Tercieux (2019). See GK for a survey of this literature.

In this paper, we analyze a general matching model featuring occupational choice,

many-to-one matching and a large number of participants. As we describe in what

follows, some papers have formalized general matching models with some (but not

all) of these features.

The roommate problem can be seen, as we will show in Section 6.2, as a matching

problem with occupational choice where participants are indifferent between the oc-

cupations. Thus, Chiappori, Galichon, and Salanié (2014), Pȩski (2017) and Azevedo

and Hatfield (2018) study general matching models with a particular form of occupa-

tional choice and a large number of participants; see Section 6.2 for a more detailed

2Richness is a weak technical condition that implies that small perturbations of feasible measures

are feasible.
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discussion of these papers. There is one-to-one matching in the roommate problem

and, thus, in relation to these papers, our framework adds many-to-one matching and

a general formalization of occupational choice.

More generally, Jagadeesan and Vocke (2021) consider a many-to-many matching

model where a continuum of agents of finitely many types can sign multiple contracts

with each other. They show that tree-stable outcomes exist without any restriction

on who can match with whom; this implies the existence of stable outcomes when

only many-to-one matching is allowed since, in this case, tree-stability is equivalent

to stability. In particular, they do not require that the market is two-sided and

hence their existence result holds in the presence of occupational choice. However,

their assumption that the set of contracts available to each agent is finite makes

it less convenient to capture settings such as Rosen (1982) which was part of our

motivation. In comparison with Jagadeesan and Vocke (2021), we do not allow for

many-to-many matching, but we consider more general type and contract spaces and

we allow preferences to depend on the matching.3

Wu (2021) provides a general existence result for a broad class of finite-type match-

ing models under a convexity condition. Like Jagadeesan and Vocke (2021), he al-

lows for many-to-many matching and arbitrary contracting networks. However, Wu’s

(2021) result does not apply to our setting where preferences may depend on the entire

matching because his convexity requirement that certain combinations of unblocked

matchings remain unblocked will fail under the appropriate notion of blocking in a

model with general externalities.4

Two-sided matching models with many-to-one matching and a large number of

participants have been considered in Che, Kim, and Kojima (2019) (CKK henceforth),

among others. There is no occupational choice in their setting and, while there is a

continuum of workers, the set of managers (or firms) is finite. CKK also considered

a simplified version of Azevedo and Hatfield’s (2018) model which has a continuum

3Another modelling difference is that our managers are matched with measures of workers,

whereas theirs are matched with sets of workers.
4In Appendix B.13, we provide an example of a roommate market with externalities to which

Wu’s (2021) result does not apply.
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of managers but no occupational choice.5

Making the workers negligible allowed CKK to obtain the existence of stable

matchings in two-sided many-to-one matching markets where managers’ preferences

exhibit complementarities. This result solved a longstanding problem in matching

theory since, with finitely many workers and managers, Kelso and Crawford (1982),

Hatfield and Milgrom (2005) and Hatfield and Kojima (2008) have shown that man-

agers need to have substitutable preferences to guarantee the existence of stable

matchings. In Carmona and Laohakunakorn (2023a), we show that CKK’s result

holds even when workers have weak preferences that may depend on the matching

(i.e. we do not require strict preferences and allow for externalities), under an as-

sumption (discussed below) about how the agents in a blocking coalition expect the

matching to change.

Externalities cause problems for the existence of stable matchings and raise some

conceptual issues in finite markets. Indeed, when individuals’ preferences depend

on the matching, whether or not an individual gains by being part of a blocking

coalition depends on the matching that results from such blocking. Thus, the defini-

tion of stability has to specify the (set of possible) matchings that result from each

blocking coalition, and many such definitions have been proposed by e.g. Sasaki and

Toda (1996), Dutta and Massó (1997), Echenique and Yenmez (2007), Hafalir (2008),

Mumcu and Saglam (2010), Bando (2012) and Fisher and Hafalir (2016).

When there are finitely managers but a continuum of workers and only work-

ers’ preferences depend on the matching, Cox, Fonseca, and Pakzad-Hurson (2022),

Leshno (2022) and Carmona and Laohakunakorn (2023a) define stability by specifying

that each worker in a blocking coalition expects the matching to remain unchanged.

They then establish the existence of stable matchings for this stability notion. In con-

trast to these papers, we consider the case where all agents are negligible and, thus, a

blocking coalition of one (prospective) manager and a measure of (prospective) work-

ers is negligible and, indeed, has no impact on the matching. Hence, externalities

5In Appendices B.11 and B.12, we formally compare our framework with the ones of CKK and

Azevedo and Hatfield (2018) respectively.
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cause no conceptual issue in our framework. The existence of stable matchings is

also not an issue; indeed, we establish it in the presence of both externalities and

complementarities.

3 Motivating example

There are two types of individuals, 1 and 2. Individuals have preferences that are

fully described by their types and their population is described by a measure ν over

the type space Z = {1, 2}. Let ν(1) = ν(2) = 1
2
.

Each individual can be a manager, a worker or self-employed. For each type

z ∈ {1, 2}, some individuals of type z can be managers and some others can be

workers; furthermore, those who are managers (if any) can be matched with workers

of type z or of type z′ ̸= z. Those who are managers can hire a workforce, which we

represent as a measure over worker types and contracts, from the set X, where each

δ ∈ X is a measure over Z × C with C being the set of contracts. For this example,

let C = R+ and X = {n1(z,c) : z ∈ Z, n, c ∈ R+}.6 Specifically, each manager can be

matched with a measure n1(z,c), where z ∈ Z denotes the type of workers he employs,

n ∈ R+ denotes their number and c ∈ R+ denotes the wage paid to them.

The preferences of each individual depend on her type, her occupation and on

her match. In this example, we specify that if someone of type z ∈ {1, 2} chooses

to be a manager and is matched with n1(z′,c), then her payoff is Uz(m,n1(z′,c)) =

z1+αn1−α − cn, where α ∈ (0, 1). If she chooses to be a worker and is matched with

manager z′ at wage c, then her payoff is the wage: Uz(w, 1(z′,c)) = c. An individual

can also choose to be unmatched, in which case she receives a payoff of zero.

This example is a particular case of the model in Rosen (1982) which we reformu-

late and analyse in our framework in Section 6.3. The managers’ rents are obtained

via a production function of the form g(z)zαn1−α, with g(z) = z, which has labor and

managers’ type as inputs, the latter being interpreted as the managers’ quality.

In the context of this example, a matching is a measure µ over Z × X with

6If Y is a metric space and y ∈ Y , 1y denotes the probability measure degenerate on y.
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µ(z, n1(z′,c)) describing the measure of type z who are managers and hire n workers

of type z′ at wage c.

Consider first the case where each individual’s occupation is fixed, with type 1

individuals being managers and type 2 individuals being workers. There is a unique

stable matching in this example without occupational choice: µ(1, 1(2,1−α)) =
1
2
. In

such matching, all workers (i.e. type 2 individuals) are matched with a manager (i.e.

a type 1 individual), each manager hires a workforce consisting of a measure n = 1

of workers at wage c = 1 − α. Since both managers and workers obtain a strictly

positive utility in this matching and zero if they were unmatched, such matching is

individually rational. Furthermore, no manager and group of workers can block this

matching since hiring a measure one of workers is optimal given the wage; hence, the

manager cannot gain by changing his workforce since at least the newly hired workers

would require a wage higher than 1− α.

In the example without occupational choice, type 1 individuals can only be man-

agers and type 2 individuals can only be workers; these restrictions are now removed

by the introduction of occupational choice. The specification of our example implies

that individuals of type 2 are better managers than those of type 1 since they have

higher quality. This then means that the stable matching µ for the setting without

occupational choice is intuitively not stable when occupational choice is allowed. For

instance, any type 2 individual could choose to be a manager and attract, for exam-

ple, a measure one of workers of type 2 by paying them 1− α+ ε to obtain a rent of

21+α − (1 − α) − ε; for sufficiently small ε > 0, such workers are willing to work for

her and her payoff is higher than 1− α which is her payoff in the matching µ.

Thus, stability in the presence of occupational choice is more demanding than

the stability notion for two-sided many-to-one matching markets. The latter roughly

requires that no manager can improve his well being by changing the number of

workers who work for him or by employing (an optimal number of) workers that

he can target, which are those who would prefer to work for him at the proposed

wage rather than for the manager with whom they are currently matched.7 With

7Stability also requires individual rationality for the workers.
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occupational choice, since anyone can choose to be a manager, this condition must

hold not just for those who are managers in the current match but also for those who

are workers and unmatched. Similarly, since anyone can be a worker, the targets of

a prospective manager are no longer restricted to be the current workers but rather

can include current managers and unmatched individuals.

When α = 1/2, the unique stable matching in the above example is for all type

2 individuals to be managers, each of them being matched with a measure one of

type 1 individuals at wage w ≃ 1.41.8 At this wage, the firm size is optimal for

type 2 managers. Their rent is equal to w, so that type 2 individuals are actually

indifferent between being a manager or a worker. Type 1 individuals would get a rent

approximately equal to 0.18 if they were to hire an optimal number of workers at

wage w and, thus, they strictly prefer to be workers rather than managers. It follows

from these properties that this matching is indeed stable.9

4 Matching with occupational choice

The setting we introduce in this paper is that of a matching market featuring occu-

pational choice, many-to-one matching and a large number of participants. We frame

this problem in the context of a labor market for simplicity, so that individuals have

a choice of being a manager, a worker or self-employed.

4.1 Environment and matching

Individuals are (potentially) heterogenous in e.g. their talent or knowledge. This is

captured by a (nonempty, Polish) set Z of types. The population of individuals is

described by a nonzero, finite, Borel measure ν on Z; ν is the type distribution. A

8In Appendix B.7, we fully characterize the stable matchings in this example for each α ∈ (0, 1);

in fact, there is a unique stable matching for each α.
9Our general framework allows for externalities and their presence is often natural. In the context

of the above example, it might be that the production function depends on the aggregate managerial

quality in an analogous way to Romer (1986), so that the rent of a manager with quality z is e.g.(∫
Z×X

ẑdµ(ẑ, δ)
)
z1+αn1−α − cn when the matching is µ.
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dummy type ∅ ̸∈ Z is used to represent unmatched i.e. self-employed individuals, and

we let Z∅ = Z ∪ {∅}, with the assumption that ∅ is an isolated point in Z∅.

A manager of type z may be matched with a worker of type z′ under some contract

c. In particular, there is a (nonempty, Polish) set C of contracts and a contract

correspondence C : Z × Z∅ ⇒ C describing the set C(z, z′) of contracts that are

feasible for a manager of type z and a worker of type z′ (when z′ = ∅ the manager is,

in fact, self-employed and C(z, ∅) describes the feasible contracts for a self-employed

individual of type z).

A manager is allowed to hire as many workers as he likes; to capture the many-to-

one aspect of matching, a manager is matched with a measure of workers and contracts

δ ∈ M(Z×C).10 The definition of a matching below will impose feasibility constraints

on δ via the contract correspondence C and, thus, constrain the contracts that the

manager can offer to each of his employees. These constraints are of the form c ∈

C(z, z′) and are, therefore, independent across workers. To capture interdependent

and other feasibility constraints, we let X be a subset of M(Z ×C) and require that

managers be matched with δ ∈ X.

Self-employed (or unmatched) managers are those matched with the dummy type

∅. To specify his contract (e.g. the number of hours worked as self-employed), we use

matches of the form (z, 1(∅,c)) to describe a self-employed individual of type z with

contract c. To unify the two cases, we let X∅ = X ∪ {1(∅,c) : c ∈ C} be the set of

possible matches of managers and self-employed individuals.

The set of occupations is A = {w, s,m}, where w stands for worker, s for self-

employed and m for manager. The choice set of each individual depends on his

occupation; namely, a worker chooses among managers’ types and contracts, a self-

employed individual among contracts, and a manager among measures δ ∈ X describ-

ing whom to hire and the contracts offered. To capture these differences, let Xm = X,

Xs = {1(∅,c) : c ∈ C}, Xw = {1(z,c) : (z, c) ∈ Z × C} and ∆ = {(a, δ) : δ ∈ Xa}.11

10Whenever Y is a metric space, M(Y ) denotes the set of finite, Borel measures on Y endowed

with the weak (narrow) topology (see Varadarajan (1958) for details). We often focus on MR(Y )

where, for each R > 0, MR(Y ) = {δ ∈ M(Y ) : δ(Y ) ≤ R}.
11We do not distinguish between (z, c) and 1(z,c) for each (z, c) ∈ Z∅ × C, hence it would be
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The set ∆ is the choice set of each individual as she can choose her occupation and

a match feasible for the chosen occupation.

We allow for externalities and, thus, preferences are allowed to depend on the

matching. Matchings with occupational choice are elements of M(Z×X∅) satisfying

certain properties described below. The preferences of an individual of type z are

then described by a relation ≻z defined on ∆×M(Z ×X∅) for each z ∈ Z.

In summary, a matching market with occupational choice (a market, henceforth)

is E = (Z, ν, C,C, X, (≻z)z∈Z).

A matching with occupational choice (a matching, henceforth) is a Borel measure

µ ∈ M(Z ×X∅) such that

1. {z} × supp(δ) ⊆ graph(C) for each (z, δ) ∈ supp(µ), and

2. νM + νS + νW = ν

where, for each Borel subset B of Z, νM(B) = µ(B ×X), νS(B) = µ(B × (X∅ \X))

and νW (B) =
∫
Z×X

δ(B × C)dµ(z, δ).

The interpretation of µ is as follows. First, µ describes the occupational choices

by the place in the match (z, δ), namely, the first coordinate refers to managers and

the second to workers (as part of a firm) when δ ∈ X and, when δ ∈ X∅ \X, the first

coordinate refers to a self-employed individual and the second, which is equal to 1(∅,c)

for some c ∈ C, describes the individual’s contract. Condition 1 requires that the

contract is feasible according to the contract correspondence. Condition 2 requires

that everyone in the market is accounted for, as follows: For each Borel subset B

of Z, µ(B × X) is the measure of managers whose type belongs to B and we call

it νM(B). Similarly, µ(B × (X∅ \ X)) is the measure of self-employed individuals

whose type belongs to B and we call it νS(B). Finally,
∫
Z×X

δ(B × C)dµ(z, δ) is the

measure of workers whose type belongs to B and, thus, we call it νW (B).12 Since an

simpler to replace the latter with the former in the definition of Xs and Xw. The formalization we

use above provides an unified notation which simplifies the exposition elsewhere.
12For each Borel subset E of a metric space Y , the function δ 7→ δ(E) : M(Y ) → R is Borel

measurable. This follows by the argument in Aliprantis and Border (2006, Theorem 15.13, p. 514)

together with Varadarajan (1958, Theorem 3.1).
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individual must be either a manager, or a worker or self-employed, condition 2 must

hold if everyone in the market is accounted for.

4.2 Stability

Heading towards the definition of stable matchings, we start by defining the targets

of individuals at a given matching and then define the stability set of a matching.

Targets at a given matching µ depend on the type z and on the occupational

choice a, and are denoted by T a
z (µ). Because one’s occupation is a choice and not a

fixed characteristic, these targets are for someone planning to choose occupation a,

i.e. if someone chooses occupation a, then his targets are T a
z (µ). The targets for the

prospective self-employed are simply the contracts that are feasible when someone is

unmatched: For each z ∈ Z, let T s
z (µ) = {∅} × C(z, ∅).

The targets of prospective managers and workers are more complicated as they

consist of contracts and types of people on the other side of the market that managers

or workers can attract. But with occupational choice, there is not a fixed “other side

of the market” since anyone can change his occupation. In more detail, even if all

individuals of type z∗ are managers in the matching µ, any type z∗ person can choose

to became a worker. In particular, if such z∗ person gains by becoming a worker and

by working for a manager of type z at some contract c, then (z∗, c) is a target for

those of type z planning to be a manager, i.e. it belongs to Tm
z (µ). We then let, for

each z ∈ Z, Tm
z (µ) be the set of (z∗, c) ∈ Z × C such that c ∈ C(z, z∗) and there

exists

(a) (z′, c′, δ′) ∈ Z × C × X such that (z′, δ′) ∈ supp(µ), (z∗, c′) ∈ supp(δ′) and

(w, 1(z,c), µ) ≻z∗ (w, 1(z′,c′), µ), or

(b) δ′ ∈ X∅ \X such that (z∗, δ′) ∈ supp(µ) and (w, 1(z,c), µ) ≻z∗ (s, δ
′, µ), or

(c) δ′ ∈ X such that (z∗, δ′) ∈ supp(µ) and (w, 1(z,c), µ) ≻z∗ (m, δ′, µ).

Anyone of type z can be a manager if he finds workers, here of type z∗, who prefer

to work for him than to be in their current occupation. Each of these workers can be

12



someone who was already a worker in µ as described in condition (a), or self-employed

as described by condition (b), or even a manager as described by condition (c).

The targets of prospective workers are defined analogously. Thus, for each z ∈ Z,

let Tw
z (µ) be the set of (z

∗, c) ∈ Z ×C such that c ∈ C(z∗, z) and there is δ ∈ X such

that (z, c) ∈ supp(δ) and

(a) supp(δ) \ {(z, c)} ⊆ Tm
z∗ (µ) and there is (z′, c′, δ′) ∈ Z × C × X such that

(z′, δ′) ∈ supp(µ), (z∗, c′) ∈ supp(δ′) and (m, δ, µ) ≻z∗ (w, 1(z′,c′), µ), or

(b) supp(δ) \ {(z, c)} ⊆ Tm
z∗ (µ) and there is δ′ ∈ X∅ \X such that (z∗, δ′) ∈ supp(µ)

and (m, δ, µ) ≻z∗ (s, δ
′, µ), or

(c) there is δ′ ∈ X such that supp(δ)\{(z, c)} ⊆ Tm
z∗ (µ)∪supp(δ′), (z∗, δ′) ∈ supp(µ)

and (m, δ, µ) ≻z∗ (m, δ′, µ).

As above, anyone of type z can be a worker if she finds a manager, here of type z∗,

that hires her, possibly alongside other workers as described by δ ∈ X, and both

agree on a feasible contract c ∈ C(z∗, z). This manager can be someone who was

already a manager in µ as described in condition (c), or self-employed as described

by condition (b), or even a worker as described by condition (a).

The stability set S(µ) of matching µ is the set of (z, δ) ∈ Z × X∅ such that, if

δ ∈ X, then

(i) there does not exist (a, δ′) ∈ ∆ such that supp(δ′) ⊆ T a
z (µ) ∪ supp(δ) if a = m,

supp(δ′) ⊆ T a
z (µ) if a ̸= m, and (a, δ′, µ) ≻z (m, δ, µ),

(ii) for each (z′, c) ∈ supp(δ), there does not exist (a, δ′) ∈ ∆ such that supp(δ′) ⊆

T a
z′(µ) and (a, δ′, µ) ≻z′ (w, 1(z,c), µ),

and, if δ ∈ X∅ \X, then

(iii) there does not exist (a, δ′) ∈ ∆ such that supp(δ′) ⊆ T a
z (µ) and (a, δ′, µ) ≻z

(s, δ, µ).

The set S(µ) describes matches (z, δ) that do not suffer from instability. Instability

could come from those who are managers in µ if a manager of type z can find a
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match δ′ that is better than his current one δ by employing workers of the types

currently employed or those of his targets. In addition, he could instead be better off

by changing his occupation and matching with some of his targets for the alternative

occupation. Condition (i) rules out instability arising from the current managers,

whereas condition (ii) does the same for current workers and (iii) for self-employed.

A matching µ is stable if supp(µ) ⊆ S(µ).

Theorem 1 provides a characterization of stable matchings that is simpler to use.

Let SM(µ) be defined as S(µ) but with “(a, δ′) ∈ ∆” being replaced with “(a, δ′) ∈ ∆

such that a = m” and, analogously, IR(µ) be defined as S(µ) but with “(a, δ′) ∈ ∆”

being replaced with “(a, δ′) ∈ ∆ such that a = s”.

Theorem 1 A matching µ is stable if and only if supp(µ) ⊆ SM(µ) ∩ IR(µ).

4.3 Discussion

We conclude this section with some comments on our definition of stability. First,

note that it focuses on the support of the matching. In some cases, however, not

all elements of supp(δ) in a match (z, δ) are pairs of worker types and contracts

that are matched with a manager of type z. This may happen, for example, if δ =∑∞
k=1 2

−k1(zk,ck) for some countable subset D = {(zk, ck)}∞k=1 of Z × C. In this case,

it would seem more appropriate to require only that {z} ×D ⊆ graph(C) instead of

{z}×supp(δ) ⊆ graph(C) in the definition of a matching. When the correspondence C

is continuous, this issue does not arise since then the two requirements are equivalent.

Similar considerations apply to the definition of stability when preferences are also

continuous. For instance, when a market E also satisfies a richness condition, we have

that a matching µ is stable if and only if S(µ) has full µ-measure.13

A more important issue concerns what we require for a manager of type z, cur-

rently matched with δ, and a potential workforce δ′ to qualify as a blocking coalition.14

In the simpler case where preferences do not depend on the matching, we require that

13See Section 5 for the notion of continuity and richness we use and Appendix B.6 for a proof of

this claim.
14I.e. what condition (i) of the definition of S(µ) for a = m rules out.
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(m, δ′) ≻z (m, δ) and supp(δ′) ⊆ Tm
z (µ)∪supp(δ). This requirement is unusual in that

it is between weak and strong domination – but as we now argue, it is the weakest

requirement for blocking (and hence associated with the strongest stability notion)

such that stable matchings exist under general conditions.

We illustrate the above with the following example, where for simplicity contracts

are omitted in addition to preferences not depending on the matching. Let Z = {1, 2},

ν(1) = ν(2) = 1
2
and X = {n1z : n ≤ 1, z ∈ Z}. Let preferences be represented by:

uz(m,n1z′) = 2nz′, uz(w, 1z′) = z′, and uz(s, 1∅) = 0. It is easy to see that µ

such that µ(2, 11) = 1
2
is a stable matching. Here, every individual gets payoff 2

(thus the matching is individually rational and supp(µ) ⊆ IR(µ)), and since being

a worker yields payoff at most 2, Tm
1 (µ) = Tm

2 (µ) = ∅. Since supp(µ) = {(2, 11)},

(w, 12) ⪰1 (m, δ) for all δ ∈ X such that supp(δ) ⊆ ∅ and (m, 11) ⪰2 (m, δ) for all

δ ∈ X such that supp(δ) ⊆ {1}, it follows that supp(µ) ⊆ SM(µ).

The strongest notion of stability is the one that defines a blocking coalition via

weak domination, i.e. to require that every individual in the coalition is weakly better

off with at least one individual being strictly better off. Let ν⪯z
W (µ) be the measure of

types who would weakly prefer to work for type z than remain in their current match,

given µ. Under weak domination, our requirement that supp(δ′) ⊆ Tm
z (µ) ∪ supp(δ)

would be replaced with supp(δ′) ⊆ supp(ν⪯z
W (µ)).15 Note that Tm

z (µ) ∪ supp(δ) ⊆

supp(ν⪯z
W (µ)) since Tm

z (µ) is the set of types16 that would strictly prefer to work for

type z given matching µ and those in supp(δ) are currently working for type z and

hence indifferent; thus, the resulting notion of stability is stronger.

15To see this in the context of the current example, suppose that (z, δ) ∈ supp(µ) and there exists

δ′ such that (m, δ′) ≻z (m, δ) and supp(δ′) ⊆ supp(ν⪯z
W (µ)). Then there is a nonnull coalition S of

individuals, described by a measure νS = νSM + νSW , and a matching µS for the coalition such that

supp(νSM ) = {z}, µS(z, δ′) = νSM (z), µS(z, δ′)δ′(z′) = νSW (z′) for each z′ ∈ Z, each manager in νSM

is strictly better off and each worker in νSW is weakly better off. Indeed, let νSM = ε1z and νSW (z′) =

εδ′(z′) for each z′ ∈ Z. For each z′ ∈ supp(νSW ) = supp(δ′), we have that z′ ∈ supp(ν⪯z
W (µ)); thus

for ε sufficiently small, νSW (z′) = εδ′(z′) ≤ ν⪯z
W (µ)(z′) for each z′ ∈ supp(νSW ) and so the coalition

can be chosen such that each worker is weakly better off. In addition, for ε sufficiently small,

νSM (z) = ε ≤ µ(z, δ) and so the coalition can be chosen such that each manager is strictly better off.
16Recall that we are omitting contracts for simplicity.
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However, this yields a notion of stability for which there are no stable matchings

in the current example. In the matching of the previous paragraph, we now have

supp(ν⪯2
W (µ)) = {1, 2}, supp(12) ⊆ supp(ν⪯2

W (µ)) and (m, 12) ≻2 (m, 11). It is easy

to see that there are no other stable matchings; in any stable matching all type 2

individuals must be managers and employ type 2 individuals but this is impossible.

We could alternatively use strong domination to define a blocking coalition, i.e.

to require that every individual in the coalition is strictly better off. Then for type z,

currently a manager and matched with δ, to form a blocking coalition with potential

workforce δ′, we would need (m, δ′) ≻z (m, δ) and supp(δ′) ⊆ Tm
z (µ). Note that

Tm
z (µ) ⊆ Tm

z (µ) ∪ supp(δ) ⊆ supp(ν⪯z
W (µ)); hence stability defined via weak domina-

tion is the strongest notion, followed by ours, followed by the one defined via strong

domination.

Our existence result, Theorem 2, shows generally that, when managers can only

hire a bounded number of workers as in the above example, a stable matching ex-

ists when blocking coalitions are defined using our requirement supp(δ′) ⊆ Tm
z (µ) ∪

supp(δ) (and hence when they are defined via strong domination). Our reason for

adopting our stability notion is that it is a refinement of the stability notion defined

via strong domination but its existence is nevertheless guaranteed under general con-

ditions. We prefer our notion to the one defined via strong domination because our

notion implies existing stability notions in special cases (see Section 6).

5 Existence of stable matchings

In this section we establish the existence of stable matchings and discuss the condi-

tions needed to prove this result.

One requirement in our existence result is that preferences are rational. We say

that a market is rational if ≻z is asymmetric and negative transitive for each z ∈ Z.17

Note that ≻z is asymmetric and negative transitive if and only if ⪰z is complete and

17A relation ≻ on a set Y is asymmetric if, for each x, y ∈ Y , if x ≻ y then ¬(y ≻ x). It is negative

transitive if, for each x, y, z ∈ Y , if ¬(x ≻ y) and ¬(y ≻ z), then ¬(x ≻ z).
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transitive (i.e. rational).18 Rational preferences can be represented by an utility

function and this plays an important role in our proof.

Another basic requirement in our existence results is some form of continuity. We

say that a market E is continuous if {(a, δ, µ, a′, δ′, µ′, z) ∈ (∆×M(Z ×X∅))
2 × Z :

(a, δ, µ) ≻z (a
′, δ′, µ′)} is open,19 C is continuous with nonempty and compact values,

and X is closed.

Stable matchings may fail to exist in the absence of a bound on the measure of

workers a manager can hire. This existence problem arises because each manager is

negligible and, therefore, is effectively unconstrained by the size of the market. In

Section A.7, we provide an example showing that, without any boundedness assump-

tions on X, a stable matching fails to exist.20 Thus, we focus on bounded markets,

defined as follows: We say that a market E is bounded if there exists R > 0 such that

δ(Z ×C) ≤ R for each δ ∈ X. More succinctly, E is bounded if X ⊆ MR(Z ×C) for

some R > 0.

Note that boundedness is essentially a uniform satiation condition. Indeed, sup-

pose that there exists R > 0 such that, for each z ∈ Z and µ ∈ M(Z × X∅), there

exists δ ∈ X such that δ(Z × C) ≤ R and (m, δ, µ) ⪰z (m, δ′, µ) for each δ′ ∈ X.

In this case, as far as existence of stable matchings is concerned, we may focus on

δ ∈ MR(Z × C) and, thus, assume that the market is bounded.

We will also focus on rich markets. The reason is that our approach to the

existence problem consists in first addressing discrete markets where Z, C and X are

finite. In such markets, managers are matched with measures of workers that are

finitely supported and richness will then allow us to extend our existence results from

discrete to general markets. We say that a market E is rich if the correspondences

Λ : Z×X×M(Z×X∅) ⇒ X and Λ0 : Z×M(Z×X∅) ⇒ X defined by setting, for each

(z, δ, µ) ∈ Z ×X ×M(Z ×X∅), Λ(z, δ, µ) = {δ′ ∈ X : supp(δ′) ⊆ supp(δ) ∪ Tm
z (µ)}

18The relation ⪰z is defined as usual by setting, for each (a, δ, µ), (a′, δ′, µ′) ∈ ∆ ×M(Z ×X∅),

(a, δ, µ) ⪰z (a′, δ′, µ′) if and only if (a, δ, µ) ≻z (a′, δ′, µ′) or ¬
(
(a′, δ′, µ′) ≻z (a, δ, µ)

)
.

19The set A of occupations is endowed with the discrete topology.
20A stable matching would fail to exist even under the weakest form of stability we discuss in

Section 4 which is defined via strong domination.
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and Λ0(z, µ) = {δ′ ∈ X : supp(δ′) ⊆ Tm
z (µ)} are lower hemicontinuous.

The richness assumption is a mild requirement which is satisfied in several special

cases, including those of CKK and GK where, respectively, X = M1(Z × C) and

X = {1(z,c) : (z, c) ∈ Z × C} (the boundedness assumption is clearly also satisfied

in these two cases). This can be seen by noting that, for a market to be rich, it is

sufficient that the set of finitely supported measures on Z × C is dense in X (this is

(β) below) and that measures δ obtained via a small perturbation to the support of

a finitely supported measure in X remain in X (this is (α) below). More formally,

the following conditions are sufficient for richness:21

(α) For each δ ∈ X such that δ =
∑J

j=1 aj1(zj ,cj) for some J ∈ N, aj ∈ R++ and

(zj, cj) ∈ Z×C for each j = 1, . . . , J and each open neighborhood Vδ of δ in X,

there exist open neighborhoods V(zj ,cj) of (zj, cj) for each j = 1, . . . , J such that,

whenever (ẑj, ĉj) ∈ V(zj ,cj) for each j = 1, . . . , J , there exists â = (â1, . . . , âJ) ∈

RJ
+ such that

∑J
j=1 âj1(ẑj ,ĉj) ∈ Vδ.

(β) For each δ ∈ X and open neighborhood Vδ of δ in X, there exists δ̂ ∈ Vδ such

that supp(δ̂) is a finite subset of supp(δ).

The following is our main existence result. As GK’s framework is a special case

of ours, it has GK’s Theorem 5 as a special case.

Theorem 2 Every rational, continuous, bounded and rich market has a stable match-

ing.

When preferences do not depend on externalities, the rationality of E can be

replaced with the requirement that preferences are acyclic. This is because when Z,

C and X are finite, acyclic preferences defined on ∆ (as opposed to ∆×M(Z×X∅))

can be extended to linear orders, which are rational. We say that E is a market

without externalities if, for each z ∈ Z and (a, δ), (a′, δ′) ∈ ∆, if (a, δ, µ̂) ≻z (a
′, δ′, µ̂)

for some µ̂ ∈ M(Z×X∅), then (a, δ, µ) ≻z (a
′, δ′, µ) for all µ ∈ M(Z×X∅). Moreover,

21See Appendix B.5 for a proof of this claim.
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we say that E is acyclic if ≻z is acyclic for each z ∈ Z.22 We then obtain the following

corollary which has GK’s Theorem 1 as a special case.

Corollary 1 Every acyclic, continuous, bounded and rich market without externali-

ties has a stable matching.

6 Applications

6.1 Marriage markets

We consider in this section GK’s model of two-sided one-to-one matching markets

(marriage markets, henceforth) and show that it is a special case of the framework of

markets with occupational choice in Section 4. For simplicity, we consider the case

where preferences do not depend on the matching.

