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Abstract

We extend Garicano’s (2000) model of optimal organizations by allowing its

members to screen problems, i.e. to attempt the identification of problems before

trying to solve them. As for solving problems, screening is costly to learn and time

consuming but has the advantage of allowing for successfully screened problems to

be directed to those in the organization who can solve them. We establish sev-

eral properties of optimal organizations and use them to show: (a) When screening

problems is as costly as solving them, optimal organizations are hierarchies as in

Garicano (2000), but (b) when the cost of learning how to screen problems is suffi-

ciently small, optimal organizations are such that workers screen all problems that

they and the managers who solve the most extraordinary problems cannot solve,

those problems that they screen are directed to those managers who can solve them

and those problems that they neither solve nor screen are passed to the managers

who solve the most extraordinary problems. For intermediate values of the cost of

learning how to screen problems, we show computationally that the optimal orga-

nization is a hybrid of the above two organizational forms.
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1 Introduction

Firms in certain sectors, such as the automobile industry, have a hierarchical structure:

Problems that workers cannot solve are taken to managers, who in turn take those that

they cannot solve to higher level managers, with the top-level managers solving only

rather exceptional problems, i.e. managing by exception. In addition, the organization is

typically pyramidal having more workers than lower-level managers, and so on until the

top-level managers.

Because solving problems is costly, the organization of a firm might be improved by

having some of its members find out who in the organization is better suited to solve a

given problem before actually attempting to solve it. For instance, patients normally see

a general practice doctor before being referred to the appropriate specialist; secretaries

in law firms are often able to direct a client to the relevant partner by identifying e.g.

whether the case falls into the realms of family or commercial law; customers of many

firms first interact with an automatized system before having their questions answered by

a customer service representative. As skills become more specialized (due to economies of

scale as discussed in Rosen (2002)), it might make sense to learn how to identify problems

to find out who can solve them.

Hierarchical organizations have been rationalized by Garicano (2000). In this paper,

we propose a theory of the organization of specialization that extends his framework

by allowing members of the organization to screen problems that they cannot solve and

rationalizes, in a single framework, both hierarchical organizations and the above features

of real-world organizations.

We show that optimal organizations are hierarchical in exactly the same sense as in

Garicano (2000) when screening is as time consuming as solving problems and learning

how to screen is as costly as learning how to solve problems. Indeed, in this case, screening

problems is pointless since solving them costs the same but results in the problems being

solved.

In contrast, in an optimal organization when learning how to screen problems is quite

cheap (but even when it takes as much time to screen a problem as to solve it), workers

screen all the problems that they and the managers who solve the most extraordinary

problems cannot solve. The problems screened by workers are then directed to those

in the organization who can solve them, and those that workers can neither solve nor
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identify are passed to the managers who solve the most extraordinary problems. There is

no flow of information in the organization besides these ones. The organization, however,

is still pyramidal in the sense that there are more workers than managers; also, with the

possible exception of the managers who solve the most extraordinary problems, the more

infrequent the problems that a group of managers solves, the smaller the group is. When

this organizational form is optimal, the increase in output obtained by moving from the

best hierarchy to the optimal organization can be substantial: We provide an example

where this increase is slightly above 83%. Thus, screening problems can significantly

improve the organization of knowledge in production.

The introduction of screening can also help rationalize the internal organization of

real-world organizations. For instance, the optimal organization in the low screening cost

case fits well with how the editorial process of Economics journals works.1 Indeed, the

lead editor looks at each paper submitted and passes it directly to the editor who is best

suited to handle it.

As another example, take the data set of U.S. law offices considered in Garicano and

Hubbard (2007). According to their Table 2, there were 72.7% of law offices with no

associates and, in such law offices, 44.8% of partners are specialists (on average). Such

law offices may be better rationalized as an optimal organization with a low screening cost

rather than as a hierarchy. Indeed, since there are no associates in those firms, there is

no obvious hierarchy; instead, we can think of the 55.2% of generalist partners as the first

layer of workers who first look at problems brought in by their clients and pass those they

cannot solve to the right one of (possibly) several layers of specialist partners specializing

in different legal fields; and, as in the theoretical result, there is a higher fraction of

generalist than specialized lawyers.

The optimal organizational form transitions from a hierarchy to the optimal organi-

zation with a low screening cost as the cost of learning how to screen problems decreases.

When this cost is intermediate, the optimal organization is a hybrid of the two that are

optimal in the extreme cases. In this hybrid organization, the lower management layer of

the hierarchy is disaggregated by having the workers screen the most common problems

that they cannot solve and send them to a newly formed layer that solves only those

problems; in contrast, the remaining problems are passed through the organization in a

1We are grateful to Esteban Rossi-Hansberg for suggesting this example to us.
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hierarchical way as before. This may correspond to e.g. the separation of the IT depart-

ment from a generic lower management layer in an online retailer whose workers face, on

top of customers’ orders they can deal with, IT problems that they can’t. It can also

correspond to more specialized layers in organizations located in densely populated urban

areas compared to rural areas since the pool of workers in urban areas may have more

general knowledge and thus be cheaper to train to identify problems.2 The use of screen-

ing in the optimal organization for low and intermediate values of the cost of learning

how to screen problems can also rationalize our motivating examples, namely that gen-

eral practice doctors, secretaries in law firms and automatized systems screen and direct

problems to those in their organizations who can solve them.

Our results provide more broadly a theory of the organization of specialization that

allows both horizontal and vertical specialization. A key determinant of how horizon-

tal such organization should be is the cost of learning how to screen problems, which

we regard as a measure of how hard it is to match problems with solutions. Horizontal

specialization requires that problems are sent to the right people; this requires screening,

and specialization in this dimension is limited by screening costs. Vertical specialization

requires that problems are passed through multiple layers; specialization in this dimension

is limited by communication costs. Our results show that, in general, the optimal orga-

nization will feature both horizontal and vertical specialization, with the organization of

specialization being vertical when it is hard to match problems with solutions (i.e. when

the cost of screening is high as in Garicano (2000)) and horizontal when such matching

is easy. Our results thus validate the view in Becker and Murphy (1992) and Garicano

(2000) that the matching of problems with solutions is a crucial limit to specialization.

Our results characterize the optimal degree of specialization in several dimensions

that includes, but it is not restricted to, the degree of its horizontality. We operationalize

this theory by explicitly modelling the problem of a firm organizing the knowledge and

labor of its members. In particular, our results provide conclusions on the optimal way

to organize the relationship between workers and managers in an organization, or more

broadly, between those who need to solve problems and those who specialize in solving

2Tian (2021) documents the stylized fact that there is greater division of labor within firms in larger

cities and suggests that larger cities provide workers with more opportunities to acquire skills that reduce

the cost of training them. This is consistent with potential workers in larger cities having lower costs of

learning how to screen problems than those in rural areas.
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them (e.g. the general public and medical doctors). In our framework, there is an optimal

degree of specialization in (i) tasks (i.e. on how people use their time, either to work

or to solve problems or both), (ii) knowledge (i.e. on what people know how to solve),

(iii) screening (i.e. on what people know how to screen and, thus, whether or not they

can directly find who can solve the problems they face) and (iv) scope (i.e. on what the

organization as a whole knows), which solves the trade-offs between specialization and

communication costs already present in Garicano (2000) and the horizontality of (i.e.

more direct) communication and screening costs.

We present our model in Section 3 after a brief literature review in Section 2. To

obtain the above conclusions, we first establish in Section 4 general properties of opti-

mal organizations by extending analogous results in Garicano (2000) and by obtaining

new ones. This is not straightforward because of the extra generality our framework and

because, while Garicano (2000) gives great intuition for his results, some details are miss-

ing.3 Moreover, to the extent that some properties of hierarchies do not carry over to

the general setting, we can distinguish between features of optimal organizations that are

intrinsic to specialization and those that require the assumption of hierarchy.4

These results are applied in Section 5 to address the question of whether specialization

should be vertical or horizontal when the cost of learning how to screen problems is high

(Section 5.1), low (Section 5.2) and intermediate (Section 5.3).

In general, the optimal organization must resolve trade-offs between the cost of learn-

ing how to screen problems, the cost of learning how to solve problems and the time

spent attempting to solve or screen the problem and then communicating the answer

(which we refer to broadly as “communication costs”). These trade-offs are simplified

when communication costs are small, a case we consider in Section 5.4 to obtain sharper

characterizations of the optimal organization, namely, that all problems it faces are even-

tually solved but none by its workers. Such optimal organization is thus highly specialized

and asymmetric as it has very knowledgeable managers alongside unskilled workers (or

perhaps using automation to perform the workers’ tasks).

3For example, Proposition 1 in Garicano (2000) states that in any optimal organization, only one layer

specializes in production. This is true if for any two organizations with the same output, the one with

fewer layers is preferred, which is the case in this paper but not explicitly stated in Garicano (2000).
4For example, the property that higher layers solve less frequent problems holds in a hierarchy but

may fail when some problems are screened.
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Section 5.5 contains some comments on the implications of our results for empirical

work. Of course, broadening the applicability of the theory of optimal organizations can

only improve its empirical fit. Hierarchical organizations, which are a particular optimal

outcome of the framework of this paper, have been useful to analyze empirically manu-

facturing firms as shown by Caliendo, Monte, and Rossi-Hansberg (2015) and Caliendo,

Mion, Opromolla, and Rossi-Hansberg (2020). However, about 18% (resp. 25%) of the

firms in the data set considered in the former (resp. latter) paper are not hierarchies.

Hence, the richer set of optimal organizational forms that our unified framework allows

for can be helpful to empirically analyze a broader set of firms. This may be important be-

cause our model predicts that each organization’s response to changes in its environment

depends on its organizational form and, moreover, the response may involve changing the

organizational form itself.5

The results described so far pertain to the case of non-cumulative knowledge. We

extend our general characterization results to the cumulative knowledge case in Section

6 and show that, when the cost of learning how to screen problems is low, the optimal

organization with cumulative knowledge is similar to the one with non-cumulative knowl-

edge with one important difference: the problems that workers neither solve nor screen

are now the most common ones that they do not solve. This difference may matter to

distinguish between breath and depth of knowledge. To illustrate, consider a resident

physician in the emergency room of an hospital.6 In general, there will be some patients

whom the resident will be able to treat and others whom she will be able to direct to the

right specialist, e.g. a cardiologist. In addition, there will be some cases regarding which

the resident will not know what to do and which she will pass to the attending physician.

This latter feature is better described by the result in the cumulative knowledge case.

Indeed, in the non-cumulative case, the problems the resident has no knowledge about

are the least common that may arise, whereas the attending physician is, in general, not

specialized in rare diseases but rather someone who has more advanced training than the

5For example, we consider the response to a 10% drop in the time needed to solve problems and

show that hierarchies typically respond by increasing the knowledge of all managers, whereas optimal

organizations for low screening costs will sometimes increase the knowledge of the top managers at the

expense of the knowledge of lower managers. Moreover, an organization will sometimes respond by

changing its organizational form, becoming more vertical as passing problems through the organization

becomes cheaper relative to screening them.
6We are grateful to an anonymous referee for suggesting this example to us.
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resident. This is consistent with cumulative knowledge, because then what may distin-

guish the residents from the attending physicians who receive the problems that residents

neither solve nor screen is that the latter may have deeper knowledge than the former

about e.g. an advanced procedure to treat relatively common diseases.

Section 7 contains some concluding remarks and the proofs of our results are in the

(online) Appendix. Some omitted details are in the supplementary material to this paper.7

2 Literature review

There is a large literature on organizational theory; see Gibbons and Roberts (2013) for

a survey. Here we focus on the literature that emerged from Garicano (2000).

The framework of Garicano (2000) and the knowledge-based hierarchies that it ra-

tionalized have been used to address many economic questions. These questions include

the evolution of wage inequality (Garicano and Rossi-Hansberg (2004) and Garicano and

Rossi-Hansberg (2006)), the existence and growth of firms (Fuchs, Garicano, and Rayo

(2015) and Caliendo and Rossi-Hansberg (2012)), economic development (Garicano and

Rossi-Hansberg (2012)) and offshoring (Antràs, Garicano, and Rossi-Hansberg (2006)).

See Garicano and Van Zandt (2013) and Garicano and Rossi-Hansberg (2015) for surveys

of this literature and Caicedo, Lucas, and Rossi-Hansberg (2019), Eeckhout and Kircher

(2018), Geerolf (2017) and Kikuchi, Nishimura, and Stachurski (2018) for some recent

developments.

Our focus is narrower than that of the above papers. Specifically, we generalize the

setting of Garicano (2000) by allowing screening of problems but the goal remains the

same, namely, to characterize the optimal organization. Other papers are similar in scope

or goal: Chen and Suen (2019) introduce a delay cost that is incurred every time help is

provided and Gumpert (2018) introduce heterogeneity in the communication costs; some

extensions have been made in work whose focus is mainly empirical such as in Bloom,

Garicano, Sadun, and Van Reenen (2014), who introduce heterogeneity in decision types.

None of these papers allow members of the organization to screen problems.

The ability of members of the organization to screen problems can be interpreted in

light of Crémer, Garicano, and Prat (2007) as the ability to communicate in a specific

7The supplementary material is available at https://klaohakunakorn.com/orgsm.pdf.
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code. There, a code is a finite partition of the set of problems; here, in contrast, the

partition is specific to each individual through the set B of problems that she can identify

and consists of Bc and {ω} for each ω ∈ B. That is, if someone draws a problem ω ∈ B,

she knows that she is facing problem ω but, in contrast, if ω ∈ Bc, she does not know

that she is facing problem ω, she only knows that she is facing some problem in Bc.

3 The model

3.1 Production

Production happens when an individual solves a problem with which he is faced. The set

of all possible problems is an interval Ω ⊆ R+ and problems are drawn according to a

probability measure F on Ω. We assume that F has a continuous and strictly decreasing

density f and that 0 ∈ Ω.

Individuals are characterized by a knowledge set A ⊆ Ω, which consists of the problems

that the individual can solve. The complement Ac of A is then the set of problems that

the individual cannot solve. We extend Garicano (2000) by allowing individuals to screen

problems: There is a screening set B ⊆ Ω, with A ⊆ B, which consists of the problems

that the individual can identify. The condition A ⊆ B then means that a person knows

how to identify all the problems that he can solve so that the elements of B \ A are the

problems that the individual can identify but not solve. If an individual draws a problem

ω ∈ B \A, although no production directly results, he knows that he is facing problem ω;

in contrast, if ω ∈ Bc, the individual does not know that he is facing problem ω, he only

knows that he is facing some problem in Bc — a person cannot distinguish problems ω

and ω′ if they both belong to Bc.

Learning to solve problems is at least as costly as learning to screen them and both

are proportional to the size of the corresponding set. Thus, letting µ denote the Lebesgue

measure, we let cµ(A) be the cost of learning the knowledge set A and ξµ(B \ A) be the

cost of learning the remaining part of the screening set B, and assume that 0 < ξ ≤ c.

3.2 Organizations

An organization consists of a set of individuals. The organization allows each of its

members to ask other members for the solution of the problem he has drawn. Such
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communication incurs a cost: The member who is being asked incurs a cost of h units of

time to solve the problem if it is in his knowledge set. If, instead, the problem is not in

his knowledge set, then he incurs a cost of π units of time to attempt the identification of

the problem, regardless of whether or not he succeeds. Moreover, these costs are incurred

regardless of whether or not some other member has already identified it.8 We assume

that 0 < π ≤ h.

The members of an organization are organized in several layers, the set of those being

denoted by L. Each layer i ∈ L has knowledge and screening sets Ai and Bi respectively.

In addition, it has a list li of the layers with whom those in layer i may communicate.

The elements of li are ordered to indicate which one of each pair of elements of the list

is contacted first by layer i. Thus, layer i is also characterized by a precedence relation,

which is, formally, a linear order ≺i on li with the property that i is its minimal element;

we may, therefore, write li = {j0, j1, . . . , jmi
} where i = j0 ≺i j1 ≺i · · · ≺i jmi

.

Members in layer i will solve the problems in Ai and pass those in Bi \Ai to the first

layer (according to ≺i) that can solve them. Problems in Bc
i are passed down the list,

to layer j1, j2, . . ., until they are either solved or abandoned. Thus, the set of problems

drawn by layer i that are solved is ∪l∈liAl. In addition, out of the problems drawn by

layer i, layer k solves those problems in Ak \ ∪l≺ikAl and does not solve but attempts to

identify problems in Ack ∩ (∪l≺ikBl)
c.

The final elements describing a layer i ∈ L of an organization are its relative size

βi ∈ (0, 1) and the allocation of time spent between producing (denoted by tpi ) and helping

other layers (denoted by thi ). The allocation of time satisfies the standard requirement

that tpi ≥ 0, thi ≥ 0 and tpi + thi ≤ 1; in addition, the total time spent helping βit
h
i equals

the time needed by the other layers:

βit
h
i =

∑
k∈L\{i}:i∈lk

βkt
p
k [hF (Ai \ ∪l≺kiAl) + πF (Aci \ ∪l≺kiBl)] .

For notational convenience, let, for each i, k ∈ L,

αik =

hF (Ai \ ∪l≺kiAl) + πF (Aci \ ∪l≺kiBl) if i ̸= k and i ∈ lk,

0 otherwise.

8For example, if someone faces a problem that he cannot identify, passes it to someone else who can

identify but not solve it, who in turn passes it to a third person who can solve it, then the second (resp.

third) person incurs a cost of π (resp. h) units of time.
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A final requirement in the definition of an organization concerns the sets Ai and Bi

that a layer i ∈ L may have as knowledge and screening sets. We require each such set to

be a finite union of disjoint intervals of the form [a, b) with a ≤ b ≤ ∞. The class of such

sets, which we denote by I, is contained in the class of measurable sets and is closed under

unions, intersections and set differences, making it convenient for technical reasons.9 In

addition, elements of I are intuitively simple, i.e. requiring layers to choose knowledge

and screening sets in I amounts to disallowing them to learn overly complicated sets.

Thus, this places some limits on the complexity of the organization.

In summary, an organization is O = (L, (βi, Ai, Bi, li,≺i, t
p
i , t

h
i )i∈L) such that L ⊂ N is

a finite set,
∑

j∈L βj = 1, and for each i ∈ L: βi > 0, Ai and Bi belong to I and satisfy

Ai ⊆ Bi ⊆ Ω, li ⊆ {1, . . . , L} with i ∈ li, ≺i is a linear order on li such that i is its

minimal element, tpi ≥ 0, thi ≥ 0, tpi + thi ≤ 1 and βit
h
i =

∑
k∈L βkt

p
kαik.

The expected output of the organization O is

y =
∑
i∈L

βi(t
p
iF (∪l∈liAl)− cµ(Ai)− ξµ(Bi \ Ai)). (1)

This is obtained as follows. The production of each of its members equals the time he

spends in production provided that he can solve the problem he draws. Thus, the expected

production of an individual in layer i ∈ L is tpiF (∪l∈liAl). The expected output of layer

i is then obtained by subtracting from its expected production the cost of learning i’s

knowledge set Ai and the cost of leaning how to identify but not solve the problems in

Bi \Ai. The expected output of O is then the sum of the expected output of each of the

layers, weighted by their relative sizes.

3.3 Relationship with Garicano (2000)

The setting of Garicano (2000) is a particular case of ours, obtained by imposing Bi = Ai

for each i ∈ L and h = π. Indeed, in this case we obtain, as in Garicano (2000), that

αik = h (F (Ai \ ∪l≺kiAl) + F (Aci \ ∪l≺kiAl)) = h(1− F (∪l≺kiAl))

if i ̸= k and i ∈ lk, and y =
∑

i∈L βi(t
p
iF (∪l∈liAl)− cµ(Ai)).

To understand what the organization gains in our more flexible setting, consider first

that π < h but still Bi = Ai for each i ∈ L. In this case, the amount of time that

9Another convenient property is that if A ∈ I is such that F (A) = 0, then A = ∅ since otherwise, for

some a < b, F (A) ≥
∫
[a,b)

f > 0, the last inequality following since f is strictly decreasing.
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layer i spends helping layer k is smaller than h(1 − F (∪l≺kiAl)) simply because workers

in layer i only attempt to identify, but not solve, problems outside their knowledge set;

hence, the cost of time per problem is only π, not h. In addition, having Bk ̸= Ak can

also reduce helping costs: Indeed, problems in Bk \ Ak go directly to the layer that can

solve it instead of being asked to each layer that precedes it in k’s precedence relation.

Furthermore, problems in Bk ∩ (∪i∈lkAi)c are now known not to be solvable, hence no

time is devoted to identify, let alone trying to solve, them.

3.4 Optimal organizations

We now turn to the definition of an optimal organization. Part of the definition will reflect

a preference for less complex organizations.

If O is an organization and y = 0, then it is straightforward to characterize O: One

layer is enough and we can set A1 = B1 = ∅. Thus, the focus is on the case where y > 0,

which will be assumed throughout, i.e. it will be part of the definition of an optimal

organization.

One requirement in the definition of an organization is that βi > 0 for all i, which

means that there are no unmanned layers. This is reasonable because unmanned layers

can be removed to obtain an organization with fewer layers and the same output. This

seems to be a natural way of avoiding multiplicity: Thus, given two organizations with the

same output, the one with the smaller number of layers is preferred. Extending this logic

to lists, we consider that, given two organizations with the same output, if one is obtained

from the other by shortening some lists, then the former is preferred to the latter. In both

cases, the former organization is intuitively less complex than the latter, hence, these two

criteria express a preference for simplicity.10

The mildest way of introducing this preference for simplicity is in a lexicographic way.

An organization O is lexicographically optimal if y > 0 and there is no other organization

10To see how such preference for simplicity avoids uninteresting multiplicity of optimal organizations,

suppose that O is an optimal organization. Its output y can also be obtained by replicating O to obtain

an organization Ô with L̂ = 2L and, for each i = 1, . . . , L, B̂i = B̂i+L = Bi, Âi = Âi+L = Ai, l̂i = li,

l̂i+L = {j + L : j ∈ li}, ≺̂i =≺i, (j + L)≺̂i+L(k + L) if and only if j ≺i k, t̂hi = t̂hi+L = thi , t̂
p
i = t̂pi+L = tpi

and β̂i = β̂i+L = βi/2; hence, in the absence of a preference for simplicity, Ô would also be optimal. In

particular, note that there are more than one layer of workers in Ô, i.e. our results do not extend to the

case where such preference for simplicity is dispensed with.
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Ô such that (i) ŷ > y, or (ii) ŷ = y and L̂ ⊂ L or (iii) ŷ = y, L = L̂, l̂i ⊆ li for all i ∈ L

and l̂j ̸= lj for some j ∈ L.

Lexicographically optimal organizations may fail to exist. For this reason, we also

consider the following stronger preferences for simplicity. Let η > 0 and consider the case

where adding a layer to the organization costs η units of output; we think of η as reflecting

administrative costs which are increasing in the number of layers of an organization. In

this case, define Y = y − (L− 1)η. An organization O is η-optimal if Y > 0 and there is

no other organization Ô such that (i) Ŷ > Y , or (ii) ŷ = y, L̂ = L, l̂i ⊆ li for each i ∈ L

and l̂j ̸= lj for some j ∈ L.

Except for existence, our results hold regardless of whether we focus on lexicographi-

cally optimal or η-optimal organizations. Thus, we say that an organization O is optimal

if it is lexicographically optimal or η-optimal.

4 A theory of the organization of specialization

In this section, we show that the organization will specialize in tasks, knowledge, screening

and scope. Moreover, we identify the trade-offs between the cost of learning how to screen

problems, the cost of learning how to solve problems, and the time required to attempt

to screen or solve problems and communicate the answer that the optimal degree of

specialization resolves.

To get to the key maximization problem that determines how these trade-offs are

resolved, we first show that optimal organizations satisfy the following general properties:

(i) specialization in the allocation of labor and time; (ii) the union of the screening sets

is an interval starting at zero and can be partitioned into the “pure knowledge sets” of

problems that a given layer can solve but no one else can identify, “screened knowledge

sets” of problems that one layer sends to another and “known unknowns” that a given

layer screens and discards; and (iii) the frequency of each class of problems is increasing

in its marginal cost to the organization. As well as being of substantive interest, these

general characterization results provide enough structure to imply a numerical method for

computing optimal organizations. Moreover, in the next section, we will combine these

general results with parametric assumptions which will be sufficient to characterize the

exact organizational form in several situations of interest.
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Theorem 1 characterizes the allocation of personnel to each layer and the allocation of

time for each person in each layer, as well as the list and the precedence relation of each

layer. It shows that there is a layer that specializes in production whereas all the other

layers specialize in helping the former layer. In light of this, the list of the former layer

is L and the list of each of the latter layers has no layer other than itself. In addition,

Theorem 1 describes the output of an optimal organization.

Theorem 1 If O is an optimal organization, then there is i ∈ L such that tpi = 1, thi = 0,

li = L, βi =
1

1+
∑L

l=1 αli
and y =

F (∪l∈LAl)−(νi+
∑L

l=1 νlαli)
1+

∑L
l=1 αli

, where νl = cµ(Al) + ξµ(Bl \ Al)
for each l ∈ L. Furthermore, for each j ̸= i, tpj = 0, thj = 1, αji > 0, lj = {j} and

βj =
αji

1+
∑L

l=1 αli
.

We may assume, relabeling the layers if necessary, that layer 1 is such that tp1 = 1

and that 2 ≺1 · · · ≺1 L. In this case, the precedence relation ≺1 is just the standard

“less than” < order. Since αik = 0 if k ̸= 1, we simplify the notation and write, for

each i ∈ L \ {1}, αi = αi1 and α1 = 1, the latter for notational convenience. Also for

convenience, we write θ = θ1 = F (∪l∈LAl)−
∑

l∈L αlνl and γ = γ1 =
∑

l∈L αl. Note that

under this notation, y = θ
γ
and βl =

αl

γ
for each l ∈ L. We refer to those in layer 1 as

workers and those in layers i ̸= 1 as managers.

Theorem 1 generalizes Proposition 1 in Garicano (2000).11 The following results, which

characterize the allocation of knowledge in an optimal organization by establishing the

properties that the knowledge and screening sets (A1, B1, . . . , AL, BL) must satisfy, are

also related to analogous ones in Garicano (2000) but with significant differences. In the

latter setting, where Bl = Al for each l ∈ L, it turns out that the collection {B1, . . . , BL}
is pairwise disjoint in any optimal organization and thus partitions the union ∪l∈LBl of

the screening sets. Furthermore, Garicano’s (2000) key result is that B1 < . . . < BL, i.e.

these sets can be ordered according to the frequency of the problems they contain. On the

other hand, in the general case, the collection {B1, . . . , BL} may not be pairwise disjoint

and each Bl may not be an interval; hence {B1, . . . , BL} cannot be ordered. However, we

will show that by considering the appropriate partition of ∪l∈LBl, the elements of such

partition can be ordered and we provide a criterion with which to order them.

11Theorem 1 also corrects Proposition 1 in Garicano (2000). One issue with the latter has been already

illustrated in Footnote 10, namely that the conclusion of Theorem 1 does not hold without a preference

for simplicity. See Section A.1 in the Appendix for more details.
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Intuitively, an organization may wish to treat a problem differently depending on (i)

whether it is known or just screened, (ii) the layer which knows how to solve the problem

and (iii) the layer which knows how to screen the problem. Thus, the appropriate partition

of ∪l∈LBl should contain, for each l ∈ L, its “pure knowledge set” containing problems

that layer l can solve but no one else can screen, its “screened (by j) knowledge set”

containing problems that layer l can solve and layer j can screen (for each j ∈ L), and the

“known unknowns” which layer l can screen but no one can solve. In fact, Lemma 1 will

imply that, in an optimal organization, these sets are, respectively, Al∩(∩j<l−1(Bj \Aj)c),
Al ∩ (Bj \ Aj) for each j < l − 1 and (Bl \ Al) ∩ (∩j>l+1A

c
j).

Specifically, Lemma 1 shows that (i) there is no duplication of effort: if layer k knows

how to solve (resp. screen) a problem, there is no point in bearing the cost of having

layer l > k learn how to solve or screen (resp. screen but not solve) it too, (ii) the last

layer does not learn how to screen problems that it cannot solve and (iii) no layer learns

how to screen problems that the next layer can solve (since such problems will be passed

anyway).

Lemma 1 If O is an optimal organization, then

1. Bl ∩ Ak = ∅ and (Bl \ Al) ∩Bk = ∅ for each k, l ∈ L such that k < l,12

2. BL \ AL = ∅ and

3. Bi ∩ Ai+1 = ∅ for each 1 ≤ i < L.

Thus, the partition of the union of the screening sets of an optimal organization we

consider is

C = {Al ∩ (Bj \ Aj) : l, j ∈ L and j < l − 1} ∪ {Al ∩ (∩j<l−1(Bj \ Aj)c) : l ∈ L}

∪{(Bl \ Al) ∩ (∩j>l+1A
c
j) : 1 ≤ l < L}

with the usual convention that the intersection of an empty family of subsets of Ω is Ω

itself.13 Lemma 1 implies that C is indeed a partition of ∪l∈LBl.

12In particular, Al ∩Ak = ∅ and (Bl \Al) ∩ (Bk \Ak) = ∅ for each k, l ∈ L such that k ̸= l.
13The sets in C can be used to describe an organization in place of the knowledge and screening sets

{Al, Bl}l∈L, since the latter can be obtained from the former. Indeed, for each l ∈ L, Al =
(
∪j<l−1

(Al ∩ (Bj \ Aj))
)
∪
(
Al ∩ (∩j<l−1(Bj \ Aj)

c)
)
and BL = AL, and, for each 1 ≤ l < L, Bl \ Al =(

∪j>l+1 (Aj ∩ (Bl \Al))
)
∪
(
(Bl \Al) ∩ (∩j>l+1A

c
j)
)
and Bl = Al ∪ (Bl \Al).
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The results below will imply that we may assume that the elements of C are intervals

for the purposes of obtaining optimal organization. In addition, there are no gaps between

the knowledge and screening sets of different layers (or equivalently, between the elements

of C) and the union of these sets contain zero. The formal statement of the “no gaps”

result is as follows. Let ai = minBi for each i ∈ L with the standard convention that

min ∅ = ∞. Furthermore, let bi = maxBi for each i ∈ L with the standard convention

that max ∅ = −∞.

Theorem 2 If O is an optimal organization, then ∪Li=1Bi = [min1≤i≤L ai,max1≤i≤L bi)

and min1≤i≤L ai = 0.

Theorem 2 implies that ∪l∈LBl = ∪C∈CC is an interval. We now argue that each

C ∈ C can be taken to be an interval as well, and we identify the criterion according to

which C is ordered. This is important because a crucial lesson from Garicano (2000) is

that the frequency of the problems a manager knows how to solve is decreasing in the

layer to which he belongs. As we will see, the correct generalization of this result is that

the frequency of problems contained in each C ∈ C is increasing in the marginal cost to

the organization of increasing the size of C. For each C ∈ C, let the cost of learning C be

cC defined by

cC =


αlc+ αjξ if C = Al ∩ (Bj \ Aj) for some l, j ∈ L with j < l − 1,

αlc if C = Al ∩ (∩j<l−1(Bj \ Aj)c) for some l ∈ L,

αlξ if C = (Bl \ Al) ∩ (∩j>l+1A
c
j) for some l ∈ L.

It then follows that ∑
l∈L

αlνl =
∑
C∈C

cCµ(C),
14 (2)

i.e. cC is the marginal cost to the organization of increasing the size of C.