A marriage market is E = (W,M, νW , νM , C,C, (≻w)w∈W , (≻m)m∈M) satisfying

the following conditions and having the following interpretation. The sets M and W

are Polish spaces of types of men (or managers) and women (or workers) respectively.

To these sets correspond nonzero, finite, Borel measures νW and νM on W and M ,

respectively, describing the population of managers and workers. In addition, there

is a dummy type ∅ ̸∈ W ∪ M , which is an isolated point in W∅ = W ∪ {∅} and in

M∅ = M ∪ {∅}, to represent unmatched individuals. The set C is a Polish space of

contracts and C : M∅ ×W∅ ⇒ C is a contract correspondence. Workers’ preferences

are described by (≻w)w∈W and managers’ preferences by (≻m)m∈M ; for each w ∈ W ,

≻w is defined on M∅ × C and, for each m ∈ M , ≻m is defined on W∅ × C. In

addition, ≻∅ denotes the empty relation under which no elements are comparable

and the following conditions hold: (GK1) ≻w (resp. ≻m) is acyclic for each w ∈ W

(resp. m ∈ M), (GK2) {(m, c,m′, c′, w) ∈ (M∅ × C)2 ×W : (m, c) ≻w (m′, c′)} and

{(w, c, w′, c′,m) ∈ (W∅ × C)2 × M : (w, c) ≻m (w′, c′)} are open, and (GK3) C is

continuous with nonempty and compact values.

22A relation ≻ on a set Y is acyclic if there is no finite sequence y1, y2, . . . , yn in Y such that

y1 ≻ y2 ≻ · · · ≻ yn ≻ y1.
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A matching for a marriage market E (a marriage matching, henceforth) is a Borel

measure µ ∈ M(M∅ ×W∅ × C) such that (M1) µ(B ×W∅ × C) = νM(B) for each

Borel subset B of M , (M2) µ(M∅ ×B ×C) = νW (B) for each Borel subset B of W ,

(M3) supp(µ) ⊆ graph(C), and (M4) µ({(m,w, c) : m = w = ∅}) = 0.

GK define an instability set I containing the pairs of couples such that there is

some instability. The precise definition of I is given in GK; here, we just note that I

is a subset of (M∅ ×W∅ × C)2. A marriage market is stable if µ⊗ µ(I) = 0.

We now show how to represent a marriage market E as a market with occupational

choice Ê and characterize the stable matchings of E in terms of those of Ê. We may

assume that W and M are disjoint (if not, we could consider Ŵ = {w} × W and

M̂ = {m} × M where w ̸= m) and let Z = W ∪ M be the set of types in Ê; we

may assume that W and M are closed subsets of Z.23 The type distribution ν is

defined by setting, for each Borel subset B of Z, ν(B) = νM(M ∩ B) + νW (W ∩ B).

The set of contracts in Ê is C as in E. The constraint correspondence Ĉ is defined

from C just by adjusting the order in which elements are listed and by arbitrarily

defining the feasible contracts of two types in M and two types in W , as follows: let

c̄ ∈ C be given and set, for each z ∈ Z and z′ ∈ Z∅, Ĉ(z, z′) = C(z, z′) if z ∈ M and

z′ ∈ W ∪ {∅}, Ĉ(z, z′) = C(z′, z) if z ∈ W and z′ ∈ M ∪ {∅}, and Ĉ(z, z′) = {c̄} if

(z, z′) ∈ M2 or (z, z′) ∈ W 2.

The set of feasible matches for managers in Ê is X = {1(z,c) : (z, c) ∈ W × C}.

Finally, preferences are defined as follows. For each z ∈ M , a, a′ ∈ {m, s}, 1(z̄,c̄) ∈ Xa,

1(z′,c′) ∈ Xa′ and δ̃ ∈ Xw, (i) (a, 1(z̄,c̄))≻̂z(a
′, 1(z′,c′)) if and only if (z̄, c̄) ≻z (z

′, c′), and

(ii) (a, δ)≻̂z(w, δ̃). Similarly, for each z ∈ W , let X̃ = {1(z,c) : (z, c) ∈ M∅ × C} and

define, for each a, a′ ∈ {w, s}, 1(z̄,c̄) ∈ Xa ∩ X̃, 1(z′,c′) ∈ Xa′ ∩ X̃, δ̂ ∈ Xw \ X̃ and

δ̃ ∈ Xm, (i) (a, 1(z̄,c̄))≻̂z(a
′, 1(z′,c′)) if and only if (z̄, c̄) ≻z (z′, c′), (ii) (a, δ)≻̂z(m, δ̃),

and (iii) (a, 1(z̄,c̄))≻̂z(w, δ̂). In both cases, condition (i) says that preferences in Ê are

derived from those in E when comparing the choices that individuals can make in E,

namely, being a manager or self-employed in the case of someone with type in M and

being a worker or self-employed in the case of someone with type in W . Condition

23Define a metric d on Z based on those inM andW , and set d(w,m) = 1 for each (w,m) ∈ W×M .
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(ii) says that being a worker is always worse than being a manager or self-employed

for someone with type in M and being a manager is always worse than being a worker

or self-employed for someone with type in W . Finally, condition (iii) says that, for

someone with type in W , being a worker matched with someone in W is always worse

than being a worker matched with someone in M or self-employed. We say that Ê is

the market associated with E.

The following result shows that the stable matchings of Ê are the same as those

of E up to an homeomorphism. Let

Y = (M ×X∅) ∪ (W × (X∅ \X)) and Y ′ = (M ×W∅ × C) ∪ ({∅} ×W × C).

Theorem 3 Let E be a marriage matching market, Ê be its associated market, S be

the set of stable matchings of E and Ŝ be the set of stable matchings of Ê. Then there

is an homeomorphism h : Y → Y ′ with inverse f such that Ŝ = {µ ◦ f−1 : µ ∈ S}

and S = {µ̂ ◦ h−1 : µ̂ ∈ Ŝ}.

6.2 Roommate market

Gale and Shapley (1962) considered a roommate problem in which an “even number

of boys wish to divide up into pairs of roommates.” This is an example of matching

with occupational choice since there aren’t two exogenously given sets of individuals

to match; it has also the particular feature that individuals are indifferent between

the different occupations.

In this section we formulate a general version of the roommate problem with a

continuum of individuals in distributional form, a roommate market, as a special case

of our framework. We show that, in contrast to the case of finitely many individuals

of Gale and Shapley (1962), a stable matching exists in roommate markets that

are acyclic and continuous when preferences do not depend on externalities; when

preferences depend on externalities, our existence result requires preferences to be

rational and continuous. In particular, roommate markets are always bounded and

rich.
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The importance of large markets for the existence of stable matchings in the room-

mate problem has been established by Chiappori, Galichon, and Salanié (2014), Pȩski

(2017), Azevedo and Hatfield (2018), Wu (2021) and Jagadeesan and Vocke (2021).

Both Chiappori, Galichon, and Salanié (2014) and Pȩski (2017) show the existence

of approximately stable matchings in roommate problems with a large finite number

of individuals, respectively, with and without transferable utility, and Azevedo and

Hatfield (2018) establish the existence of (exact) stable matchings with a continuum

of individuals and with transferable utility. Our existence result for the roommate

problem, like Wu’s (2021) and Jagadeesan and Vocke’s (2021), dispenses with the

requirement of transferable utility in Azevedo and Hatfield’s (2018) result and allows

us to cover a setting which is exactly as in Gale and Shapley (1962) except for the car-

dinality of the set of individuals to be matched; in contrast to Jagadeesan and Vocke

(2021) and Wu (2021), we also allow preferences to depend on the entire matching.

A roommate market can be defined in our setting as a market where matching is

restricted to be one-to-one and preferences and the contract correspondence satisfy

certain restrictions that reflect the fact that the roles of worker and manager have no

meaning in the roommate setup. In particular, we define a roommate market as a

market E = (Z, ν, C,C, X, (≻z)z∈Z) satisfying the following restrictions:

(R1) X = {1(z,c) : (z, c) ∈ Z × C},

(R2) (m, 1(z′,c), µ) ∼z (w, 1(z′,c), µ) for each z, z′ ∈ Z, c ∈ C and µ ∈ M(Z ×X∅),

(R3) C(z, z′) = C(z′, z) for each z, z′ ∈ Z, and

(R4) (m, 1(z′,c), µ) ∼z (m, 1(z′,c), µ ◦ f−1) for each z, z′ ∈ Z, c ∈ C and measurable

f ∈ F ,

where F = {f : f(z, z′) = (z, z′) or f(z, z′) = (z′, z) for each z, z′ ∈ Z, and f(z, ∅) =

(z, ∅) for each z ∈ Z}. (R1) requires that matching in a roommate market is one-

to-one. (R2) requires that each type cares only about who he is matched with (and

not the role he occupies in the match). (R3) requires that switching the roles of

two types in a match does not affect the set of feasible contracts, and (R4) requires
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that matchings that differ only according to who occupies which role in a match are

treated the same way.

The particular setting of a roommate market allows for some simplification in its

description. In fact, we can identify 1(z,c) with (z, c) for each (z, c) ∈ Z∅ × C and,

thus, we can write (R1) as requiring X = Z × C and X∅ = Z∅ × C. In particular, a

matching is µ ∈ M(Z × Z∅ × C).

(R2) implies that individual preferences can be defined on Z∅ × C × M(Z ×

Z∅ × C).24 In light of this comment and the one in the previous paragraph, we

can equivalently define a roommate market as E = (Z, ν, C,C, (≻z)z∈Z) such that

(Z, ν, C,C) are as in the general framework of Section 4, C satisfies C(z, z′) = C(z′, z)

for each z, z′ ∈ Z, and ≻z is defined on Z∅ × C × M(Z × Z∅ × C) and satisfies

(z′, c, µ) ∼z (z
′, c, µ ◦ f−1) for each z ∈ Z, (z′, c) ∈ Z∅ × C and measurable f ∈ F .

A matching, which we refer to as a roommate matching, is then a Borel measure

µ ∈ M(Z × Z∅ × C) such that supp(µ) ⊆ graph(C) and νW + νS + νM = ν where,

for each Borel subset B of Z, νM(B) = µ(B × Z × C), νW (B) = µ(Z × B × C) and

νS(B) = µ(B × {∅} × C).

The targets become

Tm
z (µ) = Tw

z (µ) ={(z∗, c) ∈ Z × C : c ∈ C(z, z∗) and ∃(z′, c′) ∈ Z × C such that

supp(µ) ∩ {(z∗, z′, c′), (z′, z∗, c′)} ≠ ∅ and (z, c, µ) ≻z∗ (z
′, c′, µ)}

and T s
z (µ) = {∅} × C(z, ∅). Let Tz(µ) = Tm

z (µ) ∪ T s
z (µ). Then S(µ) becomes the set

of (z, z′, c) ∈ Z × Z∅ × C such that

(i) there does not exist (ẑ, ĉ) ∈ Tz(µ) such that (ẑ, ĉ, µ) ≻z (z
′, c, µ), and

(ii) if z′ ̸= ∅, there does not exist (ẑ, ĉ) ∈ Tz′(µ) such that (ẑ, ĉ, µ) ≻z′ (z, c, µ).

24Indeed, given ≻̂z defined on ∆ × M(Z × Z∅ × C), define ≻z on Z∅ × C × M(Z × Z∅ × C)

by setting, for each z′, z′′ ∈ Z, c′, c′′ ∈ C, and µ′, µ′′ ∈ M(Z × Z∅ × C), (i) (z′, c′, µ′) ≻z

(z′′, c′′, µ′′) if and only if (m, z′, c′, µ′)≻̂z(m, z′′, c′′, µ′′), (ii) (z′, c′, µ′) ≻z (∅, c′′, µ′′) if and only if

(m, z′, c′, µ′)≻̂z(s, ∅, c′′, µ′′), (iii) (∅, c′, µ′) ≻z (z′′, c′′, µ′′) if and only if (s, ∅, c′, µ′)≻̂z(m, z′′, c′′, µ′′),

and (iv) (∅, c′, µ′) ≻z (∅, c′′, µ′′) if and only if (s, ∅, c′, µ′)≻̂z(s, ∅, c′′, µ′′). These four conditions,

together with (R2), also define ≻̂z on ∆×M(Z × Z∅ × C) from ≻z on Z∅ × C ×M(Z × Z∅ × C).
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Since a roommate market is a particular case of the setting of Section 4, the

existence of a stable matching for each roommate market follows from Theorem 2.

Corollary 2 If E is a rational and continuous roommate market or an acyclic and

continuous roommate market without externalities, then E has a stable roommate

matching.

To illustrate our stability condition for the roommate market, first consider the

example from Gale and Shapley (1962) with four individuals α, β, γ and δ. Prefer-

ences are given by: β ≻α γ ≻α δ ≻α ∅, γ ≻β α ≻β δ ≻β ∅, and α ≻γ β ≻γ δ ≻γ ∅.

As Gale and Shapley (1962) argue, a stable matching does not exist regardless of δ’s

preferences. In a finite market, someone must be matched with δ or unmatched. But

whoever is matched with δ or unmatched would prefer to be matched with either of

the other two individuals, one of whom must also prefer to be matched with him.

Suppose instead that there is a continuum of individuals with four types of agents

α, β, γ and δ, where each type of agent has the same preference as the single individual

of that type given above,25 and let the measure of each type of agent be ν(z) = 1 for

z ∈ Z = {α, β, γ, δ}. We will now argue that µ(α, β) = µ(β, γ) = µ(γ, α) = 1
2
and

µ(δ, ∅) = 1 is a stable matching in our model.26

First, note that µ({z} × Z) + µ(Z × {z}) + µ({z} × {∅}) = 1 for each z ∈ Z,

so µ is a roommate matching. The targets are: Tα(µ) = {γ, ∅}, Tβ(µ) = {α, ∅},

Tγ(µ) = {β, ∅}, and Tδ(µ) = {∅}. Note that supp(µ) = {(α, β), (β, γ), (γ, α), (δ, ∅)}.

To see that (α, β) ∈ S(µ), note that type α likes β the most so there is no ẑ such

that ẑ ≻α β; thus condition (i) is satisfied. Type β prefers γ to α but γ ̸∈ Tβ(µ); thus

condition (ii) is satisfied. Analogous arguments establish that supp(µ) ⊆ S(µ), and

hence µ is stable.

25With a continuum of individuals, it is possible for a given type to match with itself. To ensure

that this does not happen in a stable matching, we specify for this example that z′ ≻z z for each

(z, z′) ∈ Z × Z∅ with z′ ̸= z.
26Formally, a model without contracts can be modelled in our framework by letting C be singleton

and C(z, z′) = C for each z, z′ ∈ Z, but here we omit contracts altogether for simplicity.
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A stable matching exists in this example with a continuum of individuals because

it is possible for individuals of type α, β and γ all to be matched with each other,

leaving individuals of type δ unmatched. More generally, our results imply that

the large market version of the roommate problem admits a stable solution with or

without transfers and even in the presence of externalities.

6.3 Rosen (1982)

In this section we consider the setting in Rosen (1982, Section 3), which we briefly

describe in what follows.

Individuals are characterized by their general ability, with Z ⊆ R denoting the set

of possible abilities and ν denoting its (nonzero, finite) distribution. Individuals can

be workers, managers or self-employed (here more correctly interpreted as unemployed

as it will be clear from the individuals’ payoffs) and their productivity is determined

both by this choice and their ability, with q = q(z) denoting the productivity of

someone of ability z who chooses to be a worker and r = r(z) his productivity if he

chooses to be a manager; both r and q are non-decreasing functions of the ability z.

A firm consists of one manager and several workers of the same type, i.e. there is

many-to-one matching. Managers have one unit of time and need to supervise work-

ers: The output produced by a worker with productivity q in a firm with a manager

with productivity r is g(r)f(tr, q), where t is the time spent by the manager super-

vising the worker, g(r) represents the quality of management decisions of a manager

of productivity r, g : R+ → R+ is increasing and f : R2
+ → R+ is continuously dif-

ferentiable, homogeneous of degree 1, strictly increasing and strictly concave in each

coordinate in the interior of its domain27 and satisfies f(0, y) = f(x, 0) = 0 for each

x, y ∈ R+. For convenience, we define θ : R+ → R+ as θ(x) = f(x, 1) for each x ∈ R+;

note that θ is strictly increasing and strictly concave. The output of a firm with a

27Meaning that for (x, y) ∈ R2
++,

∂f(x,y)
∂x > 0, ∂f(x,y)

∂y > 0, and x 7→ ∂f(x,y)
∂x and y 7→ ∂f(x,y)

∂y are

strictly decreasing over R++.
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manager of ability r and a measure n of workers with productivity q is

ng(r)f
( r
n
, q
)
= g(r)f(r, nq) = g(r)nqθ

(
r

nq

)
since the time spent in each worker is t = 1/n.28 The manager’s rent is

g(r)f(r, nq)− cn = g(r)nqθ

(
r

nq

)
− cn,

where c is the wage paid by the manager to the workers.

To represent the above setting in the general framework of Section 4, let, in

addition to Z and ν as above, the set of contracts be C = R+, interpreted as the set

of possible wages, and the contract correspondence be C ≡ C. The set of feasible

matches for managers is X = {n1(z,c) : (z, c) ∈ Z × C and n ∈ R+} since managers

can hire several workers all of the same type. Occupations are the same as in the

general framework: A = {w, s,m}. Finally, preferences are defined by specifying

payoff functions as follows:

Uz(w, 1(z′,c)) = c for each 1(z′,c) ∈ Xw,

Uz(s, 1(∅,c)) = 0 for each 1(∅,c) ∈ Xs, and

Uz(m,n1(z′,c)) = g(r(z))f(r(z), nq(z′))− cn for each n1(z′,c) ∈ Xm.

We will establish existence and obtain a characterization of stable matchings for

the setting of this section under the following simplifying assumptions. We let Z =

[z, z̄] with 0 ≤ z < z̄ < ∞ and assume that q(z) > 0, r(z) > 0 and g(r) > 0 for

each r > 0; thus, g(r(z)) > 0. A market satisfying these assumptions as well as the

additional specifications described above is a Rosen market and denoted by Erosen.

Concerning the existence of stable matchings, note that a Rosen market fails to

satisfy two assumptions of our existence result, namely the contract correspondence

28This claim follows from the Jensen’s integral inequality as follows. Let µ ∈ M([0, 1]) be a

probability distribution of time spent on workers so that µ(B) is the fraction of workers who get

supervision time in B, for each Borel subset B of [0, 1], and 1 1
n
∈ M([0, 1]) be the probability distri-

bution degenerate on 1/n. Then n
∫
tdµ(t) = 1 and

∫
g(r)nqθ

(
rt
q

)
dµ(t) = nqg(r)

∫
θ
(

rt
q

)
dµ(t) ≤

nqg(r)θ
(

r
∫
tdµ(t)
q

)
= nqg(r)qθ

(
r
nq

)
=
∫
g(r)nqθ

(
rt
q

)
d1 1

n
(t).
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fails to be compact-valued and the market fails to be bounded. Nevertheless, by

considering a sequence of truncated Rosen markets that satisfy our assumptions, we

show that stable matchings exist.

Corollary 3 Every Rosen market has a stable matching.

We next provide a characterization of stable matchings in Rosen markets that is

analogous to the formulation in Rosen (1982). The following concepts are needed.

Let r ∈ r(Z), q ∈ q(Z) and w > 0. If n solves maxn′∈R+ [g(r)f(r, n′q)− wn′q], then

w = g(r)
∂f(r, nq)

∂y
= g(r)

∂f
(

r
nq
, 1
)

∂y

since ∂f
∂y

is homogeneous of degree zero. Thus, there is a continuous function ϕ :

r(Z)× R++ → R++ such that nq = ϕ(r, w). The manager’s rent is then

g(r)
∂f
(

r
nq
, 1
)

∂x
r = g(r)

∂f
(

r
ϕ(r,w)

, 1
)

∂x
r.

The above functions and formulas are used to define, for each manager of type z,

the optimal number of workers of type z′ he wants to hire at wage wq(z′) and the

corresponding rent. Define n : Z2 × R++ → R++ by setting, for each (z, z′, w) ∈

Z2 × R++,

n(z, z′, w) =
ϕ(r(z), w)

q(z′)
.

Moreover, define R : Z × R++ → R+ by setting, for each (z, w) ∈ Z × R++,

R(z, w) = g(r(z))
∂f
(

r(z)
ϕ(r(z),w)

, 1
)

∂x
r(z).

Theorem 4 A matching µ of a Rosen market is stable if and only if there exists

λ ∈ M(Z2) and w > 0 such that

λ(B × Z) +

∫
Z×B

n(z, z′, w)dλ(z, z′) = ν(B) for each measurable B ⊆ Z, (1)

supp(λ) ⊆ {z ∈ Z : R(z, w) ≥ wq(z)} × {z ∈ Z : wq(z) ≥ R(z, w)}, and (2)

µ = λ ◦ h−1, (3)

where h : Z2 → Z ×X is defined by setting, for each (z, z′) ∈ Z2,

h(z, z′) = (z, n(z, z′, w)1(z′,wq(z′))).
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As Theorem 4 illustrates, our framework is tractable and our stability notion

admits a simple characterization in applied settings; they can therefore be used to

clarify important economic questions and highlight what forces might explain them.

We give one such example when q(z) = r(z) = z and the technology takes the

form g(z)zα(nz′)1−α with α = 1/2. If g ≡ 1, then each individual is indifferent

between being a manager or a worker and each individual of type z has an income

(wage or rent) equal to z/2.29 In contrast, if g(z) = z, then individual income is

no longer necessarily linear in the type. For example, when Z = {z1, . . . , z4}, it

is possible to construct a stable matching where individuals of type z1 and z2 are

workers, individuals of type z3 and z4 are managers, each person strictly prefers his

occupation to the alternative one and, for some w > 0, workers’ income is wz while

managers’ income is z3

4w
.30 In this latter example, any change that leads to a decrease

in w causes an increase in the income of those in the top and a decrease in the income

of those in the bottom of the income distribution.31 In addition, as a result of decrease

in w, there is less inequality at the bottom (since the function z 7→ wz describing the

income of those in the bottom of the distribution becomes flatter) and more at the

top of the income distribution (since the function z 7→ z3

4w
describing the income of

those in the top of the distribution becomes steeper).

6.4 Further applications

In Appendix B we consider additional applications of our framework, which we sum-

marize here, to illustrate its flexibility.

29Indeed, if α = 1
2 and g ≡ 1, then R(z, w) ≥ wq(z) if and only if 1

2 ≥ w. It then must be

that w = 1
2 in any stable matching since otherwise there would be no worker or no managers; thus,

R(z, w) = wq(z) = z
2 for each z ∈ Z.

30If α = 1
2 , Z = {z1, . . . , z4} and g is the identity, then pick w ∈ (2z2, 2z3), which implies

that R(z, w) > wq(z) for each z ∈ {z3, z4} and R(z, w) < wq(z) for each z ∈ {z1, z2}. Let ν

be such that ν(z3) = ν(z4) = 1, ν(z2) = n(z4, z2, w) and ν(z3) = n(z3, z1, w). Then λ such

that λ(z3, z1) = λ(z4, z2) = 1 yields a stable matching. Payoffs are wz for each z ∈ {z1, z2} and

R(z, w) = z3

4w for each z ∈ {z3, z4}.
31Such a decrease in w would occur, for example, if ν(z1) and ν(z2) increase by a small amount.
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Specifically, we show how our framework can capture the settings of Garicano and

Rossi-Hansberg (2004) and Garicano and Rossi-Hansberg (2006) (in Appendices B.8

and B.9 respectively), and how it can be extended to accommodate Lucas’s (1978)

model (in Appendix B.10). Both Garicano and Rossi-Hansberg (2004) and Garicano

and Rossi-Hansberg (2006) require feasible matches for managers that depend on the

types of the workers hired. This dependence arises because the measure of workers

that a manager can hire is determined by the time constraint of the manager and is

increasing in the quality of the workers. In Garicano and Rossi-Hansberg (2004) all

workers have the same quality but in Garicano and Rossi-Hansberg (2006) a manager

can hire workers of finitely many different qualities.

In Lucas (1978) there is a capital market in addition to a labor market with

occupational choice. The easiest approach to represent this setting is to consider, for

each rental price of capital, the resulting market with occupational choice with the

amount of capital hired by a firm being included in the contract between the manager

and workers. An equilibrium is then a rental price of capital and a matching such

that the matching is stable given the rental price and the capital market clears.

In addition, in Appendix B.1 we also introduce a model of two-sided many-to-one

matching markets and show that it is a special case of our framework of markets

with occupational choice. Nevertheless, it is interesting to consider it explicitly since

several real-world matching markets do not feature occupational choice but involve

many-to-one matching and a large number of participants on both sides of the mar-

ket.32

7 Concluding remarks

In this paper we provided a formalization of large many-to-one matching markets

with occupational choice and a notion of a stable matching for them. This was done

with the goal of being able to include the settings of Lucas (1978), Rosen (1982),

32Examples include school allocation in urban settings and the matching of doctors to hospitals

within a country.
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Garicano and Rossi-Hansberg (2004) and Garicano and Rossi-Hansberg (2006) in our

framework, while at the same time extending the two-sided, one-to-one matching

setting of GK.

The large matching markets we consider are, as in GK, formalized using a distri-

butional approach. Thus, the set of individuals is not explicitly included, rather only

the distribution of individuals’ types is present in the description of the market. This

approach is tractable and this has been illustrated in Section 6.3 in the context of

Rosen’s (1982) setting where stable matchings are fully characterized.

The above tractability makes our setting potentially useful to address the impli-

cations of stability in large labor markets, in particular, for income inequality. We

aim to do so in future work.

The representation of Lucas’s (1978) setting in our framework required the intro-

duction of capital, which proved to be a relatively easy extension. This suggests that

other important elements can be added to our framework.

A Appendix: Proofs

A.1 Preliminary lemmas

This section presents some lemmas on the support of a measure and on the existence

of convergent subsequences. Lemma 1 shows that the support of the image µ ◦ h−1

of a measure µ under a homeomorphism h is the image of the support of µ.

Lemma 1 Let Y and Y ′ be separable metric spaces, µ ∈ M(Y ), h : Y → Y ′ be

a homeomorphism and ν = µ ◦ h−1. Then supp(ν) = h(supp(µ)) and supp(µ) =

h−1(supp(ν)).

Proof. Note first that ν(supp(ν)) = ν(Y ′) = µ(h−1(Y ′)) = µ(Y ) = µ(supp(µ))

and, since supp(µ) = h−1(h(supp(µ))),

ν(supp(ν)) ≥ ν(h(supp(µ))) = µ(h−1(h(supp(µ))))

= µ(supp(µ)) ≥ µ(h−1(supp(ν))) = ν(supp(ν)).
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Thus,

µ(supp(µ)) = µ(h−1(supp(ν))) = ν(h(supp(µ))) = ν(supp(ν)).

Since h−1(supp(ν)) is closed, supp(µ) ⊆ h−1(supp(ν)) and, hence, h(supp(µ)) ⊆

h(h−1(supp(ν))) = supp(ν). Letting f denote the inverse of h, we have that h(F ) =

f−1(F ) is closed for each closed subset F of Y . Thus, it follows that supp(ν) ⊆

h(supp(µ)).

It follows from supp(ν) = h(supp(µ)) that h−1(supp(ν)) = h−1(h(supp(µ))) =

supp(µ).

Lemma 2 shows that the support correspondence is lower hemicontinuous.

Lemma 2 If Y is a separable metric space, then the correspondence µ 7→ supp(µ),

from M(Y ) to Y , is lower hemicontinuous.

Proof. We have thatM(Y ) is a separable metrizable space by Varadarajan (1958,

Theorem 3.1). The conclusion then follows from (the proof of) Aliprantis and Border

(2006, Theorem 17.14, p. 563).

Lemma 3 characterizes the support of a product measure.

Lemma 3 Let X be a separable metric space and µ ∈ M(X) be finite. Then supp(µ⊗

µ) = supp(µ)2.

Proof. Let b = µ(X) and write µ2 = µ ⊗ µ. We have that µ2(supp(µ)2) = b2 =

µ2(X2) and that supp(µ)2 is closed in X2, hence supp(µ2) ⊆ supp(µ)2.

Let F = supp(µ2) and, for each x ∈ X, F (x) = {y ∈ X : (x, y) ∈ F}. Then

b2 = µ2(F ) =

∫
X

(∫
X

1F (x, y)dµ(y)

)
dµ(x).

Since
∫
X
1F (x, y)dµ(y) = µ(F (x)) ≤ b for each x ∈ X, it follows that µ(F (x)) = b

for µ-a.e. x and, as F (x) is closed, that supp(µ) ⊆ F (x) for µ-a.e. x. We have that

{x ∈ X : supp(µ) ⊆ F (x)} is closed (since F is closed) and µ({x ∈ X : supp(µ) ⊆

F (x)}) = b, hence, supp(µ) ⊆ {x ∈ X : supp(µ) ⊆ F (x)}. Thus,

supp(µ)2 = ∪x∈supp(µ)({x} × supp(µ))

⊆ ∪x∈supp(µ)({x} × F (x)) ⊆ ∪x∈X({x} × F (x)) = F.
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It then follows that supp(µ2) = supp(µ)2.

Lemma 4 provides conditions for the existence of a convergent subsequence.

Lemma 4 If Y is a separable metrizable space and {µk}∞k=1 is a tight sequence in

M(Y ) such that, for some R > 0, µk(Y ) ≤ R for all k ∈ N, then {µk}∞k=1 has a

convergent subsequence.

Proof. The proof reduces to the case of probability measures as follows: Suppose

first that there is a subsequence {µkj}∞j=1 such that µkj(Y ) → 0. Then this subse-

quence converges to the zero measure. Thus, we may assume that there is ε > 0

such that µk(Y ) ≥ ε for all but finitely many k. The sequence {µk(Y )}k is bounded,

thus we may assume that it converges; let θ = limk µk(Y ). Consider {νk}∞k=1 with

νk(B) = µk(B)
µk(Y )

for each Borel B. This is a tight family of probability measures, so

it has a convergent subsequence {νkj}∞j=1; let ν = limj νkj , µ = θν and B has µ-null

boundary, which happens if and only if it has ν-null boundary since θ ≥ ε. Then

µkj(B) = µkj(Y )
µkj

(B)

µkj
(Y )

→ θν(B) and, hence, µkj → µ.

A.2 Proof of Theorem 1

Note first that supp(µ) ⊆ S(µ) implies that supp(µ) ⊆ SM(µ) ∩ IR(µ) since S(µ) ⊆

SM(µ) ∩ IR(µ).

Conversely, suppose that supp(µ) ⊆ SM(µ) ∩ IR(µ). Let (z, δ) ∈ supp(µ) and

assume, in order to reach a contradiction, that (z, δ) ̸∈ S(µ). Since (z, δ) ∈ supp(µ) ⊆

SM(µ) ∩ IR(µ), it follows that there is (z∗, c) ∈ Z × C and z̄ ∈ Z such that (z∗, c) ∈

Tw
z̄ (µ), z̄ = z or (z̄, c̄) ∈ supp(δ) for some c̄ ∈ C, (1) (w, 1(z∗,c), µ) ≻z̄ (m, δ, µ)

if z̄ = z and δ ∈ X, (2) (w, 1(z∗,c), µ) ≻z̄ (w, 1(z,c̄), µ) if (z̄, c̄) ∈ supp(δ) and (3)

(w, 1(z∗,c), µ) ≻z̄ (s, δ, µ) if z̄ = z and δ ∈ X∅ \ X. Since (z∗, c) ∈ Tw
z̄ (µ), it follows

that c ∈ C(z∗, z̄).