To state the result formally, for each C,C ′ ∈ C, we write C < C ′ if ω < ω′ for each

ω ∈ C and ω′ ∈ C ′. Moreover, when O and Ô are two organizations with the same

number of layers, i.e. L = L̂, the sets in Ĉ are in a one-to-one relationship with those in

C, namely, Âl ∩ (B̂j \ Âj) corresponds to Al ∩ (Bj \Aj) and so on, so that Ĉ corresponds

to C for each C ∈ C and, thus, Ĉ = {Ĉ : C ∈ C}.

Theorem 3 Let O be an optimal organization. Then:

14See Lemma A.10 in the Appendix for a proof.
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(a) For each C,C ′ ∈ C, if cC > cC′, then C < C ′.

(b) If C = {C1, . . . , C|C|} is such that cC1 ≥ · · · ≥ cC|C|, then there exists an optimal

organization Ô such that L̂ = L, Ĉ1 < · · · < Ĉ|C|, Ĉ is an interval and F (Ĉ) = F (C)

for each C ∈ C, ŷ = y and l̂i = li for each i ∈ L.

Theorem 3 says that C must be ordered according to the learning costs, namely that

C is decreasing with cC . If all the learning costs are different, then this gives us an

ordering of C. If, instead, cC = cC′ for some C,C ′ ∈ C, then optimality does not require

that C < C ′ or that C ′ < C; hence, it is possible that some sets in C are unordered

in some optimal organization. However, C and C ′ can be ordered without any loss to

obtain an optimal organization Ô where all the sets in the partition Ĉ of ∪l∈L̂B̂l (which

will be equal to ∪l∈LBl) are intervals and are, therefore, ordered. Moreover, any ordering

C1 < · · · < C|C| can be obtained provided that cC1 ≥ · · · ≥ cC|C| .

A key result in Garicano (2000) is “management by exception”: production workers

solve the most common problems, while higher levels of management deal with more and

more exceptional or infrequent problems. Theorem 3 implies this result when Bl = Al for

all l ∈ L. Indeed, in this case, every problem that requires some time of a higher layer

also requires the same time of a lower layer; hence αj > αk and hence cAj
> cAk

whenever

j < k. However, we note that when screening is possible, Theorem 3 shows that it is not

the hierarchical position of a manager that determines the frequency of the problems that

he solves, but rather the marginal cost to the organization of those problems. Thus, even

a top manager may deal with frequent problems if they are screened and sent directly to

him.

The following general results on the order C are a corollary of Theorem 3. First, the

problems that are solved by a layer l and were screened by a previous layer must be more

frequent than the problems that are solved by that layer l but not screened by any other

layer. Second, for a given layer, the problems that are screened to be solved by another

layer must be more frequent than the problems that are screened and discarded. Third, in

the case where learning to screen is cheaper than learning to solve problems, the problems

that are solved by a given layer but not screened by any layer must be more frequent than

the problems that are screened by that layer but not solved by any layer.

Corollary 1 Let O be an optimal organization. Then:
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(a) For each l ∈ L and j < l − 1, Al ∩ (Bj \ Aj) < Al ∩ (∩k<l−1(Bk \ Ak)c).

(b) For each j ∈ L and l > j + 1, Al ∩ (Bj \ Aj) < (Bj \ Aj) ∩ (∩k>j+1A
c
k).

(c) If ξ < c, then for each l ∈ L, Al ∩ (∩j<l−1(Bj \ Aj)c) < (Bl \ Al) ∩ (∩j>l+1A
c
j).

Theorem 3 is established by changing sets C,C ′ ∈ C to Ĉ, Ĉ ′ so that F (Ĉ) = F (C)

and F (Ĉ ′) = F (C ′). An alternative variation is obtained by changing sets in C so that,

for each layer l ∈ L, νl remains unchanged. Using this variation, we obtain another result,

Theorem A.1 in the Appendix, concerning the order of sets. As its corollary, we obtain

that the knowledge set of the workers (layer 1) contains the most frequent problems. In

addition, for j < k, the problems that are screened by layer j and sent to some layer l

(resp. discarded) are more frequent than the problems that are screening by layer k and

sent to the same layer l (resp. discarded). When π = h, we can establish further orders:

for j < k, the problems that are solved by layer j but not screened by any layer are more

frequent than the problems solved by layer k but not screened by any layer. Finally, still

assuming π = h, the problems that are solved by a given layer are more frequent than

the problems that are screened but not solved by that layer.

Corollary 2 Let O be an optimal organization. Then:

(a) A1 < C for each C ∈ C \ {A1}.

(b) For each j, k ∈ L such that j < k, Al∩ (Bj \Aj) < Al∩ (Bk \Ak) for each l > k+1.

(c) For each j, k ∈ L such that j < k, (Bj \Aj)∩ (∩l>j+1A
c
l ) < (Bk \Ak)∩ (∩l>k+1A

c
l ).

If π = h, then in addition:

(d) Ak ∩ (∩j<k−1(Bj \ Aj)c) < Al ∩ (∩j<l−1(Bj \ Aj)c) for each k, l ∈ L with k < l.

(e) C < C ′ for each l ∈ L, C ∈ C(Al) and C ′ ∈ C(Bl \ Al), where

C(Al) = {Al ∩ (Bj \ Aj) : j < l − 1} ∪ {Al ∩ (∩j<l−1(Bj \ Aj)c)}

C(Bl \ Al) = {Aj ∩ (Bl \ Al) : j > l + 1} ∪ {(Bl \ Al) ∩ (∩j>l+1A
c
j)}.

Corollary 2 demonstrates that some features of “management by exception” survive

in the general setup. First, there is “management by exception” in the sense that higher
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layers of management learn to screen rarer problems. However, this conclusion holds only

when comparing problems that are sent to the same layer (or discarded because no one can

solve them). Second, there is “management by exception” in the sense that higher layers

of management learn to solve rarer problems. However, this conclusion holds only when

we consider those problems that are not screened by anyone and requires that screening

problems is as time consuming as solving them.

The previous results give already enough structure so that optimal organizations can

be obtained by solving the problem of maximizing output by choosing the number L of

layers, an ordering of C (i.e. to write C = {C1, . . . , Cm} with C1 < · · · < Cm and m = |C|),
and the size µ(C) of each C ∈ C such that

∑
C∈C µ(C) ≤ µ(Ω). Indeed, letting y(L, ψ, µ)

be the output of an organization with L layers, an ordering ψ of C, and a vector of sizes

µ = (µ(C))C∈C, an η-optimal organization resolves its trade-offs by solving:

max
L,ψ,µ

y(L, ψ, µ)− η(L− 1) subject to
∑
C∈C

µ(C) ≤ µ(Ω).15

When the goal is to obtain an η-optimal organization, then the set of relevant numbers

of layers is finite since the output of any organization is bounded above by 1. Thus, η-

optimal organizations exist when µ(Ω) <∞, i.e. when Ω is bounded.

Theorem 4 If Ω is bounded, then an η-optimal organization exists.

5 Vertical versus horizontal specialization

In this section we show that the cost ξ of learning how to screen problems, which we regard

as a measure of the difficulty of matching of problems with solutions, is a key parame-

ter shaping the organization of specialization. Indeed, our results show that the optimal

organization features vertical specialization when ξ is high (Section 5.1), horizontal spe-

cialization when ξ is low (Section 5.2), and both vertical and horizontal specialization for

intermediate values of ξ (Section 5.3).

When the costs h and π are small, the coordination costs that Becker and Murphy

(1992) identified as limits to specialization are just the costs of learning how to solve

and screen problems and the cost of adding layers. In this case, which we consider in

Section 5.4, we provide a more detailed characterization of optimal organizations and

15A lexicographically optimal organization picks the smallest L that solves this problem with η = 0.
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show that the extent of the organization’s knowledge is limited “by the extent of the

market” (i.e. the organization knows everything there is to know) and that the workers

have no knowledge, i.e. workers and managers are fully specialized. As communication

costs become very small, superstar managers emerge with unlimited span of control,

independently of whether the organization is horizontal or vertical. Moreover, when there

is a cost η of adding layers, the optimal organization has only two layers and vertical and

horizontal specialization become indistinguishable.

The diversity of optimal organizational forms matters for the way organizations re-

spond to shocks. In particular, the response of key observable characteristics such as

wages and size of layers depend on whether the organization is horizontal or vertical.

Moreover, a fall in h causes organizations to become more vertical, whereas a fall in ξ

causes organizations to become more horizontal. This and other implications of our results

for empirical work are discussed in Section 5.5.

5.1 Garicano (2000) revisited

As we have pointed out, Garicano’s (2000) setting is obtained when π = h and Bl = Al for

each l ∈ L. The latter condition is, however, endogenous: It is up to the organization to

decide on whether or not the screening set of a layer equals its knowledge set. As we will

see in Section 5.2, if ξ is small relative to c, then optimal organizations will not feature

Bl = Al for each l ∈ L.

Here we show that if, in addition to π = h, the cost ξ of learning how to screen

problems equals the cost c of leaning how to solve them, then we have that Bl = Al for

each l ∈ L. Indeed, in this case, there is no point in screening: Solving problems costs

the same (in terms of time h = π and learning costs c = ξ) as screening but, in contrast

to screening, solving problems adds to the output of the organization.

Once we reach the conclusion that Bl = Al for each l ∈ L, we are in the framework of

Garicano (2000) and we obtain his conclusions from our results. Namely, there is vertical

specialization in which the most frequent problems are solved by layer 1 (the workers), the

next most frequent by layer 2 (the lowest level of managers) and so on. The organization

is pyramidal in the sense that layer 2 has more people than layer 3 and so on, so that

higher levels of management have smaller numbers of people. If, in addition, h < 1 or

A1 ̸= ∅, then layer 1 also has more people than layer 2.
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Corollary 3 If O is an optimal organization, π = h and ξ = c, then

(a) Bl = Al for each l ∈ L,

(b) A1 < · · · < AL,

(c) β2 > · · · > βL and

(d) β1 > β2 if h < 1 or A1 ̸= ∅.

5.2 Optimal organizations when ξ is small

We now contrast the conclusions of Corollary 3 with those that arise when the cost of

learning how to screen problems is sufficiently small. In this case, the optimal organization

features horizontal rather than vertical specialization: effectively, workers solve the most

common problems and send each remaining one to a manager who can solve it, without

wasting the time of any manager who cannot.

We characterize optimal organizations when ξ is small under the following two assump-

tions. When Ω is bounded, let ω̄ ∈ R++ be such that Ω = [0, ω̄) and f(ω̄) = limω→ω̄− f(ω).

Our first assumption requires the marginal value of knowledge to be bounded away from

zero.

(A1) Ω is bounded and f(ω̄) > 0.

Our second assumption requires the marginal value of knowledge at zero to be above the

cost of learning how to solve problems so that it always pays to learn how to solve some

problems.

(A2) f(0) > c.

Theorem 5 describes all the possible optimal organizations when ξ is small. We fo-

cus on η-optimal organizations because lexicographically optimal organizations may fail to

exist; nevertheless, lexicographically optimal organizations also satisfy most of these prop-

erties when they do exist. We vary ξ and keep all the remaining parameters (Ω, f, c, h, π

and η) fixed in such a way that the basic assumptions of Section 3, as well as (A1) and

(A2), are satisfied.

Theorem 5 If (A1) and (A2) hold, then there exists ξ̄ > 0 such that, if 0 < ξ < ξ̄ and

O is an η-optimal organization with L ≥ 2, then:
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1. B1 \ A1 = (A1 ∪ A2)
c,

2. Bl \ Al = ∅ for each l > 1,

3. A1 < Al < A2 < (B1 \ A1) ∩ (∩j>2A
c
j) for each l > 2,

4. there exists a bijection g : {3, . . . , L} → {3, . . . , L} such that Ag(3) < · · · < Ag(L),

5. µ(Ag(3)) < · · · < µ(Ag(L)) < µ(A2), F (Ag(3)) > · · · > F (Ag(L)) > F (A2) − ξ
ch

and

F (Ag(L)) > η, and

6. β1 >
∑L

l=2 βl if h < 1.

In addition, for each bijection g : {3, . . . , L} → {3, . . . , L}, there is an optimal organiza-

tion O such that Ag(3) < · · · < Ag(L).

The organizations described in Theorem 5 differ considerably from those of Corollary

3 (obtained when ξ = c and π = h) when L ≥ 2. When ξ is sufficiently small, layer 1 (the

workers) learns how to screen all problems it cannot solve except those that layer 2 knows

how to solve. There is no point in layer 1 screening problems that layer 2 can solve since

any problem that layer 1 does not screen already gets passed to layer 2. Even though

layer 1 does not formally screen the problems that layer 2 can solve (i.e. B1 ∩ A2 = ∅),
effectively layer 1 knows that layer 2 can solve them since A2 = Bc

1. Thus, all the problems

that layer 1 faces, which, due to specialization, are those faced by the organization, are

passed directly to the layer that can solve them or are abandoned if no one can solve

them.16

Although there are several optimal organizations when L > 3, these are equivalent up

to the relabelling of layers. Thus, we can assume that A3 < . . . < AL < A2. Under this

normalization (or if L ≤ 3), layer 1 knows how to solve the most frequent problems as in

Corollary 3 but it is layer 3, not layer 2, that solves the next most frequent problems. In

fact, layer 2 solves the least frequent problems that the organization solves.17 Moreover,

16See the rightmost part of Figure 1 for a graphical illustration of the resulting flow of information

when L = 4 and no problems are abandoned. Figure 1, in its leftmost part, also illustrates the flow of

information in a hierarchy. See Section 5.3 for details on the computations behind the figure.
17We can interpret layer 2 as the top managers who deal only with exceptional problems that no one

else in the organization can even identify.
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layer 2 is the most knowledgeable of the managers in the sense of having the largest

knowledge set. Problems that are screened but not solved are the least frequent of all.

Some intuition for the above properties is as follows. Layer 1 screens all problems

except those that layer 2 solves because screening is sufficiently cheap. Screening such

problems by layer 1 saves the time of managers in layer 2; since the marginal cost of

screening goes to zero as ξ goes to zero, it is optimal for layer 1 to screen all such

problems. Hence, for each l ̸= 1, layer l does not screen any problem that it does not

solve and, since all problems are sent to the correct layer, αl = hF (Al), i.e. all its helping

time is devoted to solving the problems in its knowledge set.

Layer 2 is the most knowledgeable of the managers in order to minimize the learning

costs of screening: Since layer 1 screens all problems it cannot solve except those solved

by layer 2, its screening cost is ξ(ω̄−µ(A1)−µ(A2)); hence the size of layer 2’s knowledge

set µ(A2) should be at least as large as µ(Al) for each l ≥ 3 because these layers are

otherwise interchangeable. In fact, we show that this inequality must be strict for η-

optimal organizations.

It then follows that Al < A2 for each l ≥ 3. If not, we can swap a more common

problem from A2 with a less common one from Al such that the sizes of the two sets remain

µ(A2) and µ(Al) respectively, but the frequency of problems sent to layer 2 decreases by

the same amount that the frequency of problems sent to layer l increases. Ultimately,

this allows the organization to transfer people to layer l from layer 2 and decrease total

learning costs of the organization, which are β1(cµ(A1) + ξµ(B1 \ A1)) +
∑L

i=2 βicµ(Ai),

since µ(A2) > µ(Al) for each l ≥ 3.

Problems that are screened but not solved are the rarest problems of all, i.e. A2 < (B1\
A1) ∩ (∩j>2A

c
j). This follows from Theorem 3: we have cA2 = cα2 > ξ = c(B1\A1)∩(∩j>2Ac

j)

because α2 is bounded away from zero as ξ goes to 0. Indeed, if not, then α2 = hF (A2)

would converge to zero with ξ and, thus, so would µ(A2); since µ(A2) = max2≤l≤L µ(Al),

the output of the optimal organization would converge to the output of an organization

with just one layer, contradicting the assumption that the optimal organization has at

least two layers.18

Regarding whether the optimal organization is pyramidal, recall that αl = hF (Al) for

18Since there is a cost η of adding layers, if the output of the optimal organization converges to the

output of the organization with one layer, eventually the optimal organization must have one layer.
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each l ̸= 1. If h < 1, it then follows by part 5 of Theorem 5 that β1 > β3 > · · · > βL >(
chη
chη+ξ

)
β2.

19 Thus, the organization has a quasi-pyramidal structure in the sense that

the more infrequent the problems that a group of managers solves, the smaller the group

is; the “quasi” qualification is then needed because β2 may be bigger than βL but not by

much when ξ is small.

However, the optimal organization is not a hierarchy when ξ is small because there

is no flow of information along the organization; instead the information is directed by

layer 1 to the layer that can solve each problem. Therefore, the relevant comparison is

between the size of the workers β1 and that of the managers
∑L

l=2 βl. As Theorem 5

shows, the former is bigger than the latter. Thus, in this sense, the optimal organization

has a pyramidal structure.

The increase in the expected output of the optimal organization as compared with the

best hierarchy can be significant: When Ω = [0, 1), f(ω) = 1.5 − ω for each ω ∈ [0, 1),

c = 1.4, h = 0.5, η = 0.01 and ξ = ξ̄/2, where ξ̄ ≃ 0 is given by Theorem 5, the

expected output net of costs of adding layers Y (expected net output, henceforth) of the

optimal organization is 83.59% higher than that of the best hierarchy (i.e. the organization

satisfying the properties of Corollary 3 that, at the same parameter values, maximizes

expected net output).20 Thus, screening problems can lead to a significant improvement

in the organization of knowledge in production.

In the above example, there are L = 8 layers in the optimal organization, expected

output is y ≃ 0.60 and expected net output is Y ≃ 0.53. Moreover, with µ = (µ1, . . . , µ8)

and µi = µ(Ai) for each 1 ≤ i ≤ 8,

µ ≃ (0, 0.18, 0.12, 0.12, 0.13, 0.14, 0.15, 0.16) and

β ≃ (0.5, 0.05, 0.08, 0.08, 0.08, 0.07, 0.07, 0.06).

In contrast, the best hierarchy has L = 3 layers, expected output is y ≃ 0.31, expected

net output is Y ≃ 0.29, µ ≃ (0.05, 0.51, 0.44) and β ≃ (0.45, 0.41, 0.14). The fraction of

workers is similar in the two organizations (between 45%− 50%) and workers know how

19To see this, note that βl =
αl

γ = hF (Al)
γ for each l > 1; then F (AL) > F (A2) − ξ

ch implies that

β2 < βL + ξ
cγ =

(
1 + ξ

chF (AL)

)
βL <

(
1 + ξ

chη

)
βL since F (AL) > η.

20Specifically, ξ = 6.281367579349382e−10. If we focus instead on expected output y, then the increase

in output obtained by moving from the best hierarchy to the optimal organization raises to 94.34%. The

python codes used in this computation are in the supplementary material to this paper.
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to solve only a small fraction of problems (0%− 5%). The latter arises because the cost

c = 1.4 of learning how to solve problems is relatively high: Indeed, recall that y = θ
γ
, and

note that the coefficient of µ1 in θ is c and that of µl, for each l > 1, is cαl ≤ ch = 0.7.

This makes it important to add layers to reduce the costs of knowledge. In addition, when

layer 1 screens all the problems that its members and those of layer 2 cannot solve, the

organization of knowledge is more efficient as manifested in a decrease in the amount of

time per problem that layers l > 1 spend helping layer 1.

To see the two effects in detail, consider, in addition to the optimal organization O∗

and the best hierarchy O and respective expected net outputs Y ∗ and Y , an organization

Ô with L̂ = L = 3, Â1 = A1 = [0, 0.05), Â2 = A2 = [0.05, 0.56) and Â3 = A3 = [0.56, 1)

as in O but with B̂1 \ Â1 = [0, 1) \ (Â1 ∪ Â2) = Â3, B̂2 = Â2 and B̂3 = Â3 as in O∗.

Then, α̂2 = hF (A2) < h(F (A2) + F (A3)) = h(1 − F (A1)) = α2 and α̂3 = hF (A3) =

h(1− F (A1)− F (A2)) = α3, showing that by adding screening reduces the helping costs

of layer 2. This results in an increase of net output of (Ŷ − Y )/Y = 48% or 57% of the

total increase (Y ∗ − Y )/Y . The remaining 43% of this increase are due to the increase

in the number of layers of Ô to reach O∗ and corresponding optimal choice for their

knowledge sets.

Theorem 5 describes the optimal organizations when there are at least two layers. If

there is only one layer, then the organization is trivial, with B1 = A1 = [0, µ∗
1) where

µ∗
1 solves max0≤µ1≤ω̄(F (µ1) − cµ1) and the resulting output is y1 = F (µ∗

1) − cµ∗
1, where

F (ω) = F ([0, ω)) for each ω ∈ Ω. When it is optimal to have only one layer, there is,

strictly speaking, no role for organization. In the supplementary material to this paper

we show that if communication is not too costly (i.e. h < 1) and organizations with one

layer do not have full knowledge (i.e. f(ω̄) < c), then any optimal organizations has at

least two layers when ξ is sufficiently small and (A1) holds. We also show that under

(A1), (A2) and these two conditions, there is no lexicographically optimal organization

when ξ is sufficiently small.

5.3 Optimal organizations for intermediate values of ξ

Our previous results fully characterize optimal organizations when the cost ξ of learning

how to screen problems is equal to the cost c of learning how to solve them and also when

ξ is sufficiently close to zero. In the former case, the optimal organization is a hierarchy
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featuring vertical specialization; in the latter it is the one characterized by Theorem 5,

a fully screening organization henceforth, featuring horizontal specialization. Our goal

in this section is to illustrate numerically the properties of the optimal organization for

intermediate values of ξ and, in particular, how the optimal organization transforms from

a hierarchy to a fully screening organization as ξ declines from c to zero.

The main conclusion is that, for intermediate values of ξ, novel organizational forms

arise as optimal. For most of our simulations, the optimal organization for intermediate

values of ξ is a hybrid organization illustrated in the middle part of Figure 1, which

contrasts it with both the hierarchic and the fully screening organizations that are optimal

when ξ is not intermediate (see below for details on the computations and parameter

values). In such hybrid organization, some problems are screened by layer 1 and sent

1 2 3

ξ ∈ {0.8, 0.9, 1}

1 2 3

4

ξ ∈ {0.5, 0.6, 0.7}

1

2

3

4

ξ ∈ {0.1, 0.2, 0.3, 0.4}

Figure 1: Flow of information in optimal organizations when (c, h, b) = (1, 0.5, 1).

directly to a layer, layer 4, that solves only these problems; in contrast, the problems that

layer 1 neither solves nor screens pass through the remaining layers as in a hierarchy, i.e.

are sent to layer 2, which in turn send those it cannot solve to layer 3.

The above three organizational forms can, broadly speaking, match real-world orga-

nizations. The following scenario illustrates the three of them and the transition between

organizational forms. Consider a firm in the services sector (e.g. an online wine shop)

organized as a hierarchy with three layers. As ξ falls (which could happen over time as

the organization gets better at classifying the problems it faces), it might make sense

to create a new layer, layer 4, by having layer 1 learn how to distinguish between prob-

lems that are IT-specific (e.g. when the webpage is not working properly) and those that

aren’t; the resulting organization is then hybrid, with layer 1 sending IT-specific problems

directly to IT managers (layer 4) and non-IT-specific problems to layer 2, which in turn

will send those problems that fall outside their remit (e.g. issues with product design or
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marketing) to layer 3. As ξ falls even further, it might likewise make sense to have layer

1 learn how to distinguish the problems (e.g. accounting issues) that layer 2 can solve

from those that layer 3 can, thus obtaining a fully screening organization with customer

services (layer 1) dealing with initial queries and directing them to the IT, accounting or

marketing departments as appropriate.

As well as rationalizing the structure of real-world organizations, our simulations gen-

erate predictions about the response of empirically relevant variables (e.g. the wage and

size of each layer) to changes in the screening cost. In the remainder of this section we

discuss how the optimal organization changes as a function of the cost ξ of learning how

to screen problems. In particular, we will be interested in (i) the knowledge and screening

sets of each layer for different values of ξ and their ordering with respect to the frequency

of the problems they contain, (ii) comparing the wage and size distribution across differ-

ent organizational forms, and (iii) comparing the response to changes in ξ across different

organizational forms.

The conclusion that an optimal organization is a hierarchy when ξ = c requires also

that π = h, which we assume throughout this section. Even when the number of layers

is only 4, the number of possible orderings consistent with our results is already quite

large. For this reason, and because the maximum number of layers that have been used

in empirical studies is 4, we assume that L̄ = 4 is the maximum number of possible layers.

We focus on lexicographically optimal organizations which, given such an upper bound

on the number of layers, always exist.21 For our simulations, we consider Ω = [0, 1) and

an affine density f defined by f(ω) = a − bω for each ω ∈ Ω, with b > 0 for f to be

strictly decreasing and a = 2+b
2

for f to be a density. We set b = 1, h = 0.5, and c = 1

(the baseline case henceforth).22

Figure 2 illustrates the optimal organization at different values of ξ.23 The panels

on the top row show the size of each element of C that is nonempty for some value of

ξ. When ξ ∈ {0.8, 0.9, 1}, the optimal organization is a hierarchy with 3 layers. When

ξ ∈ {0.1, 0.2, 0.3, 0.4}, the optimal organization is fully screening with 4 layers, the order

being A1 < A4 ∩ (B1 \ A1) < A3 ∩ (B1 \ A1) < A2.
24 In each case, the ordering and the

21See Section A.10 in the Appendix for details on computing lexicographically optimal organizations.
22Other configurations of parameters are considered in the supplementary material to this paper.
23Variables related to layer 1 are red; layer 2, blue; layer 3, yellow; and layer 4, black.
24As Theorem 5 shows, the names of layers 3–L in a fully screening organization are arbitrary. So

we could equally well relabel the layers to have A1 < A3 ∩ (B1 \ A1) < A4 ∩ (B1 \ A1) < A2 but the
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Figure 2: Optimal organization for different values of ξ when (c, h, b) = (1, 0.5, 1).

sizes of the knowledge and screening sets, as well as the relative sizes and learning costs

of each layer, are as in the theoretical results presented in Sections 5.1 and 5.2.

Comparing hierarchies to fully screening organizations: Regarding learning costs νi =

cµ(Ai)+ξµ(Bi\Ai) as a measure of wages (as in e.g. Caliendo, Monte, and Rossi-Hansberg

(2015)), there is greater wage inequality between workers and managers in fully screening

organizations, and this inequality is increasing as screening becomes cheaper. Inequality

among managers is greatest when the organization is fully screening but ξ is relatively

high (in that case, the organization uses the knowledge of the top managers as much as

possible to save on screening costs). The number of workers (and hence managers) in

the organization is roughly constant as the cost of screening changes; however, for fully

screening organizations, managers are more equally distributed across the different layers

than in a hierarchy, and this distribution becomes even more equal as the cost of screening

falls.

For intermediate values of the screening cost, i.e. when ξ ∈ {0.5, 0.6, 0.7}, the optimal

organization takes the hybrid form. It has 4 layers; only layer 1 screens problems that

it does not solve, all such problems are solved by layer 4, and layer 4 only solves such

ordering we adopted here is more convenient for the comparison of the different organizational forms in

this section.
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Figure 3: Knowledge, size and wage of layers when (c, h, b) = (1, 0.5, 1).

problems: B1 \ A1 = A4 ∩ (B1 \ A1) = A4. Layers 2 and 3 solve the problems that layer

1 does not screen. The order is A1 < A4 ∩ (B1 \ A1) < A2 < A3 ∩ (B1 \ A1)
c and, thus,

layer 1 solves the most common problems, followed by layers 4, 2 and 3 — layer 3 is, in

this sense, the one with the top managers of the organization.

Figure 3 shows, for the three types of organization, the knowledge sets of each layer on

the horizontal axis and the corresponding size and wage of the layer on the vertical axis. It

can clearly be seen that for the hybrid organization, the expansion of A4∩(B1\A1) is made

mostly at the expense of A1: The least common problems that were solved by the workers

in layer 1 when ξ = 0.8 (i.e. when the optimal organization was still a hierarchy), are

now being solved by the managers in layer 4. When screening becomes sufficiently cheap,

i.e. when ξ = 0.4, the organization becomes fully screening with A1 < A4 ∩ (B1 \ A1) <

A3 ∩ (B1 \ A1) < A2. In this case, layer 1 screens some problems that were previously

solved by layer 2 and sends them directly to layer 3; layer 3 solves only these problems,

with layer 2 taking over the rarest problems.

Recall that the distribution of problems F has a strictly decreasing density; thus in

Figure 3 the layers appear on the horizontal axis in decreasing order with respect to

the frequency of the problems they solve. It can then be seen that only hierarchies are

pyramidal in the sense of layers solving less frequent problems having fewer members.

However, regarding layer 3 as the top managers in the hybrid organization (as they are

the ones who solve the least frequent problems) and layers 2 and 4 as those of middle

managers, the organization is then pyramidal in the sense of β3 < β2 + β4 < β1 but not

in the sense of β3 < β2 < β4 < β1. When the optimal organization is fully screening, it is

quasi-pyramidal as defined in Section 5.2 (i.e. β3 < β4 < β1 reflecting A1 < A4∩(B1\A1) <

A3 ∩ (B1 \A1)) and is pyramidal in the sense that there are more workers than managers

28



(i.e.
∑4

i=2 βi < β1).
25 In addition, only in fully screening organizations do wages reflect the

ordering of the layers with respect to the rarity of the problems they solve. In particular,

when the hierarchy is optimal, A1 < A2 < A3 but ν1 < ν3 < ν2.
26

The response of the wage and size of each layer to a fall in the cost of screening also

differs by organizational form. As screening becomes cheaper over the range where the

optimal organization is hybrid, the wage of layer 4 increases while the wages of the other

layers decrease. In contrast, when the optimal organization is fully screening, a fall in the

cost of screening increases the wages of layers 3 and 4 and decreases those of layers 1 and

2. Cheaper screening means that the organization screens more problems; thus the wages

of those layers that solve the screened problems go up. In addition, as screening becomes

cheaper, the wage of the layer that does the screening falls.

As for personnel changes in the hybrid organization as the cost of screening falls, there

is an increase in the number of people in the new layer 4 at the expense of all the other

layers, but mostly of layers 1 and 2. In contrast, for fully screening organizations, a fall

in the cost of screening increases the number of managers in layers 3 and 4 at the expense

of the number of managers in layer 2. Cheaper screening means that the organization

screens more problems; thus, the layers that solve these problems increase in size.

In summary, as the cost of screening falls, we see larger organizations (i.e. an increase

in the number of layers), direct flows of information (in addition or instead of sequential

flows), quasi-pyramidal organizations where the layer of top managers may be larger than

the previous one, and less knowledgeable workers.

In the supplementary material to this paper, we consider other combinations of the

parameters in comparison to the baseline case and observe qualitatively similar patterns.

One interesting case that provides some additional insight is when the density is steeper

than in the baseline case (b = 1.9). Here, the transformation of a hybrid organization into

a fully screening one has some intermediate steps, illustrated in Figure 4. In this case,

the optimal organization is hierarchical when ξ ∈ {0.6, . . . , 1}, hybrid when ξ ∈ {0.4, 0.5}
25The emergence of novel optimal organizational forms other than hierarchies implies adjustments to

standard notions such as that of pyramidal structure, which is specific to each organizational form.
26We have checked all parameter values such that, when ξ = c, the optimal organization has 3 layers in

the range c ∈ {0.1, 0.2, . . . , 2}, h ∈ {0.1, 0.2, . . . , 1} and b ∈ {0.1, 1, 1.9} such that b > 2(c− 1) (the latter

implying that the best organization with 1 layer has strictly positive output and improves the efficiency

of our code). In none of them did we obtain ν1 < ν2 < ν3.
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but only fully screening when ξ ≤ 0.02.
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Figure 4: Flow of information in optimal organizations when (c, h, b) = (1, 0.5, 1.9).