We now show that (z̄, c) ∈ Tm
z∗ (µ). Indeed, we have that c ∈ C(z∗, z̄) and (z, δ) ∈

supp(µ). Thus, in case (1), the conclusion follows by condition (c) in the definition of

Tm
z∗ (µ) since z̄ = z and (w, 1(z∗,c), µ) ≻z (m, δ, µ); in case (2), the conclusion follows

by condition (a) in the definition of Tm
z∗ (µ) since (z̄, c̄) ∈ supp(δ) and (w, 1(z∗,c), µ) ≻z̄
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(w, 1(z,c̄), µ); and, in case (3), the conclusion follows by condition (b) in the definition

of Tm
z∗ (µ) since z̄ = z and (w, 1(z∗,c), µ) ≻z (s, δ, µ).

Since (z∗, c) ∈ Tw
z̄ (µ), there is δ̃ ∈ X such that (z̄, c) ∈ supp(δ̃) and (a) or (b) or

(c) in the definition of Tw
z̄ (µ) holds. In either case, we will show that supp(µ) ⊆ SM(µ)

fails, which is a contradiction to supp(µ) ⊆ SM(µ) ∩ IR(µ).

Suppose that condition (a) in the definition of Tw
z̄ (µ) holds. Then, in addition,

supp(δ̃) \ {(z̄, c)} ⊆ Tm
z∗ (µ), and there is (z′, c′, δ′) ∈ Z × C × X such that (z′, δ′) ∈

supp(µ), (z∗, c′) ∈ supp(δ′) and (m, δ̃, µ) ≻z∗ (w, 1(z′,c′), µ). Since (z̄, c) ∈ Tm
z∗ (µ),

it follows that (z′, δ′) ∈ supp(µ) \ SM(µ) since (ii) of the definition of SM(µ) fails.

Indeed, (z′, δ′) ∈ supp(µ), (z∗, c′) ∈ supp(δ′), supp(δ̃) ⊆ Tm
z∗ (µ) and (m, δ̃, µ) ≻z∗

(w, 1(z′,c′), µ).

Suppose next that condition (b) in the definition of Tw
z̄ (µ) holds. Then, in ad-

dition, supp(δ̃) \ {(z̄, c)} ⊆ Tm
z∗ (µ), and there is δ′ ∈ X∅ \ X such that (z∗, δ′) ∈

supp(µ) and (m, δ̃, µ) ≻z∗ (s, δ′, µ). Since (z̄, c) ∈ Tm
z∗ (µ), it follows that (z∗, δ′) ∈

supp(µ) \SM(µ) since (iii) of the definition of SM(µ) fails. Indeed, (z∗, δ′) ∈ supp(µ),

supp(δ̃) ⊆ Tm
z∗ (µ) and (m, δ̃, µ) ≻z∗ (s, δ

′, µ).

Finally, suppose that condition (c) in the definition of Tw
z̄ (µ) holds. Then, in

addition, there is δ′ ∈ X∅ \ X such that (z∗, δ′) ∈ supp(µ), supp(δ̃) \ {(z̄, c)} ⊆

Tm
z∗ (µ) ∪ supp(δ′) and (m, δ̃, µ) ≻z∗ (m, δ′, µ). Since (z̄, c) ∈ Tm

z∗ (µ), it follows that

(z∗, δ′) ∈ supp(µ) \ SM(µ) since (i) of the definition of SM(µ) fails. Indeed, (z∗, δ′) ∈

supp(µ), supp(δ̃) ⊆ Tm
z∗ (µ) ∪ supp(δ′) and (m, δ̃, µ) ≻z∗ (m, δ′, µ).

A.3 Proof of Theorem 2

The first step in the proof of our existence result consists in the following lemma,

which considers the special case where Z, X and C are finite.33

Lemma 5 If E is a rational and continuous market such that Z, X and C are finite,

then E has a stable matching.

33See Appendix B.3 for an outline of the proof of Theorem 2.
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Proof. Note first that Z∅, X∅ and ∆ are also finite. Define τ̄ ∈ RZ×∆ by setting,

for each (z, a, δ) ∈ Z ×∆,

τ̄(z, a, δ) =


0 if {z} × supp(δ) ̸⊆ graph(C) and a ̸= w,

0 if supp(δZ)× {z} × supp(δC) ̸⊆ graph(C) and a = w,

ν(z) otherwise.

Let κ̄ ∈ RZ×Z×C be such that κ̄(z, z′, c) = ν(z′) if (z, z′, c) ∈ graph(C), and

κ̄(z, z′, c) = 0 otherwise.

Define

T = {τ ∈ RZ×∆
+ : τ(z, a, δ) ≤ τ̄(z, a, δ) and

∑
(a,δ)∈∆

τ(z, a, δ) ≤ ν(z)

for each (z, a, δ) ∈ Z ×∆} and

K = {κ ∈ RZ×Z×C
+ : κ(z, z′, c) ≤ κ̄(z, z′, c) for each (z, z′, c) ∈ Z × Z × C}.

Note that T and K are nonempty, convex, and compact subsets of Euclidean spaces.

Let u : Z ×∆×M(Z ×X∅) → R be a continuous utility function that represent

preferences. We normalize so that u ≥ 1. For each n ∈ N, let un = un. Since x 7→ xn

is strictly increasing on [1,∞), un and u represent the same preferences.

Define d : T → RZ×X∅
+ by setting, for each τ ∈ T and (z, δ) ∈ Z ×X∅,

d(τ)(z, δ) =

τ(z,m, δ) if δ ∈ X,

τ(z, s, δ) if δ ∈ X∅ \X.

The function d is continuous. We abuse notation and, for each (z, a, δ, τ) ∈ Z×∆×T ,

write u(z, a, δ, τ) for u(z, a, δ, d(τ)) and analogously for un. We also write (a, δ, τ) ≻z

(a′, δ′, τ) for (a, δ, d(τ)) ≻z (a
′, δ′, d(τ)), where (a′, δ′) ∈ ∆.

34



For each n ∈ N, let Dn : T ×K ⇒ T be defined by setting, for each (µ, κ) ∈ T ×K,

Dn(µ, κ) ={τ ∈ T : τ ∈ argmax
τ ′∈T

∑
z∈Z,(a,δ)∈∆

un(z, a, δ, µ)τ
′(z, a, δ)

subject to
∑

(a,δ)∈∆

τ ′(z, a, δ) = ν(z) for all z ∈ Z,

∑
δ∈X

τ ′(z,m, δ)δ(z′, c) ≤ κ(z, z′, c) for all (z, z′, c) ∈ Z × Z × C, and

τ ′(z, w, 1(z′,c)) ≤
∑
δ∈X

µ(z′,m, δ)δ(z, c) for all (z, z′, c) ∈ Z × Z × C}.

Claim 1 Dn is upper hemicontinuous with nonempty, compact and convex values.

Proof. It follows by the linearity of the objective function together with the

convexity of the constraint set that Dn has convex values. It follows from Berge’s

maximum theorem that Dn is upper hemicontinuous with nonempty and compact

values. To see this, first note that the objective function is continuous and that the

constraint set, denoted by Φ(µ, κ), is contained in the compact set T . It is clear that

Φ is upper hemicontinuous with compact values. To see that Φ has nonempty values,

define τ̃ ∈ T as follows. For each z ∈ Z, let cz ∈ C(z, ∅), τ̃(z, s, 1(∅,cz)) = ν(z) and

τ̃(z, a, δ) = 0 for each (a, δ) ∈ ∆\{(s, 1(∅,cz))}. We then have that τ̃ ∈ Φ(µ, κ) for each

(µ, κ) ∈ T × K. Finally, to see that Φ is lower hemicontinuous, let (µ, κ) ∈ T × K,

O ⊆ T be an open set such that Φ(µ, κ)∩O ̸= ∅, and τ ∈ Φ(µ, κ)∩O. Let τ̂ = λτ +

(1−λ)τ̃ ∈ O for some λ ∈ (0, 1). Note that for each z ∈ Z,
∑

(a,δ)∈∆ τ̂(z, a, δ) = ν(z),∑
δ∈X τ̂(z,m, δ)δ(z′, c) < κ(z, z′, c) for each (z, z′, c) ∈ Z×Z×C such that κ(z, z′, c) >

0 and τ̂(z, w, 1(z′,c)) <
∑

δ∈X µ(z′,m, δ)δ(z, c) for each (z, z′, c) ∈ Z×Z×C such that∑
δ∈X µ(z′,m, δ)δ(z, c) > 0. Thus, there is an open neighborhood V of (µ, κ) such

that τ̂ ∈ Φ(µ′, κ′) ∩O for each (µ′, κ′) ∈ V .

Claim 2 If (µ, κ) ∈ T × K, τ ∈ Dn(µ, κ) and (z, a, δ′) ∈ Z × ∆ is such that

τ(z, a, δ′) > 0, then τ(z, w, 1(ẑ,ĉ)) =
∑

δ∈X µ(ẑ, m, δ)δ(z, ĉ) for each (ẑ, ĉ) ∈ Z × C

such that (w, 1(ẑ,ĉ), µ) ≻z (a, δ
′, µ).

Proof. If not, then τ(z, w, 1(ẑ,ĉ)) <
∑

δ∈X µ(ẑ, m, δ)δ(z, ĉ) for some (ẑ, ĉ) ∈ Z×C

such that (w, 1(ẑ,ĉ), µ) ≻z (w, 1(z′,c′), µ). Then
∑

δ∈X µ(ẑ, m, δ)δ(z, ĉ) > 0 and, hence,
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(ẑ, z, ĉ) ∈ graph(C). Thus, increase τ(z, w, 1(ẑ,ĉ)) and decrease τ(z, a, δ′) by the same

amount ε ∈ (0, τ(z, a, δ′)) such that τ(z, w, 1(ẑ,ĉ)) + ε <
∑

δ∈X µ(ẑ, m, δ)δ(z, ĉ). This

increases the objective function in Dn(µ, κ) while satisfying the constraints, thus

contradicting τ ∈ Dn(µ, κ).

For each µ ∈ T and (z, z′, c) ∈ Z × Z × C, let

W (z, z′, c, µ) = {(a, δ) ∈ ∆ : u(z′, w, 1(z,c), µ) > u(z′, a, δ, µ)}.

Let g : T → K be defined by setting, for each µ ∈ T and (z, z′, c) ∈ Z × Z × C,

g(µ)(z, z′, c) =


∑

(a,δ)∈W (z,z′,c,µ) µ(z
′, a, δ) if (z, z′, c) ∈ graph(C),

0 otherwise.

To see that g(µ) ∈ K, first note that if (z, z′, c) ̸∈ graph(C), g(µ)(z, z′, c) = 0. If

(z, z′, c) ∈ graph(C), then, since µ ∈ T , 0 ≤ g(µ)(z, z′, c) ≤ ν(z′) = κ̄(z, z′, c).

The function g may fail to be continuous and, thus, we will consider a continuous

approximation to it. For each n ∈ N and (z, z′, c) ∈ Z×Z×C, let αn,(z,z′,c) : ∆×T →

[0, 1] be defined by setting, for each (a, δ, µ) ∈ ∆× T ,

αn,(z,z′,c)(a, δ, µ) = nmax

{
0,min

{
u(z′, w, 1(z,c), µ)− u(z′, a, δ, µ),

1

n

}}
.

Let gn : T → K be defined by setting, for each µ ∈ T and (z, z′, c) ∈ Z × Z × C,

gn(µ)(z, z
′, c) =


∑

(a,δ)∈∆ αn,(z,z′,c)(a, δ, µ)µ(z
′, a, δ) if (z, z′, c) ∈ graph(C),

0 otherwise.

We have that gn is continuous since αn,(z,z′,c) is continuous for each (z, z′, c) ∈ Z ×

Z × C. Note that

αn,(z,z′,c)(a, δ, µ) ∈


{0} if u(z′, a, δ, µ) ≥ u(z′, w, 1(z,c), µ),

(0, 1) if u(z′, w, 1(z,c), µ)− 1
n
< u(z′, a, δ, µ) < u(z′, w, 1(z,c), µ),

{1} if u(z′, a, δ, µ) ≤ u(z′, w, 1(z,c), µ)− 1
n
.

Hence, it follows that

gn(µ)(z, z
′, c) ≤ g(µ)(z, z′, c) (4)
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for each µ ∈ T and (z, z′, c) ∈ Z × Z × C since

g(µ)(z, z′, c) =


∑

(a,δ)∈∆ α(z,z′,c)(a, δ, µ)µ(z
′, a, δ) if (m,w, c) ∈ graph(C),

0 otherwise

with

α(z,z′,c)(a, δ, µ) =

1 if u(z′, a, δ, µ) < u(z′, w, 1(z,c), µ),

0 otherwise.

To see that gn(µ) ∈ K, note that 0 ≤ gn(µ) ≤ g(µ) ≤ κ̄.

Let fn : T → K be defined by setting, for each µ ∈ T and (z, z′, c) ∈ Z × Z × C,

fn(µ)(z, z
′, c) = µ(z′, w, 1(z,c)) +

1

n
gn(µ)(z, z

′, c).

To see that fn(µ) ∈ K, note that if (z, z′, c) ̸∈ graph(C),

µ(z′, w, 1(z,c)) = gn(µ)(z, z
′, c) = 0,

and hence fn(µ)(z, z
′, c) = 0. If (z, z′, c) ∈ graph(C), then

0 ≤ µ(z′, w, 1(z,c)) +
1

n
gn(µ)(z, z

′, c)

≤ µ(z′, w, 1(z,c)) + g(µ)(z, z′, c) ≤ ν(z′) = κ̄(z, z′, c).

We have that fn is continuous since so is gn.

Let Ψn : T × K ⇒ T × K be defined by setting, for each (µ, κ) ∈ T × K,

Ψn(µ, κ) = Dn(µ, κ)× {fn(µ)}.

It follows from the continuity of fn and from Claim 1 that Ψn is upper hemicontinuous

with nonempty, compact and convex values. Hence, by Kakutani fixed point theorem,

let (µn, κn) be a fixed point of Ψn. Thus, µn ∈ Dn(µn, κn) and κn = fn(µn).

Since T × K is compact, taking a subsequence if necessary, we may assume that

{(µn, κn)}∞n=1 converges; let (µ, κ) = limn→∞(µn, κn). For each n, we have κn =

fn(µn), and so

κ(z, z′, c) = lim
n→∞

fn(µn)(z, z
′, c) = µ(z′, w, 1(z,c)) (5)
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for each (z, z′, c) ∈ Z × Z × C. Let

µ∗ = d(µ)

and µ∗
n = d(µn) for each n ∈ N.

For each z ∈ Z and n ∈ N, it follows from µn ∈ Dn(µn, κn) that∑
(z′,c)∈Z×C

µn(z, w, 1(z′,c)) ≤
∑

(z′,c)∈Z×C

∑
δ∈X

µn(z
′,m, δ)δ(z, c) ≤

∑
(z′,c)∈Z×C

κn(z
′, z, c).

By (5), limn

∑
(z′,c)∈Z×C κn(z

′, z, c) =
∑

(z′,c)∈Z×C µ(z, w, 1(z′,c)) and, hence,∑
(z′,c)∈Z×C

µ(z, w, 1(z′,c)) =
∑

(z′,c)∈Z×C

∑
δ∈X

µ(z′,m, δ)δ(z, c) for each z ∈ Z.

Thus, for each z ∈ Z,∑
(z′,δ)∈Z×X

µ∗(z′, δ)δZ(z) =
∑

(z′,c)∈Z×C

∑
δ∈X

µ(z′,m, δ)δ(z, c) =
∑

(z′,c)∈Z×C

µ(z, w, 1(z′,c)).

(6)

Claim 3 µ∗ is a matching.

Proof. Condition 1 follows because if (z, δ) ∈ Z ×X∅ is such that µ∗(z, δ) > 0,

then µ(z, a, δ) > 0 for some a ̸= w and {z} × supp(δ) ⊆ graph(C) since µ ∈ T .

Condition 2 holds since, for each z ∈ Z, µ = limn µn and µn ∈ Dn(µn, κn) for each

n ∈ N imply that

ν(z) =
∑
δ∈X

µ(z,m, δ) +
∑

δ∈X∅\X

µ(z, s, δ) +
∑

(z′,c)∈Z×C

µ(z, w, 1(z′,c))

=
∑
δ∈X

µ∗(z, δ) +
∑

δ∈X∅\X

µ∗(z, δ) +
∑

(z′,δ)∈Z×X

µ∗(z′, δ)δZ(z),

the last equality following by (6).

Claim 4 If (z, z′, c, δ) ∈ Z × Z × C ×X is such that (z, δ) ∈ supp(µ∗) and (z′, c) ∈

supp(δ), then µ(z′, w, 1(z,c)) > 0.

Proof. We have that
∑

δ′∈X µ(z,m, δ′)δ′(z′, c) ≥ µ(z,m, δ)δ(z′, c) > 0 and, thus,

κ(z, z′, c) > 0 since µn ∈ Dn(µn, κn) for each n ∈ N. Hence, (5) implies that

µ(z′, w, 1(z,c)) > 0.

38



Claim 5 supp(µ∗) ⊆ IR(µ∗).

Proof. Suppose not; then there exists (z∗, δ∗) ∈ supp(µ∗) \ IR(µ∗). We claim

that there exists z ∈ Z, (a, δ) ∈ ∆ and c′ ∈ C(z, ∅) such that

1. µ(z, a, δ) > 0 and

2. (s, 1(∅,c′), µ
∗) ≻z (a, δ, µ

∗).

Indeed, in cases (i) and (iii) of the definition of IR(µ∗), let (z, δ) = (z∗, δ∗) in both

cases and a = m in case (i) and a = s in case (iii). In case (ii) of the definition of

IR(µ∗), we have that δ∗ ∈ X and there exist (z′, c) ∈ supp(δ∗) and c′ ∈ C(z′, ∅) such

that (s, 1(∅,c′), µ
∗) ≻z′ (w, 1(z∗,c), µ

∗). Claim 4 implies that µ(z′, w, 1(z∗,c)) > 0; hence,

let z = z′, a = w and δ = 1(z∗,c).

We then have that µn(z, a, δ) > 0 and (s, 1(∅,c′), µ
∗
n) ≻z (a, δ, µ

∗
n) for n sufficiently

large. Then decrease µn(z, a, δ) and increase µn(z, s, 1(∅,c′)) by the same amount

ε ∈ (0, µn(z, a, δ)) to increase the objective function in Dn(µn, κn) while satisfying

the constraints. But this is a contradiction to µn ∈ Dn(µn, κn).

Claim 6 If (z, z′, c) ∈ Z×Z×C is such that (z′, c) ∈ Tm
z (µ∗), then there is Nz,z′,c ∈ N

such that
∑

δ∈X µn(z,m, δ)δ(z′, c) < κn(z, z
′, c) for each n ≥ Nz,z′,c.

Proof. Let (z′, c) ∈ Tm
z (µ∗). Then c ∈ C(z, z′). In case (a) of the definition of

Tm
z (µ∗), there exists (z̃, c̃, δ̃) ∈ Z×C×X such that (z̃, δ̃) ∈ supp(µ∗), (z′, c̃) ∈ supp(δ̃)

and (w, 1(z,c), µ
∗) ≻z′ (w, 1(z̃,c̃), µ

∗). Hence, µ(z′, w, 1(z̃,c̃)) > 0 by Claim 4.

In cases (b) and (c) of the definition of Tm
z (µ∗), there exists (a, δ′) ∈ ∆ such that

a ̸= w, (z′, δ′) ∈ supp(µ∗) and (w, 1(z,c), µ
∗) ≻z′ (a, δ

′, µ∗). Thus, letting a = w and

δ′ = 1(z̃,c̃) in case (a), it follows that, in all cases, there exists (a, δ′) ∈ ∆ such that

(z′, a, δ′) ∈ supp(µ) and (w, 1(z,c), µ
∗) ≻z′ (a, δ

′, µ∗).

Let Nz,z′,c ∈ N be such that µn(z
′, a, δ′) > 0 and (w, 1(z,c), µ

∗
n) ≻z′ (a, δ

′, µ∗
n) for

each n ≥ Nz,z′,c. Thus, for each n ≥ Nz,z′,c,

µn(z
′, w, 1(z,c)) =

∑
δ∈X

µn(z,m, δ)δ(z′, c)
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by Claim 2 and, since αn,(z,z′,c)(a, δ
′, µn) > 0,

κn(z, z
′, c) = µn(z

′, w, 1(z,c)) +
1

n
gn(µn)(z, z

′, c)

≥ µn(z
′, w, 1(z,c)) +

1

n
αn,(z,z′,c)(a, δ

′, µn)µn(z
′, a, δ′)

> µn(z
′, w, 1(z,c)) =

∑
δ∈X

µn(z,m, δ)δ(z′, c).

Claim 7 supp(µ∗) ⊆ SM(µ∗).

Proof. Suppose not; then there exists (z∗, δ∗) ∈ supp(µ∗) \ SM(µ∗). We claim

that there exists z ∈ Z, (a, δ) ∈ ∆ and δ′ ∈ X such that

1. µ(z, a, δ) > 0,

2. supp(δ′) ⊆ Tm
z (µ∗) ∪ supp(δ) if a = m and supp(δ′) ⊆ Tm

z (µ∗) if a ̸= m, and

3. (m, δ′, µ∗) ≻z (a, δ, µ
∗).

Indeed, in cases (i) and (iii) of the definition of SM(µ∗), let (z, δ) = (z∗, δ∗) in both

cases and a = m in case (i) and a = s in case (iii). In case (ii) of the definition

of SM(µ∗), we have that δ∗ ∈ X and there exist (z′, c) ∈ supp(δ∗) and δ′ ∈ X

such that supp(δ′) ⊆ Tm
z′ (µ

∗) and (m, δ′, µ∗) ≻z′ (w, 1(z∗,c), µ
∗). Claim 4 implies that

µ(z′, w, 1(z∗,c)) > 0; hence, let z = z′, a = w and δ = 1(z∗,c).

Note that {z} × supp(δ′) ⊆ graph(C) since {z} × Tm
z (µ∗) ⊆ graph(C) and, when

a = m, (z, δ) ∈ supp(µ∗) and thus {z} × supp(δ) ⊆ graph(C).

Let θ = 1 if supp(δ) ∩ supp(δ′) = ∅; otherwise, let (z̄, c̄) ∈ supp(δ) ∩ supp(δ′) be

such that δ(z̄,c̄)
δ′(z̄,c̄)

≤ δ(z,c)
δ′(z,c)

for each (z, c) ∈ supp(δ) ∩ supp(δ′) and define

θ = min

{
1,

δ(z̄, c̄)

δ′(z̄, c̄)

}
.

Let k ∈ N be such that kθ > 1.

There is N ∈ N such that, for each n ≥ N ,

(i) supp(µ) ⊆ supp(µn),
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(ii)
∑

δ̂∈X µn(z,m, δ̂)δ̂(z′, c) < κn(z, z
′, c) for each (z′, c) ∈ Tm

z (µ∗), and

(iii) un(z,m, δ′, µn) ≥ kun(z, a, δ, µn).

Indeed, (i) is clear since Z and ∆ are finite. As for (ii), take N ≥ max(z′,c)∈Z×C Nz,z′,c

where, for each (z′, c) ∈ Z × C, Nz,z′,c is given by Claim 6. Finally, for (iii), we have

that u(z,m,δ′,µ)
u(z,a,δ,µ)

> 1 and, for all n sufficiently large, u(z,m,δ′,µn)
u(z,a,δ,µn)

≥ β for some β > 1.

Hence,
un(z,m, δ′, µn)

un(z, a, δ, µn)
=

(
u(z,m, δ′, µn)

u(z, a, δ, µn)

)n

≥ βn > k

for all n sufficiently large.

Fix n ≥ N and let c∗ ∈ C(z, ∅). For each ε > 0, define πε by setting, for each

(ẑ, â, δ̂) ∈ Z ×∆,

πε(ẑ, â, δ̂) =



µn(z, a, δ)− ε if ẑ = z, â = a and δ̂ = δ,

µn(z,m, δ′) + θε if ẑ = z, â = m and δ̂ = δ′,

µn(z, s, 1(∅,c∗)) + (1− θ)ε if ẑ = z, â = s and δ̂ = 1(∅,c∗),

µn(ẑ, â, δ̂) otherwise.

By (i), µn(z, a, δ) > 0. We have that, for each ε ∈ (0, µn(z, a, δ)), πε(ẑ, â, δ̂) ≥ 0 for

each (ẑ, â, δ̂) ∈ Z ×∆, πε(ẑ, w, 1(z′,c)) ≤ µn(ẑ, w, 1(z′,c)) ≤
∑

δ̂∈X µn(z
′,m, δ̂)δ̂(ẑ, c) for

each (ẑ, z′, c) ∈ Z × Z × C and∑
(â,δ̂)∈∆

πε(ẑ, â, δ̂) =
∑

(â,δ̂)∈∆

µn(ẑ, â, δ̂) = ν(ẑ)

for each ẑ ∈ Z. In particular, πε ∈ T .

We also have that, for some ε ∈ (0, µn(z, a, δ)),∑
δ̂∈X

πε(ẑ, m, δ̂)δ̂(z′, c) ≤ κn(ẑ, z
′, c) for all (ẑ, z′, c) ∈ Z × Z × C. (7)

First, note that it is enough to consider ẑ = z and that, for each (z′, c) ∈ Z × C,∑
δ̂∈X

πε(z,m, δ̂)δ̂(z′, c) =
∑
δ̂∈X

µn(z,m, δ̂)δ̂(z′, c) + ε (−δ(z′, c)1m(a) + θδ′(z′, c)) .

Thus, (7) holds if (z′, c) ̸∈ supp(δ′).

41



If a = m and (z′, c) ∈ supp(δ′) ∩ supp(δ), the definition of (z̄, c̄) implies that:∑
δ̂∈X

πε(z,m, δ̂)δ̂(z′, c) ≤
∑
δ̂∈X

µn(z,m, δ̂)δ̂(z′, c) ≤ κn(z, z
′, c).

If a ̸= m and (z′, c) ∈ supp(δ′) or if a = m and (z′, c) ∈ supp(δ′) \ supp(δ), then

(z′, c) ∈ Tm
z (µ∗) and, thus,

∑
δ̂∈X µn(z,m, δ̂)δ̂(z′, c) < κn(z, z

′, c) by (ii). Hence, there

is ε(z′, c) > 0 such that∑
δ̂∈X

πε(z,m, δ̂)δ̂(z′, c) =
∑
δ̂∈X

µn(z,m, δ̂)δ̂(z′, c) + εθδ′(z′, c) < κn(z, z
′, c)

for each 0 < ε < ε(z′, c). Thus, letting B = supp(δ′) if a ̸= m, B = supp(δ′)\ supp(δ)

if a = m and 0 < ε < min(z′,c)∈B ε(z′, c), we have that
∑

δ̂∈X πε(ẑ, m, δ̂)δ̂(z′, c) ≤

κn(ẑ, z
′, c) for each (ẑ, z′, c) ∈ Z × Z × C.

Finally, note that∑
ẑ∈Z,(â,δ̂)∈∆

un(ẑ, â, δ̂, µn)πε(ẑ, â, δ̂) >
∑

ẑ∈Z,(â,δ̂)∈∆

un(ẑ, â, δ̂, µn)µn(ẑ, â, δ̂)

since un(z,m, δ′, µn) ≥ kun(z, a, δ, µn) by (iii) since n ≥ N , un(z, s, 1(∅,c∗), µn) ≥ 1

and, hence,∑
ẑ∈Z,(δ̂,â)∈∆

un(ẑ, â, δ̂, µn)
(
πε(ẑ, â, δ̂)− µn(ẑ, â, δ̂)

)
≥ un(z, a, δ, µn)ε (−1 + kθ) > 0.

In conclusion µn ̸∈ Dn(µn, κn), a contradiction.

It follows from Claims 3, 5 and 7 that µ∗ is a stable matching.

In the remainder of the proof, we extend Lemma 5 using the following limit result.

Lemma 6 Let {(Ek, µk)}∞k=1 be such that Ek = (Zk, νk, Ck,Ck, Xk, (≻z,k)z∈Zk
) is a

market and µk is a stable matching for Ek for each k ∈ N. Let E = (Z, ν, C,C, X, (≻z

)z∈Z) be a rational, continuous, bounded and rich market such that νk → ν and, for

each k ∈ N, Zk ⊆ Z, supp(νk) ⊆ supp(ν), Ck ⊆ C, Ck(z, z
′) ⊆ C(z, z′) for each

(z, z′) ∈ Zk × Z∅,k and Xk ⊆ X. Then:

1. {µk}∞k=1 has a convergent subsequence in M(Z ×X∅).

Suppose further that {µk}∞k=1 converges and let µ = limk µk. Then:
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2. µ is a matching for E.

Suppose further that ≻z,k is the restriction of ≻z to ∆k × M(Zk × X∅,k) for each

z ∈ Zk. Then:

3. supp(µ) ⊆ IR(µ).

4. supp(µ) ⊆ SM(µ) if

(a) for each (z, δ, µ) ∈ Z×X×M(Z×X∅), δ
′ ∈ Λ(z, δ, µ), open neighborhood

Vδ′ of δ
′, subsequence {µkj}∞j=1 of {µk}∞k=1 and sequence {(zkj , δkj)}∞j=1 such

that (zkj , δkj) → (z, δ) and (zkj , δkj) ∈ Zkj × Xkj for each j ∈ N, there

exists J ∈ N such that {γ ∈ Xkj : {zkj} × supp(γ) ⊆ graph(Ckj)} ∩

Λ(zkj , δkj , µkj) ∩ Vδ′ ̸= ∅ for each j ≥ J , and

(b) for each (z, µ) ∈ Z × M(Z × X∅), δ
′ ∈ Λ0(z, µ), open neighborhood Vδ′

of δ′, subsequence {µkj}∞j=1 of {µk}∞k=1 and sequence {zkj}∞j=1 such that

zkj → z and zkj ∈ Zkj for each j ∈ N, there exists J ∈ N such that

{γ ∈ Xkj : {zkj} × supp(γ) ⊆ graph(Ckj)} ∩Λ0(zkj , µkj)∩ Vδ′ ̸= ∅ for each

j ≥ J .

Proof. We divide the proof into several parts corresponding to the ones in the

statement of the lemma.

Part 1: Since M(Z×X∅) is a separable metrizable space, it suffices to show that

{µk}∞k=1 is tight; this follows by Lemma 4 together with µk(Z ×X∅) ≤ νk(Z) for each

k ∈ N and the fact that {νk(Z)}∞k=1 converges (to ν(Z)) and, hence, is bounded.

Let ε > 0. Since {νk}∞k=1 is tight, there exists a compact subset KZ of Z such that

νk(Z \KZ) ≤ ε for all k.

For each n ∈ N, let Kn be a compact subset of Z such that ν̂(Z \Kn) <
ε

n2n
for

each ν̂ ∈ {νk}∞k=1. Let K∅
n = Kn ∪ {∅} and let Dn =

⋃
(z,z′)∈KZ×K∅

n
C(z, z′). Note

that Dn is compact since C is continuous and compact-valued, and KZ and K∅
n are

compact.

Define

KX =

{
δ ∈ X : δ(Z × C \Kn ×Dn) ≤

1

n
for each n ∈ N

}
.
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Then KX is closed since if δj → δ and δj ∈ KX for each j ∈ N, then δ ∈ X since X is

closed and, for each n ∈ N, δ(Z × C \Kn ×Dn) ≤ lim infj δj(Z × C \Kn ×Dn) ≤ 1
n

since Z × C \Kn ×Dn is open. Hence, δ ∈ KX . In addition, KX is tight since, for

each η > 0, there is n ∈ N such that 1
n
< η and, thus, δ(Z × C \Kn ×Dn) ≤ 1

n
< η

for each δ ∈ KX . Let R > 0 be such that X ⊆ MR(Z × C). Since KX is a closed

and tight subset of MR(Z × C), it follows that KX is compact.