When ξ = 0.3, layer 1 screens and sends directly to layer 3 some problems that were

solved by layer 2. However, screening is not sufficiently cheap for layer 1 to screen all

problems to be solved by layer 3; hence, both A3 ∩ (B1 \ A1) and A3 ∩ (B1 \ A1)
c are

nonempty. The order is A1 < A4 ∩ (B1 \ A1) < A3 ∩ (B1 \ A1) < A2 < A3 ∩ (B1 \ A1)
c.

When ξ ∈ {0.1, 0.2}, screening is now sufficiently cheap for layer 1 to screen all prob-

lems solved by layers 3 and 4, as in a fully screening organization, but (B2 \ A2) ∩ Ac4 is

nonempty. This is because when b = 1.9, some problems are so rare that they are not

worth solving when it is sufficiently cheap to screen them. The reason that it is layer 2

screening these problems instead of layer 1 is the usual trade-off between layer 1’s learning

costs and layer 2’s helping time. The order is A1 < A4∩(B1\A1) < A3∩(B1\A1) < A2 <

(B2 \ A2) ∩ Ac4. For a real-world example, consider an organization that uses a chatbot

to deal with customers’ queries. Customers with well-defined problems are sent to the

appropriate department; those who select “all other queries” are passed on to a general

customer service agent. If the problem is very rare, nothing can be done – but crucially,

it is the customer service agent, not the chatbot, who is able to decide which customers

to send away.

5.4 The case of small helping costs h

When h is close to zero, communicating solutions to problems is very cheap and one of

the trade-offs determining the optimal degree of specialization is effectively shut down.

This allows us to derive additional characteristics of optimal organizations. The case of

small h may also be relevant to rationalize changes to firms’ organization and the wage

distribution as argued in Garicano and Rossi-Hansberg (2015) since recent decades have
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witnessed an improvement in communication technology.

Theorem 6 below establishes that, when h is small, optimal organizations have full

knowledge and its workers have no knowledge. In other words, it shows that the fraction

of problems that are abandoned (i.e. not solved) by an optimal organization is zero and

that there is full specialization in the sense that managers (i.e. layers other than layer 1)

specialize not only in helping layer 1 but also in learning how to solve or screen problems.

This latter aspect may be interpreted as automation or as quite mechanical work by

the workers. In addition, for small enough η > 0, η-optimal organizations are fully

characterized by the organization O∗
2 with two layers, full knowledge and full specialization

in knowledge acquisition: L = 2, A1 = B1 = ∅ and A2 = B2 = Ω. In general, when h is

low, managers have a very high span of control27 and their wages, measured by learning

costs, relative to those of workers are also very high — managers are superstars.

Analogously to Theorem 5, we vary h and keep all the remaining parameters (Ω, f, c, ξ, π

and η) fixed in such a way that the basic assumptions of Section 3, as well as (A1), are

satisfied. Recall that y1 is the highest output obtained by an organization with only one

layer.

Theorem 6 If (A1) and η < 1− y1 hold, then there exists h̄ > 0 such that, if 0 < h < h̄

and O is an optimal organization, then:

1. F (∪l∈LAl) = 1,

2. B1 = ∅, and

3. O = O∗
2 if O is η-optimal.

Part 3 of Theorem 6 does not extend to the case of lexicographically optimal orga-

nizations. This follows from Theorem 7 below which focuses on the simpler case where

optimal organizations are hierarchies (i.e. ξ = c and π = h). It roughly shows that,

when h is sufficiently small, lexicographically optimal organizations have two layers when

c
f(ω̄)

is small, three layers when c
f(ω̄)

is intermediate and four or more layers when c
f(ω̄)

is high.28 This may explain why many firms in construction have two layers (workers

27By Theorem 1, for each l ∈ L \ {1}, βl

β1
= αl ≤ h.

28This paper is agnostic about which one of the two notions of optimality is better, the punch line

here being that they are equivalent for the general properties of optimal organizations. However, as the

contrasting conclusions of Theorems 6 and 7 show, the choice matters for some specific questions.
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and manager/owner) whereas, for some very specific medical problems, patients need to

consult with many doctors before a solution is found since c
f(ω̄)

is likely to be considerably

higher in the latter case.

Theorem 7 uses the following notation. For each L ∈ N, let yL be the expected output

of the best organization with L layers. Moreover, let O∗
2 be as above and O∗

3 be the

hierarchy with three layers defined by A1 = ∅, A2 = [0, µ∗
2), and A3 = [µ∗

2, ω̄), where µ
∗
2 is

the unique solution to µ2 +
F (µ2)
f(µ2)

= y3
c
+ ω̄.

Theorem 7 If (A1), ξ = c and π = h hold, then there exists h̄ > 0 such that the following

holds for each 0 < h < h̄:

1. A lexicographically optimal organization exists.

2. O∗
2 is a lexicographically optimal organization if and only if

c

f(ω̄)
≤ sup

L∈N
yL. (3)

In addition, under (3), O∗
2 is the unique optimal organization and (3) holds if and

only if c
f(ω̄)

≤ y2.

3. Suppose that f is differentiable and

∂
(
F (x+y)−F (x)

f(x+y)

)
∂x

> −1 (4)

for each x, y ∈ Ω such that x + y ≤ ω̄. Then, O∗
3 is a lexicographically optimal

organization if and only if

c(1− F (µ∗
2))

f(ω̄)
≤ sup

L∈N
yL <

c

f(ω̄)
(5)

holds. In addition, under (5), O∗
3 is the unique optimal organization and (5) holds

if and only if
c(1−F (µ∗2))

f(ω̄)
≤ y3 <

c
f(ω̄)

.

The first part of Theorem 7 establishes the existence of lexicographically optimal

organizations by effectively showing that the optimal number of layers is finite. As we

show in its proof, the condition needed for this, on top of (A1), is that f(0) > min{ch, c},
which follows from (A1) when h is sufficiently small. Requiring the set Ω of possible
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problems to be bounded is really only needed for f(ω̄) > 0 to be possible, which is thus

the main condition.29

Theorem 7 partitions the parameter space according to whether the ratio c
f(ω̄)

of

the marginal cost to the marginal benefit of knowledge accumulation is low, medium or

high. This is easily seen in the limit as h → 0 since, due to supL yL → 1 as h → 0, a

sufficient condition for (3) to hold when h is sufficiently small is c
f(ω̄)

< 1 and for (5) is

1 < c
f(ω̄)

< 1
1−F (µ̄2)

, where µ̄2 is the unique solution to µ2+
F (µ2)
f(µ2)

= 1
c
+ ω̄. Accordingly, the

optimal number of layers will be two, three or four or above if the ratio of the marginal

cost to the marginal benefit of knowledge accumulation is low, medium or high.30

5.5 Implications for empirical research

As already mentioned in the introduction, the emergence of optimal organizational forms

other than hierarchies broadens the applicability of the theory of knowledge-based orga-

nizations. In particular, our model can help rationalize common organizational structures

(such as specialized HR or IT departments in organizations that are otherwise hierarchi-

cal) and delivers testable predictions regarding the response of different organizations to

shocks such as an improvement in communication technology.

As well as rationalizing particular organizations, our results may provide an explana-

tion for the diversity of real-world organizational forms by tracing it to differences in the

parameters of the model (i.e. Ω, f , c, ξ, h and π). This raises the following empirical

question: Are there observable characteristics of firms that explain the differences in their

organizational forms?

Answering the above question requires a way of empirically identifying the organiza-

tional form of each organization. Our results also suggest that the empirical definition

of layers may need to be significantly different from the usual one, used in e.g. Caliendo,

Monte, and Rossi-Hansberg (2015), which classifies occupations according to whether they

are lower, middle, or upper management. For example, in the hybrid organization with

4 layers that is optimal for intermediate values of ξ in Section 5.3, workers (layer 1) pass

29Garicano (2000, Section III) presents an example where the number of layers is infinite, i.e. of no

existence of optimal hierarchies. In it, Ω = R+ and thus (A1) fails.
30We note that condition (4) that is needed in Theorem 7 is not too demanding. As discussed in Section

A.15 in the Appendix, each one of the following two conditions alone is sufficient (but not necessary) for

it: (i) f(0) < 2f(ω̄), and (ii) f is concave.
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some problems directly to layer 4, which solves only these problems. Other problems,

which the workers cannot identify, are passed on to layer 2, and some of these are passed

on to layer 3. Layers 2 and 4 both constitute lower forms of management in the sense that

their members communicate directly with workers. However, these managers will differ

in their knowledge sets and therefore wages. Thus, it may not be appropriate to place

them into the same layer.

The above suggests that a more firm-specific approach to the definition of layers might

be needed so that subtle distinctions between layers, such as between layers 2 and 4 in the

above example, are captured. The ideal scenario would be to have information about the

way each firm operates, namely on who does what, who knows what, who communicates

with whom and even on the nature of knowledge its members have, i.e. whether it is

general or specialized knowledge.31 The importance of the latter for placing members

of the organization in a specific layer can be seen by noting that members of layer 1

are the least knowledgeable in hierarchies but they are the ones with the highest general

knowledge in fully screening organizations.

The consideration of novel organizational forms may shed new light on important

empirical questions such as the impact of shocks on firms’ activity. In Section 5.3, we

have already seen how a fall in the screening cost ξ may cause the firm to change its

organizational structure. Moreover, different organizational forms respond differently

to such shock. We now consider the impact of a fall in helping cost h (for example,

corresponding to an improvement in communication technology), comparing the responses

of different organizations and contrasting the predictions with those obtained from a fall

in the screening cost ξ.

Figure 5 illustrates the changes in the optimal organization in the baseline case where

b = 1, h = 0.5, and c = 1 in response to a 10% decline in the helping cost h (its new value is

then 0.45).32 The main patterns we observe are that hierarchies and hybrid organizations

increase the knowledge of all managers at the expense of the knowledge of workers, but

with small changes in personnel; on the other hand, fully screening organizations increase

the number of workers at the expense of managers, but with small changes in knowledge

(and only the knowledge of top managers increase as unscreened knowledge becomes

31For example, by looking at email and meeting metadata as in Impink, Prat, and Sadun (2022) or, at

a small scale, by using field experiments as in Bloom, Eifert, Mahajan, McKenzie, and Roberts (2013).
32See the supplementary material for results for other parameter configurations.
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Figure 5: Effects of a 10% drop in h when (c, h, b) = (1, 0.5, 1).

cheaper in relation to screened knowledge).

As Caliendo, Monte, and Rossi-Hansberg (2015) and Caliendo, Mion, Opromolla, and

Rossi-Hansberg (2020) have shown, the effect of shocks on the activity of hierarchical

firms depends on whether or not they change the numbers of their layers. More generally,

shocks can lead firms to adjust their organizational form in ways that differ from changes

to the number of layers. As we now illustrate, the effects of a fall in h also depend on

whether the firm changes its organizational structure as a response to the shock. Hence,

the estimation of the impact of shocks on firms’ activity should condition on this too.

Reorganization in response to a fall in h occurs at ξ = 0.4 where the optimal organi-

zation changes from a fully screening organization (when h = 0.5) to a hybrid form (when

h = 0.45). The fall in h results in the least common problems that were previously solved

by layer 2 being passed on to layer 3. The order is A4 ∩ (B1 \ A1) < A3 ∩ (B1 \ A1) <

A2 < A3 ∩ (B1 \ A1)
c, with A3 ∩ (B1 \ A1)

c becoming nonempty when h = 0.45. Thus,

layer 3 now solves some relatively common problems, which are screened by layer 1, and

also the least common ones, which are passed to it via layer 2. Thus, improvements in

communication technology can result in more vertical organizations as the knowledge of

higher managers can substitute for screening – note that the wage of layer 2, which is the

highest in the organization, can go down in this case as more problems are instead passed
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on to layer 3.

We now contrast the predictions of a fall in h with those of a fall in ξ. Both im-

provements lead to a fall in the wage of the workers, but they have different implications

regarding the wages of the managers. When no reorganization takes place, a fall in ξ

increases the sizes of the screened knowledge sets (and hence wages of the corresponding

layers) at the expense of the pure knowledge sets, whereas a fall in h increases the sizes of

the pure knowledge sets at the expense of the screened ones. In general, a fall in ξ causes

the organization to become more horizontal, whereas a fall in h causes the organization

to become more vertical.33

Our results also provide novel testable implications for the theory of knowledge-based

organizations by focusing on special cases and, thus, on specific sub-samples of firms

corresponding to each of these cases. For instance, Theorem 5 predicts that workers of

firms with small ξ have considerable general knowledge; moreover, Theorem 6 predicts

that workers of firms with small h have little specialized knowledge.

6 Cumulative Knowledge

In this section we consider the case where knowledge is cumulative. The cumulative

knowledge case is important because it often arises when knowledge is obtained through

learning by doing; to borrow Garicano’s (2000) example, “a chef de cuisine has usually

previously been employed in all lower-rank jobs in the kitchen.”

Assuming that knowledge is cumulative means that, in order to learn how to solve

(respectively, screen) a “hard” problem, an individual needs to learn how to solve (resp.

screen) all the problems that are “easier” than it. The notions of hard and easy problems

are specific to the organization as it is up to the organization to decide which problems

everyone in it knows how to solve (resp. screen) — these are then the easy problems

—, which ones only one layer knows how to solve (resp. screen) — these are then the

hard problems — and all the problems in between. Formally, this amounts to adding a

linear order ≺ on L to the description of an organization with the following properties:

33Several papers, e.g. Akerman, Gaarder, and Mogstad (2015) and Bastos, Monteiro, and Straume

(2018), have studied the effects of improvements in technology interpreted as a fall in h. However, such

an improvement may also be interpreted as a fall in ξ. By clarifying the organizational responses to these

changes, our model can potentially shed light on the relative importance of these channels.
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≺ is a linear order on L such that Ai ⊆ Aj and Bi ⊆ Bj whenever i ≺ j. We can

use ≺ to order L and write L = {i1, . . . , iL}, where i1 ≺ · · · ≺ iL, Ai1 ⊆ · · · ⊆ AiL

and Bi1 ⊆ · · · ⊆ BiL . We refer to ≺ as the cumulative knowledge order. In summary,

an organization with cumulative knowledge is O = (L,≺, (βi, Ai, Bi, li,≺i, t
p
i , t

h
i )i∈L) such

that (L, (βi, Ai, Bi, li,≺i, t
p
i , t

h
i )i∈L) is an organization and ≺ is a cumulative knowledge

order.

Theorem 1 on specialization extends to the case of cumulative knowledge with exactly

the same statement.34 As in Section 4, we may assume that layer 1 is such that tp1 = 1

and that 2 ≺1 · · · ≺1 L; ≺1 is then just the standard “less than” < order. Also as in

Section 4, we write α1 = 1 and αl = αl1 for each l ∈ L \ {1}.
In the non-cumulative knowledge case, the knowledge sets of different layers are disjoint

and this, together with related results for the screening sets, allowed us to obtain a

partition of the union of screening sets which we use to derive our results in Section 4. In

contrast, knowledge sets are not disjoint in the cumulative knowledge case by definition,

which implies that a new partition of the union of the screening sets is needed to derive

the results of this section. The partition of the union of the screening sets of an optimal

organization with cumulative knowledge we consider is

C = {∩j<l(Bij \ Aij)c ∩ (Ail \ Ail−1
) : l ∈ L}

∪{∩j<l(Bij \ Aij)c ∩ (Bil \ Ail) ∩ (Aik \ Aik−1
) : l, k ∈ L and k > l}

∪{∩j<l(Bij \ Aij)c ∩ (Bil \ Ail) ∩ (BiL \ AiL) : l ∈ L}

with the usual convention that the intersection of an empty family of subsets of Ω is Ω

itself and with Ai0 = ∅.
The above partition C of ∪l∈LBl allows us, in the cumulative knowledge case, to show

that there are no gaps and to order the elements of C according to their learning costs.

Moreover, η-optimal organizations exist.

We characterize the cumulative knowledge order in optimal organizations and show

that it equals the precedence relation of the layer of workers which, given our normaliza-

tion, equals the “less than” order, i.e. i ≺ j if and only if i < j. This means that workers

are those who know the least, followed by those in layer 2 who are the first to solve or

screen problems that the workers cannot deal with, and so on until the top layer L which

consists of those who know the most in the organization.

34Detailed statements and proofs for the results of this section are in the supplementary material.
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More detailed characterizations of optimal organizations are possible in extreme cases.

When screening is as costly as solving problems, we obtain the same conclusions as in the

cumulative knowledge case of Garicano (2000). In contrast, Theorem 8 below characterizes

η-optimal organizations with cumulative knowledge when the cost ξ of learning how to

screen problems is small.

Theorem 8 If (A1) and (A2) hold, then there exists ξ̄ > 0 such that, if 0 < ξ < ξ̄ and

O is an η-optimal organization with cumulative knowledge with L ≥ 2, then:

1. B1 \ A1 = Ac2,

2. Bl = Ω for each l > 1,

3. A1 < A2 \ A1 < Al \ Al−1 < AcL for each l > 2,

4. β2 > · · · > βL, and

5. β1 >
∑L

l=2 βl if h < 1.

When ξ is sufficiently small, the optimal organization in the cumulative knowledge

case is analogous to the non-cumulative case. The main difference is that, without cumu-

lative knowledge, layer 2 knows how to solve the least frequent problems whereas, with

cumulative knowledge, it solves the most frequent problems among the managers. This

happens because, with cumulative knowledge, the knowledge set of each layer l > 2 must

contain that of layer 2. This implies that the learning costs are lower for layer 2 than for

any of the following layers. Hence, since y =
F (AL)−

∑
l∈L αlνl∑

l∈L αl
, it is optimal to increase the

helping costs α2 of layer 2 by the same amount that, say, α3 is reduced, which can be

obtained by moving A2 \ A1 to be immediately after A1.

7 Concluding remarks

In this paper we propose a model of an organization that optimally combines the time and

knowledge of its members to solve problems that arise in production. Our innovation is

to allow members of the organization to screen problems before attempting to solve them.

Screening has the potential to improve the organization of knowledge since problems can

be sent directly to those who can solve them, saving the time of managers and hence

allowing the organization to have more workers and produce more output.
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It might be that the organization finds it optimal not to screen problems. This happens

when the learning and time costs of screening are equal to those of solving problems and,

thus, in this case the optimal organization is a hierarchy exactly as in Garicano (2000).

However, novel organizational forms – where some problems are screened and others

passed through the organization in a hierarchical way – emerge as optimal when learning

how to screen problems is cheaper than learning how to solve them. When screening is

very cheap, every problem faced by the organization is sent directly to the person who

can solve it.

Our work delivers a broader theory of the organization of specialization, whereby the

optimal degree of specialization resolves trade-offs between the cost of learning how to

screen problems, the cost of learning how to solve problems and the time spent attempting

to solve or screen problems and then communicating the answer. As some of these costs

become more or less important, the optimal organization changes in several dimensions,

namely on its degree of specialization in tasks, knowledge, screening and scope.

The richness of organizational forms we obtain makes it easier to rationalize real-world

organizations and understand their changes in response to shocks. However, a detailed

empirical test of the theory developed here is not without challenges as it requires a

systematic identification of the organizational form of each firm considered. We plan to

address this question in future research.

Another important question concerns the impact of screening in a market setting e.g.

on the distribution of wages and firm sizes. In Carmona and Laohakunakorn (2023), we

extended Greinecker and Kah’s (2021) matching model to include many-to-one matching

and occupational choice; in a future paper, this will allow us to embed the framework of

this paper in a market setting in an analogous way to what Garicano and Rossi-Hansberg

(2004) and Garicano and Rossi-Hansberg (2006) did for the framework of Garicano (2000).
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A Online Appendix: Proofs

This section contains the proofs of the results stated in the main body of the paper and

some lemmas that are used in those proofs. We begin by proving Theorems 1–3, which

generalizes and corrects some statements in Garicano (2000). Section A.1 discusses these

issues and in particular, compares our approach with his.

A.1 Technical difficulties in Garicano (2000)

This paper corrects some statements in Garicano (2000) and provides detailed proofs for

them. In this section, we briefly describe what is missing in those statements and proofs

in Garicano (2000), and indicate how we have corrected them.

The difficulties concern mainly Proposition 1 in Garicano (2000), from which the other

propositions in that paper follow. One issue is that thi + tpi = 1 for each i ∈ L is simply

assumed in its proof, but not demonstrated. The standard argument of increasing tpi

whenever thi + tpi < 1 does not work because, in general, an increase in tpi requires an

increase in thj in the layers j that help layer i. We show that thi + tpi = 1 for each i ∈ L

roughly by increasing both thi and tpi proportionally, by reducing the size βi of layer i and

by increasing the size of all other layers to increase the output of the organization.

A more difficult issue concerns the system of equations (A3) and the problem (A4)

in Garicano (2000). In (A3) there are, as claimed, L unknowns and L equations, but

to be able to solve it uniquely, one needs the resulting matrix to be invertible. Nothing

guarantees that. Indeed, the matrix in question is
1 α12 · · · α1L

α21 1 · · · α2L

· · · · · · · · · · · ·
αL1 αL2 · · · 1

 ;

hence, if L = 2, the matrix fails to be invertible if 1 − α12α21 = 0; if L = 3, the matrix

fails to be invertible if 1−α23α32−α12(α21−α23α31)+α13(α21α32−α31) = 0. The values

of L and αik are endogenous, hence one cannot simply assume that they are such that the

above matrix is invertible. But if the above matrix is not invertible, then problem (A4)

is not defined.

But even when problem (A4) is defined, the proposed solution is not clear. The goal
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in (A4) is to determine βi for each i ∈ L given the set L of layers and, for each layer

i ∈ L, Ai, li and ≺i, and given the solution to (A3) expressed as βit
p
i = ρ′iβ =

∑
j∈L ρi,jβj

for each i ∈ L, where (ρi,j)i,j∈L is the solution to (A3). The claim is that there is i ∈ L

such that βi = ρ′iβ and ρ′jβ = 0 for all j ̸= i but there is no proof of this claim.

More generally, the claim of Proposition 1 in Garicano (2000) is that, given (L, (li,≺i

, Ai)i∈L), output can be increased unless there is i ∈ L with tpi = 1 and tpj = 0 for all

j ∈ L \ {i}. A trivial example shows that this is not the case: Let L = 2, A1 = A2 = A

and li = {i} for each i = 1, 2. Because 2 ̸∈ l1 and 1 ̸∈ l2, t
h
1 = th2 = 0. Then it is optimal

to set tp1 = tp2 = 1 and, given β1 + β2 = 1, output is y = F (A)− cµ(A). But it is not the

case that there is i ∈ L with tpi = 1 and tpj = 0 for all j ∈ L \ {i}.
We solve the difficulties surrounding Garicano (2000, Proposition 1) as follows. First,

we apply the fundamental theorem of linear programming to a linear programming prob-

lem, different from the one in Garicano (2000), to obtain a solution to the maximization

of output such that there is i ∈ L with βit
p
i = 1 and βjt

p
j = 0 for all j ∈ L \ {i}. This

is clearly possible in the above example by setting β1 = 1 and β2 = 0 (or β1 = 0 and

β2 = 1).

As in the example, solutions to linear programming problems are often not unique.

We then solve this problem by using the optimality condition in Section 3.4 which, when

comparing two organizations with the same output, ranks the one with the smallest L

above the other. In the context of the example, this implies that the organization with

L = 2, A1 = A2 = A and li = {i} for each i = 1, 2 cannot be optimal since the organization

with just one layer (say layer 1) obtains the same output with a smaller number of layers.

More generally, the optimality criterion that we use allows us to obtain that there is a

layer i ∈ L such that tpi = 1 and tpj = 0 for each j ̸= i in any optimal organization.

A final issue concerns the proofs of Proposition 2 and 3 in Garicano (2000) which

are correct provided that, as we do, the class of sets in which each Ai lies is I. The

reason is that these results are established, both in Garicano (2000) and in this paper, by

transferring an interval [ω, ω + ε) for some ω ∈ Ω and ε > 0 from e.g. Ai to Aj and this

is only possible when Ai is the (finite) union of disjoint intervals of the form [a, b), i.e. it

belongs to I.
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A.2 Allocation of labor

We establish that, in an optimal organization, tpi + thi = 1 for each i ∈ L. This requires

the following two lemmas. Lemma A.1 states that, in an optimal organization, the list of

each layer that does not devote time to production consists of itself only. This is because

such layer requires no help and our notion of optimality favours organizations with smaller

lists.

Lemma A.1 If O is an optimal organization, then li = {i} for each i ∈ L with tpi = 0.

Proof. Suppose not; then there is i ∈ L such that tpi = 0 and {i} ⊂ li. Consider Ô

equal to O except that l̂i = {i}.
Since t̂pi = tpi = 0, we have that

β̂j t̂
h
j = βjt

h
j =

∑
k∈L\{i}

βkt
p
kαjk =

∑
k∈L\{i}

β̂k t̂
p
kα̂jk =

∑
k∈L

β̂k t̂
p
kα̂jk

for each j ∈ L and, hence, Ô is an organization. Using again t̂pi = tpi = 0, it follows that

ŷ =
∑

j∈L\{i} βj(t
p
jF (∪l∈ljAl)− cµ(Aj)− ξµ(Bj \Aj))−βi(cµ(Ai)+ ξµ(Bi \Ai)) = y. This,

together with L̂ = L, l̂j = lj for all j ∈ L \ {i} and l̂i ⊂ li, contradicts the optimality of

O.

Lemma A.2 states that members of each layer use strictly positive amount of time; if

not, such layers could be removed and its member be moved to other layers, thus obtaining

a higher output with a smaller number of layers.

Lemma A.2 If O is an optimal organization, then tpi + thi > 0 for each i ∈ L.

Proof. Suppose not; then let i ∈ L be such that tpi + thi = 0. Since y > 0, then

{i} ̸= L; hence λ := 1/(
∑

i∈L\{i} βi) > 1. Consider Ô equal to O except that L̂ = L \ {i}
and, for each j ∈ L̂, β̂j = λβj, l̂j = lj \ {i} and ≺̂j =≺j |l̂j .

Let k ∈ L̂. Since thi = 0, we have that 0 = βit
h
i =

∑
l∈L βlt

p
lαil. In particular, it follows

that tpk = 0 or αik = 0. If αik > 0, then i ∈ lk and tpk = 0; Lemma A.1 then implies that

lk = {k}, a contradiction to i ∈ lk and i ̸= k. Thus, αik = 0, implying that either i ̸∈ lk

or F (Ai \ ∪l≺kiAl) = 0 = F (Aci \ ∪l≺kiBl). In the latter case, since both Ai \ ∪l≺kiAl ∈ I
and Aci \ ∪l≺kiBl ∈ I, we have that Ai ⊆ ∪l≺kiAl and A

c
i ⊆ ∪l≺kiBl by footnote 9.

We now show that α̂jk = αjk for each j, k ∈ L \ {i} such that j ̸= k and j ∈ lk.

This is clear if i ̸∈ lk or i ≺k j does not hold, hence assume that i ∈ lk and i ≺k j. Let

45



Ljk = {l ∈ lk : l ≺k j} and L̂jk = Ljk \ {i}. The former implies that ∪l∈Ljk
Al = ∪l∈L̂jk

Al

and, thus, Aj \∪l∈Ljk
Al = Aj \∪l∈L̂jk

Al. In addition, we have that Ω = Ai∪Aci ⊆ ∪l≺kiBl

and, hence, Acj \ ∪l∈L̂jk
Bl = ∅ = Acj \ ∪l∈Ljk

Bl. Thus, α̂jk = αjk as claimed.

We have that
∑

j∈L̂ β̂j = 1. Since α̂jk = αjk for each j, k ∈ L̂ such that j ̸= k and

j ∈ lk, then, as t̂
p
i = tpi = 0, β̂j t̂

h
j = λβjt

h
j =

∑
k∈L\{i} λβkt

p
kαjk =

∑
k∈L\{i} β̂k t̂

p
kα̂jk for

each j ∈ L̂. Hence, Ô is an organization.

Since Ai ⊆ ∪l≺kiAl if i ∈ lk, it follows that ∪l∈l̂kAl = ∪l∈lkAl for each k ∈ L \ {i}.
Thus, since λ > 1 and y > 0, ŷ = λ

∑
k∈L\{i} βk(t

p
kF (∪l∈lkAk)− cµ(Ak)− ξµ(Bk \ Ak)) >∑

k∈L\{i} βk(t
p
kF (∪l∈lkAk) − cµ(Ak) − ξµ(Bk \ Ak)) − βi(cµ(Ai) + ξµ(Bi \ Ai)) = y. This

shows that ŷ > y > 0 and, together with L̂ ⊂ L, contradicts the optimality of O.

We can now state and prove our main result of this section.

Lemma A.3 If O is an optimal organization, then tpi + thi = 1 for each i ∈ L.

Proof. Suppose not; then let i ∈ L be such that tpi + t
h
i < 1. We have that y > 0 since

O is optimal and tpi + thi > 0 by Lemma A.2. Set λ = 1
tpi+t

h
i
> 1 and γ = 1

1−βi+
βi
λ

> 1.

Consider Ô equal to O except that β̂i =
γ
λ
βi, t̂

p
i = λtpi , t̂

h
i = λthi and, for each j ̸= i,

β̂j = γβj.

We have that β̂j t̂
p
j = γβjt

p
j and β̂j t̂

h
j = γβjt

h
j for all j ∈ L. Since α̂jk = αjk for

each k, j ∈ L (as L̂ = L, Âj = Aj, B̂j = Bj, l̂j = lj and ≺̂j =≺j for all j ∈ L), it

follows that β̂j t̂
h
j =

∑
k∈L α̂jkβ̂k t̂

p
k for each j ∈ L. Moreover,

∑
j∈L β̂j = γ

∑
j ̸=i βj +

γ
λ
βi =

γ
(
1− βi +

βi
λ

)
= 1. Thus, Ô satisfies all requirements of an organization.

We have that −γ
λ
βiνi ≥ −γβiνi since λ > 1. Since y > 0 and γ > 1, it follows that

ŷ = γ
∑

j∈L βjt
p
jF (∪l∈ljAl)−γ

∑
j ̸=i βjνj− γ

λ
βiνi ≥ γ

∑
j∈L βjt

p
jF (∪l∈ljAl)−γ

∑
j∈L βjνj =

γy > y. This shows that ŷ > y > 0 and, together with L = L̂, contradicts the optimality

of O.

A.3 Specialization

In this section we establish Theorem 1. For convenience, for each i ∈ L, let

νi = cµ(Ai) + ξµ(Bi \ Ai).
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The problem that β = (β1, . . . , βL), t
p = (tp1, . . . , t

p
L) and t

h = (th1 , . . . , t
h
L) solve is:

max
β,tp,th

L∑
i=1

βi
(
tpiF (∪l∈liAl)− νi

)
(6)

subject to
L∑
i=1

βi = 1, and, for each i ∈ L, (7)

βi > 0, (8)

tpi ≥ 0, (9)

thi ≥ 0, (10)

tpi + thi = 1, (11)

βit
h
i =

L∑
j=1

αijβjt
p
j . (12)

Note that (11) uses the conclusion of Lemma A.3.

We consider an equivalent but easier problem defined as follows. Instead of having

everyone in a layer with the same allocation of labor, we now specialize people as follows.