For each n ∈ N, let

KX,n =

{
δ ∈ X : δ(Z × C \Kn ×Dn) >

1

n
and δ(Z × C \Kj ×Dj) ≤

1

j

for each j = 1, . . . , n− 1

}
.

Then X \KX = ∪∞
n=1KX,n and the family {KX,n}∞n=1 is pairwise disjoint. Fix k ∈ N.

For each n ∈ N, we have that

ε

n2n
> νk(Z \Kn) ≥

∫
Z×X

δ((Z \Kn)× C)dµk(z, δ)

≥
∫
KZ×KX,n

δ((Z \Kn)× C)dµk(z, δ)

=

∫
KZ×KX,n

δ(Z × C \Kn ×Dn)dµk(z, δ) >
1

n
µk(KZ ×KX,n),

where the equality follows because δ(Z×C \Kn×Dn) = δ((Z \Kn)×C)+δ(Kn×(C \

Dn)) and condition 1 of a matching implies that, for each (z, δ) ∈ supp(µk)∩(KZ×X),

supp(δ) ∩ (Kn × C) ⊆ Dn and, thus, δ(Kn × (C \Dn)) = 0. Hence,

ε =
∞∑
n=1

ε

2n
>

∞∑
n=1

µk(KZ ×KX,n) = µk(KZ × (X \KX)).

Note that ∪z∈KZ
C(z, ∅) ⊆ D1 and let K∅

X = KX ∪ {1(∅,c) : c ∈ D1}. Then K∅
X is

compact since both KX and D1 are compact. Moreover, µk(KZ × (X∅ \ (K∅
X ∪X))) =

µk(KZ ×{1(∅,c) : c ̸∈ D1}) = 0 where the first equality follows since (X∅ \K∅
X)∩ (X∅ \

X) = (X∅ \K∅
X) ∩ {1(∅,c) : c ∈ C} = {1(∅,c) : c ̸∈ D1} and the second by condition 1

of a matching since ∪z∈KZ
C(z, ∅) ⊆ D1. Then, for each k ∈ N,

µk(Z ×X∅ \KZ ×K∅
X) = µk((Z \KZ)×X∅) + µk(KZ × (X∅ \ (K∅

X ∪X)))

+µk(KZ × ((X∅ \K∅
X) ∩X)) ≤ νk(Z \KZ) + 0 + µk(KZ × (X \KX)) < 2ε,
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where µk((Z \KZ)×X∅) ≤ νk(Z \KZ) because of condition 2 of a matching.

Part 2: We first consider condition 2 of the definition of a matching. Let π :

Z×X∅ → Z be the projection of Z×X∅ onto Z and note that, for each Borel subset B

of Z, νM(B)+νS(B) = µ(B×X∅) = µ◦π−1(B) and νM,k(B)+νS,k(B) = µk(B×X∅) =

µk ◦ π−1(B) for each k ∈ N. Since π is continuous, µk ◦ π−1 → µ ◦ π−1. Indeed, for

each bounded and continuous f : Z → R,
∫
Z
fdµk◦π−1 =

∫
Z×X∅

f ◦πdµk →
∫
Z×X∅

f ◦

πdµ =
∫
Z
fdµk ◦ π−1 since f ◦ π : Z × X∅ → R is bounded and continuous. Hence,

since M(Z×X∅) is metrizable, νM +νS = µ◦π−1 = limk µk ◦π−1 = limk(νM,k+νS,k).

Also, for each Borel subset B of Z, νW (B) =
∫
Z×X

δ(B×C)dµ(z, δ) and νW,k(B) =∫
Z×X

δ(B × C)dµk(z, δ) for each k ∈ N. We show that νW,k → νW . Let B ⊆

Z be closed and f : X → R be defined by setting, for each δ ∈ X, f(δ) =

δ(B × C). Then f is bounded and upper semi-continuous. Hence, by (a suit-

able adaptation of) Aliprantis and Border (2006, Theorem 15.5), lim supk νW,k(B) =

lim supk

∫
Z×X

fdµk ≤
∫
Z×X

fdµ = νW (B) and it follows that νW = limk νW,k as

claimed. Thus,

νM + νS + νW = lim
k
(νM,k + νS,k) + lim

k
νW,k = lim

k
(νM,k + νS,k + νW,k) = ν.

Condition 1 holds because, by Carmona and Podczeck (2009, Lemma 12), for

each (z, δ) ∈ supp(µ) and (z′, c) ∈ supp(δ), there exists a subsequence {µkj}∞j=1

of {µk}∞k=1 and corresponding {(zkj , δkj , z′kj , ckj)}
∞
j=1 such that (zkj , δkj , z

′
kj
, ckj) →

(z, δ, z′, c) and, for each j ∈ N, (zkj , δkj) ∈ supp(µkj) and (z′kj , ckj) ∈ supp(δkj).

Hence, ckj ∈ Ckj(zkj , z
′
kj
) ⊆ C(zkj , z′kj) and, since C is continuous, c ∈ C(z, z′).

Part 3: Let (z, δ) ∈ supp(µ) and suppose that (z, δ) ̸∈ IR(µ). Then either (i)

there exists c ∈ C(z, ∅) such that (s, 1(∅,c), µ) ≻z (a(δ), δ, µ) where a(δ) = m if δ ∈ X

and a(δ) = s if δ ∈ X∅ \X, or (ii) there exists (z′, c) ∈ supp(δ) and c′ ∈ C(z′, ∅) such

that (s, 1(∅,c′), µ) ≻z′ (w, 1(z,c), µ).

Consider case (i) first. The continuity of (≻z)z∈Z and C implies that there are open

neighborhoods Vc, Vz, Vδ and Vµ of c, z, δ and µ, respectively, such that (s, 1(∅,ĉ), µ̂) ≻ẑ

(a(δ), δ̂, µ̂) and C(ẑ, ∅) ∩ Vc ̸= ∅ for each ĉ ∈ Vc, ẑ ∈ Vz, δ̂ ∈ Vδ and µ̂ ∈ Vµ. Since

(z, δ) ∈ supp(µ), it follows that 0 < µ(Vz × Vδ) ≤ lim infk µk(Vz × Vδ); hence, for
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each k sufficiently large, µk(Vz × Vδ) > 0 and µk ∈ Vµ. This means that, for any

such k, there exist (ẑ, δ̂) ∈ supp(µk) ∩ (Vz × Vδ) and ĉ ∈ C(ẑ, ∅) ∩ Vc. But then

(s, 1(∅,ĉ), µk) ≻ẑ (a(δ), δ̂, µk) and, hence, (s, 1(∅,ĉ), µk) ≻ẑ,k (a(δ), δ̂, µk), contradicting

the individual rationality of µk.

Consider next case (ii). The continuity of (≻z)z∈Z and C implies that there are

open neighborhoods Vc′ , Vc, Vz, Vz′ and Vµ of c′, c, z, z′ and µ, respectively, such that

(s, 1(∅,c̃), µ̂) ≻z̃ (w, 1(ẑ,ĉ), µ̂) and C(∅, z̃) ∩ Vc′ ̸= ∅ for each c̃ ∈ Vc′ , ĉ ∈ Vc, ẑ ∈ Vz,

z̃ ∈ Vz′ and µ̂ ∈ Vµ. Since (z′, c) ∈ supp(δ), there is an open neighborhood Vδ of δ

such that supp(δ̂) ∩ (Vz′ × Vc) ̸= ∅ for each δ̂ ∈ Vδ by Lemma 2. Since µk → µ and

(z, δ) ∈ supp(µ), it follows that 0 < µ(Vz ×Vδ) ≤ lim infk µk(Vz ×Vδ); hence, for all k

sufficiently large, µk(Vz×Vδ) > 0 and µk ∈ Vµ. This means that, for any such k, there

exists (ẑ, δ̂) ∈ supp(µk)∩ (Vz × Vδ), (z̃, ĉ) ∈ supp(δ̂)∩ (Vz′ × Vc) and c̃ ∈ C(∅, z̃)∩ Vc′ .

But then (s, 1(∅,c̃), µk) ≻z̃ (w, 1(ẑ,ĉ), µk) and, hence, (s, 1(∅,c̃), µk) ≻z̃,k (w, 1(ẑ,ĉ), µk),

contradicting the individual rationality of µk.

Part 4: In this proof, to avoid confusion, we write Tm
z (µ;E ′) for Tm

z (µ) in a

market E ′.

Let (z, δ) ∈ supp(µ) and suppose that (z, δ) ̸∈ SM(µ). Then there exists δ′ ∈ X

such that either (i) supp(δ′) ⊆ Tm
z (µ) ∪ supp(δ) and (m, δ′, µ) ≻z (a(δ), δ, µ), where

a(δ) = m if δ ∈ X and a(δ) = s if δ ∈ X∅ \X,34 or (ii) there exists (z′, c) ∈ supp(δ)

such that supp(δ′) ⊆ Tm
z′ (µ) and (m, δ′, µ) ≻z′ (w, 1(z,c), µ).

Consider case (i) first. Let Vz, Vδ′ , Vδ and Vµ be open neighborhoods of z, δ′, δ and

µ, respectively, such that (m, γ′, µ̄) ≻z̄ (a(δ), γ, µ̄) for each z̄ ∈ Vz, γ
′ ∈ Vδ′ , γ ∈ Vδ

and µ̄ ∈ Vµ. Let, by the richness of E, Ṽz, Ṽδ and Ṽµ be open neighborhoods of z, δ

and µ, respectively, such that Λ(z̄, γ, µ̄) ∩ Vδ′ ̸= ∅ for each (z̄, γ, µ̄) ∈ Ṽz × Ṽδ × Ṽµ.

By Carmona and Podczeck (2009, Lemma 12), there is a subsequence {µkj}∞j=1 of

{µk}∞k=1 and corresponding sequence {(zkj , δkj)}∞j=1 such that (zkj , δkj) → (z, δ) and

(zkj , δkj) ∈ supp(µkj) for each j ∈ N.

Let J ∈ N be such that µkj ∈ Vµ ∩ Ṽµ, zkj ∈ Vz ∩ Ṽz, δkj ∈ Vδ ∩ Ṽδ and {γ ∈
34Note that when δ ∈ X∅ \X and δ′ ∈ X, supp(δ′) ⊆ Tm

z (µ) ∪ supp(δ) if and only if supp(δ′) ⊆

Tm
z (µ).
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Xkj : {zkj} × supp(γ) ⊆ graph(Ckj)} ∩ Λ(zkj , δkj , µkj) ∩ Vδ′ ̸= ∅ for all j ≥ J . Let

j ≥ J and let δ′kj ∈ {γ ∈ Xkj : {zkj} × supp(γ) ⊆ graph(Ckj)} ∩ Λ(zkj , δkj , µkj) ∩

Vδ′ . Then supp(δ′kj) ⊆ Tm
zkj

(µkj ;E) ∪ supp(δkj) and (m, δ′kj , µkj) ≻zkj
(a(δ), δkj , µkj).

It then follows that supp(δ′kj) ⊆ Tm
zkj

(µkj ;Ekj) ∪ supp(δkj) and (m, δ′kj , µkj) ≻zkj ,kj

(a(δ), δkj , µkj). But this contradicts the stability of µkj .

Consider next case (ii). Let Vz, Vz′ , Vδ′ , Vc and Vµ be open neighborhoods of

z, z′, δ′, c and µ respectively, such that (m, δ̂′, µ̂) ≻ẑ′ (w, 1(ẑ,ĉ), µ̂) for each ẑ ∈ Vz,

ẑ′ ∈ Vz′ , δ̂
′ ∈ Vδ′ , ĉ ∈ Vc and µ̂ ∈ Vµ. Let, by the richness of E, Ṽz′ and Ṽµ be

open neighborhoods of z′ and µ, respectively, such that Λ0(ẑ
′, µ̂) ∩ Vδ′ ̸= ∅ for each

(ẑ′, µ̂) ∈ Ṽz′ × Ṽµ.

By Carmona and Podczeck (2009, Lemma 12), there is a subsequence {µkj}∞j=1

of {µk}∞k=1 and corresponding sequence {(zkj , δkj , z′kj , ckj)}
∞
j=1 such that (zkj , δkj) ∈

supp(µkj) and (z′kj , ckj) ∈ supp(δkj) for each j ∈ N and (zkj , δkj , z
′
kj
, ckj) → (z, δ, z′, c).

Let J ∈ N be such that δkj ∈ Vδ, zkj ∈ Vz, z
′
kj

∈ Vz′ ∩ Ṽz′ , ckj ∈ Vc, µkj ∈ Vµ ∩ Ṽµ

and {γ ∈ Xkj : {z′kj} × supp(γ) ⊆ graph(Ckj)} ∩ Λ0(z
′
kj
, µkj) ∩ Vδ′ ̸= ∅ for all j ≥ J .

Let j ≥ J and let δ′kj ∈ {γ ∈ Xkj : {z′kj}× supp(γ) ⊆ graph(Ckj)}∩Λ0(z
′
kj
, µkj)∩Vδ′ .

Then supp(δ′kj) ⊆ Tm
z′kj

(µkj ;E) and (m, δ′kj , µkj) ≻z′kj
(w, 1(zkj ,ckj ), µkj). It then follows

that supp(δ′kj) ⊆ Tm
z′kj

(µkj ;Ekj) and (m, δ′kj , µkj) ≻z′kj
,kj (w, 1(zkj ,ckj ), µkj). But this

contradicts the stability of µkj .

The second step in the proof of our existence result consists in the following

lemma, which considers the special case where Z is finite and X = MR(Z × C) for

some R > 0.

Lemma 7 If E is a rational and continuous market such that Z is finite and X =

MR(Z × C) for some R > 0, then E has a stable matching.

Proof. For each (z, z′) ∈ Z × Z∅, let {cnz,z′}∞n=1 be a dense subset of C(z, z′). For

each k ∈ N, define Ck(z, z
′) = {cnz,z′ : n ≤ k} and Ck = ∪(z,z′)∈Z×Z∅Ck(z, z

′).

In addition, enumerate Q = {q1, q2, . . .} and, for each k ∈ N, let Xk be the set of

δ ∈ MR(Z×C) such that supp(δ) is a subset of Z×Ck and, for each (z, c) ∈ Z×Ck,

δ(z, c) ∈ {qn : n ≤ k}. Let X∅,k = Xk ∪ {1(∅,c) : c ∈ Ck}, Xm,k = Xk, Xs,k = {1(∅,c) :
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c ∈ Ck}, Xw,k = {1(z,c) : (z, c) ∈ Z × Ck} and ∆k = {(a, δ) : δ ∈ Xa,k}.

For each k ∈ N, let Ek = (Z, ν, Ck,Ck, Xk, (≻z)z∈Z) be a market where ≻z is

restricted to ∆k ×M(Z ×X∅,k) for each z ∈ Z. Let µk ∈ M(Z ×X∅,k) be a stable

matching in Ek, which exists by Lemma 5 since Z, Ck and Xk are finite.

It follows by part 1 of Lemma 6 that we may assume that {µk}∞k=1 converges; let

µ = limk µk. It then follows by parts 2 and 3 of Lemma 6 that µ is a matching and

that supp(µ) ⊆ IR(µ).

The following claim will be used to show that condition (a) of part 4 of Lemma 6

holds.

Claim 8 Let (z̃, c̃) ∈ Tm
z (µ) and Vc̃ be an open neighborhood of c̃. Then, for all k

sufficiently large, there exists ck ∈ Ck(z, z̃) such that (z̃, ck) ∈ Tm
z (µk) ∩ ({z̃} × Vc̃).

Proof. Let (z̃, c̃) ∈ Tm
z (µ) and Vc̃ be an open neighborhood of c̃. Then c̃ ∈ C(z, z̃)

and either (i) there exists (ẑ, δ̂, ĉ) such that (ẑ, δ̂) ∈ supp(µ), (z̃, ĉ) ∈ supp(δ̂) and

(w, 1(z,c̃), µ) ≻z̃ (w, 1(ẑ,ĉ), µ), or (ii) there exists δ̃ ∈ X∅ such that (z̃, δ̃) ∈ supp(µ) and

(w, 1(z,c̃), µ) ≻z̃ (a(δ̃), δ̃, µ), where a(δ̃) = s if δ̃ ∈ X∅ \X and a(δ̃) = m if δ̃ ∈ X.

Consider case (i) first. Let Oc̃, Oĉ, Oδ̂ and Oµ be open neighborhoods of c̃, ĉ, δ̂ and

µ, respectively, such that (w, 1(z,c̃′), µ
′) ≻z̃ (w, 1(ẑ,ĉ′), µ

′) and supp(δ̂′) ∩ ({z̃} × Oĉ) ̸=

∅ for each c̃′ ∈ Oc̃, ĉ′ ∈ Oĉ, δ̂′ ∈ Oδ̂ and µ′ ∈ Oµ. Since 0 < µ({ẑ} × Oδ̂) ≤

lim infk µ({ẑ} × Oδ̂), it follows that, for each k sufficiently large, there is δ̂k ∈ Oδ̂

such that (ẑ, δ̂k) ∈ supp(µk) and, for some ĉk ∈ Oĉ, (z̃, ĉk) ∈ supp(δ̂k). In addition,

µk ∈ Oµ and there exists ck ∈ Ck(z, z̃) ∩ Oc̃ ∩ Vc̃ since, respectively, µk → µ and

Ck(z, z̃) increases to a dense subset of C(z, z̃). Then (w, 1(z,ck), µk) ≻z̃ (w, 1(ẑ,ĉk), µk)

and, hence, (z̃, ck) ∈ Tm
z (µk) ∩ ({z̃} × Vc̃) for all k sufficiently large.

Consider next case (ii). Let Oc̃, Oδ̃ and Oµ be open neighborhoods of c̃, δ̃ and

µ, respectively, such that (w, 1(z,c̃′), µ
′) ≻z̃ (a(δ̃), δ̃′, µ′) for each c̃′ ∈ Oc̃, δ̃′ ∈ Oδ̃

and µ′ ∈ Oµ. Since 0 < µ({z̃} × Oδ̃) ≤ lim infk µk({z̃} × Oδ̃), it follows that, for

each k sufficiently large there is δ̃k ∈ Oδ̃ such that (z̃, δ̃k) ∈ supp(µk). In addition,

µk ∈ Oµ and there exists ck ∈ Ck(z, z̃) ∩ Oc̃ ∩ Vc̃ since, respectively, µk → µ and

Ck(z, z̃) increases to a dense subset of C(z, z̃). Then (w, 1(z,ck), µk) ≻z̃ (a(δ̃), δ̃k, µk)
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and, hence, (z̃, ck) ∈ Tm
z (µk) ∩ ({z̃} × Vc̃) for all k sufficiently large.

We now show that condition (a) of part 4 of Lemma 6 holds. Let (z, δ, µ) ∈ Z×X×

M(Z ×X∅), δ
′ ∈ Λ(z, δ, µ), Vδ′ be an open neighborhood of δ′ and {(zkj , δkj , µkj)}∞j=1

be a sequence such that (zkj , δkj , µkj) → (z, δ, µ) and (zkj , δkj , µkj) ∈ Zkj × Xkj ×

M(Zkj ×X∅,kj) for each j ∈ N.

In particular, supp(δ′) ⊆ Tm
z (µ) ∪ supp(δ) and we may assume that supp(δ′) is

finite, i.e. δ′ =
∑

(z̃,c̃)∈supp(δ′) a(z̃, c̃)1(z̃,c̃) for some a = (a(z̃, c̃))(z̃,c̃)∈supp(δ′). Let Va

be an open neighborhood of a and, for each (z̃, c̃) ∈ supp(δ′), V(z̃,c̃) be an open

neighborhood of (z̃, c̃) be such that∑
(z̃,c̃)∈supp(δ′)

â(z̃, c̃)1(z(z̃,c̃),c(z̃,c̃)) ∈ Vδ′

whenever (z(z̃, c̃), c(z̃, c̃)) ∈ V(z̃,c̃) for each (z̃, c̃) ∈ supp(δ′) and â ∈ Va. Let â =

(â(z̃, c̃))(z̃,c̃)∈supp(δ′) ∈ Q|supp(δ′)|
+ ∩ Va and Vc̃ be an open neighborhood of c̃ such that

{z̃} × Vc̃ ⊆ V(z̃,c̃).

For each (z̃, c̃) ∈ supp(δ′) ∩ Tm
z (µ), and for each k sufficiently large, let ck(z̃, c̃) ∈

Ck(z, z̃) be such that (z̃, ck(z̃, c̃)) ∈ Tm
z (µk) ∩ ({z̃} × Vc̃), which exists by Claim 8.

If (z̃, c̃) ∈ supp(δ′) \ Tm
z (µ), then δ ∈ X, (z̃, c̃) ∈ supp(δ) and 0 < δ({z̃} × Vc̃) ≤

lim infj δkj({z̃} × Vc̃). Hence, for each j sufficiently large, let ckj(z̃, c̃) ∈ Vc̃ be such

that (z̃, ckj(z̃, c̃)) ∈ supp(δkj).

Let J ′ ∈ N be such that, for each j ≥ J ′, (z̃, ckj(z̃, c̃)) ∈ Tm
z (µkj) ∩ ({z̃} × Vc̃) if

(z̃, c̃) ∈ supp(δ′)∩Tm
z (µ) and (z̃, ckj(z̃, c̃)) ∈ supp(δkj)∩({z̃}×Vc̃) if (z̃, c̃) ∈ supp(δ′)\

Tm
z (µ). Thus, letting δ′kj =

∑
(z̃,c̃)∈supp(δ′) â(z̃, c̃)1(z̃,ckj (z̃,c̃)) for each j ≥ J ′, we have

that δ′kj ∈ Vδ′ and supp(δ′kj) ⊆ Tm
z (µkj)∪ supp(δkj). Since {â(z̃, c̃) : (z̃, c̃) ∈ supp(δ′)}

is finite, it follows that there is J > J ′ such that δ′kj ∈ Xkj for each j ≥ J .

An analogous argument shows that condition (b) of part 4 of Lemma 6 also holds.

Hence, it follows that supp(µ) ⊆ SM(µ). This together with the fact that µ is a

matching and supp(µ) ⊆ IR(µ) shows that µ is stable.

The next step of the proof of Theorem 2 extends Lemma 7 by requiring only that

E be rich.
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Lemma 8 If E is a rational, continuous, bounded and rich market such that Z is

finite, then E has a stable matching.

Proof. It follows by Debreu (1964, Proposition 3) and by the finiteness of Z

that there exists a continuous function u : Z × ∆ × M(Z × X∅) → [1, 2] such that

(a, δ, µ) 7→ u(z, a, δ, µ) represents ⪰z for each z ∈ Z, using the fact that [1, 2] and the

extended reals are homeomorphic.

Let R > 0 be such that X ⊆ MR(Z × C), ∆∗ = ({m} ×MR(Z × C)) ∪ ({w} ×

Xw) ∪ ({s} × Xs) and X∗ = MR(Z × C) ∪ {1(∅,c) : c ∈ C}. By Tietze Extension

Theorem, let U : Z ×∆∗ ×M(Z ×X∗) → [1, 2] be a continuous extension of u.

Let ρ be a metric on MR(Z × C). For each k ∈ N, let

∆k = {m} × {δ ∈ MR(Z × C) : ρ(δ,X) ≥ k−1}.

Let, by Urysohn’s Lemma, gk : ∆∗ → [0, 1] be a continuous function such that

g−1
k (1) = ∆ and g−1

k (0) = ∆k. Then define Uk : Z×∆∗×M(Z×X∗) → R by setting,

for each (z, a, δ, µ) ∈ Z ×∆∗ ×M(Z ×X∗), Uk(z, a, δ, µ) = gk(a, δ)U(z, a, δ, µ).

Consider the market Ek = (Z, ν, C,C,MR(Z × C), Uk), i.e. Ek is equal to E

except that X is replaced with MR(Z × C) and u with Uk. Since Ek is rational and

continuous with Z finite and X = MR(Z ×C), then Ek has a stable matching µk by

Lemma 7.

Let E∗ = (Z, ν, C,C,MR(Z × C), U). To avoid confusion, we write IR(µ;E ′) for

IR(µ) and SM(µ;E ′) for SM(µ) whenever µ is a matching of a market E ′. It follows

by part 1 of Lemma 6 that we may assume that {µk}∞k=1 converges; let µ = limk µk.

It then follows by part 2 of Lemma 6 that µ is a matching of E∗.

The proof of part 3 of Lemma 6 implies that supp(µ) ⊆ IR(µ;E∗) since the

requirement that ≻z,k is the restriction of ≻z to ∆k ×M(Zk ×X∅,k) for each z ∈ Zk

can be replaced with the following condition: (s, δ, µ̂) ≻z,k (a, δ′, µ̂) for each k ∈ N,

z ∈ Zk, δ ∈ Xs,k, (a, δ
′) ∈ ∆k and µ̂ ∈ M(Zk ×X∅,k) such that (s, δ, µ̂) ≻z (a, δ

′, µ̂).

This condition holds because Uk(z, a, δ
′, µ̂) ≤ U(z, a, δ′, µ̂) and Uk(z, s, 1(∅,ĉ), µ̂) =

U(z, s, 1(∅,ĉ), µ̂) for each k ∈ N, z ∈ Z, (a, δ′) ∈ ∆∗, ĉ ∈ C and µ̂ ∈ M(Z ×X∗) since

(s, 1(∅,ĉ)) ∈ ∆ and, hence, gk(s, 1(∅,ĉ)) = 1.
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We have that µ belongs to M(Z×X∅). Indeed, let k ∈ N and (z, δ) ∈ supp(µk)∩

M(Z ×C). If δ ∈ X and ρ(δ,X) ≥ k−1, then let c ∈ C(z, ∅) and δ′ = 1(∅,c) to obtain

that supp(δ′) ⊆ T s
z (µk) and Uk(z, s, δ

′, µ) = U(z, s, δ′, µ) > 0 = Uk(z,m, δ, µ), the

latter since (s, δ′) ∈ ∆ and, thus, gk(s, δ
′) = 1, U(z, s, δ′, µ) ∈ [1, 2] and gk(m, δ) = 0.

But this contradicts the stability of µk. Hence, it follows that ρ(δ,X) < k−1.

Thus, for each k ∈ N,

supp(µk) ⊆ (Z × {δ ∈ MR(Z × C) : ρ(δ,X) ≤ k−1}) ∪ (Z × {1(∅,c) : c ∈ C}).

Hence, supp(µ) ⊆ Z ×X∅ as claimed.

It then follows that µ is a matching of E and that supp(µ) ⊆ IR(µ;E) since

IR(µ;E∗) ∩ (Z ×X∅) ⊆ IR(µ;E). Claim 9, which is analogous to part 4 of Lemma

6, shows that supp(µ) ⊆ SM(µ;E).

Claim 9 supp(µ) ⊆ SM(µ;E).

Proof. Let (z, δ) ∈ supp(µ) and suppose that (z, δ) ̸∈ SM(µ;E). Then there

exists δ′ ∈ X such that either (i) supp(δ′) ⊆ Tm
z (µ) ∪ supp(δ) and U(z,m, δ′, µ) >

U(z, a(δ), δ, µ), where a(δ) = m if δ ∈ X and a(δ) = s if δ ∈ X∅\X (see Footnote 34),

or (ii) there exists (z′, c) ∈ supp(δ) such that supp(δ′) ⊆ Tm
z′ (µ) and U(z′,m, δ′, µ) >

U(z′, w, 1(z,c), µ).

Consider case (i) first. Let Vδ′ , Vδ and Vµ be open neighborhoods of δ′, δ and µ,

respectively, such that U(z,m, γ′, µ̄) > U(z, a(δ), γ, µ̄) for each γ′ ∈ Vδ′ , γ ∈ Vδ and

µ̄ ∈ Vµ. Let, by the richness of E, Ṽδ and Ṽµ be open neighborhoods of δ and µ,

respectively, such that Λ(z, γ, µ̄) ∩ Vδ′ ̸= ∅ for each (γ, µ̄) ∈ Ṽδ × Ṽµ.

By Carmona and Podczeck (2009, Lemma 12), there is a subsequence {µkj}∞j=1

of {µk}∞k=1 and corresponding sequence {δkj}∞j=1 such that δkj → δ and (z, δkj) ∈

supp(µkj) for each j ∈ N.

Let J ∈ N be such that µkj ∈ Vµ ∩ Ṽµ and δkj ∈ Vδ ∩ Ṽδ for all j ≥ J and, for each

j ≥ J , let δ′kj ∈ Λ(z, δkj , µkj) ∩ Vδ′ . Then, for each j ≥ J ,

Ukj(z,m, δ′kj , µkj) = U(z,m, δ′kj , µkj) > U(z, a(δ), δkj , µkj) ≥ Ukj(z, a(δ), δkj , µkj)
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since δ′kj ∈ X by the definition of Λ, and supp(δ′kj) ⊆ Tm
z (µkj) ∪ supp(δkj). But this

contradicts the stability of µkj .

Now assume there exists (z′, c) ∈ supp(δ) and δ′ ∈ X such that supp(δ′) ⊆ Tm
z′ (µ)

and U(z′,m, δ′, µ) > U(z′, w, 1(z,c), µ). Let Vδ′ , Vc and Vµ be open neighborhoods of

δ′, c and µ respectively, such that U(z′,m, δ̂′, µ̂) > U(z′, w, 1(z,ĉ), µ̂) for each δ̂′ ∈ Vδ′ ,

ĉ ∈ Vc and µ̂ ∈ Vµ. Let, by the richness of E, Ṽµ be an open neighborhood of µ such

that Λ0(z
′, µ̂) ∩ Vδ′ ̸= ∅ for each µ̂ ∈ Ṽµ.

By Carmona and Podczeck (2009, Lemma 12), there is a subsequence {µkj}∞j=1

of {µk}∞k=1 and corresponding sequence {(δkj , ckj)}∞j=1 such that (δkj , ckj) → (δ, c),

(z, δkj) ∈ supp(µkj) and (z′, ckj) ∈ supp(δkj) for each j ∈ N.

Let J ∈ N be such that δkj ∈ Vδ, ckj ∈ Vc and µkj ∈ Vµ ∩ Ṽµ for all j ≥ J and,

for each j ≥ J , let δ′kj ∈ Λ0(z
′, µkj) ∩ Vδ′ . Then, for each j ≥ J , Ukj(z

′,m, δ′kj , µkj) =

U(z′,m, δ′kj , µkj) > U(z′, w, 1(z,ckj ), µkj) ≥ Ukj(z
′, w, 1(z,ckj ), µkj) since δ′kj ∈ X by the

definition of Λ0, and supp(δ′kj) ⊆ Tm
z′ (µkj). But this contradicts the stability of µkj .

It follows by supp(µ) ⊆ IR(µ;E) and by Claim 9 that supp(µ) ⊆ SM(µ;E) ∩

IR(µ;E). Thus, µ is stable.

We now complete the proof of our existence result.

Proof of Theorem 2. Let {νk}∞k=1 be such that νk → ν and supp(νk) is a

finite subset of Z for each k ∈ N. Define Zk = supp(νk), Z∅,k = Zk ∪ {∅}, Xk =

X ∩ M(Zk × C), X∅,k = Xk ∪ {1(∅,c) : c ∈ C}, Xm,k = Xk, Xs,k = {1(∅,c) : c ∈ C},

Xw,k = {1(z,c) : (z, c) ∈ Zk × C} and ∆k = {(a, δ) : δ ∈ Xa,k} for each k ∈ N. Note

that Xk is closed for each k ∈ N.

For each k ∈ N, let Ẽk = (Zk, νk, C,C, Xk, (≻z)z∈Zk
) be a market where ≻z is

restricted to ∆k × M(Zk × X∅,k) for each z ∈ Z. Furthermore, let Ek be exactly

as Ẽk, except with X in place of Xk and Z in place of Zk; more precisely, Ek =

(Z, νk, C,C, X, (≻z)z∈Z).