For each i ∈ L, let δi be the fraction of people that are in layer i and are a worker (i.e.

spend all their time working) and let δ = (δ1, . . . , δL). There is a need of
∑L

j=1 δjαij of

helpers or managers (i.e. people who spend all their time helping other layers) in layer i

and, hence, a fraction of δi +
∑L

j=1 δjαij people in layer i. Putting βi = δi +
∑L

j=1 δjαij,

βit
p
i = δi and βit

h
i =

∑L
j=1 δjαij in (6)–(12), we obtain the following problem:

max
δ

L∑
i=1

(
F (∪l∈liAl)− νi

)
δi −

L∑
i=1

L∑
j=1

νiαijδj (13)

subject to
L∑
i=1

(
δi +

L∑
j=1

δjαij
)
= 1, and, for each i ∈ L, (14)

δi +
L∑
j=1

δjαij > 0, (15)

δi ≥ 0. (16)

Lemma A.4 states the equivalence between the optimization problems (6)–(12) and

(13)–(16); its proof is a simple algebraic argument.

Lemma A.4 If (β, tp, th) solves problem (6)–(12) and δi = βit
p
i for each i ∈ L, then δ

solves problem (13)–(16). Conversely, if δ solves problem (13)–(16) and, for each i ∈ L,

βi = δi+
∑L

j=1 δjαij, t
p
i =

δi
δi+

∑L
j=1 δjαij

and thi =
∑L

j=1 δjαij

δi+
∑L

j=1 δjαij
, then (β, tp, th) solves problem

(6)–(12).
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Note that we may write (13) as
∑L

i=1 θiδi, where, for each i ∈ L,

θi = F (∪l∈liAl)−
(
νi +

L∑
j=1

νjαji

)
.35 (17)

The coefficient θi reveals the impact of increasing the fraction of workers of layer i in the

objective function to be an increase in the production of layer i (F (∪l∈liAl)), an increase

in the learning costs of layer i (νi) and an increase in the learning costs of the layers that

help layer i (
∑L

j=1 νjαji).

Similarly, we may write (14) as
∑L

i=1 γiδi = 1, where, for each i ∈ L,

γi = 1 +
L∑
j=1

αji.
36 (18)

The coefficient γi describes the impact of increasing the fraction of workers of layer i in

the constraint as being that increase (represented by 1) plus the increase in the fraction

of helpers in the layers that help layer i (
∑L

j=1 αji).

Furthermore, as Lemma A.5 shows, we may drop (15) to characterize the solutions of

(13)–(16) and, thus, focus on the following linear programming problem:

max
δ

L∑
i=1

θiδi (19)

subject to
L∑
i=1

γiδi = 1, and (20)

δi ≥ 0 for each i ∈ L. (21)

Lemma A.5 If (β, tp, th) solves problem (6)–(12), then δ = (β1t
p
1, · · · , βLtpL) solves prob-

lem (19)–(21).

Proof. Let (β, tp, th) be a solution to (6)–(12) and δ = (β1t
p
1, · · · , βLtpL). By Lemma

A.4, δ solves (13)–(16). We now claim that δ solves (19)–(21). To see this, let δ∗ be

35Indeed,

L∑
i=1

(F (∪l∈liAl)− νi) δi −
L∑
i=1

L∑
j=1

νiαijδj =

L∑
j=1

(
F (∪l∈ljAl)− νj

)
δj −

L∑
j=1

δj

L∑
i=1

νiαij

=

L∑
j=1

[
F (∪l∈ljAl)−

(
νj +

L∑
i=1

νiαij

)]
δj =

L∑
i=1

F (∪l∈liAl)−

νi +

L∑
j=1

νjαji

 δi.

36Indeed,
∑L
i=1

(
δi +

∑L
j=1 αijδj

)
=
∑L
j=1 δj +

∑L
j=1 δj

∑L
i=1 αij =

∑L
j=1

(
1 +

∑L
i=1 αij

)
δj =∑L

i=1

(
1 +

∑L
j=1 αji

)
δi.
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a solution to (19)–(21). Since δ satisfies (20)–(21), it suffices to show that
∑L

i=1 θiδi ≥∑L
i=1 θiδ

∗
i . Let {λn}∞n=1 be a sequence such that λn → 1 and λn ∈ (0, 1) for each n ∈ N,

and define δn = λnδ
∗ + (1− λn)δ for each n. Then, for each n ∈ N, δn satisfies (14)–(16)

and, thus,
∑L

i=1 θiδi ≥
∑L

i=1 θiδn,i. Since δn → δ∗, it follows that
∑L

i=1 θiδi ≥
∑L

i=1 θiδ
∗
i

as claimed.

Problem (19)–(21) has a linear objective function and a linear constraint besides non-

negativity constraints. Lemma A.6 states that it has a corner solution.

Lemma A.6 There exists a solution δ̂ of the problem (19)–(21) such that there is i ∈ L

with δ̂i > 0 and δ̂j = 0 for all j ̸= i. Furthermore, δ̂i =
1
γi
,
∑

l∈L θlδ̂l =
θi
γi

and, for each

l ̸= i, δ̂l +
∑L

j=1 δ̂jαlj > 0 holds if and only if αli > 0.

Proof. By the fundamental theorem of linear programming (e.g. Luenberger and

Ye (2008, p. 20-21)), there exists an optimal basic feasible solution δ̂ of the problem

(19)–(21). Since there is only one constraint other than the non-negativity constraints,

there exists i ∈ L such that δ̂j = 0 for all j ̸= i. The constraint
∑L

l=1 γlδ̂l = 1 then

implies that δ̂i =
1
γi
. We also have that

∑
l∈L θlδ̂l = θiδ̂i =

θi
γi
. In addition, we have

that δ̂l +
∑L

j=1 δ̂jαlj ≥ 0 for each l ∈ L (recall that αlj ≥ 0 for all l, j ∈ L). Moreover

δ̂l +
∑L

j=1 δ̂jαlj > 0 holds if and only if αli > 0 for each l ̸= i.

Given an organization O, let M be the set of i ∈ L such that δi =
1
γi

and δj = 0 for

all j ∈ L \ {i} is a solution to (19)–(21). It follows by Lemma A.6 that M ̸= ∅.

Corollary A.1 If O is an optimal organization and i ∈M , then y = θi
γi
.

Proof. Indeed, y is (6) at (β, tp, th) and (β, tp, th) satisfies (7)–(12) by Lemma A.3.

Thus, by Lemmas A.4, A.5 and A.6 respectively, y is also (13) at δ = (β1t
p
1, . . . , βLt

p
L),

(19) at δ and (19) at δ̂, the latter being given in Lemma A.6.

Lemmas A.7 and A.8 explore the above conclusion that there is a corner solution i.e.

i ∈ L such that δi > 0 while δj = 0 for each j ∈ L \ {i}. Lemma A.7 then shows that

every layer is in the list of layer i and that the expected amount of time that each of the

other layers spend helping layer i is strictly positive. The reason is that, otherwise, the

organization could use such corner solution and remove some layer j ̸= i to obtain the

same output with less layers.

Lemma A.7 If O is an optimal organization and i ∈M , then li = L and αji > 0 for all

j ∈ L \ {i}.
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Proof. Suppose not. Let i ∈ M and L̂ = {j ∈ li : αji > 0} ∪ {i}; then ∅ ⊂ L̂ ⊂ L.

Define Ô as follows: Layers are L̂; for each j ∈ L̂, set: Âj = Aj and B̂j = Bj; for each

j ∈ L̂ \ {i}, set l̂j = {j}, β̂j =
αji

γi
, t̂pj = 0, and t̂hj = 1; finally, set l̂i = L̂, ≺̂i =≺i |l̂i ,

β̂i =
1
γi
, t̂pi = 1 and t̂hi = 0.

Arguing as in Lemma A.2, we obtain that Aj \ ∪l≺ijAl = Aj \ ∪l∈l̂i:l≺ij
Al, A

c
j \

∪l∈l̂i:l≺ij
Bl = ∅ = Acj \∪l≺ijBl and ∪l∈l̂iAl = ∪l∈liAl for each j ∈ L̂ \ {i}. Hence, α̂ji = αji

for each j ∈ L̂\{i}. Thus, as αji = 0 for each j ∈ L\L̂, θi = F (∪l∈liAl)−νi−
∑

j∈L αjiνj =

F (∪l∈l̂iAl)− νi −
∑

j∈L̂ α̂jiνj = θ̂i. Furthermore, γi = 1 +
∑

j∈L αji = 1 +
∑

j∈L̂ α̂ji = γ̂i.

It then follows that Ô is an organization. Moreover, ŷ = θi
γi

= y > 0 (the last equality by

Corollary A.1) which, together with L̂ ⊂ L, contradicts the optimality of O.

Lemma A.8 complements Lemma A.7 by showing that the list of every layer other

than layer i contains only itself. Indeed, otherwise, the organization could use the corner

solution with δi > 0 and δj = 0 for each j ̸= i and shorten the list of some layer j ̸= i.

Lemma A.8 If O is an optimal organization and i ∈M , then lj = {j} for all j ∈ L\{i}.

Proof. Suppose not. Let i ∈ M and k ̸= i such that {k} ⊂ lk. By Lemma A.7 and

Corollary A.1, li = L, αji > 0 for all j ∈ L \ {i} and y = θi
γi
. Consider Ô equal to O

except (possibly) that l̂j = {j}, β̂j = αji

γi
, t̂pj = 0 and t̂hj = 1 for each j ̸= i, and β̂i =

1
γi
,

t̂pi = 1 and t̂hi = 0.

Since l̂i = li, ≺̂i =≺i, Âj = Aj and B̂j = Bj for each j ∈ L, it follows that α̂ij = αij

for all j ∈ L and, hence, γ̂i = γi and θ̂i = θi. This, together with αji > 0 for all j ̸= i,

implies that Ô is an organization and that ŷ = θi
γi
. Finally, ŷ = θi

γi
= y, L̂ = L and l̂j ⊆ lj

for all j ∈ L and l̂k ⊂ lk contradicts the optimality of O.

We turn now to the proof of Theorem 1.

Proof of Theorem 1. Let O be an optimal organization and i ∈ M . Then li = L,

αji > 0 and lj = {j} for each j ∈ L \ {i} by Lemmas A.7 and A.8. It remains to show

that (β, tp, th) = (β̂, t̂p, t̂h) where, for each j ̸= i, β̂j =
αji

γi
, t̂pj = 0 and t̂hj = 1, and β̂i =

1
γi
,

t̂pi = 1 and t̂hi = 0.

Suppose not; then (β, tp, th) ̸= (β̂, t̂p, t̂h). Letting δ = (β1t
p
1, . . . , βLt

p
L) and δ̂ =

(β̂1t̂
p
1, . . . , β̂Lt̂

p
L), it follows that δ ̸= δ̂. Thus, there exists j ̸= i such that δj > 0; in

particular, it follows that |L| ≥ 2. Since the convex combination of two solutions of

a linear programming problem is also a solution, there exists a solution δ̃ to (19)–(21)
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such that δ̃i > 0 and δ̃j > 0. Put zi = 1, zj = − γi
γj

and zl = 0 for all l ̸∈ {i, j};
then, for all ε in a neighborhood of zero (in R), δ̃ − εz satisfies (20)–(21). Optimal-

ity of δ̃ then implies that θi
γi

=
θj
γj
. We have that y = θi/γi by Lemmas A.5 and A.6.

Moreover, lj = {j} implies that ∪l∈ljAl = Aj and that αlj = 0 for each l ∈ L; hence,

θj = F (∪l∈ljAl) − (νj +
∑L

l=1 νlαlj) = F (Aj) − νj and γj = 1 +
∑L

l=1 νlαlj = 1. Thus,

y = θi
γi

=
θj
γj

= F (Aj)− νj. Therefore, the organization Ô with just layer j, i.e. L̂ = {j},
and B̂j = Bj, Âj = Aj, β̂j = 1, t̂pj = 1 and t̂hj = 0 and obtains as much output as O. Since

|L| > 1, this contradicts the optimality of O.

A.4 No overlap

We prove Lemma 1 in this section.

Lemma A.9 If O is an optimal organization, then Al ∩ Ak = ∅ and (Bl \ Al) ∩ Bk = ∅
for each k, l ∈ L such that k < l.

Proof. Suppose not; then there exists k, l ∈ L with k < l such that Al ∩ Ak ̸= ∅ or

(Bl \ Al) ∩ Bk ̸= ∅. Define an organization Ô to be equal to O except that Âl = Al \ Ak
and B̂l = (Bl \ Bk) ∪ Âl. We have that Âj \ ∪i<jÂi = Aj \ ∪i<jAi and Âcj \ ∪i<jB̂i =

Acj \ ∪i<jBi for each j ∈ L. Indeed, this is clear for all j < l. When j = l, we have that

Âl \∪i<lÂi = (Al ∩Ack)∩ (∩i<lAci) = Al \∪i<lAi and Âcl \∪i<lB̂i = (Acl ∪Ak)∩ (∩i<lBc
i ) =

Acl ∩ (∩i<lBc
i ) = Acl \ ∪i<lBi since Ak ∩ (∩i<lBc

i ) ⊆ Ak ∩ Bc
k = ∅. Finally, if j > l,

∪i<jÂi = ∪i<jAi and ∪i<jB̂i = ∪i<jBi and the result follows. We then have that α̂j = αj

for each j ∈ L. Hence, Ô is an organization.

As Ak ⊆ Bk, we have that B̂l \ Âl = (Bl \ Bk) \ (Al \ Ak) = (Bl ∩Bc
k ∩ Acl ) ∪

(Bl ∩Bc
k ∩ Ak) = Bl ∩ Bc

k ∩ Acl = (Bl \ Al) ∩ Bc
k. Moreover, (B̂l \ Âl) ∩ Bk = (Bl \ Al) ∩

Bc
k ∩Bk = ∅, Âl ∩ Ak = Al ∩ Ack ∩ Ak = ∅ and

ŷ − y = βl [c(µ(Al)− µ(Al \ Ak)) + ξ(µ(Bl \ Al)− µ((Bl \ Al) ∩Bc
k))]

= βl [cµ(Ak ∩ Al) + ξµ((Bl \ Al) ∩Bk)] .

Since Ak, Al, Bl \Al and Bk belong to I, it follows from Ak ∩Al ̸= ∅ or (Bl \Al)∩Bk ̸= ∅
that µ(Ak ∩ Al) > 0 or µ((Bl \ Al) ∩ Bk) > 0. In either case, ŷ > y. Since L̂ = L, this

contradicts the optimality of O.

We can now prove Lemma 1.
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Proof of Lemma 1. (Part 1) Let O be an optimal organization and k, l ∈ L be such

that k < l. Then (Bl \ Al) ∩ Bk = ∅ and Al ∩ Ak = ∅. Thus, Bl ∩ Ak = Bl ∩ Ak ∩ Acl =
(Bl \ Al) ∩ Ak ⊆ (Bl \ Al) ∩Bk = ∅.

Next, let k, l ∈ L be such that k ̸= l. Then either k < l or l < k; for concreteness, let

k < l. Then Al ∩Ak = ∅ and (Bl \Al)∩ (Bk \Ak) ⊆ (Bl \Al)∩Bk = ∅ from the previous

paragraph. This completes the proof.

(Part 2) Suppose not; then BL \ AL ̸= ∅. Define an organization Ô to be equal

to O except that B̂L = AL. We have, clearly, that Âj \ ∪i<jÂi = Aj \ ∪i<jAi and

Âcj \ ∪i<jB̂i = Acj \ ∪i<jBi for each j ∈ L. Hence, α̂j = αj for all j ∈ L. It then follows

that Ô is an organization. We have that ν̂L < νL which, together with α̂j = αj for all

j ∈ L, implies that ŷ > y. Since L̂ = L, this contradicts the optimality of O.