Claim 10 For each k ∈ N, if µ is a stable matching of Ẽk, then µ is a stable matching

of Ek.

52



Proof. In this proof, to avoid confusion, we write IR(µ;E) for IR(µ) and

SM(µ;E) for SM(µ) whenever µ is a matching of a market E.

Let k ∈ N and µ be a stable matching of Ẽk. Clearly, µ is a matching of Ek and

supp(µ) ⊆ IR(µ;Ek). We show that supp(µ) ⊆ SM(µ;Ek). Suppose not; then let

(z, δ) ∈ supp(µ) \ SM(µ;Ek).

First suppose that there exists δ′ ∈ X such that supp(δ′) ⊆ Tm
z (µ) ∪ supp(δ) and

(m, δ′, µ) ≻z (a(δ), δ, µ), where a(δ) = m if δ ∈ X and a(δ) = s if δ ∈ X∅ \ X. We

claim that δ′ ∈ Xk, i.e. that supp(δ
′) ⊆ Zk×C, from which we obtain a contradiction

to the stability of µ in Ẽk.

Note that supp(δ̄) ⊆ Zk×C whenever δ̄ ∈ X and (z̄, δ̄) ∈ supp(µ) for some z̄ ∈ Zk

since µ is stable in Ẽk. Thus, it follows that supp(δ′) ∩ supp(δ) ⊆ Zk × C since if

supp(δ′) ∩ supp(δ) ̸= ∅, then δ ∈ X. We also have that supp(δ′) ∩ Tm
z (µ) ⊆ Zk × C.

Indeed, if (z′, c) ∈ Tm
z (µ), then (z′, c̄) ∈ supp(δ̄) and (z̄, δ̄) ∈ supp(µ) for some

c̄ ∈ C, z̄ ∈ Zk and δ̄ ∈ X whenever supp(δ′) ∩ Tm
z (µ) ̸= ∅; hence, z′ ∈ Zk. Thus,

supp(δ′) = (supp(δ′) ∩ supp(δ)) ∪ (supp(δ′) ∩ Tm
z (µ)) ⊆ Zk × C as desired.

Now suppose that there exists δ′ ∈ X and (z′, c) ∈ supp(δ) such that supp(δ′) ⊆

Tm
z′ (µ) and (m, δ′, µ) ≻z′ (w, 1(z,c), µ). As above, we obtain a contradiction to the

stability of µ in Ẽk by showing that δ′ ∈ Xk. To establish this claim, it suffices to show

that Tm
z′ (µ) ⊆ Zk × C. If (z̃, c̃) ∈ Tm

z′ (µ), then (z̃, c̄) ∈ supp(δ̄) and (z̄, δ̄) ∈ supp(µ)

for some c̄ ∈ C, z̄ ∈ Zk and δ̄ ∈ X; hence, (z̃, c̃) ∈ Zk × C as required.

For each k ∈ N, let µk ∈ M(Z ×X∅,k) be a stable matching in Ek, which exists

by Lemma 8 (since Zk is finite and Ẽk satisfies its assumptions) and Claim 10.35

35It is clear that Ẽk is rational, continuous and bounded. It can be shown that Ẽk is rich along

the lines of Claim 10: Let Λk : Zk × Xk × M(Zk × X∅,k) ⇒ Xk be defined by setting, for each

(z, δ, µ) ∈ Zk ×Xk ×M(Zk ×X∅,k), Λk(z, δ, µ) = {δ′ ∈ Xk : supp(δ′) ⊆ supp(δ) ∪ Tm
z (µ; Ẽk)}. Let

(z, δ, µ) ∈ Zk×Xk×M(Zk×X∅,k) and O be open and such that Λk(z, δ, µ)∩O ̸= ∅. Since Tz(µ; Ẽk) ⊆

Tz(µ;E), it follows that Λ(z, δ, µ)∩O ̸= ∅. Hence, there is an open neighborhood V of (z, δ, µ) such

that, for each (z̃, δ̃, µ̃) ∈ V , Λ(z̃, δ̃, µ̃)∩O ̸= ∅. Thus, for each (z̃, δ̃, µ̃) ∈ V ∩(Zk×Xk×M(Zk×X∅,k)),

let δ′ ∈ Λ(z̃, δ̃, µ̃)∩O. We have that supp(δ̃) ⊆ Zk ×C and that Tm
z̃ (µ̃;E) ⊆ (Zk ×C)∩ Tm

z̃ (µ̃; Ẽk).

Hence, δ′ ∈ Xk and supp(δ′) ⊆ supp(δ̃)∪Tm
z̃ (µ̃; Ẽk) and it follows that δ′ ∈ Λk(z̃, δ̃, µ̃)∩O. Thus, Λk

is lower hemicontinuous and an analogous argument shows that Λ0,k is also lower hemicontinuous.
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It follows by part 1 of Lemma 6 that we may assume that {µk}∞k=1 converges; let

µ = limk µk. It then follows by parts 2 – 4 of Lemma 6 that µ is a matching and that

supp(µ) ⊆ SM(µ) ∩ IR(µ). Hence, µ is stable.

A.4 Proof of Theorem 3

Theorem 3 characterizes the stable matching of a marriage market E in terms of the

stable matchings of its associated market Ê and vice versa. A matching of Ê is a

measure on Z ×X∅ but a matching in E is a measure on M∅ ×W∅ × C. The main

difference arises due to how we represent unmatched individuals of type z ∈ W . This

is done by a match (z, 1(∅,c)) in Ê and by a match (∅, z, c) in E. Therefore, we need

to transform the former into the latter to obtain a matching in E from a matching in

Ê and vice versa.

Let µ̂ be a stable matching of Ê and note that µ̂(W × X) = 0. Indeed, if

µ̂(W×X) > 0, then there is (z, δ) ∈ (W×X)∩supp(µ̂). Letting c ∈ Ĉ(z, ∅) = C(∅, z),

it follows that supp(1(∅,c)) ⊆ T s
z (µ̂) and (s, 1(∅,c))≻̂z(m, δ). But this implies that

(z, δ) ̸∈ S(µ̂), contradicting the stability of µ̂.

The above implies that supp(µ̂) ⊆ (M ×X∅) ∪ (W × (X∅ \X)). Recall that

Y = (M ×X∅) ∪ (W × (X∅ \X)) and Y ′ = (M ×W∅ × C) ∪ ({∅} ×W × C)

and let g : W∅ × C → X∅ defined by g(z, c) = 1(z,c) be the standard homeomorphism

between W∅ × C and X∅. To transform a matching µ̂ of Ê into a matching µ of E,

we use the function h : Y → Y ′ defined, by setting for each (z, δ) ∈ Y ,

h(z, δ) =

(z, g−1(δ)) if z ∈ M and δ ∈ X∅,

(∅, z, c) if z ∈ W, δ ∈ X∅ \X, δ = 1(∅,c) and c ∈ C.

Then h is continuous because M and W are both open and closed and ck → c

whenever 1(∅,ck) → 1(∅,c). Thus, µ = µ̂ ◦ h−1 is a measure on Y ′ ⊆ M∅ ×W∅ × C.

The function h is actually an homeomorphism between Y and Y ′, its inverse being
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f : Y ′ → Y defined, by setting, for each (z, z′, c) ∈ Y ′,

f(z, z′, c) =

(z, g(z′, c)) if z ∈ M,

(z′, 1(∅,c)) if z = ∅ and (z′, c) ∈ W × C.

Since supp(µ) ⊆ Y ′ for each matching µ of E, µ̂ = µ◦f−1 is a measure on Y ⊆ Z×X∅.

Note first that to establish Theorem 3 it suffices to show that: (1) if µ̂ is a stable

matching of Ê, then µ̂ ◦ h−1 is a stable matching of E; and (2) if µ is a stable

matching of E, then µ ◦ f−1 is a stable matching of Ê. Indeed, (2) implies that

{µ ◦ f−1 : µ ∈ S} ⊆ Ŝ. For the converse, let µ̂ ∈ Ŝ and note that (1) implies that

µ̂ ◦ h−1 ∈ S. Then µ̂ ∈ {µ ◦ f−1 : µ ∈ S} since µ̂ = µ̂ ◦ (f ◦ h)−1 = (µ̂ ◦ h−1) ◦ f−1.

An analogous argument shows that S = {µ̂ ◦ h−1 : µ̂ ∈ Ŝ}.

We turn to the proof of (1). Let µ̂ ∈ Ŝ and µ = µ̂ ◦ h−1. Recall that we have

already shown that µ̂(W ×X) = 0.

We now show that µ is a matching of E. For condition (M1), let B be a Borel sub-

set ofM and note that h−1(B×W∅×C) = B×X∅ and that
∫
Z×X

δ(B×C)dµ̂(z, δ) = 0,

the latter since δ ∈ X = {1(z,c) : (z, c) ∈ W × C} and B ∩W ⊆ M ∩W = ∅ implies

δ(B × C) = 0. Hence,

µ(B ×W∅ × C) = µ̂(h−1(B ×W∅ × C)) = µ̂(B ×X∅)

= µ̂(B ×X) + µ̂(B × (X∅ \X)) +

∫
Z×X

δ(B × C)dµ̂(z, δ) = ν(B) = νM(B).

For condition (M2), let B be a Borel subset ofW and note that h−1(M∅×B×C) =

(M × {1(z,c) : (z, c) ∈ B × C}) ∪ (B × (X∅ \X)). Thus, using µ̂(W ×X) = 0,

µ(M∅ ×B × C) = µ̂(M × {1(z,c) : (z, c) ∈ B × C}) + µ̂(B × (X∅ \X))

= µ̂(Z × {1(z,c) : (z, c) ∈ B × C}) + µ̂(B × (X∅ \X))

=

∫
Z×X

δ(B × C)dµ̂(z, δ) + µ̂(B × (X∅ \X)) + µ̂(B ×X) = ν(B) = νW (B).

For condition (M3), let (m,w, c) ∈ supp(µ) and, since supp(µ) = h(supp(µ̂)) by

Lemma 1, let (z, δ) ∈ supp(µ̂) be such that (m,w, c) = h(z, δ). If m ∈ M , then

z = m, δ = 1(w,c) and thus c ∈ Ĉ(m,w) = C(m,w). If m = ∅, then z = w, δ = 1(∅,c)
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and c ∈ Ĉ(w, ∅) = C(∅, w). Finally, condition (M4) holds since h−1({(m,w, c) : m =

w = ∅}) = ∅.

Before establishing the stability of µ, we note that the set I in GK is defined as a

union of open subsets of (M∅ ×W∅ × C)2. For convenience, we write this definition

as follows. Let I = IB ∪ IIN ∪ IIR, where

IB =
{
(m,w, c,m′, w′, c′) ∈ (M∅ ×W∅ × C)2 : (m′, c′′) ≻w (m, c)

and (w, c′′) ≻m′ (w′, c′) for some c′′ ∈ C(m′, w)
}
∪{

(m,w, c,m′, w′, c′) ∈ (M∅ ×W∅ × C)2 : (m, c′′) ≻w′ (m′, c′)

and (w′, c′′) ≻m (w, c) for some c′′ ∈ C(m,w′)
}
,

IIN =
{
(m,w, c,m′, w′, c′) ∈ (M∅ ×W∅ × C)2 : (m, c′′) ≻w (m, c)

and (w, c′′) ≻m (w, c) for some c′′ ∈ C(m,w)
}
∪{

(m,w, c,m′, w′, c′) ∈ (M∅ ×W∅ × C)2 : (m′, c′′) ≻w′ (m′, c′)

and (w′, c′′) ≻m′ (w′, c′) for some c′′ ∈ C(m′, w′)
}
, and

IIR =
{
(m,w, c,m′, w′, c′) ∈ (M∅ ×W∅ × C)2 : (∅, c′′) ≻w (m, c)

for some c′′ ∈ C(∅, w)} ∪
{
(m,w, c,m′, w′, c′) ∈ (M∅ ×W∅ × C)2 :

(∅, c′′) ≻w′ (m′, c′) for some c′′ ∈ C(∅, w′)
}
∪{

(m,w, c,m′, w′, c′) ∈ (M∅ ×W∅ × C)2 : (∅, c′′) ≻m (w, c)

for some c′′ ∈ C(m, ∅)
}
∪
{
(m,w, c,m′, w′, c′) ∈ (M∅ ×W∅ × C)2 :

(∅, c′′) ≻m′ (w′, c′) for some c′′ ∈ C(m′, ∅)
}
.

Let SIN be the complement of {(x, y, c) ∈ M∅×W∅×C : (x, c′) ≻y (x, c) and (y, c′) ≻x

(y, c) for some c′ ∈ C(x, y)}. It is straightforward to see that

IIN = (Sc
IN × (M∅ ×W∅ × C)) ∪ ((M∅ ×W∅ × C)× Sc

IN) .

Hence, writing µ2 for µ⊗µ, µ2(IIN) = 0 if and only if µ(Sc
IN) = 0, which holds if and

only if supp(µ) ⊆ SIN .

Analogously, let SIR be the complement of {(x, y, c) ∈ M∅ ×W∅ × C : (∅, c′) ≻y

(x, c) for some c′ ∈ C(∅, y)}∪{(x, y, c) ∈ M∅×W∅×C : (∅, c′) ≻x (y, c) for some c′ ∈
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C(x, ∅)}. We then have that

IIR = (Sc
IR × (M∅ ×W∅ × C)) ∪ ((M∅ ×W∅ × C)× Sc

IR) .

Hence, µ2(IIR) = 0 if and only if µ(Sc
IR) = 0, which holds if and only if supp(µ) ⊆ SIR.

We now show that µ is stable. Let (x, y, c, x′, y′, c′) ∈ supp(µ2). It follows by

Lemma 3 that both (x, y, c) and (x′, y′, c′) belong to supp(µ). Thus, (x, 1(y,c)) ∈

supp(µ̂) if x ∈ M and (y, 1(∅,c)) ∈ supp(µ̂) if x = ∅.

Suppose, in order to reach a contradiction, that (x, y, c, x′, y′, c′) ∈ IB. If (x
′, c′′) ≻y

(x, c) and (y, c′′) ≻x′ (y′, c′) for some c′′ ∈ C(x′, y), it follows that y ∈ W and x′ ∈ M

because ≻∅ is empty and that (x′, c′′) ∈ Tw
y (µ̂) by the latter condition together with

(x′, y′, c′) ∈ supp(µ) ⇔ (x′, 1(y′,c′)) ∈ supp(µ̂); then the former condition implies that

(x, 1(y,c)) ̸∈ S(µ̂) if x ∈ M and (y, 1(∅,c)) ̸∈ S(µ̂) if x = ∅.

If (x, c′′) ≻y′ (x
′, c′) and (y′, c′′) ≻x (y, c) for some c′′ ∈ C(x, y′), it follows that

x ∈ M , y′ ∈ W and (y′, c′′) ∈ Tm
x (µ̂) by the former condition together with (x′, y′, c′) ∈

supp(µ), i.e. (x′, 1(y′,c′)) ∈ supp(µ̂) if x′ ∈ M and (y′, 1(∅,c′)) ∈ supp(µ̂) if x′ ∈ M ;

then the latter condition implies that (x, 1(y,c)) ̸∈ S(µ̂). In either case we reach a

contradiction, and thus (x, y, c, x′, y′, c′) ∈ IcB. It then follows that supp(µ2) ⊆ IcB

and, thus, µ2(IB) = 0.

Suppose next that (x, y, c) ∈ Sc
IN . Then there exists c′′ ∈ C(x, y) such that

(x, c′′) ≻y (x, c) and (y, c′′) ≻x (y, c); in particular x ∈ M and y ∈ W since ≻∅ is

empty. Since (x, 1(y,c)) ∈ supp(µ̂), it follows by the former condition that (y, c′′) ∈

Tm
x (µ̂). Then the latter condition shows that (x, 1(y,c)) ̸∈ S(µ̂), a contradiction. It

then follows that supp(µ) ⊆ SIN and, thus, µ2(IIN) = 0.

Finally suppose that (x, y, c) ∈ Sc
IR and that (∅, c′′) ≻y (x, c) for some c′′ ∈ C(∅, y)

(the case where (∅, c′′) ≻x (y, c) for some c′′ ∈ C(x, ∅) being analogous). Then

(∅, c′′) ∈ T s
y (µ̂) and (∅, c′′) ≻y (x, c) implies that (x, 1(y,c)) ̸∈ S(µ̂) if x ∈ M and

(y, 1(∅,c)) ̸∈ S(µ̂) if x = ∅, a contradiction. It then follows that supp(µ) ⊆ SIR and,

thus, µ2(IIR) = 0.

It follows from what has been shown above that 0 ≤ µ2(I) ≤ µ2(IB) + µ2(IIN) +

µ2(IIR) = 0 and, therefore, µ is stable.
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We turn to the proof of (2). Let µ ∈ S and µ̂ = µ◦f−1. We start by showing that

µ̂ is a matching. For condition 1, let (z, δ) ∈ supp(µ̂) ⊆ Z ×X∅ and (z′, c) ∈ supp(δ).

Then h(z, δ) ∈ supp(µ) by Lemma 1. Thus, if z ∈ M , then (z, z′, c) ∈ supp(µ) and,

therefore, c ∈ C(z, z′) = Ĉ(z, z′). If z ∈ W , then (∅, z, c) = h(z, δ) ∈ supp(µ). Thus,

c ∈ C(∅, z) = Ĉ(z, ∅). In either case, it follows that {z} × supp(δ) ⊆ graph(Ĉ).

For condition 2, let B be a Borel subset of Z. We have that µ̂(B×X) = µ(f−1(B×

X)) = µ((B ∩M) ×W × C) and that µ̂(B × (X∅ \X)) = µ(f−1(B × (X∅ \X))) =

µ((B ∩M)×{∅}×C))+µ({∅}× (B ∩W )×C). Moreover,
∫
Z×X

δ(B×C)dµ̂(z, δ) =

µ(M × (B ∩W )× C) since, for each (z, δ) ∈ supp(µ̂) ∩ (Z ×X), δ = 1(z′,c) for some

(z′, c) ∈ W × C and 1(z′,c)(B × C) = 1 if and only if z′ ∈ B. Thus,

µ̂(B ×X) +

∫
Z×X

δ(B × C)dµ̂(z, δ) + µ̂(B × (X∅ \X))

= µ((B ∩M)×W∅ × C) + µ(M∅ × (B ∩W )× C)

= νM(B ∩M) + νW (B ∩W ) = ν(B).

We now show that µ̂ is stable. Since µ is stable, then µ2(I) = 0 and, hence, that

supp(µ2) ⊆ Ic since I is open. Note that Ic = IcB ∩ IcIN ∩ IcIR.

Let (x, 1(y,c)) ∈ supp(µ̂) and first suppose that x ∈ M . Then (x, y, c) ∈ supp(µ).

Suppose, in order to reach a contradiction, that (x, 1(y,c)) ̸∈ SM(µ̂) ∩ IR(µ̂). Then

(y′, c′′) ≻x (y, c) for some (y′, c′′) ∈ W∅ × C such that (y′, c′′) ∈ Tm
x (µ̂) if y′ ∈ W and

(y′, c′′) ∈ T s
x(µ̂) if y

′ = ∅.

If y′ ∈ W , then (y′, c′′) ∈ Tm
x (µ̂) implies that c′′ ∈ C(x, y′) and that there is

(x′, c′) ∈ M∅ × C such that (x′, y′, c′) ∈ supp(µ) and (x, c′′) ≻y′ (x
′, c′). Therefore,

(x, y, c, x′, y′, c′) ∈ supp(µ)2 = supp(µ2) by Lemma 3 and (x, y, c, x′, y′, c′) ∈ IB, a

contradiction. If y′ = ∅, then c′′ ∈ C(x, ∅) and (∅, c′′) ≻x (y, c), implying that

(x, y, c) ∈ Sc
IR and, thus, (x, y, c, x, y, c) ∈ supp(µ2) ∩ IIR, a contradiction.

Thus, we reach a contradiction in either case and it follows that (x, 1(y,c)) ∈

SM(µ̂) ∩ IR(µ̂).

Now let (x, 1(y,c)) ∈ supp(µ̂) and suppose that x ∈ W , which implies y = ∅. Then

(∅, x, c) ∈ supp(µ). Suppose for a contradiction that (x, 1(∅,c)) ̸∈ SM(µ̂)∩IR(µ̂). Note

that (x, 1(∅,c)) ∈ SM(µ̂) since (s, 1(∅,c))≻̂x(m, δ̃) for all δ̃ ∈ Xm. If (x, 1(∅,c)) ̸∈ IR(µ̂),
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then (∅, c′) ≻x (∅, c) for some c′ ∈ C(∅, x), implying that (∅, x, c) ∈ Sc
IR and, thus,

(∅, x, c, ∅, x, c) ∈ supp(µ2) ∩ IIR, a contradiction. Thus, (x, 1(y,c)) ∈ SM(µ̂) ∩ IR(µ̂).

Hence, supp(µ̂) ⊆ SM(µ̂) ∩ IR(µ̂) and µ̂ is stable by Theorem 1.

A.5 Proof of Corollary 3

Let E be a Rosen market. For each k ∈ N, let Ck ≡ [0, k], Xk = {n1(z,c) : (z, c) ∈

Z × C and n ∈ [0, k]} and Ek be equal to E except for these changes to Ck and Xk.

It follows by Theorem 2 that there exists a stable matching µk of Ek.

Claim 11 supp(µk) ⊆ Z ×X for each k ∈ N.

Proof. Suppose not; then let (z, δ) ∈ supp(µk)∩(Z×(X∅\X)). Let ε > 0 be such

that g(r(z))q(z)θ
(

r(z)
q(z)

)
− ε > 0. Then (z, ε) ∈ Tm

z (µk) since (z, δ) ∈ supp(µ) and

Uz(w, 1(z,ε)) = ε > 0 = Uz(s, δ). Thus, letting δ′ = 1(z,ε), it follows that supp(δ′) ⊆

Tm
z (µk) and Uz(m, δ′) = g(r(z))q(z)θ

(
r(z)
q(z)

)
−ε > 0 = Uz(s, δ). Hence, (z, δ) ̸∈ S(µk),

a contradiction to the stability of µk.

Claim 12 There exist K,M ∈ N such that, for each k ≥ K and (z, δ) ∈ supp(µk),

δ(Z × C) ≤ M and δ(Z × ([0, 1
M
) ∪ (M,∞))) = 0.

Proof. Suppose not; then, for each j ∈ N, there exists kj ≥ j and (zkj , δkj) ∈

supp(µkj) ⊆ Z ×X such that δkj(Z × C) > j or δkj(Z × ([0, 1
j
) ∪ (j,∞))) > 0.

Suppose first that δkj(Z × C) > j holds for infinitely many js. Taking a subse-

quence if needed, we may assume that δkj(Z × C) > j holds for each j. Thus, for

some (z′kj , ckj , nkj) ∈ Z × C × [0, kj], δkj = nkj1(z′kj ,ckj )
with nkj > j. We have that

Uzkj
(m,nkj1(z′kj ,ckj )

) ≤ g(r(z̄))f(r(z̄), nkjq(z̄))− ckjnkj

=

[
g(r(z̄))q(z̄)θ

(
r(z̄)

nkjq(z̄)

)
− ckj

]
nkj .

Since µkj is stable, it follows that Uzkj
(m,nkj1(z′kj ,ckj )

) ≥ 0 for each j; hence,

0 ≤ ckj ≤ g(r(z̄))q(z̄)θ

(
r(z̄)

nkjq(z̄)

)
.
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Since nkj → ∞, it follows that g(r(z̄))q(z̄)θ
(

r(z̄)
nkj

q(z̄)

)
→ 0 and, hence, ckj → 0. Since

g(r(z))q(z)θ
(

r(z)
q(z)

)
> 0, let ε > 0 be such that

g(r(z))q(z)θ

(
r(z)

q(z)

)
− ε > 0.

We have that (z′kj , ckj + ε) ∈ Tm
z′kj

(µkj) for each j and that

Uz′kj
(m, 1(z′kj ,ckj+ε)) ≥ g(r(z))q(z)θ

(
r(z)

q(z)

)
− ckj − ε > ckj

for all j sufficiently large. But this contradicts the stability of µkj .

It follows from what has been shown above that δkj(Z × ([0, 1
j
) ∪ (j,∞))) > 0

holds for each j sufficiently large. Thus, for some (z′kj , ckj , nkj) ∈ Z × C × [0, kj],

δkj = nkj1(z′kj ,ckj )
with ckj > j or ckj < 1

j
. First, suppose that ckj < 1

j
holds for

infinitely many js. Note that (z′kj ,
1
j
) ∈ Tm

z′kj
(µkj) and

Uz′kj
(m, 1(z′kj ,

1
j
)) ≥ g(r(z))q(z)θ

(
r(z)

q(z)

)
− 1

j
>

1

j
> ckj

for j sufficiently large, contradicting the stability of µkj .

Now suppose that ckj > j for all j sufficiently large. Since µkj is stable, we then

have that

0 ≤ Uzkj
(m,nkj1(z′kj ,ckj )

) ≤
[
g(r(z̄))q(z̄)θ

(
r(z̄)

nkjq(z̄)

)
− ckj

]
nkj .

Thus, nkj → 0 as ckj → ∞ and, hence,

Uzkj
(m,nkj1(z′kj ,ckj )

) ≤ g(r(zkj))f(r(zkj), nkjq(zkj)) → 0.

Let ε > 0 be such that

g(r(z))q(z)θ

(
r(z)

q(z)

)
− ε > 0.

We have that (zkj , ε) ∈ Tm
zkj

(µkj) and that

Uzkj
(m, 1(zkj ,ε)) ≥ g(r(z))q(z)θ

(
r(z)

q(z)

)
− ε > 0

for all j sufficiently large. But this contradicts the stability of µkj .
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Claim 12 implies that, for each k ≥ K, the payoff of a manager in µk is bounded

above by maxn∈[0,M ] g(r(z̄))f(r(z̄), nq(z̄)) = maxn∈[0,M ] g(r(z̄))nq(z̄)θ
(

r(z̄)
nq(z̄)

)
. In ad-

dition, the payoff of a manager is bounded below by 1
2
g(r(z))q(z)θ

(
r(z)
q(z)

)
, since if

(z, δ) ∈ supp(µk) and Uz(m, δ) < 1
2
g(r(z))q(z)θ

(
r(z)
q(z)

)
, then, letting ε > 0 be such

that g(r(z))q(z)θ
(

r(z)
q(z)

)
− ε > 2Uz(m, δ), it follows that (z, Uz(m, δ) + ε) ∈ Tm

z (µk)

and

Uz(m, 1(z,Uz(m,δ)+ε)) = g(r(z))f(r(z), q(z))− Uz(m, δ)− ε

≥ g(r(z))q(z)θ

(
r(z)

q(z)

)
− Uz(m, δ)− ε > Uz(m, δ),

which contradicts the stability of µk.

The payoff of a worker in µk is bounded below by 1
M
; since by Claim 11 there is

no unemployment, it follows that

min{Uz(m,n1(z′,c)), Uz′(w, 1(z,c))} ≥ min

{
1

M
,
1

2
g(r(z))q(z)θ

(
r(z)

q(z)

)}
(8)

for each (z, n1(z′,c)) ∈ supp(µk) and k ≥ K.

Let

M̄ = max

M, max
n∈[0,M ]

g(r(z̄))nq(z̄)θ

(
r(z̄)

nq(z̄)

)
,

2

g(r(z))q(z)θ
(

r(z)
q(z)

)
 ,

n(z, z′, c) be the solution of maxn∈R+

[
g(r(z))nq(z′)θ

(
r(z)
nq(z′)

)
− cn

]
for each z, z′ ∈ Z

and c ∈ [1/M̄, M̄ + 1] and n̄ = max(z,z′,c)∈Z2×[1/M̄,M̄+1] n(z, z
′, c); the existence of n̄

follows by the compactness of Z2 × [1/M̄, M̄ + 1] and the continuity of (z, z′, c) 7→

n(z, z′, c).

Let k > max{K, M̄ + 1, n̄} and µ = µk.

Claim 13 µ is a stable matching of E.

Proof. We will explicitly indicate the market we are considering in the stability

set of µ, and thus write SM(µ;E) and SM(µ;Ek). We use analogous notation for

IR(µ) and Tm
z (µ) for each z ∈ Z.

We first claim that, for each (z, z′, c) ∈ Z2×C, if (z′, c) ∈ Tm
z (µ;E), then (z′, M̄+

1) ∈ Tm
z (µ;Ek). Indeed, (z′, c) ∈ Tm

z (µ;E) implies that c = Uz′(w, 1(z,c)) > Uz′(a, δ)

for some (a, δ) ∈ ∆ such that:
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(a) If a = w, then δ = 1(ẑ,ĉ) with (ẑ, n̂1(z′,ĉ)) ∈ supp(µ) and, thus, Uz′(w, δ) = ĉ ≤ M

by Claim 12.

(b) If a = s, then Uz′(s, δ) = 0.

(c) If a = m, then (z′, δ) ∈ supp(µ) and, thus, Uz′(m, δ) ≤ M̄ by Claim 12.

Hence, Uz′(a, δ) ≤ M̄ and it follows that (z′, M̄ + 1) ∈ Tm
z (µ;Ek) since k > M̄ + 1.

We now establish that µ is a stable matching of E. Let (z, δ) ∈ supp(µ). Since µ

is a stable matching of Ek, (z, δ) ∈ SM(µ;Ek)∩IR(µ;Ek) and δ ∈ X by Claim 11. We

have that Uz′(s, δ
′) = 0 for each (z′, δ′) ∈ Z × Xs and, thus, IR(µ;Ek) ⊆ IR(µ;E).

Hence, (z, δ) ∈ IR(µ;E).

It thus remains to show that (z, δ) ∈ SM(µ;E). Let δ = n1(z̃,c) and let (i)

(ẑ, δ̂) = (z, δ) and a = m or (ii) (ẑ, δ̂) = (z̃, 1(z,c)) and a = w. Let δ′ ∈ X be

such that supp(δ′) ⊆ Tm
ẑ (µ;E) and let δ′ = n∗1(z∗,c∗). Note that (z∗, c∗) ∈ Tm

ẑ (µ;E)

implies that c∗ ≥ 1/M̄ by (8). If c∗ ≤ M̄ + 1, then (z∗, c∗) ∈ Tm
ẑ (µ;Ek) and

Uẑ(m, δ′) = Uẑ(m,n∗1(z∗,c∗)) ≤ Uẑ(m,n(ẑ, z∗, c∗)1(z∗,c∗)) ≤ Uẑ(a, δ̂),

where the last inequality follows from (z, δ) ∈ SM(µ;Ek) and k > n̄. If c∗ > M̄ + 1,

then (z∗, M̄ + 1) ∈ Tm
ẑ (µ;Ek) and

Uẑ(m, δ′) = Uẑ(m,n∗1(z∗,c∗)) ≤ Uẑ(m,n∗1(z∗,M̄+1)) ≤

Uẑ(m,n(ẑ, z∗, M̄ + 1)1(z∗,M̄+1)) ≤ Uẑ(a, δ̂),

where the last inequality follows from (z, δ) ∈ SM(µ;Ek) and k > n̄.

Finally, let δ′ ∈ X be such that supp(δ′) ⊆ supp(δ) in case (i). Then δ′ = n′1(z̃,c)

for some n′ ∈ R+. Since 1/M ≤ c ≤ M by Claim 12, it follows that

Uz(m, δ′) = Uz(m,n′1(z̃,c)) ≤ Uz(m,n(z, z̃, c)1(z̃,c)) ≤ Uz(m, δ),

where the last inequality follows from (z, δ) ∈ SM(µ;Ek) and k > n̄. This concludes

the proof that (z, δ) ∈ SM(µ;E) and establishes the claim.
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A.6 Proof of Theorem 4

In this section, we show that the conditions in the statement of Theorem 4 are nec-

essary and sufficient for µ to be a stable matching of the Rosen market.36 Note that

the function h is an homeomorphism between Z2 and h(Z2).

Sufficiency. Let µ = λ◦h−1 for some w and λ as in the statement of the Theorem.

To see that µ is a matching, note that for each measurable B,

µ(B ×X) +

∫
Z×X

δ(B × C)dµ(z, δ)

= λ ◦ h−1(B ×X) +

∫
Z×X

δ(B × C)dλ ◦ h−1(z, δ)

= λ(B × Z) +

∫
Z×B

n(z, z′, w)dλ(z, z′) = ν(B).

We now show that µ is stable by establishing that supp(µ) ⊆ SM(µ)∩ IR(µ). Let

(z, δ) ∈ supp(µ); then δ = n(z, z′, w)1(z′,wq(z′)) for some z′ ∈ Z and (z, z′) ∈ supp(λ)

by Lemma 1. To see that (z, δ) ∈ IR(µ), note that Uz(m,n(z, z′, w)1(z′,wq(z′))) =

R(z, w) > 0 and Uz′(w, 1(z,wq(z′))) = wq(z′) > 0.

Suppose that (z, n(z, z′, w)1(z′,wq(z′))) ̸∈ SM(µ). Then either there exists (z∗, c∗) ∈

Tm
z (µ) ∪ {(z′, wq(z′))} such that Uz(m,n(z, z∗, c∗

q(z∗)
)1(z∗,c∗)) > R(z, w) or there ex-

ists (z∗, c∗) ∈ Tm
z′ (µ) such that Uz′(m,n(z′, z∗, c∗

q(z∗)
)1(z∗,c∗)) > wq(z′). If (z∗, c∗) =

(z′, wq(z′)), then Uz(m,n(z, z∗, c∗

q(z∗)
)1(z∗,c∗)) = R(z, w). Thus, (z∗, c∗) ∈ Tm

z (µ) ∪

Tm
z′ (µ) and, hence, c

∗ > wq(z∗); indeed, condition (b) of Tm
z (µ) ∪ Tm

z′ (µ) cannot hap-

pen since supp(µ) ⊆ Z × X, condition (a) implies c∗ > wq(z∗) and condition (c)

implies that z∗ ∈ proj1(supp(λ)) and c∗ > R(z∗, w) and, thus, that c∗ > wq(z∗)

since then R(z∗, w) ≥ wq(z∗). If (z∗, c∗) ∈ Tm
z (µ), then Uz(m,n(z, z∗, c∗

q(z∗)
)1(z∗,c∗)) <

R(z, w) = Uz(m,n(z, z′, w)1(z′,wq(z′))). If (z
∗, c∗) ∈ Tm

z′ (µ), then

Uz′(m,n(z′, z∗, c∗

q(z∗)
)1(z∗,c∗)) < R(z′, w) ≤ wq(z′),

the last inequality holding since z′ ∈ proj2(supp(λ)). Thus, (z, n(z, z
′, w)1(z′,wq(z′))) ∈

SM(µ), and hence µ is stable.

36See Appendix B.4 for an illustration of Theorem 4 and its proof in the Cobb-Douglas case.
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Necessity. Let µ be a stable matching of a Rosen market. We first show

that supp(µ) ⊆ h(Z2). Let z, z′, ẑ, z̃ ∈ Z and n̂, ñ, c(z), c(z′) ∈ R+ be such that

(ẑ, n̂1(z,c(z))) and (z̃, ñ1(z′,c(z′))) belong to supp(µ). Suppose, in order to reach a con-

tradiction, that c(z)
c(z′)

̸= q(z)
q(z′)

; for concreteness, c(z) > c(z′)
q(z′)

q(z) and let w = c(z′)
q(z′)

. It

follows that

Uẑ(m, n̂1(z,c(z))) < max
n

Uẑ(m,n1(z,wq(z))) = R(ẑ, w) = max
n

Uẑ(m,n1(z′,wq(z′))).

Thus, there is ε > 0 such that Uẑ(m, n̂1(z,c(z))) < R(ẑ, w + ε). Since (w + ε)q(z′) =

c(z′)+εq(z′) > c(z′), it follows that (z′, (w+ε)q(z′)) ∈ Tm
ẑ (µ). Thus, δ′ = n(ẑ, z′, w+

ε)1(z′,(w+ε)q(z′)) is such that supp(δ′) ⊆ Tm
ẑ (µ) and

Uẑ(m, δ′) = R(ẑ, w + ε) > Uẑ(m, n̂1(z,c(z))).

But this contradicts the stability of µ. It then follows that c(z)
c(z′)

= q(z)
q(z′)

and, again

letting w = c(z′)
q(z′)

, that c(z) = wq(z).

It also follows that n̂ = n(ẑ, z, w) since otherwise δ′ = n(ẑ, z, w)1(z,wq(z)) is such

that supp(δ′) ⊆ supp(n̂1(z,wq(z))) and Uẑ(m, δ′) > Uẑ(m, n̂1(z,wq(z))) and, thus, contra-

dicts the stability of µ.

Let h−1 : h(Z2) → Z2 be the inverse of h and define λ = µ ◦ (h−1)−1. Then (1)

and (3) follow.

To see (2), let (z, z′) ∈ supp(λ), which implies that (z, n(z, z′, w)1(z′,wq(z′))) ∈

supp(µ) by Lemma 1. If R(z, w) < wq(z), then let ε > 0 be such that wq(z) − ε >

R(z, w) and note that (z, wq(z)−ε) ∈ Tm
z (µ) since (z, n(z, z′, w)1(z′,wq(z′))) ∈ supp(µ)

and Uz(w, 1(z,wq(z)−ε)) > Uz(m,n(z, z′, w)1(z′,wq(z′))). Thus,

Uz(m,n(z, z, w)1(z,wq(z)−ε)) > Uz(m,n(z, z, w)1(z,wq(z)))

= R(z, w) = Uz(m,n(z, z′, w)1(z′,wq(z′))),

contradicting the stability of µ. Hence, R(z, w) ≥ wq(z).

Similarly, if wq(z′) < R(z′, w), then let ε > 0 be such that

Uz′(m,n(z′, z′, w)1(z′,wq(z′)+ε)) > wq(z′).
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Note that (z′, wq(z′) + ε) ∈ Tm
z′ (µ) since (z, n(z, z′, w)1(z′,wq(z′))) ∈ supp(µ) and

Uz′(w, 1(z′,wq(z′)+ε)) > Uz′(w, 1(z,wq(z′))). Thus,

Uz′(m,n(z′, z′, w)1(z′,wq(z′)+ε)) > wq(z′) = Uz′(w, 1(z,wq(z′))),

contradicting the stability of µ. Hence, wq(z′) ≥ R(z′, w).

A.7 Non-existence example

We show that without the boundedness assumptions on X, a stable matching cannot

generally exist, even when stability is defined via strong domination.

Consider the following market E, where for simplicity we omit contracts and pref-

erences do not depend on the matching. Let Z = [0, 1], let ν be the uniform distri-

bution and let X = M(Z). Preferences are given by uz(m, δ) = δ(Z), uz(w, 1z′) = z′

and uz(s, 1∅) = 0 for each z, z′ ∈ Z and δ ∈ X. Then E is rational, continuous and

rich but not bounded and it has no stable matching as we next show.

Suppose that E has a stable matching µ. First note that µ(Z × (X∅ \ X)) = 0.

If not, then let Ẑ = {z ∈ Z : (z, 1∅) ∈ supp(µ)} and z ∈ Ẑ be such that z > 0.

Then Ẑ ⊆ Tm
z (µ) and Ẑ is closed. Thus, letting ν|Ẑ be the restriction of ν to Ẑ (i.e.

ν|Ẑ(B) = ν(B ∩ Ẑ) for each Borel subset B of Z), it follows that supp(ν|Ẑ) ⊆ Tm
z (µ)

which, together with (m, ν|Ẑ) ≻z (s, 1∅), contradicts the stability of µ.

Next note that if (z, δ) ∈ supp(µ) ∩
(
(Z \ {1}) × X

)
, then δ(Z) = 0. To see

this, suppose that (z, δ) ∈ supp(µ) with z < 1, δ ∈ X and δ(Z) > 0. Note that

for all z′ ∈ supp(δ), z′ ∈ Tm
z∗ (µ) for each z∗ > z since (w, z∗) ≻z′ (w, z); thus,

supp(δ) ⊆ Tz∗(µ). Since µ((z, 1] × X∅) +
∫
Z×X

δ((z, 1])dµ(z, δ) = ν((z, 1]) > 0, it

follows that either supp(µ) ∩
(
(z, 1] × X∅

)
̸= ∅ or supp(δ̂) ∩

(
(z, 1]) ̸= ∅ for some

(ẑ, δ̂) ∈ supp(µ). Let z∗ > z be such that either (z∗, δ∗) ∈ supp(µ) for some δ∗ ∈ X∅

or z∗ ∈ supp(δ̂) for some (ẑ, δ̂) ∈ supp(µ). Then consider δ′ = nδ where n is such

that δ′(Z) = nδ(Z) > max{δ∗(Z), 1}. We have that supp(δ′) = supp(δ) ⊆ Tz∗(µ) and

(m, δ′) ≻z∗ (m, δ∗) if (z∗, δ∗) ∈ supp(µ) and δ∗ ∈ X, (m, δ′) ≻z∗ (s, δ∗) if (z∗, δ∗) ∈

supp(µ) and δ∗ ∈ X∅ \X, and (m, δ′) ≻z∗ (w, 1ẑ) if z
∗ ∈ supp(δ̂) and (ẑ, δ̂) ∈ supp(µ).

This contradicts the stability of µ.
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It follows by the above claims that µ(Z × (X∅ \X)) = 0 and that∫
Z×X

δ(Z)dµ(z, δ) =

∫
supp(µ)∩((Z\{1})×X)

δ(Z)dµ(z, δ) = 0.

Thus, µ(Z×X) = ν(Z) = 1 and, since δ = 0 for each (z, δ) ∈ supp(µ)∩
(
(Z\{1})×X

)
,

it follows that supp(µ) = Z × {0}, where 0 ∈ M(Z) denotes the zero measure on Z.

But then Z ⊆ Tm
1 (µ) and (m, ν) ≻1 (m, 0), contradicting the stability of µ.

B Appendix: Supplementary Material

B.1 Two-sided many-to-one matching markets

We introduce in this section a model of two-sided many-to-one matching markets and

show that it is a special case of our framework of markets with occupational choice.

The framework of this section can be seen as a hybrid between those of GK and CKK.

Indeed, our two-sided many-to-one matching market is as in GK except that they have

one-to-one matching and we allow for (but do not impose) many-to-one matching.

Our setting is also similar to that of CKK since they consider many-to-one matching

with a continuum of workers and finitely many managers and we consider the case

of a continuum of managers as well as workers which may be a better description of

some labor markets.

A two-sided many-to-one matching market is E = (W,M, νW , νM , C,C, X, (≻w

)w∈W , (≻m)m∈M) satisfying the following conditions and having the following inter-

pretation. The sets M and W are Polish spaces of types of managers and workers

respectively. To these sets correspond nonzero, finite, Borel measures νW and νM on

W and M , respectively, describing the population of managers and workers. In addi-

tion, there is a dummy type ∅ ̸∈ W ∪M , which is an isolated point in W∅ = W ∪{∅}

and in M∅ = M ∪ {∅}, to represent unmatched individuals. The set C is a Pol-

ish space of contracts and C : M∅ × W∅ ⇒ C is a contract correspondence. Each

manager is matched with a finite measure of workers and contracts δ ∈ M(W × C)

or unmatched, i.e. matched with 1(∅,c) for some c ∈ C. The set X is subset of

M(W × C) and X∅ = X ∪ {1(∅,c) : c ∈ C} is the set of possible matches of a
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manager. Workers can also be unmatched; we use matches of the form (∅, 1(w,c))

to represent unmatched workers of type w with contract c. For this reason, we as-

sume that {1(w,c) : (w, c) ∈ W × C} ⊆ X. Workers’ preferences are described by

(≻w)w∈W and managers’ preferences by (≻m)m∈M ; for each w ∈ W , ≻w is defined on

M∅ × C ×M(M∅ ×X∅) and, for each m ∈ M , ≻m is defined on X∅ ×M(M∅ ×X∅).

In addition, ≻∅ denotes the empty relation under which no elements are comparable.

A matching for a two-sided many-to-one matching market E is a Borel measure

µ ∈ M(M∅ ×X∅) such that

(TS1) µ(B ×X∅) = νM(B) for each Borel subset B of M ,

(TS2)
∫
M∅×X

δ(B × C)dµ(m, δ) = νW (B) for each Borel subset B of W ,

(TS3) {m} × supp(δ) ⊆ graph(C) for each (m, δ) ∈ supp(µ), and

(TS4) µ({(m, δ) : m = ∅ and δ ∈ X∅ \ {1(w,c) : (w, c) ∈ W × C}) = 0.

For each Borel subset B of M and B′ of X∅, µ(B × B′) is the measure of managers

whose type belongs to B and whose match belongs to B′. In particular, µ(B×X∅) is

the measure of managers whose type belongs to B and, thus, it must equal νM(B) —

this is condition (TS1). Regarding workers,
∫
M∅×X

δ(W ′×C)dµ(m, δ) =
∫
M×X

δ(W ′×

C)dµ(m, δ)+
∫
{∅}×X

δ(W ′×C)dµ(m, δ) is the measure of workers whose type belongs

to W ′ that are matched with a manager or unmatched and, thus, it must equal

νW (W ′) — this is condition (TS2). Condition (TS3) requires that matches are feasible

according to the contract correspondence C and condition (TS4) says that matches

(m, δ) ∈ supp(µ) with m = ∅ are such that δ ∈ {1(w,c) : (w, c) ∈ W × C} and this

accounts for unmatched workers.

The stability of a matching for two-sided many-to-one matching markets is defined

using the following notions of targets and stability sets. For each m ∈ M∅, the set of

targets of managers of type m at µ is

Tm(µ) = {(w, c) ∈ W × C : c ∈ C(m,w) and there exists (m′, c′, δ′) ∈ M∅ × C ×X∅

such that (m′, δ′) ∈ supp(µ), (w, c′) ∈ supp(δ′) and (m, c, µ) ≻w (m′, c′, µ)}

∪({∅} × C(m, ∅)).
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For each w ∈ W∅, the set Tw(µ) of targets of workers of type w at µ is union of

{∅} ×C(∅, w) with the set of (m, c) ∈ M ×C such that c ∈ C(m,w) and there exists

(δ, δ′) ∈ X × X∅ such that (m, δ′) ∈ supp(µ), (w, c) ∈ supp(δ), supp(δ) \ {(w, c)} ⊆

Tm(µ) ∪ supp(δ′) and (δ, µ) ≻m (δ′, µ).

The stability set S(µ) of a matching µ is the set of (m, δ) ∈ M∅ ×X∅ such that

(TS-i) there does not exist δ′ ∈ X∅ such that supp(δ′) ⊆ Tm(µ)∪supp(δ) and (δ′, µ) ≻m

(δ, µ), and

(TS-ii) for each (w, c) ∈ supp(δ), there does not exist (m′, c′) ∈ Tw(µ) such that

(m′, c′, µ) ≻w (m, c, µ).

A matching µ is stable in a two-sided many-to-one matching market E if supp(µ) ⊆

S(µ).

We now show how to represent a two-sided many-to-one matching market E as

a market with occupational choice Ê and characterize the stable matchings of E in

terms of those of Ê. To simplify the exposition, we assume that preferences do not

depend on the matching.

We may assume that W and M are disjoint (if not, we could consider Ŵ =

{w}×W and M̂ = {m}×M where w ̸= m) and let Z = W ∪M be the set of types in

Ê; we may assume that W and M are closed subsets of Z.37 The type distribution ν

is defined by setting, for each Borel subset B of Z, ν(B) = νM(M ∩B)+ νW (W ∩B).

The set of contracts in Ê is C, i.e. the same as in E. The constraint correspondence

Ĉ is defined from C just by adjusting the order in which elements are listed and by

arbitrarily defining the feasible contracts of two types in M and two types in W , as

follows: let c̄ ∈ C be given and set, for each z ∈ Z and z′ ∈ Z∅,

Ĉ(z, z′) =


C(z, z′) if z ∈ M and z′ ∈ W ∪ {∅},

C(z′, z) if z ∈ W and z′ ∈ M ∪ {∅},

{c̄} if (z, z′) ∈ M2 or (z, z′) ∈ W 2.

37Define a metric d on Z based on those in M and W , and set d(w,m) = 1 for each w ∈ W and

m ∈ M .
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The set X of feasible matches for managers in Ê is the same as in E. Finally,

preferences are defined as follows. For each z ∈ M , for each a, a′ ∈ {m, s}, δ ∈ Xa,

δ′ ∈ Xa′ and δ̃ ∈ Xw, (i) (a, δ)≻̂z(a
′, δ′) if and only if δ ≻z δ

′, and (ii) (a, δ)≻̂z(w, δ̃).

Similarly, for each z ∈ W , for each a, a′ ∈ {w, s}, δ ∈ Xa, δ
′ ∈ Xa′ and δ̃ ∈ Xm,

(i) (a, δ)≻̂z(a
′, δ′) if and only if supp(δ) ≻z supp(δ

′) and supp(δ) ⊆ M∅ × C, and (ii)

(a, δ)≻̂z(m, δ̃).38 In both cases, condition (i) says that preferences in Ê are derived

from those in E when comparing the choices that individuals can make in E, namely,

being a manager or self-employed in the case of someone with type in M and being

a worker or self-employed in the case of someone with type in W . Condition (ii)

says that being a worker is always worse than being a manager or self-employed for

someone with type in M and being a manager is always worse than being a worker or

self-employed for someone with type in W . We say that Ê is the market associated

with E.

The following result shows that the stable matchings of Ê are the same as those

of E up to an homeomorphism. Let

Y = (M×X∅)∪(W×(X∅\X)) and Y ′ = (M×X∅)∪({∅}×{1(w,c) : (w, c) ∈ W×C}).

Theorem 5 Let E be an acyclic two-sided many-to-one matching market, Ê be its

associated market, S be the set of stable matchings of E and Ŝ be the set of stable

matchings of Ê.39 Then there is an homeomorphism h : Y → Y ′ with inverse f such

that Ŝ = {µ ◦ f−1 : µ ∈ S} and S = {µ̂ ◦ h−1 : µ̂ ∈ Ŝ}.

Proof. Theorem 5 characterizes the stable matching of E in terms of the stable

matchings of Ê and vice versa. A matching of Ê is a measure on Z × X∅ but a

matching in E is a measure on M∅×X∅. The difference arises due to how we represent

unmatched individuals of type z ∈ W . This is done by a match (z, 1(∅,c)) in Ê and by

38For each δ ∈ Xs∪Xw, supp(δ) = {(w, c)} for some (w, c) ∈ W∅×C. The meaning of supp(δ) ≻z

supp(δ′) is then that (w, c) ≻z (w′, c′) where (w, c) is the unique element of supp(δ) and likewise for

(w′, c′).
39A two-sided many-to-one matching market E is acyclic if ≻w is acyclic for each w ∈ W and ≻m

is acyclic for each m ∈ M .
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a match (∅, 1(z,c)) in E. Therefore, we need to transform the former into the latter to

obtain a matching in E from a matching in Ê and vice versa.

Let µ̂ be a stable matching of Ê and note that µ̂(W × X) = 0. Indeed, if

µ̂(W×X) > 0, then there is (z, δ) ∈ (W×X)∩supp(µ̂). Letting c ∈ Ĉ(z, ∅) = C(∅, z),

it follows that supp(1(∅,c)) ⊆ T s
z (µ̂) and (s, 1(∅,c))≻̂z(m, δ). But this implies that

(z, δ) ̸∈ S(µ̂), contradicting the stability of µ̂.

The above implies that supp(µ̂) ⊆ (M ×X∅) ∪ (W × (X∅ \X)). Recall that

Y = (M×X∅)∪(W×(X∅\X)) and Y ′ = (M×X∅)∪({∅}×{1(w,c) : (w, c) ∈ W×C});

to transform a matching µ̂ of Ê into a matching µ of E, we use the function h : Y → Y ′

defined, by setting for each (z, δ) ∈ Y ,

h(z, δ) =

(z, δ) if z ∈ M and δ ∈ X∅,

(∅, 1(z,c)) if z ∈ W, δ ∈ X∅ \X, δ = 1(∅,c) and c ∈ C.

Then h is continuous because M and W are both open and closed and ck → c

whenever 1(∅,ck) → 1(∅,c). Thus, µ = µ̂ ◦ h−1 is a measure on Y ′ ⊆ M∅ ×X∅.

The function h is actually an homeomorphism between Y and Y ′, its inverse being

f : Y ′ → Y defined, by setting, for each (z, δ) ∈ Y ′,

f(z, δ) =

(z, δ) if z ∈ M,

(w, 1(∅,c)) if z = ∅, δ = 1(w,c) and (w, c) ∈ W × C.

Since supp(µ) ⊆ Y ′ for each matching µ of E, µ̂ = µ◦f−1 is a measure on Y ⊆ Z×X∅.

Note first that to establish Theorem 5 it suffices to show that: (1) if µ̂ is a stable

matching of Ê, then µ̂ ◦ h−1 is a stable matching of E; and (2) if µ is a stable

matching of E, then µ ◦ f−1 is a stable matching of Ê. Indeed, (2) implies that

{µ ◦ f−1 : µ ∈ S} ⊆ Ŝ. For the converse, let µ̂ ∈ Ŝ and note that (1) implies that

µ̂ ◦ h−1 ∈ S. Then µ̂ ∈ {µ ◦ f−1 : µ ∈ S} since µ̂ = µ̂ ◦ (f ◦ h)−1 = (µ̂ ◦ h−1) ◦ f−1.

An analogous argument shows that S = {µ̂ ◦ h−1 : µ̂ ∈ Ŝ}.

We turn to the proof of (1). Let µ̂ ∈ Ŝ and µ = µ̂◦h−1. Recall that we have already

shown that µ̂(W×X) = 0. We next claim that δ(B×C) = 0 for each (z, δ) ∈ supp(µ̂)
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and Borel subset B of M . Note first that this is clear when δ ∈ X∅ \ X since then

δ = 1(∅,c) for some c ∈ C. Thus, assume that δ ∈ X and that δ(B × C) > 0. Then

there exists (z′, c) ∈ supp(δ) such that z′ ∈ M and pick c′ ∈ C(z′, ∅) = Ĉ(z′, ∅). Then

δ′ = 1(∅,c′) is such that supp(δ′) ⊆ T s
z′(µ̂) and (s, δ′)≻̂z′(w, 1(z,c)). But this implies

that (z, δ) ̸∈ S(µ̂), contradicting the stability of µ̂. This contradiction shows that

δ(B × C) = 0.

We now show that µ is a matching of E. For condition (TS1), let B be a Borel

subset ofM and note that h−1(B×X∅) = B×X∅ and that
∫
Z×X

δ(B×C)dµ̂(z, δ) = 0,

the latter since δ(B × C) = 0 for each (z, δ) ∈ supp(µ̂). Hence,

µ(B ×X∅) = µ̂(h−1(B ×X∅)) = µ̂(B ×X∅) = µ̂(B ×X) + µ̂(B × (X∅ \X))

= µ̂(B ×X) + µ̂(B × (X∅ \X)) +

∫
Z×X

δ(B × C)dµ̂(z, δ) = ν(B) = νM(B).

For condition (TS2), let B be a Borel subset of W and note that h−1(M∅ ×X) =

(M × X) ∪ (W × (X∅ \ X)). For each (m, δ) ∈ M∅ × X, write γ(m, δ) = δ(B × C)

and note that, for each (z, δ) ∈ W × (X∅ \ X), h(z, δ) = (∅, 1(z,c)) for some c ∈ C,

γ(h(z, δ)) = 1(z,c)(B × C) and, hence, γ(h(z, δ)) = 1 if z ∈ B and γ(h(z, δ)) = 0

otherwise. Thus, using µ̂(W ×X) = 0,∫
M∅×X

δ(B × C)dµ(m, δ) =

∫
M∅×X

γdµ =

∫
M×X

γ ◦ hdµ̂+

∫
W×(X∅\X)

γ ◦ hdµ̂

=

∫
M×X

δ(B × C)dµ̂(z, δ) + µ̂(B × (X∅ \X))

=

∫
Z×X

δ(B × C)dµ̂(z, δ) + µ̂(B × (X∅ \X)) + µ̂(B ×X) = ν(B) = νW (B).

For condition (TS3), let (m, δ) ∈ supp(µ) and, since supp(µ) = h(supp(µ̂)) by

Lemma 1, let (z, δ′) ∈ supp(µ̂) be such that (m, δ) = h(z, δ′). If m ∈ M , then

(m, δ) = (z, δ′) ∈ supp(µ̂), and thus c ∈ Ĉ(m, z′) = C(m, z′) for each (z′, c) ∈ supp(δ).

If m = ∅, then δ = 1(z,c) for some c ∈ C, z ∈ W , δ′ = 1(∅,c) and c ∈ Ĉ(z, ∅) = C(∅, z).

Finally, condition (TS4) holds since h−1({∅}×(X∅\{1(w,c) : (w, c) ∈ W×C})) = ∅.

We establish next some results on the relationship between the target sets in E

and Ê.

(a) If (∅, c) ∈ Tz(µ), then (∅, c) ∈ T s
z (µ̂).
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Indeed, (∅, c) ∈ Tz(µ) implies that c ∈ C(z, ∅) = Ĉ(z, ∅) if z ∈ M and c ∈ C(∅, z) =

Ĉ(z, ∅) if z ∈ W . In either case, this implies that (∅, c) ∈ T s
z (µ̂).

(b) Tz(µ) ∩ (W × C) ⊆ Tm
z (µ̂) for each z ∈ M .

Indeed, if (z∗, c) ∈ Tz(µ) ∩ (W × C), then c ∈ C(z, z∗) = Ĉ(z, z∗) and there ex-

ists (z′, c′, δ′) ∈ M∅ × C × X∅ such that (z′, δ′) ∈ supp(µ), (z∗, c′) ∈ supp(δ′) and

(z, c) ≻z∗ (z
′, c′). It then follows that δ′ ∈ X since (z∗, c′) ∈ supp(δ′). If z′ ∈ M , then

(z′, δ′) ∈ supp(µ̂) which, together with (z∗, c′) ∈ supp(δ′) and (w, 1(z,c))≻̂z∗(w, 1(z′,c′)),

implies that (z∗, c) ∈ Tm
z (µ̂). If z′ = ∅, then δ′ = 1(z∗,c′), (z

∗, 1(∅,c′)) ∈ supp(µ̂) and

(w, 1(z,c))≻̂z∗(s, 1(∅,c′)) implies that (z∗, c) ∈ Tm
z (µ̂).

We now show that µ is stable. Analogously to Theorem 1, the stability of µ is

equivalent to supp(µ) ⊆ SM(µ)∩IRW (µ), where SM(µ) is the set of (m, δ) ∈ M∅×X∅

such that there does not exist δ′ ∈ X∅ such that supp(δ′) ⊆ Tm(µ) ∪ supp(δ) and

(δ′, µ) ≻m (δ, µ), and IRW (µ) is the set of (m, δ) ∈ M∅ × X∅ such that, for each

(w, c) ∈ supp(δ), there does not exist c′ ∈ C(∅, w) such that (∅, c′, µ) ≻w (m, c, µ).40

Let (z, δ) ∈ supp(µ) and, since supp(µ) = h(supp(µ̂)), let (ẑ, δ̂) ∈ supp(µ̂) be such

that (z, δ) = h(ẑ, δ̂). If z ∈ M , then (z, δ) = (ẑ, δ̂) ∈ supp(µ̂); if z = ∅, then ẑ ∈ W ,

δ = 1(ẑ,c) for some c ∈ C and δ̂ = 1(∅,c).

Suppose, in order to reach a contradiction, that there exists δ′ ∈ X∅ such that

supp(δ′) ⊆ Tz(µ) ∪ supp(δ) and δ′ ≻z δ. Then z ∈ M since ≻∅ is empty.

If δ′ ∈ X∅ \X, then δ′ = 1(∅,c′) for some c′ ∈ C and supp(δ′) ⊆ Tz(µ). The latter

follows since supp(δ′) ⊆ {∅} × C and supp(δ̂) ⊆ W × C when δ ∈ X and, when

δ ∈ X∅ \X, because if supp(δ′) ∩ supp(δ) ̸= ∅, then δ′ = δ, implying that δ ≻z δ, a

contradiction to the assumption that ≻z is acyclic. Thus, (∅, c) ∈ Tz(µ) and, by (a)

above, supp(δ′) ⊆ T s
z (µ̂). Moreover, δ′ ≻z δ implies that (s, δ′)≻̂z(m, δ) when δ ∈ X

and (s, δ′)≻̂z(s, δ) when δ ∈ X∅ \ X. Thus, (z, δ) ∈ supp(µ̂) \ S(µ̂), a contradiction

to the stability of µ̂.

If δ′ ∈ X, then supp(δ′) ⊆ W × C and, by (b) above, supp(δ′) ∩ Tz(µ) ⊆ Tm
z (µ̂).

Therefore, supp(δ′) = (supp(δ′) ∩ Tz(µ)) ∪ (supp(δ′) ∩ supp(δ)) ⊆ Tm
z (µ̂) ∪ supp(δ)

40I.e. IRW (µ) is the set of matches that are individually rational for the workers.
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and (m, δ′)≻̂z(m, δ) when δ ∈ X and (m, δ′)≻̂z(s, δ) when δ ∈ X∅ \ X. But then

(z, δ) ∈ supp(µ̂) \ S(µ̂), contradicting the stability of µ̂. This contradiction, together

with the one above, implies that (z, δ) ∈ SM(µ).

Suppose now that there exists (z′, c) ∈ supp(δ) and c′ ∈ C(∅, z′) such that

(∅, c′) ≻z′ (z, c). Then (∅, c′) ∈ Tz′(µ)∩T s
z′(µ̂) by (a) above and (s, 1(∅,c′))≻̂z′(w, 1(z,c))

when z ∈ M and (s, 1(∅,c′))≻̂z′(s, 1(∅,c)) when z = ∅. It follows in either case that

(z, δ) ∈ supp(µ̂) \ S(µ̂), contradicting the stability of µ̂. Hence, (z, δ) ∈ IRW (µ).

We then have that supp(µ) ⊆ SM(µ) ∩ IRW (µ) and it follows that µ is stable.

We turn to the proof of (2). Let µ ∈ S and µ̂ = µ◦f−1. We start by showing that

µ̂ is a matching. For condition 1, let (z, δ) ∈ supp(µ̂) ⊆ Z ×X∅ and (z′, c) ∈ supp(δ).

Then h(z, δ) ∈ supp(µ) by Lemma 1. Thus, if z ∈ M , then (z, δ) = h(z, δ) ∈ supp(µ)

and, therefore, c ∈ C(z, z′) = Ĉ(z, z′). If z ∈ W , then δ = 1(∅,c) and (∅, 1(z,c)) =

h(z, δ) ∈ supp(µ). Thus, c ∈ C(∅, z) = Ĉ(z, ∅). In either case, it follows that

{z} × supp(δ) ⊆ graph(Ĉ).

For condition 2, let B be a Borel subset of Z. We have that µ̂(B×X) = µ(f−1(B×

X)) = µ((B ∩ M) × X) and that µ̂(B × (X∅ \ X)) = µ(f−1(B × (X∅ \ X))) =

µ((B ∩M)× (X∅ \X)) + µ({∅} × {1(w,c) : (w, c) ∈ (B ∩W )× C}). Moreover,∫
Z×X

δ(B × C)dµ̂(z, δ) =

∫
M×X

δ(B × C)dµ(z, δ) =

∫
M×X

δ((B ∩W )× C)dµ(z, δ),

the latter equality holding since supp(δ) ⊆ W × C. Note also that∫
{∅}×X

δ((B ∩W )× C)dµ(z, δ) = µ({∅} × {1(w,c) : (w, c) ∈ (B ∩W )× C})

since µ({∅} × (X \ {1(w,c) : (w, c) ∈ W × C})) = 0 and 1(w,c)((B ∩ W ) × C) = 1 if

w ∈ B ∩W and 1(w,c)((B ∩W )× C) = 0 otherwise. Thus,

µ̂(B ×X) +

∫
Z×X

δ(B × C)dµ̂(z, δ) + µ̂(B × (X∅ \X))

= µ((B ∩M)×X∅) +

∫
M∅×X

δ((B ∩W )× C)dµ(z, δ)

= νM(B ∩M) + νW (B ∩W ) = ν(B).

We establish next some results on the relationship between the target sets in E

and Ê.
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(c) If (∅, c) ∈ T s
z (µ̂), then (∅, c) ∈ Tz(µ).

Indeed, (∅, c) ∈ T s
z (µ̂) implies that c ∈ Ĉ(z, ∅) = C(z, ∅) if z ∈ M and c ∈ Ĉ(z, ∅) =

C(∅, z) if z ∈ W . In either case, this implies that (∅, c) ∈ Tz(µ).

(d) Tm
z (µ̂) ∩ (W × C) ⊆ Tz(µ) for each z ∈ M .

Indeed, let (z∗, c) ∈ Tm
z (µ̂)∩(W ×C). Then c ∈ Ĉ(z, z∗) = C(z, z∗). Since supp(µ̂) ⊆

f(supp(µ)) ⊆ Y by Lemma 1 and z∗ ∈ W , there is no δ′ ∈ X such that (z∗, δ′) ∈

supp(µ̂). Suppose first that there exists δ′ ∈ X∅ \X such that (z∗, δ′) ∈ supp(µ̂) and

(w, 1(z,c))≻̂z∗(s, δ
′). Since δ′ ∈ X∅ \X, it follows that δ′ = 1(∅,c′) for some c′ ∈ C; since

z∗ ∈ W , we have that (∅, 1(z∗,c′)) = h(z∗, δ′) ∈ supp(µ). This, together with (z, c) ≻z∗

(∅, c′) (which follows from (w, 1(z,c))≻̂z∗(s, δ
′)), implies that (z∗, c) ∈ Tz(µ). Suppose

next that there is (z′, c′, δ′) ∈ Z×C×X such that (z′, δ′) ∈ supp(µ̂), (z∗, c′) ∈ supp(δ′)

and (w, 1(z,c))≻̂z∗(w, 1(z′,c′)). Since δ′ ∈ X and (z′, δ′) ∈ supp(µ̂), it follows that

z′ ∈ M and that (z′, δ′) = h(z′, δ′) ∈ supp(µ). This, together with (z∗, c′) ∈ supp(δ′)

and (z, c) ≻z∗ (z′, c′) (the latter follows from (w, 1(z,c))≻̂z∗(w, 1(z′,c′))), implies that

(z∗, c) ∈ Tz(µ).

We now show that µ̂ is stable. Let (z, δ) ∈ supp(µ̂) and assume first that z ∈ M .

Then (z, δ) ∈ supp(µ).

Suppose, in order to reach a contradiction, that there exists (a, δ′) ∈ ∆ such that

a ∈ {m, s}, supp(δ′) ⊆ T a
z (µ̂) ∪ supp(δ) if δ ∈ X and a = m, supp(δ′) ⊆ T a

z (µ̂)

otherwise, (a, δ′)≻̂z(m, δ) if δ ∈ X and (a, δ′)≻̂z(s, δ) if δ ∈ X∅ \ X. If a = m, then

δ′ ∈ X (as δ′ ∈ Xm = X). Thus, supp(δ′) ⊆ W × C, supp(δ′) ⊆ Tz(µ) ∪ supp(δ)

by (d) above and δ′ ≻z δ by (m, δ′)≻̂z(a
′, δ) for some a′ ∈ {m, s}. If a = s, then

δ′ = 1(∅,c′) for some c′ ∈ C (since δ′ ∈ Xs), (∅, c′) ∈ Tz(µ) by supp(δ′) ⊆ T s
z (µ̂) and

(c) above, and 1(∅,c′) ≻z δ due to (s, δ′)≻̂z(a
′, δ) for some a′ ∈ {m, s}. Thus, in either

case, (z, δ) ∈ supp(µ) \ S(µ), a contradiction to the stability of µ.

Suppose next that there exists (z′, c) ∈ supp(δ) and (a, δ′) ∈ ∆ such that a ∈

{m, s}, supp(δ′) ⊆ T a
z′(µ̂) and (a, δ′)≻̂z′(w, 1(z,c)). Since δ ∈ X, it follows that w′ ∈

W . Moreover, since (m, δ′)≻̂z′(w, 1(z,c)) cannot hold, it follows that a = s. Then

δ′ = 1(∅,c′) for some c′ ∈ C, (∅, c′) ∈ Tz′(µ) by supp(δ′) ⊆ T s
z′(µ̂) and (c) above,

74



and (∅, c′) ≻z′ (z, c) due to (s, δ′)≻̂z′(w, 1(z,c)). Thus, (z, δ) ∈ supp(µ) \ S(µ), a

contradiction to the stability of µ.

Finally, consider (z, δ) ∈ supp(µ̂) such that z ∈ W . Then δ ∈ X∅ \X, δ = 1(∅,c)

for some c ∈ C and (∅, 1(z,c)) ∈ supp(µ).

Suppose, in order to reach a contradiction, that there exists (a, δ′) ∈ ∆ such that

a ∈ {m, s}, supp(δ′) ⊆ T a
z (µ̂) and (a, δ′)≻̂z(s, 1(∅,c)). Since (m, δ′)≻̂z(w, 1(∅,c)) cannot

hold, it follows that a = s. Then δ′ = 1(∅,c′) for some c′ ∈ C, (∅, c′) ∈ Tz(µ) by

supp(δ′) ⊆ T s
z (µ̂) and (c) above, and (∅, c′) ≻z (∅, c) due to (s, δ′)≻̂z(w, δ). Thus,

(z, δ) ∈ supp(µ) \ S(µ), a contradiction to the stability of µ.

We then conclude that supp(µ̂) ⊆ SM(µ̂) ∩ IR(µ̂) and Theorem 1 implies that µ̂

is stable.

B.2 Special cases

Our definition of a two-sided many-to-one matching market in Section B.1 is general

enough to allow for widespread externalities so that preferences can depend on the

matching itself. In addition, we allow for the possibility that unmatched managers

may be able to choose from a set of contracts. In certain applications (e.g. the ones in

Sections B.11 and B.12) this generality is not needed and it is convenient to restrict

attention to two-sided markets without externalities, or two-sided markets where

there are no contracts for the unmatched manager (this latter case makes sense, for

example, when the contract is the wage paid to the worker).

A two-sided market without externalities is a two-sided many-to-one matching

market E where preferences satisfy the following restrictions: for any m ∈ M , δ ∈ X∅

and δ′ ∈ X∅, if (δ, µ̂) ≻m (δ′, µ̂) for some µ̂ ∈ M(M∅ ×X∅), then (δ, µ) ≻m (δ′, µ) for

all µ ∈ M(M∅ ×X∅); and, for any w ∈ W , (m, c) ∈ M∅ × C and (m′, c′) ∈ M∅ × C,

if (m, c, µ̂) ≻w (m′, c′, µ̂) for some µ̂ ∈ M(M∅ ×X∅), then (m, c, µ) ≻w (m′, c′, µ) for

all µ ∈ M(M∅ ×X∅).

A two-sided market without empty workers is E = (W,M, νW , νM , C,C, X, (≻w

)w∈W , (≻m)m∈M) with the following differences from a two-sided many-to-one match-

ing market in Section B.1. The contract correspondence is C : M∅ ×W ⇒ C, ≻m is
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defined on X×M(M∅×X), ≻w is defined on M∅×C×M(M∅×X), and we assume

in addition that 0 ∈ X. In this case, unmatched managers are the ones matched with

the zero measure in X. The definitions of a matching and a stable matching for a

two-sided market without empty workers are then adapted from the ones in Section

B.1 by replacing X∅ with X.

Of course, we can combine the two definitions in the obvious way: A two-sided

market without empty workers or externalities is a two-sided market without empty

workers where preferences satisfy the following restrictions: for any m ∈ M , δ ∈ X

and δ′ ∈ X, if (δ, µ̂) ≻m (δ′, µ̂) for some µ̂ ∈ M(M∅ ×X), then (δ, µ) ≻m (δ′, µ) for

all µ ∈ M(M∅ ×X); and, for any w ∈ W , (m, c) ∈ M∅ ×C and (m′, c′) ∈ M∅ ×C, if

(m, c, µ̂) ≻w (m′, c′, µ̂) for some µ̂ ∈ M(M∅ ×X), then (m, c, µ) ≻w (m′, c′, µ) for all

µ ∈ M(M∅ ×X).

It can be shown that these alternative two-sided markets can be formulated as

special cases of our general framework along the lines of Theorem 5 so that our

existence results hold for these markets as well. In addition, Theorem 1 can be

specialized to this setting and stability in these two-sided markets is equivalent to

supp(µ) ⊆ SM(µ) ∩ IRW (µ), where SM(µ) is defined as S(µ) but requiring only

condition (TS-i) and IRW (µ) is the set of (m, δ) ∈ M∅×X∅ (or (m, δ) ∈ M∅×X in the

case of the two-sided market with empty workers) such that, for each (w, c) ∈ supp(δ),

there does not exist c′ ∈ C(∅, w) such that (∅, c′, µ) ≻w (m, c, µ).41

B.3 Outline of the proof of Theorem 2

The proof of Theorem 2 deals with several difficulties described in what follows. The

first step of the proof is to establish its conclusion in the special case where Z, C and

X are finite. Our approach builds on that in Section S.10 in CKK but requires many

changes since preferences depend on externalities, workers’ preferences are not strict

and there is occupational choice. We describe these changes in the following outline

of our proof for the case where there are no contracts.

41I.e. IRW (µ) is the set of matches that are individually rational for the workers.
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Without occupational choice, our existence proof would focus on pairs (µ, κ) con-

sisting of a matching µ and a measure of available workers κ, where µ(m, δ) is the

measure of matches featuring a manager of type m and workforce δ and κ(m,w) is

the measure of workers of type w that are available to managers of type m. For µ to

be stable, (µ, κ) must reflect both managers’ and workers’ preferences: µ maximizes

managers’ preferences subject to the constraint requiring that no manager’s type hires

more than the workers available to him and κ is obtained from an allocation of workers

to managers that maximizes workers’ preferences subject to the demand of workers

by managers. Roughly, this is achieved by obtaining a correspondence Ψ and a fixed

point of it, i.e. µ is stable if (µ, κ) ∈ Ψ(µ, κ). In fact, due to some difficulties that

also arise with occupational choice and are described below, we consider a sequence

{Ψn}∞n=1 of correspondences and a converging (sub)sequence {(µn, κn)}∞n=1 of fixed

points, (µn, κn) ∈ Ψn(µn, κn); the stable matching is then limn µn.

The main difficulty with occupational choice is that we no longer have fixed sets

of managers and workers. Nevertheless, we use an approach similar to the above.

We consider an allocation τ of types to occupations and matches that maximizes

preferences subject to some constraints. Specifically, τ specifies the measure τ(z, a, δ)

of people of type z that are assigned to occupation a and are matched with δ ∈ Xa.

This allocation is done to maximize preferences, represented by an utility function

u : Z×∆×M(Z×X∅) → R, subject to two constraints analogous to the ones above.

For the above constrained maximization problem to be defined, it needs a match-

ing µ′ to determine, in particular, the utility u(z, a, δ, µ′) that someone of type z

obtains if assigned to occupation a and matched with δ when the matching is µ′.

Since we are aiming for a fixed point argument, we take as given an allocation

µ = (µ(z, a, δ))z∈Z,(a,δ)∈∆ and then obtain a matching µ′ by setting µ′(z, δ) to be

the measure µ(z,m, δ) of type z people assigned to be a manager and matched with

δ if δ ∈ X; if δ ∈ X∅ \ X instead, then µ′(z, δ) is set to be the measure µ(z, s, δ) of

type z people assigned to be self-employed and matched with δ.

One of the constraints of the constrained maximization problem then requires that

the measure τ(z, w, 1z′) of those individuals of type z that are assigned to be workers
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and are matched with someone of type z′ be no greater than the demand of managers

of type z′, which is
∑

δ∈X µ(z′,m, δ)δ(z). The other constraint of the constrained

maximization problem requires that the demand of workers by managers of type z′

be no greater than the measure of workers of type z available to managers of type

z′. Thus, the constrained maximization problem also takes as given a measure κ of

available workers, with κ(z′, z) specifying the measure of individuals of type z that

are available to work for an individual of type z′.

In summary, the set of solutions to the constrained optimization problem is

D(µ, κ) ={τ ∈ RZ×∆
+ : τ ∈ argmax

τ ′

∑
z∈Z,(a,δ)∈∆

u(z, a, δ, µ)τ ′(z, a, δ)

subject to
∑

(a,δ)∈∆

τ ′(z, a, δ) = ν(z) for all z ∈ Z,

∑
δ∈X

τ ′(z,m, δ)δ(z′) ≤ κ(z, z′, c) for all (z, z′) ∈ Z × Z, and

τ ′(z, w, 1z′) ≤
∑
δ∈X

µ(z′,m, δ)δ(z) for all (z, z′) ∈ Z × Z}.

The measure of available workers is determined from the allocation µ of people

to occupations and matches. Specifically, the measure κ(z, z′) of workers of type z′

available to those of type z consists of the measure of those people of type z′ who are

already workers and matched with someone of type z plus the measure of those of

type z′ that are in worse occupations or matches, i.e. it equals

µ(z′, w, 1z) +
∑

(a,δ)∈W (z,z′,µ)

µ(z′, a, δ),

where W (z, z′, µ) = {(a, δ) ∈ ∆ : u(z′, w, 1z, µ) > u(z′, a, δ, µ)} are those pairs of

occupations and matches (a, δ) which are worse for someone of type z′ than being a

worker working for a manager of type z.

The problem with this approach is that the function

µ 7→
∑

(a,δ)∈W (z,z′,µ)

µ(z′, a, δ)

may fail to be continuous. Discontinuities may arise because pairs of occupations and

matches (a, δ) ∈ W (z, z′, µ) get weight 1 and those (a, δ) ̸∈ W (z, z′, µ) get weight 0
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and this depends on µ in a possibly discontinuous way. We solve this problem by

using a sequence of continuous weights: For each n ∈ N and (a, δ) ∈ ∆, the weight of

occupation-match pair (a, δ) when the allocation is µ is

αn,(z,z′)(a, δ, µ) = nmax

{
0,min

{
u(z′, w, 1z, µ)− u(z′, a, δ, µ),

1

n

}}
.

We then use
∑

(a,δ)∈∆ αn,(z,z′)(a, δ, µ)µ(z
′, a, δ) instead of

∑
(a,δ)∈W (z,z′,µ) µ(z

′, a, δ). In

fact, as a measure of available workers of type z′ to type z given an allocation µ, we

use

fn(µ)(z, z
′) = µ(z′, w, 1z) +

1

n

∑
(a,δ)∈∆

αn,(z,z′)(a, δ, µ)µ(z
′, a, δ)

since adding the term 1/n facilitates the argument while maintaining the property

that, for each n, fn(µ)(z, z
′) is strictly higher than µ(z′, w, 1z) if and only if there are

individuals of type z′ allocated to pairs of occupations and matches that are worse

for z than (w, 1z).

A final difficulty with the above approach is that some instability may exist in an

optimal allocation µ ∈ D(µ, κ). This would arise, for instance, if there is a strictly

positive measure of managers of type z with workforce δ, µ(z,m, δ) > 0, who can

improve their well-being by changing their workforce to δ′, and the constraint for the

single (for simplicity) type z′ of workers employed both in δ and δ′, i.e. supp(δ′) =

supp(δ) = {z′}, is binding:∑
δ̂∈X

µ(z,m, δ̂)δ̂(z′, c) = κ(z, z′).

If δ(z) < δ′(z), µ can be optimal since it may not be possible to increase µ(z,m, δ′)

and decrease µ(z,m, δ) to increase the objective function in D(µ, κ) while satisfying

its constraints. Indeed, due to δ(z) < δ′(z) and
∑

δ̂∈X µ(z,m, δ̂)δ̂(z′, c) = κ(z, z′),

µ(z,m, δ′) can only increase by a fraction 0 < θ < 1 of the decrease of µ(z,m, δ) but

this increase of µ(z,m, δ′) may not be big enough to increase the objective function

of D(µ, κ).

We solve the above problem by increasing the difference u(z,m, δ′, µ)−u(z,m, δ, µ).

Specifically, for each n ∈ N, we use un(z, m̂, δ̂, µ̂) = u(z, m̂, δ̂, µ̂)n to represent prefer-
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ences with u normalized so that u ≥ 1. Then, even when θu(z,m, δ′, µ) < u(z,m, δ, µ),

we have that θun(z,m, δ′, µ) > un(z,m, δ, µ) for all n sufficiently large.

In summary, we establish the existence of stable matchings via the existence, for

each n ∈ N, of a fixed point of the correspondence

(µ, κ) 7→ Dn(µ, κ)× {fn(µ)},

where Dn is obtained by replacing u with un in D. We obtain in this way, and by

taking a subsequence if necessary, a convergent sequence {(µn, κn)}∞n=1 and we show

that the allocation µ = limn µn yields a stable matching.

We then use three limit arguments to extend the existence result from discrete to

general markets. The first limit argument considers the case where X is MR(Z ×C)

for some R > 0 to dispense with the finiteness of C. It shows that for an appropri-

ately chosen sequence {Ck}∞k=1, where Ck is finite for each k, the associated sequence

{µk}∞k=1 of stable matchings for the discrete markets converges to a stable matching

of the market where the set of contracts is C. The argument that the limit matching

µ is stable consists in showing that if there is some z who would prefer and is able

to become a manager and hire some workforce δ′ when the matching is µ, then the

richness of MR(Z×C) implies that there is some δ′k ∈ Xk, where supp(Xk) ⊆ Z×Ck,

such that z would also prefer and is able to become a manager and hire δ′k when the

matching is µk. This contradicts the stability of µk.

The second limit argument replaces X = MR(Z ×C) with a general X satisfying

our assumptions in the case where Z is finite. The finiteness of Z is important to

represent each preference relation ≻z with a continuous and bounded (e.g. by 1 below

and 2 above) utility function u : Z × ∆ × M(Z × X∅) → [1, 2]. Such function can

then be extended by replacing X with MR(Z × C) in the definition of its domain

to obtain a market to which the conclusion of the previous limit argument applies.

This is done in such a way that there is a utility penalty for managers who choose

a workforce δ at a distance greater than 1/k from X; specifically, they get a utility

of zero if they do so, whereas the utility of choosing a workforce δ ∈ X is at least

one. Thus, we show that the limit µ of the sequence {µk}∞k=1 of stable matchings for
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the sequence {Ek}∞k=1 of such markets is a stable matching of the market with the

original X.

The final limit argument then dispenses with the finiteness of Z. This argument

considers a sequence Ek of markets with finite sets of types Zk. As before, we show

that the limit µ of the sequence {µk}∞k=1 of stable matchings for {Ek}∞k=1 is a stable

matching for the market where the set of types is Z. For µ to be stable, it must

not be the case, for example, that there is (z, δ) ∈ supp(µ) and δ′ ∈ X such that

(m, δ′, µ) ≻z (m, δ, µ) and supp(δ′) ⊆ Tm
z (µ) ∪ supp(δ), which can be shown by

proving that if such z, δ and δ′ exist, then µk fails to be stable for each sufficiently

large k. However, in general, (z, δ) is not an element of supp(µk) and, thus, to show

that µk is not stable, we need to consider zk close to z and δk close to δ; in addition,

µk differs from µ too. This then implies that Tm
zk
(µk) ∪ supp(δk) may differ from

Tm
z (µ) ∪ supp(δ), which in turn requires us to find δ′k ∈ X close to δ′ so that we

have supp(δ′k) ⊆ Tm
zk
(µk) ∪ supp(δk). As in the previous limit arguments, richness

guarantees the existence of such δ′k.

B.4 Illustration of Theorem 4 in the Cobb-Douglas case

We will illustrate Theorem 4 in the Cobb-Douglas case where f(r, nq) = rα(nq)1−α

for some α ∈ (0, 1). In a stable matching, managers’ maximize rent. Therefore, if a

manager has productivity r and employs workers with productivity q at wage c, then

the number n of workers solves maxn [g(r)r
α(nq)1−α − cn]; thus,

n =

[
(1− α)g(r)rαq1−α

c

] 1
α

.

We also have that cn = (1 − α)y with y = g(r)rα(nq)1−α and, hence, the managers’

rent is αy = αg(r)rα(nq)1−α.

If the workers’ wages are proportional to their productivity, so that c(z) = wq(z)

for each z and some w > 0, then the optimal number n(z, z′, w) of workers in a

firm with a manager of ability z and workers with ability z′, and the manager’s rent
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R(z, w) equal

n(z, z′, w) =

(
(1− α)g(r(z))

w

) 1
α r(z)

q(z′)
,

R(z, w) = αg(r(z))
1
α r(z)

(
1− α

w

) 1−α
α

.

In particular, the manager’s rent is independent of the ability of the workers.

In fact, workers’ wages must be proportional to their productivity in a stable

matching. Indeed, if there are workers of type z and z′ but c(z) > c(z′)
q(z′)

q(z), then the

manager employing workers of type z can be better off by employing workers of type

z′ and attracting them by paying a wage slightly above c(z′). Indeed, any manager

of ability ẑ employing workers of type z has a rent strictly smaller than R(ẑ, c(z′)
q(z′)

)

and could virtually obtain the latter by employing n(ẑ, z′, c(z′)
q(z′)

) workers of type z′ at

a wage slightly above c(z′)
q(z′)

q(z′) = c(z′).

It then follows that there exists w > 0 such that c(z) = wq(z) for each z ∈

Z who are workers. Therefore, in any stable matching, matches are of the form

(z, n(z, z′, w)1(z′,wq(z′))). Any worker is indifferent to any manager and vice versa

since workers’ wages are independent of the manager’s ability and managers’ rents

are independent of the workers’ ability. It thus remains to determine who is who in

this market; since there is no unemployment in stable matchings of Rosen markets

due to R(z, w) > 0, this can be described by a measure λ ∈ M(Z2) with λ(B × B′)

denoting the measure of individuals of type in B that are managers and are matched

with individuals (who are then workers) of type in B′, where B and B′ are any

measurable subsets of Z. Thus, if (z, z′) belongs to the support of λ, it must be that

R(z, w) ≥ wq(z) and wq(z′) ≥ R(z′, w), i.e. type z individuals prefer to be managers

and type z′ individuals prefer to be workers. Finally, the accounting constraint must

hold, i.e. λ(B × Z) +
∫
Z×B

n(z, z′)dλ(z, z′) = ν(B) for each measurable B ⊆ Z.

B.5 Sufficient condition for richness

In this section we establish the sufficiency of (α) and (β) for richness.

Claim 14 Let E be a continuous market. If (α) and (β) hold, then E is rich.
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We use the following lemma in the proof of Claim 14.

Lemma 9 Let {zk}∞k=1 be such that zk → z, (z̃, c̃) ∈ Tm
z (µ), and Vz̃ and Vc̃ be open

neighborhoods of z̃ and c̃ respectively. Then, for all k sufficiently large, there exists

(z̃k, c̃k) ∈ Tm
zk
(µk) ∩ (Vz̃ × Vc̃).

Proof. Let (z̃, c̃) ∈ Tm
z (µ). Then c̃ ∈ C(z, z̃) and either there exists (ẑ, δ̂, ĉ) such

that (ẑ, δ̂) ∈ supp(µ), (z̃, ĉ) ∈ supp(δ̂) and (w, 1(z,c̃), µ) ≻z̃ (w, 1(ẑ,ĉ), µ), or there exists

δ̃ ∈ X∅ such that (z̃, δ̃) ∈ supp(µ) and (w, 1(z,c̃), µ) ≻z̃ (a(δ̃), δ̃, µ), where a(δ̃) = s if

δ̃ ∈ X∅ \X and a(δ̃) = m if δ̃ ∈ X.

First assume that there exists (ẑ, δ̂, ĉ) such that (ẑ, δ̂) ∈ supp(µ), (z̃, ĉ) ∈ supp(δ̂)

and (w, 1(z,c̃), µ) ≻z̃ (w, 1(ẑ,ĉ), µ). Let Oz, Oc̃, Oz̃, Oẑ, Oĉ, Oδ̂ and Oµ be open neighbor-

hoods of z, c̃, z̃, ẑ, ĉ, δ̂ and µ, respectively, such that (w, 1(z′,c̃′), µ
′) ≻z̃′ (w, 1(ẑ′,ĉ′), µ

′),

supp(δ̂′) ∩ ((Oz̃ ∩ Vz̃) × Oĉ) ̸= ∅ and C(z′, z̃′) ∩ (Oc̃ ∩ Vc̃) ̸= ∅ for each z′ ∈ Oz,

c̃′ ∈ Oc̃, z̃′ ∈ Oz̃, ẑ′ ∈ Oẑ, ĉ′ ∈ Oĉ, δ̂′ ∈ Oδ̂ and µ′ ∈ Oµ. Since µk → µ,

0 < µ(Oẑ × Oδ̂) ≤ lim infk µk(Oẑ × Oδ̂) and zk → z, it follows that, for each k suffi-

ciently large, µk ∈ Oµ, zk ∈ Oz and there is (ẑk, δ̂k) ∈ supp(µk)∩ (Oẑ ×Oδ̂), (z̃k, ĉk) ∈

supp(δ̂k) ∩ ((Oz̃ ∩ Vz̃) × Oĉ) and c̃k ∈ C(zk, z̃k) ∩ Oc̃ ∩ Vc̃. Then (w, 1(zk,c̃k), µk) ≻z̃k

(w, 1(ẑk,ĉk), µk) and, hence, (z̃k, c̃k) ∈ Tm
zk
(µk) ∩ (Vz̃ × Vc̃).

Next assume there exists δ̃ ∈ X∅ such that (z̃, δ̃) ∈ supp(µ) and (w, 1(z,c̃), µ) ≻z̃

(a(δ̃), δ̃, µ). Let Oz, Oz̃, Oc̃, Oδ̃ and Oµ be open neighborhoods of z, z̃, c̃, δ̃ and µ,

respectively, such that (w, 1(z′,c̃′), µ
′) ≻z̃ (a(δ̃), δ̃

′, µ′) and C(z′, z̃′) ∩ (Oc̃ ∩ Vc̃) ̸= ∅ for

each z′ ∈ Oz, z̃
′ ∈ Oz̃, c̃

′ ∈ Oc̃, δ̃
′ ∈ Oδ̃ and µ′ ∈ Oµ. Since 0 < µ((Oz̃ ∩ Vz̃) ×

Oδ̃) ≤ lim infk µk((Oz̃ ∩ Vz̃)×Oδ̃), it follows that, for each k sufficiently large there is

(z̃k, δ̃k) ∈ supp(µk) ∩ ((Oz̃ ∩ Vz̃)×Oδ̃). Since µk → µ and zk → z, it follows that, for

each k sufficiently large, µk ∈ Oµ, zk ∈ Oz and there exists c̃k ∈ C(zk, z̃k) ∩ Oc̃ ∩ Vc̃.

Then (w, 1(zk,c̃k), µk) ≻z̃k (a(δ̃), δ̃k, µk) and, hence, (z̃k, c̃k) ∈ Tm
zk
(µk) ∩ (Vz̃ × Vc̃).

We can now turn to the proof of the claim.

Proof of Claim 14. Let (z, δ, µ) ∈ Z×X×M(Z×X∅) and V ⊆ X be open and

such that Λ(z, δ, µ) ∩ V ̸= ∅. Let δ′ ∈ Λ(z, δ, µ) ∩ V , i.e. V is an open neighborhood

of δ′ and supp(δ′) ⊆ supp(δ) ∪ Tz(µ).
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We may assume that supp(δ′) is finite by condition (β) since δ′ ∈ X. For each

(z̃, c̃) ∈ supp(δ′), let V(z̃,c̃) be given by condition (α). Let Vz̃ and Vc̃ be open neigh-

borhoods of z̃ and c̃ such that Vz̃ × Vc̃ ⊆ V(z̃,c̃). By Lemma 2, let Oδ be an open

neighborhood of δ such that supp(δ̃) ∩ V(z̃,c̃) ̸= ∅ for each δ̃ ∈ Oδ.

If Λ fails to be lower hemicontinuous, then there is a sequence {(zk, δk, µk)}∞k=1

such that (zk, δk, µk) → (z, δ, µ) and

Λ(zk, δk, µk) ∩ V = ∅ for each k ∈ N. (9)

For each (z̃, c̃) ∈ supp(δ′) ∩ Tm
z (µ) and k sufficiently large, let zk(z̃, c̃) ∈ Vz̃ and

ck(z̃, c̃) ∈ Vc̃ be such that (zk(z̃, c̃), ck(z̃, c̃)) ∈ Tm
zk
(µk)∩ V(z̃,c̃), which exists by Lemma

9.

For each (z̃, c̃) ∈ supp(δ′) ∩ supp(δ) and k sufficiently large, let zk(z̃, c̃) ∈ Vz̃ and

ck(z̃, c̃) ∈ Vc̃ be such that (zk(z̃, c̃), ck(z̃, c̃)) ∈ supp(δk) ∩ V(z̃,c̃).

Let K ∈ N be such that, for each k ≥ K, (zk(z̃, c̃), ck(z̃, c̃)) ∈ Tm
zk
(µk) ∩ V(z̃,c̃)

if (z̃, c̃) ∈ supp(δ′) ∩ Tm
z (µ) and (zk(z̃, c̃), ck(z̃, c̃)) ∈ supp(δk) ∩ V(z̃,c̃) if (z̃, c̃) ∈

supp(δ′) \ Tm
z (µ). Condition (α) gives (ak(z̃, c̃))(z̃,c̃)∈supp(δ′) ∈ R|supp(δ′)|

+ such that,

setting δ′k =
∑

(z̃,c̃)∈supp(δ′) ak(z̃, c̃)1(zk(z̃,c̃),ck(z̃,c̃)) for each k ≥ K, we have that δ′k ∈ Vδ′

and supp(δ′k) ⊆ Tm
zk
(µk) ∪ supp(δk). But this contradicts (9). Thus, it follows that Λ

is lower hemicontinuous.

The proof that Λ0 is lower hemicontinuous is analogous.

B.6 Characterization of stability in continuous and rich mar-

kets

In this section we establish the following claim.

Claim 15 Let E be a continuous and rich market. Then a matching µ is stable if

and only if S(µ) has full µ-measure.

Proof. It is clear that the stability of a matching µ implies that S(µ) has full

µ-measure.
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Conversely, assume that S(µ) has full µ-measure and that E is continuous and

rich. Note that it suffices to show that SM(µ) ∩ IR(µ) is closed.

We start by establishing a lower hemicontinuity property of the correspondence

z 7→ T s
z (µ).

Claim 16 For each z ∈ Z, (z∗, c) ∈ T s
z (µ) and open neighborhood Vc of c, there exists

an open neighborhood Vz of z such that T s
z̃ (µ) ∩ ({z∗} × Vc) ̸= ∅ for each z̃ ∈ Vz.

Proof. We have that z∗ = ∅ and c ∈ C(z, ∅). By the continuity of the contract

correspondence, let Vz be an open neighborhood of z such that C(z̃, ∅) ∩ Vc ̸= ∅ for

each z̃ ∈ Vz. Thus, for each z̃ ∈ Vz, (∅, c̃) ∈ T s
z̃ (µ) ∩ ({∅} × Vc).

We complete the proof by showing that SM(µ) ∩ IR(µ) is closed. Let

OM = {(z, δ) ∈ Z ×X : there exists (a, δ′) ∈ ∆ such that a ∈ {m, s},

supp(δ′) ⊆ Tm
z (µ) ∪ supp(δ) if a = m, supp(δ′) ⊆ T s

z (µ) if a = s and

(a, δ′, µ) ≻z (m, δ, µ)} ,

OS = {(z, δ) ∈ Z × (X∅ \X) : there exists (a, δ′) ∈ ∆ such that

a ∈ {m, s}, supp(δ′) ⊆ T a
z (µ) and (a, δ′, µ) ≻z (s, δ, µ)} and

OW = {(z, δ) ∈ Z ×X : there exists (z′, c) ∈ supp(δ) and (a, δ′) ∈ ∆

such that a ∈ {m, s}, supp(δ′) ⊆ T a
z′(µ) and (a, δ′, µ) ≻z′ (w, 1(z,c), µ)

}
;

then (SM(µ) ∩ IR(µ))c = OM ∪ OS ∪ OW and it suffices to show that OM , OS and

OW are open.

We start by showing that OM is open. Let (z, δ) ∈ OM and (a, δ′) ∈ ∆ such that

a ∈ {m, s}, supp(δ′) ⊆ Tm
z (µ) ∪ supp(δ) if a = m, supp(δ′) ⊆ T s

z (µ) if a = s and

(a, δ′, µ) ≻z (m, δ, µ).

Suppose first that a = m and, thus, δ′ ∈ X. Then δ′ ∈ Λ(z, δ, µ). Let, by

the continuity of preferences, Vδ′ , Vz and Vδ be open neighborhoods of δ′, z and δ,

respectively, such that (a, δ̄, µ) ≻z̃ (m, δ̃, µ) for each (δ̄, z̃, δ̃) ∈ Vδ′ × Vz × Vδ. Let, by

the richness of E, Ṽz and Ṽδ be open neighborhoods of z and δ, respectively, such

that Λ(z, δ, µ) ∩ Vδ′ ̸= ∅ for each (z̃, δ̃) ∈ Vz × Vδ.
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Thus, for each (z̃, δ̃) ∈ (Vz∩Ṽz)×(Vδ∩Ṽδ), there exists δ̄ ∈ Vδ′ such that supp(δ̄) ⊆

Tm
z̃ (µ) ∪ supp(δ̃). Since (δ̄, z̃, δ̃) ∈ Vδ′ × Vz × Vδ, it follows that (a, δ̄, µ) ≻z̃ (m, δ̃, µ)

and, hence, (z̃, δ̃) ∈ OM . Thus, (Vz ∩ Ṽz)× (Vδ ∩ Ṽδ) ⊆ OM , showing that OM is open.

Consider next the case a = s and, thus, δ′ ∈ X∅ \ X. Then δ′ = 1(∅,c) for some

c ∈ C and an analogous argument to the one above using Claim 16 shows that OM

is open in this case.

An analogous argument shows that OS and OW are open.

B.7 An example of a Rosen market

We further illustrate the implications of stability in the following example of a Rosen

market. Let ν(z1) = ν(z2) = 1/2 for some 0 < z1 < z2 and productivity levels

satisfy q(z1) = r(z1) = q(z2) = 1 and r(z2) = 2. Moreover, let g(r) = r and

θ(r/nq) = (r/nq)α where α ∈ (0, 1).

Note that wq(z1) = wq(z2) = w and that R(z2, w) > R(z1, w) for each w > 0.

Thus, we can have three cases: (i) all individuals of type z1 are workers and all

individuals of type z2 are managers, (ii) all individuals of type z2 are managers,

some individuals of type z1 are workers and the remaining individuals of type z1 are

managers, and (iii) all individuals of type z1 are workers, some individuals of type z2

are workers and the remaining individuals of type z2 are managers.

Consider the case where all individuals of type z1 are workers and all individuals

of type z2 are managers. Since ν(z1) = ν(z2) = 1/2, this requires each manager

to be matched with one worker. The wage w is such that this firm size is optimal:

w = (1− α)21+α. Thus, let µ assign measure 1/2 to (z2, 1(z1,w)) i.e. µ = 1
2
1(z2,1(z1,w)).

We then have that the managers’ payoff is R(z2, w) = α21+α.

We claim that µ is stable if and only if α ∈ [1/2, ᾱ] where (1 − ᾱ)21+ᾱ =

ᾱ (21+ᾱ)
1− 1

ᾱ .42 Indeed, µ is stable if and only if (a) R(z2, w) ≥ w (i.e. those of

type z2 prefer to be a manager rather than a worker) and (b) w ≥ R(z1, w) (i.e. those

42This equality is equivalent to
(

ᾱ
1−ᾱ

) ᾱ
1+ᾱ

= 2; letting f(α) =
(

α
1−α

) α
1+α

, then f(1/2) = 1/2, f

is strictly increasing in α on (1/2, 1) and limα→1 f(α) = ∞; hence ᾱ ∈ (1/2, 1) exists and is unique.

It can be seen that ᾱ is approximately equal to 0.82.
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of type z1 prefer to be a worker rather than a manager). We have that (a) holds if

and only if α ≥ 1/2 and that (b) holds if and only if α ≤ ᾱ. Thus, µ is indeed stable

if and only if α ∈ [1/2, ᾱ].

We consider now the case where α > ᾱ. In this case, the above matching fails to

be stable because those of type z1 prefer to be a manager rather than a worker. To

obtain a stable matching in this case, a measure β > 0 of individuals of type z1 will be

managers and the remaining ones will be workers, which requires a wage w such that

w = R(z1, w). Let µ be such that, for some n1, n2, β, w > 0, µ(z2, n21(z1,w)) = 1/2

and µ(z1, n11(z1,w)) = β.

The values for n1, n2, β and w are set as follows. The firm size are set to be

optimal:

n1 = n(z1, z1, w) =

(
1− α

w

)1/α

and n2 = n(z2, z1, w) =

(
(1− α)21+α

w

)1/α

.

We have that
∫
Z×X

δ({z1} × C)dµ(z, δ) = βn1 + n2

2
and, thus, for µ to be a

matching, it must be that 1
2
= ν(z1) = β+ βn1 +

n2

2
. Using the expression for n1 and

n2, it follows that

w = (1− α)

(
2

1+α
α + 2β

1− 2β

)α

.

Finally, we set w = R(z1, w) = α
(
1−α
w

) 1−α
α , yielding

β =
α

2
− (1− α)21/α.

Note that β = 0 if and only if
(

α
1−α

) α
1+α = 2, which holds if and only if α = ᾱ.

Moreover, β → 1/2 as α → 1. Hence, 0 < β < 1/2 since ᾱ < α < 1.

We conclude with a comment on the case α < 1/2. In this case, the first matching

we considered fails to be stable because those of type z2 prefer to be workers rather

than managers. To obtain a stable matching in this case, a positive measure of

individuals of type z2 will be workers and the remaining ones will be managers,

which requires a wage w such that w = R(z2, w). A stable matching µ can be

constructed along the lines of the case α > ᾱ such that, for some n∗ = n(z2, z1, w) =

n(z2, z2, w), β1, β2, w > 0, µ(z2, n
∗1(z1,w)) = β1 and µ(z2, n

∗1(z2,w)) = β2.
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B.8 Garicano and Rossi-Hansberg (2004)

We consider now the setting in Garicano and Rossi-Hansberg (2004) and show how

it can be mapped into our framework.43

This setting can be briefly described as follows. Individuals are characterized

by their knowledge, with Z = [0, z̄] denoting the set of knowledge levels and where

z̄ ∈ R++; the knowledge distribution is denoted by ν. Individuals can be workers,

managers or self-employed.

A firm consists of one manager and several workers of the same type, i.e. there

is many-to-one matching. Production happens when a worker solves a problem with

which he is faced. The set of all possible problems is Z and problems are drawn

according to a probability measure F on Z with a continuous and strictly decreasing

density. Each worker is allowed to ask the manager for the solution of the problem

he has drawn if he cannot solve it himself. Knowledge is cumulative: If someone

has knowledge z ∈ Z, then he can solve all problems in [0, z]. Thus, a worker

with knowledge z asks for help with probability 1 − F (z). Asking for help incurs

a communication cost: The manager incurs a cost of 0 < h < 1 units of time to

attempt solving the problem regardless of whether or not he succeeds. Individuals

have one unit of time, which will be entirely spent working in the case of workers

and on helping workers in the case of managers. Thus, a firm with a manager with

knowledge z and workers with knowledge z′ can have a measure n of workers provided

that

nh(1− F (z′)) = 1,

i.e. such that the manager exhausts his time helping the workers. Problems in

[0,max{z, z′}] get to be solved, either by the workers or by the manager. Workers

draw one problem per unit of time spent in production and output is 1 if the problem

is solved and 0 otherwise. Expected production is then F (max{z, z′})n and the

43Unlike what we did regarding Rosen’s (1982) setting, we do not provide a detailed analysis

of this setting but rather leave it for a future paper, Carmona and Laohakunakorn (2023b), the

characterization of stable matchings in a generalized version of Garicano and Rossi-Hansberg’s (2004)

model.
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managers’ rent is (F (max{z, z′})− c)n, where c is the wage paid to the workers.

A self-employed individual with knowledge z solves the problems that he can and,

thus, produces F (z).

The representation of this setting in the general framework of markets with occu-

pational choice is as follows. First, let Z and ν be as above. Second, we let contracts

be wages and set C = R+ and C ≡ C. We incorporate the time constraint of managers

in the set X of feasible matches for managers and let

X = {n1(z,c) : (z, c) ∈ Z × C and n ∈ R+ such that nh(1− F (z)) = 1}

since managers can hire several workers all of the same type such that his time

constraint is satisfied. Occupations are the same as in the general framework: A =

{w, s,m}. Finally, preferences are defined by specifying payoff functions as follows:

Uz(w, 1(z′,c)) = c for each 1(z′,c) ∈ Xw,

Uz(s, 1(∅,c)) = F (z) for each 1(∅,c) ∈ Xs, and

Uz(m,n1(z′,c)) = (F (max{z, z′})− c)n for each n1(z′,c) ∈ Xm.

B.9 Garicano and Rossi-Hansberg (2006)

In this section we consider the setting in Garicano and Rossi-Hansberg (2006), which

extends that of Garicano and Rossi-Hansberg (2004) as follows.

Individuals are characterized by their cognitive ability. The set of possible abilities

is [0, 1] and ν is its distribution. Knowledge is no longer a given characteristic of

individuals but rather their choice. An individual’s ability affects his cost of acquiring

knowledge: if he learns how to solve problems in [0, k], with k ∈ R+, and has ability

z ∈ [0, 1], then the cost is (t − z)k, where t > 1. The set of all possible problems

is R+ and problems are drawn according to a probability measure F on R+ with a

continuous and strictly decreasing density.

As in the previous section, a firm consists of a manager and several workers but

these can now be organized in several layers as follows.44 Workers that belong to

44We depart here from the terminology of Garicano and Rossi-Hansberg (2006) to facilitate the
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the same layer have the same knowledge and only those in layer 1 spend time in

production; in fact, workers in layer 1 spend all their time in production. Problems

that they cannot solve are asked to layer 2; those that layer 2 cannot solve are then

passed to layer 3 and so on. The last layer is that of the manager: If there are L ∈ N

layers of workers, then the manager is in layer L + 1 and attempts to solve only

those problems that layers 1, . . . , L cannot solve. If the knowledge of workers in layer

1 ≤ l ≤ L is kl, then the number nl of workers in layer l satisfies:

n1h(1− F (max{k1, . . . , kl−1})) = nl if 1 < l ≤ L and

n1h(1− F (max{k1, . . . , kL})) = 1.

This is the time constraint of layer l as it attempts to solve the problems draw by

those in layer 1 that layers 1, . . . , l − 1 have not been able to solve. Production is

then F (max{k1, . . . , kL, k})n1 if the knowledge of the manager is k. Profits equal

production minus wages and learning costs: If the ability of the manager is z and

that of those in layer l is zl and their wage is vl for each l = 1, . . . , L, then the profit

of the firm, or the manager’s rent, is

F (max{k1, . . . , kL, k})n1 −
L∑
l=1

((t− zl)kl + vl)nl − (t− z)k.

A self-employed individual with knowledge k and ability z has a profit of F (k)−

(t− z)k.

The representation of this setting in the general framework of markets with occu-

pational choice is as follows. First, let Z = [0, 1] and ν be as above. The firm-specific

variables, which are the knowledge of the manager and workers and the workers’

wages, constitute the contracts. Thus, the set of contracts is C = {(k, k′, v) : k, k′, v ∈

R+} and let C ≡ C. The time constraints are incorporated in the set X of feasible

mapping of their setting to our framework of markets with occupational choice. While in their

paper workers are only those in the lowest layer, in our terminology here, workers are all members

of the firm except the highest layer. When there are only two layers, as in the previous section, no

distinction arises between the two terminologies.
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matches which, in addition, reflect the restriction that there are finitely many layers:

X =
{ L∑

l=1

nl1(zl,k,kl,vl) : L ∈ N, zl ∈ Z, kl ∈ R+, vl ∈ R+, nl ∈ R+

for each 1 ≤ l ≤ L such that

n1h(1− F (max{k1, . . . , kL})) = 1 and

n1h(1− F (max{k1, . . . , kl−1})) = nl for each l = 2, . . . , L
}
.

A possible match is then of the form (z,
∑L

l=1 nl1(zl,k,kl,vl)), thus specifying the ability

z and knowledge k of the manager, the ability zl, knowledge kl and wage vl of each

worker, as well as the number of workers nl, in layer l. Occupations are the same as in

the general framework: A = {w, s,m}. Finally, preferences are defined by specifying

payoff functions as follows: For each z ∈ Z,

Uz(w, 1(z′,k,k′,v)) = v for each 1(z′,k,k′,v) ∈ Xw,

Uz(s, 1(∅,k,k′,v)) = F (k)− (t− z)k for each 1(∅,k,k′,v) ∈ Xs, and

Uz(m, δ) = F (max{k1, . . . , kL, k})n1 −
L∑
l=1

(
vl − (t− zl)kl

)
nl − (t− z)k

for each δ =
∑L

l=1 nl1(zl,k,kl,vl) ∈ Xm.

B.10 Adding capital: Lucas (1978)

In this section we consider the setting in Lucas (1978). This is a setting where there

is a capital market in addition to a labor market with occupational choice and this

feature requires an extension to our framework of markets with occupational choice.

Lucas’s (1978) setting is as follows. There is a workforce of size N and K units of

capital. Individuals are characterized by their managerial talent z ∈ R+; ν ∈ M(R+)

is the managerial talent distribution and satisfies ν(R+) = N . Production requires a

manager who employs labor and capital: if the manager has talent x and manages

n units of labor and k of capital, then output is xg ◦ f(n, k). The manager’s rent is

xg(f(n, k))− vn− rk, where v is the wage and r the rental price of capital.

We can think of this setting as one where managers are being matched with workers

and owners of capital, each of the latter having one unit of capital and preferences for
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higher rental prices of capital. The matching problem would be an hybrid between a

marriage market and a labor market with occupation choice since there would be two

distinct groups, capitalists vs non-capitalists, to match as well as matching subject to

occupational choice within the non-capitalist group. A contract could specify a wage

and a rental price of capital to be paid by the manager to the workers and capitalists,

respectively.

An easier approach to represent this setting is as follows: Note that, for a fixed

rental price of capital, it defines a labor market with occupational choice with the

amount of capital hired by a firm being included in the contract between the manager

and workers. In this representation, as in Lucas (1978), capitalists are not explicitly

modeled and, consequentially, the rental price of capital can no longer be part of the

contract since then there is no counterpart to the manager’s desire to set it equal

to zero. The notion of a stable matching can then be applied to the market defined

by each rental price of capital. Thus, an equilibrium in this setting is a rental price

of capital and a matching such that the matching is stable given the rental price of

capital and the capital market clears.

In light of the above, let, for each r ∈ R+, Z = R+ be the set of possible managerial

talent and ν be as above. The set of contracts is C = R2
+ with a generic contract

c = (v, k) specifying the wage and amount of capital and C ≡ C. A manager is

matched with only one type of workers and one contract, thus the set of feasible

matches is X = {n1(z,c) : (z, c) ∈ Z × C and n ∈ R+}. Occupations are the same as

in the general framework: A = {w, s,m}. Finally, preferences are defined via payoff

functions: For each z ∈ Z,

Uz(w, 1(z′,(v,k))) = v for each 1(z′,v,k) ∈ Xw,

Uz(s, 1(∅,c)) = 0 for each 1(∅,c) ∈ Xs, and

Uz(m,n1(z′,(v,k))) = zg(f(n, k))− vn− rk for each n1(z′,v,k) ∈ Xm.

This defines a market Er. We then say that (r, µ) is an equilibrium if µ is a stable
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matching of Er and∫
Z×X

(
1

δ(Z × C)

∫
Z×R2

+

kdδ(z, v, k)

)
dµ(z, δ) = K.

When δ = n1(z,v,k) for some (n, z, v, k), note that 1
δ(Z×C)

∫
Z×R2

+
k′dδ(z, v, k′) = k, i.e.

this is the amount of capital hired by a given manager; thus, writing k(δ) = k, it

follows that the total amount of capital hired is∫
Z×X

(
1

δ(Z × C)

∫
Z×R2

+

kdδ(z, v, k)

)
dµ(z, δ) =

∫
Z×X

k(δ)dµ(z, δ)

which, in equilibrium, equals the total amount of capital available.

B.11 Relationship with CKK

CKK consider a many-to-one matching setting with a continuum of workers and

finitely many managers. It can briefly described as follows. There is a finite set

{1, . . . , n} of managers and a mass of workers. The set of workers’ types is Θ, a

compact metric space, and G is the type distribution with G(Θ) = 1.

Each worker has a strict preference P over {1, . . . , n} ∪ {∅}. Let P denote the

(finite) set of all possible workers’ preferences and, for each P ∈ P , let ΘP denote

the set of all worker types whose preference is given by P . It is assumed that the set

ΘP is measurable and that G(∂ΘP ) = 0. Manager m ∈ {1, . . . , n} has preferences

described by ⪰m.

We represent the above setting as a two-sided market E without empty workers or

externalities as follows.45 Regarding the workers, set W = ∪P∈P int(ΘP ), νW = G|W
and ≻w= P whenever w ∈ ΘP . Because G(∂ΘP ) = 0, it follows that G(Θ \W ) = 0;

thus, only a null set of types of workers are excluded in our representation. Note that

W is a Polish space (see e.g. Aliprantis and Border (2006, Corollary 3.35, p. 89)).

Regarding the managers, set M = {1, . . . , n}, νM(B) = |B| for each B ⊆ M

and ≻m be the asymmetric part of ⪰m. Furthermore, let the feasible matches be

X = M1(W ).

45See Section B.2 for a defintion of a two-sided market without empty workers or externalities.

93



CKK describe a matching by listing the workforce of each manager: δ = (δm)m∈M∅

is a matching if δm ∈ X for each m ∈ M∅ and
∑

m∈M∅
δm = G.46 A matching δ is

stable if (i) δm(ΘP ) = 0 for each P ∈ P and m ∈ M such that m ≺P ∅, and (ii)

there does not exist m ∈ M and δ′ ∈ X such that δ′(E) ≤ D⪯m(δ)(E) for each Borel

E ⊆ W and δ′ ≻m δm, where D⪯m(δ) is the measure of workers assigned to manager

m or worse, i.e. D⪯m(δ)(E) =
∑

P∈P
∑

m′∈M∅:m′⪯Pm δm′(int(ΘP ) ∩ E) for each Borel

E ⊆ W .

Given a matching δ in CKK, define µδ by setting

µδ =
∑
m∈M

1(m,δm) + 1∅ ⊗ (δ∅ ◦ f−1),

where f : W → {1w : w ∈ W} is defined by setting, for each w ∈ W , f(w) = 1w.
47

The following result shows that every matching δ such that µδ is stable in the two-

sided market E without empty workers or externalities is stable in CKK’s setting, i.e.

stability with a continuum of managers implies stability with finitely many managers.

Theorem 6 If δ = (δm)m∈M∅ is a matching in CKK, then:

1. µδ is a matching.

2. supp(D⪯m(δ)) = supp(δm) ∪ Tm(µδ).

3. If µδ is stable, then δ is stable.

Proof. Let δ be a matching in CKK and write µ instead of µδ.

Consider the first claim. Condition (TS3) of the definition of a matching is

trivial and condition (TS4) holds by the definition of µ. Condition (TS1) holds

since µ(B × X) = |B| = νM(B) for each B ⊆ M . Condition (TS2) holds since∫
M∅×X

δ(B)dµ(m, δ) =
∑

m∈M∅
δm(B) = G(B) = νW (B) for each Borel B ⊆ W .

46Note that δm, for each m ∈ M∅, and δ′ belong to the more specific set X = {δ ∈ M(W ) :

δ(B) ≤ G(B) for each Borel B ⊆ W} that CKK consider.
47The function f is the standard homeomorphism between W and {1w : w ∈ W}.
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Consider next the second claim. Let w ∈ supp(D⪯m(δ)) and O be an open

neighborhood of w. Then O ∩ int(ΘPw) is an open neighborhood of w and, hence,

0 < D⪯m(δ)(O ∩ int(ΘPw)) =
∑

m′∈M∅:m⪰wm′

δm′(O ∩ int(ΘPw)) ≤
∑

m′∈M∅:m⪰wm′

δm′(O).

It then follows that w ∈ supp(
∑

m′∈M∅:m⪰wm′ δm′) = ∪m′∈M∅:m⪰wm′supp(δm′). Thus, if

w ̸∈ supp(δm), then w ∈ supp(δm′) for some m′ ∈ M∅ such that m ≻w m′. If m′ ∈ M ,

then w ∈ Tm(µ) since (m′, δm′) ∈ supp(µ), w ∈ supp(δm′) and m ≻w m′. If m′ = ∅,

then (∅, 1w) ∈ supp(µ), w ∈ supp(1w) and m ≻w ∅, hence w ∈ Tm(µ).

Conversely, if w ∈ Tm(µ), then there is (m′, δ′) ∈ supp(µ) such that w ∈ supp(δ′)

and m ≻w m′. If m′ ∈ M , then δ′ = δm′ and, hence, w ∈ ∪m′∈M∅:m≻wm′supp(δm′). If

m′ = ∅, then δ′ = 1w and w ∈ supp(δ∅). In conclusion, w ∈ ∪m′∈M∅:m≻wm′supp(δm′).

It remains to show that ∪m′∈M∅:m⪰wm′supp(δm′) = supp(
∑

m′∈M∅:m⪰wm′ δm′) is con-

tained in supp(D⪯m(δ)), which follows from an argument analogous to the one above.

Finally, we establish the last claim. Assume that µ is a stable matching. Let

P ∈ P and m ∈ M be such that ∅ ≻P m and let w ∈ ΘP . Thus, ∅ ≻w m. If

w ∈ supp(δm), then (m, δm) ∈ supp(µ) ∩ IRW (µ)c, a contradiction to the stability of

µ. Thus, w ̸∈ supp(δm) and, hence, ΘP ⊆ supp(δm)
c. Thus, δm(ΘP ) = 0.

Suppose that there is m ∈ M and δ′ ∈ X such that δ′ ⊏ D⪯m(δ) and δ′ ≻m δm.

Since (m, δm) ∈ supp(µ) and supp(δ′) ⊆ supp(D⪯m(δ)) ⊆ Tm(µ)∪supp(δm), it follows

that (m, δm) ∈ supp(µ) ∩ SM(µ)c, a contradiction to the stability of µ.

B.12 Relationship with Azevedo and Hatfield (2018)

We consider Azevedo and Hatfield’s (2018) setting in its simplified version presented

in Section S.10 in CKK. We show that this special case of their model is a particular

case of our two-sided market without empty workers or externalities.48

This is a setting with a finite set M of manager types, a finite set W of worker

types, non-null measures νM and νW and no contracts.49 Each manager hires at most

48See Section B.2 for a definition of a two-sided market without empty workers or externalities.
49The latter aspect can be formalized by letting C be a singleton and C ≡ C, but it is simpler to

just omit contracts altogether.
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one worker per each worker type, thus, the set X of feasible matches for a manager is

X =

{∑
w∈A

1w : A ∈ 2W

}
.

In particular, the zero measure belongs to X since it equals 1∅ =
∑

w∈∅ 1w. Together

with the absence of contracts, this makes it unnecessary to introduce the empty

worker type since unmatched managers are those matched with the zero measure.

Preferences do not depend on the matching. In this case, ≻m can be defined on

X for each m ∈ M and ≻w can be defined on M∅ for each w ∈ W .

For each m ∈ M and E ∈ 2W , let

cm(E) = {A ∈ 2W : A ⊆ E and there is no B ⊆ E such that 1B ≻m 1A}.

A matching µ ∈ M(M∅ ×X) is stable according to definition S2 in CKK if

1. µ(m, δ) = 0 if there exists w ∈ supp(δ) such that ∅ ≻w m,

2. cm(E) = E for each (m, 1E) ∈ supp(µ), and

3. There are no m ∈ M and E,E ′ ∈ 2W with E ∩E ′ = ∅ and E ′ ̸= ∅ such that (i)

E ′ ⊆ cm(E ∪ E ′), (ii) (m, 1E) ∈ supp(µ) and (iii) for each w ∈ E ′, there exists

m̂ ∈ M∅ and Ê ∈ 2W such that (m̂, 1Ê) ∈ supp(µ), w ∈ supp(1Ê) = Ê and

m ≻w m̂.

Note that condition 1 is equivalent to supp(µ) ⊆ IRW (µ). Furthermore, condition 2

is equivalent to the requirement that, for each (m, 1E) ∈ supp(µ), there does not exist

δ′ ∈ X such that supp(δ′) ⊆ supp(δ) and δ′ ≻m 1E. Finally, condition 3 is equivalent

to the requirement that, for each (m, 1E) ∈ supp(µ), there does not exist δ∗ = 1E∗

such that supp(δ∗) ̸⊆ supp(δ), supp(δ∗) ⊆ supp(δ) ∪ Tm(µ) and δ∗ ≻m 1E.
50 Thus,

the above definition is equivalent to the notion of stability for the two-sided market

without empty workers or externalities.

50Condition 3 (i) is equivalent to the existence of E∗ ∈ 2W such that 1E∗ ≻m 1E and E′ ⊆ E∗ ⊆

E ∪ E′, and condition 3 (iii) to supp(1E′) ⊆ Tm(µ). Thus, supp(1E∗) ⊆ supp(1E) ∪ Tm(µ).
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B.13 An example of a roommate market with externalities

and relationship to Wu (2021)

Consider the following roommate market where contracts are omitted for simplicity.

Let Z = {a, b, c} with ν(a) = ν(b) = ν(c) = 1, and let preferences be given by:

• ua(b, µ) = 1− 2(µ(b, c) + µ(c, b)) and ua(c, µ) =
1
2
for each µ ∈ M(Z × Z∅),

• ub(c, µ) = 1 and ub(a, µ) =
1
2
for all µ ∈ M(Z × Z∅),

• uc(a, µ) = 1 and uc(b, µ) =
1
2
for all µ ∈ M(Z × Z∅),

• uz(∅, µ) = 0 for each z ∈ Z and µ ∈ M(Z × Z∅), and

• uz(z, µ) = −1 for each z ∈ Z and µ ∈ M(Z × Z∅).

Note that a prefers to match with b rather than c if and only if the measure of b that

is matched with c is less than 1
4
.

By Corollary 2, there exists a stable matching; indeed, the matching µ such that

µ(a, c) = 3
4
, µ(a, b) = 1

4
, µ(b, c) = 1

4
and µ(b, ∅) = 1

2
is stable.

For the remainder of this section, we explain why Wu’s (2021) result does not

apply to this setting. First, note that given the assumptions of the roommate market,

any two matchings µ and µ̂ are equivalent if µ(a, b) + µ(b, a) = µ̂(a, b) + µ̂(b, a),

µ(b, c) + µ(c, b) = µ̂(b, c) + µ̂(c, b) and µ(a, c) + µ(c, a) = µ̂(a, c) + µ̂(c, a). Thus, by

identifying equivalent matchings, we can also represent a matching µ as an element

of M = {µ ∈ [0, 1]3 : µ1 + µ3 ≤ ν(a), µ1 + µ2 ≤ ν(b), µ2 + µ3 ≤ ν(c)}, i.e. we can

write

µ = (µ(a, b) + µ(b, a), µ(b, c) + µ(c, b), µ(a, c) + µ(c, a))

in line with Wu’s (2021) notation. In what follows, we abuse notation and treat µ

both as an element of M defined above and also as a measure over Z×Z∅, whichever

is more convenient (for example, we write (a, b) ∈ supp(µ) or (b, a) ∈ supp(µ) to

mean µ1 > 0).

Wu’s (2021) matching game consists of a set of players I, a set of matchings M, a

participation function ϕ : M → [0, 1]I , a complete and transitive preference relation
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⊵i defined on Mi = {µ ∈ M : ϕi(µ) > 0} for each player i, and a blocking relation

⊐.

We represent the above roommate market as a matching game as follows. Let

I = Z, let M = {µ ∈ [0, 1]3 : µ1 + µ3 ≤ 1, µ1 + µ2 ≤ 1, µ2 + µ3 ≤ 3}, let ϕi(µ) =

µ({i} × Z) + µ(Z × {i}), let ⊵a be any complete and transitive relation such that

(1, 0, 0) ⊵a (0, 0, 1),51 let ⊵b and ⊵c be any complete and transitive relations, and

define the blocking notion ⊐ as follows: µ̂ ⊐ µ̃ (µ̂ blocks µ̃) if for each (z, z′) ∈

supp(µ̂), there exists z̃ and z̃′ such that (i) (z, z̃) ∈ supp(µ̃) or (z̃, z) ∈ supp(µ̃), (ii)

(z′, z̃′) ∈ supp(µ̃) or (z̃′, z′) ∈ supp(µ̃), (iii) uz(z
′, µ̃) > uz(z̃, µ̃) and (iv) uz′(z, µ̃) >

uz′(z̃
′, µ̃). This blocking notion corresponds to the one we use in the current paper.

Now we argue that the above matching game is not a convex matching game as

defined byWu (2021), and so his Theorem 1 does not apply. Let µ1 = (1, 0, 0), let µ2 =

(0, 1, 0), let µ3 = (0, 0, 1) and let µ∗ = (1
2
, 1
2
, 1
2
). The participation vectors are ϕ(µ1) =

(1, 1, 0), ϕ(µ2) = (0, 1, 1) and ϕ(µ3) = (1, 0, 1). Let w = (w1, w2, w3) = (1
2
, 1
2
, 1
2
) and

note that µ∗ =
∑3

j=1 w
jµj and

∑3
j=1 w

jϕ(µj) ≤ 1; thus, µ∗ is a ϕ-convex combination

of {µj}3j=1.
52 Wu’s (2021) definition of a convex matching game (Definition 2, part

(ii)) then requires that µ3 ̸⊐ µ∗ because ϕa(µ
3) > 0,

∑3
j=1 w

jϕa(µ
j) = 1 and µj ⊵a µ

3

for all µj with ϕa(µ
j) > 0.53

However, by the notion of blocking defined above, we have µ3 ⊐ µ∗ because (a, b) ∈

supp(µ∗) or (b, a) ∈ supp(µ∗), (c, b) ∈ supp(µ∗) or (b, c) ∈ supp(µ∗), ua(c, µ
∗) >

ua(b, µ
∗) and uc(a, µ

∗) > uc(b, µ
∗).
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