(Part 3) Suppose not; then there is i ∈ {1, . . . , L− 1} such that Bi∩Ai+1 ̸= ∅. Hence,
(Bi \Ai) ∩Ai+1 ̸= ∅ since Ai ∩Ai+1 = ∅ by part 1. Define an organization Ô to be equal

to O except that B̂i = Bi \ Ai+1. We clearly have that α̂j = αj for all j ≤ i. Since

∪l<jB̂l = ∪l<jBl for each j > i, it follows that α̂j = αj for all j > i as well. Hence, Ô is

an organization.

We have that B̂i \ Âi = (Bi \ Ai) \ Ai+1. Hence, µ(B̂i \ Âi) = µ(Bi \ Ai) − µ((Bi \
Ai) ∩ Ai+1) < µ(Bi \ Ai) since (Bi \ Ai) ∩ Ai+1 ̸= ∅ and (Bi \ Ai) ∩ Ai+1 ∈ I. Thus,

ν̂i < νi which, together with α̂j = αj for all j ∈ L, implies that ŷ > y. Since L̂ = L, this

contradicts the optimality of O.

We conclude this section with the following lemma which establishes the decomposition

of an optimal organization’s costs using the sets in the partition C.

Lemma A.10 If O is an optimal organization, then
∑

l∈L αlνl =
∑

C∈C cCµ(C).

52



Proof. Indeed,∑
l∈L

αlνl =
∑
l∈L

αl(cµ(Al) + ξµ(Bl \ Al))

=
∑
l∈L

αl

[ ∑
j<l−1

cµ(Al ∩ (Bj \ Aj)) + cµ(Al ∩ (∩j<l−1(Bj \ Aj)c))

+
∑
j>l+1

ξµ(Aj ∩ (Bl \ Al)) + ξµ((Bl \ Al) ∩ (∩j>l+1A
c
j))
]

=
∑
l∈L

∑
j<l−1

αlcµ(Al ∩ (Bj \ Aj)) +
∑
l∈L

αlcµ(Al ∩ (∩j<l−1(Bj \ Aj)c))

+
∑
l∈L

∑
j<l−1

αjξµ(Al ∩ (Bj \ Aj)) +
∑
l∈L

αlξµ((Bl \ Al) ∩ (∩j>l+1A
c
j))

=
∑
C∈C

cCµ(C).

A.5 No gaps

In this section we establish Theorem 2. We start by stating two technical lemmas. Lemma

A.11 provides two useful formulas for the expected amount of time αi that layer i spends

helping layer 1.

Lemma A.11 If O satisfies Al ∩Ak = ∅ for each k, l ∈ L such that k ̸= l, then, for each

i > 1, αi = hF (Ai) + π(1− F (Ai ∪ (∪j<iBj))) = (h− π)F (Ai) + π(1− F (∪j<iBj \ Ai)).

Proof. Let i ∈ L \ {1}. We have that Ai ⊆ (∪j<iAi)c = ∩j<iAcj and, hence, F (Ai \
∪j<iAj) = F (Ai). Furthermore, (Aci \ (∪j<iBj))

c = Ai ∪ (∪j<iBj) = Ai ∪ (∪j<iBj \ Ai).
Hence, F (Aci \ (∪j<iBj)) = 1− F (Ai ∪ (∪j<iBj)) = 1− F (Ai)− F (∪j<iBj \ Ai) since Ai
and ∪j<iBj \ Ai are disjoint. Since αi = hF (Ai \ ∪j<iAj) + πF (Aci \ ∪j<iBj), the result

follows.

Lemma A.12 is a consequence of the assumption that the density f of F is strictly

decreasing.

Lemma A.12 Let a, â, b, b̂ ∈ Ω be such that a < b, â < b̂, â < a and b−a = b̂− â. Then:

(a) F ([â, b̂)) > F ([a, b)).

(b) There exists a unique b′ ∈ (â, b̂) such that F ([â, b′)) = F ([a, b)).
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Proof. To prove part (a), let φ : [a, b] → [â, b̂] be defined by φ(x) = x + â − a for

each x ∈ [a, b]. Then φ′(x) = 1 for each x ∈ [a, b], φ(a) = â and φ(b) = b̂. Moreover,

for each x ∈ [a, b], f ◦ φ(x) = f(x + â − a) > f(x) since f is strictly decreasing. Hence,

by the change of variable theorem, e.g. Rudin (1976, Theorem 6.19, p. 132), F ([â, b̂)) =∫ b̂
â
fdµ =

∫ b
a
f ◦ φdµ >

∫ b
a
fdµ = F ([a, b)).

As for (b), let g(ω) = F ([â, ω)) for each ω ≥ â. Since g(â) = 0 < F ([a, b)), g(b̂) =

F ([â, b̂)) > F ([a, b)) by part (a) and g is continuous, it follows by the intermediate value

theorem that such b′ exists. Since g is strictly increasing, such b′ is unique.

Recall that ai = minBi for each i ∈ L with the standard convention that min ∅ = ∞.

Lemma A.13 establishes part of Theorem 2.

Lemma A.13 If O is an optimal organization, then min1≤i≤L ai = 0.

Proof. Suppose not. For each C ∈ C, let aC = minC; then min1≤i≤L ai = minC∈C aC .

Letting C ∈ C be such that aC = min1≤i≤L ai, then aC > 0. Thus, [0, aC) ⊆ (∪Ll=1Bl)
c.

Let ε > 0 be such that [aC , aC + ε) ⊆ C and let 0 < ε′ < ε be such that F ([0, ε′)) =

F ([aC , aC + ε)); the existence of ε′ follows by Lemma A.12. Define an organization Ô

equal to O except that Ĉ = [0, ε′) ∪ (C \ [aC , aC + ε)) and {Âl, B̂l}Ll=1 are defined from

{D̂ : D ∈ C} via the formulas in Footnote 13. Note that Ĉ ∩ D̂ = ∅ whenever D ∈ C is

such that C ̸= D because [0, ε) ⊆ (∪Ll=1Bl)
c.

We have that F (D̂) = F (D) for each D ∈ C. Thus, F (Âj) =
∑

D∈C(Aj)
F (D̂) =∑

D∈C(Aj)
F (D) = F (Aj) for each j ∈ L. In addition, for each j ∈ L, let Cj = (∪l≤jC(Al))∪

(∪l<jC(Bl \Al)). Then, F (Aj ∪ (∪l<jBl)) = F ((∪l≤jAl)∪ (∪l<j(Bl \Al))) = F (∪D∈CjD) =∑
D∈Cj F (D) =

∑
D∈Cj F (D̂) = F (Âj ∪ (∪l<jB̂l)). It then follows from Lemma A.11 that

α̂j = αj for all j ∈ L. Thus, Ô is an organization.

We have that µ(Ĉ) < µ(C) and µ(D̂) = µ(D) for each D ∈ C\{C}. Moreover, by part

1 of Lemma 1, F (∪l∈LÂl) =
∑

l∈L F (Âl) =
∑

l∈L F (Al) = F (∪l∈LAl) since F (Âl) = F (Al)

for each l ∈ L. It then follows that ŷ > y. This, together with L̂ = L, contradicts the

optimality of O.

We now prove Theorem 2.

Proof of Theorem 2. Suppose not. Since ∪l∈LBl = ∪C∈CC and C ∈ I for each

C ∈ C, we write C = ∪mC
r=1[aCr, bCr) where [aCr, bCr) ∩ [aCr′ , bCr′) = ∅ whenever r ̸= r′.

We then order the set {aCr, bCr : C ∈ C, 1 ≤ r ≤ mC} and write it as {a1, b1, . . . , am, bm}
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with a1 < b1 ≤ a2 < b2 ≤ · · · ≤ am < bm, so that ∪l∈LBl = ∪mr=1[ar, br). It follows by

Lemma A.13 that there is i ∈ {2, . . . ,m} such that ai > bi−1.

We have that [bi−1, ai) ⊆ (∪Ll=1Bl)
c. Let C ∈ C and 1 ≤ r′ ≤ mC be such that

aCr′ = ai. By Lemma A.12, let ε > 0 be such that F ([bi−1, bCr′ − ε)) = F ([aCr′ , bCr′))

and µ([bi−1, bCr′ − ε)) < µ([aCr′ , bCr′)). Define an organization Ô equal to O except that

Ĉ = (C \ [aCr′ , bCr′)) ∪ [bi−1, bCr′ − ε) and {Âl, B̂l}Ll=1 are defined from {D̂ : D ∈ C} via

the formulas in Footnote 13. Note that Ĉ ∩ D̂ = ∅ whenever D ∈ C is such that C ̸= D

because [bi−1, ai) ⊆ (∪Ll=1Bl)
c.

We clearly have that Ĉ = {D̂ : D ∈ C} and that D̂ = ∪mD
r=1[âDr, b̂Dr) for each D ∈ C

(with âCr′ = bi−1, b̂Cr′ = bCr′−ε, and âDr = aDr and b̂Dr = bDr whenever (D, r) ̸= (C, r′)).

An argument completely analogous to the one in the proof of Lemma A.13 shows that Ô

is an organization and ŷ > y. But this, together with L̂ = L, contradicts the optimality

of O.

A.6 Order of sets

In this section we prove Theorem 3 by establishing Lemmas A.14 and A.15 below.

Lemma A.14 If O is an optimal organization, then C < C ′ for all C,C ′ ∈ C with

cC > cC′.

Proof. Order C and write C = {C1, . . . , Cn} such that cCl
≥ cCl+1

for each l = 1, . . . , n.

If the conclusion does not hold, then there exists i, j ∈ {1, . . . , n} such that cCi
> cCj

but

Ci < Cj does not hold. Since Ci, Cj ∈ I, Ci = ∪mr=1Er and Cj = ∪m′
r=1E

′
r where {Er : r =

1, . . . ,m} is a collection of pairwise disjoint intervals and so is {E ′
r : r = 1, . . . ,m′}. Since

Ci ∩ Cj = ∅, Er ∩ E ′
s = ∅ for each 1 ≤ r ≤ m and 1 ≤ s ≤ m′. Since Ci < Cj does not

hold, there is 1 ≤ r ≤ m and 1 ≤ s ≤ m′ such that E ′
s < Er.

Let Er = [a, b) and E ′
s = [a′, b′); then a′ < b′ ≤ a < b. Let Ω′ = Er ∪ E ′

s and let

â ∈ Ω be such that F (Ω′ ∩ [0, â)) = F (Er); the existence and uniqueness of â follows by

an argument analogous to that of Lemma A.12. In addition, µ(Ω′ ∩ [0, â)) < µ(Er) by

Lemma A.12. Let Ô be equal to O except that Êr = Ω′ ∩ [0, â) and Ê ′
s = Ω′ \ [0, â).

Thus, F (D̂) = F (D) for each D ∈ C and, hence, α̂l = αl for each l ∈ L. Thus, Ô is an

organization.

Furthermore, µ(D̂) = µ(D) for each D ∈ C \ {Ci, Cj}, µ(Ĉi) < µ(Ci) and µ(Ĉj) +

µ(Ĉi) = µ(Cj) + µ(Ci). We have that F (∪l∈LAl) = F (∪l∈LÂl) since F (D) = F (D̂) for
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each D ∈ C. By Lemma A.10, y =
F (∪l∈LAl)−

∑
D∈C µ(D)cD

γ
and ŷ =

F (∪l∈LAl)−
∑

D∈C µ(D̂)cD
γ

.

Consequently, letting ρ = µ(Ci) − µ(Ĉi), we have that ŷ − y =
(cCi

−cCj
)ρ

γ
> 0. This,

together with L̂ = L, contradicts the optimality of O.

Lemma A.15 If O is an optimal organization and C = {C1, . . . , C|C|} is such that cC1 ≥
· · · ≥ cC|C|, then there is an optimal organization Ô such that ŷ = y, L̂ = L, l̂i = li for

each i ∈ L, Ĉ = {Ĉ : C ∈ C}, Ĉ1 < · · · < Ĉ|C| and F (Ĉ) = F (C) for each C ∈ C.

Proof. Define {c1, . . . , cn} = {cC : C ∈ C} with c1 > . . . > cn and Ci = {C ∈
C : cC = ci} for each 1 ≤ i ≤ n. For each 1 ≤ i ≤ n, there is ki ∈ {1, . . . , |C|} and

ri ∈ {0, . . . , |C| − 1} such that Ci = {Cki , . . . , Cki+ri}. Let I be the set of i ∈ {1, . . . , n}
such that Cki < · · · < Cki+ri does not hold; we may assume that I ̸= ∅ since, otherwise,

just set Ô = O. We will define an organization Õ such that ỹ = y, L̃ = L, l̃i = li for each

i ∈ L, C̃ = {C̃ : C ∈ C}, C̃ki < · · · < C̃ki+ri for each i ̸∈ Ĩ, F (C̃) = F (C) for each C ∈ C
and |Ĩ| = |I| − 1. By repeating this argument at most |I| times, we obtain the desired Ô.

By Lemma A.14, ∪C∈CiC < ∪C∈Ci+1
C for each i = 1, . . . , n − 1. By Theorem 2,

∪l∈LBl = ∪ni=1 ∪C∈Ci C is an interval. Thus, it follows that ∪C∈CiC is an interval for each

i = 1, . . . , n.

Let i ∈ I and ∪C∈CiC = [a, b). Then obtain {C̃ : C ∈ Ci} such that C̃ is an interval and

F (C̃) = F (C) for each C ∈ Ci as follows. Write Ci = {Cki , . . . , Cki+ri} = {Ci1 , . . . , Ciri+1}.
Let b1 be such that F ([a, b1)) = F (Ci1) and set C̃i1 = [a1, b1) with a1 = a; assuming that

C̃i1 , . . . , C̃ij−1
are such that, for each 1 ≤ l ≤ j − 1, F (C̃il) = F (Cil) and C̃il = [al, bl)

with a = a1 < b1 = a2 < b2 = · · · = aj−1 < bj−1, let aj = bj−1 and bj such that

F ([aj, bj)) = F (Cij). The existence and uniqueness of bj follows by an argument analogous

to that of Lemma A.12.

Let Õ be equal to O except that, for each C ∈ Ci, C is replaced with C̃. We have

that L̃ = L with l̃i = li for each i ∈ L, C̃ = {C̃ : C ∈ C}, C̃ki < · · · < C̃ki+ri ,

F (C̃) = F (C) for each C ∈ C and |Ĩ| = |I| − 1 by construction. Also, ∪C∈CiC =

∪C∈CiC̃ so that
∑

C∈Ci µ(C) =
∑

C∈Ci µ(C̃). It then follows by Lemma A.10 that ỹ − y =

ci

(∑
C∈Ci µ(C)−

∑
C∈Ci µ(C̃)

)
= 0. This completes the proof.
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A.7 Statement and proof of Theorem A.1

Whenever the knowledge sets are pairwise disjoint, thus, in any optimal organization,

αl = hF (Al) + π(1 − F (Al ∪ (∪j<lBj))) for each l > 1 (see Lemma A.11). Since Al and

Bl can be written as unions of sets in the partition C, we can also write the output of an

organization in terms of the sets of the partition C. In fact, let, for each 1 ≤ l < L,

C(Bl \ Al) = {Aj ∩ (Bl \ Al) : j > l + 1} ∪ {(Bl \ Al) ∩ (∩j>l+1A
c
j)}

and, for each l ∈ L,

C(Al) = {Al ∩ (Bj \ Aj) : j < l − 1} ∪ {Al ∩ (∩j<l−1(Bj \ Aj)c)} and

Cl = (∪j≤lC(Aj)) ∪ (∪j<lC(Bj \ Aj)).

Then, noting that α1 = 1 and C(A1) = {A1},

θ = F (A1)− ν1 +
L∑
l=2

 ∑
C∈C(Al)

(1− hνl)F (C)− πνl(1−
∑
C∈Cl

F (C))

 ,

γ = 1 +
L∑
l=2

h ∑
C∈C(Al)

F (C) + π(1−
∑
C∈Cl

F (C))


and, as before, y = θ

γ
.

In the following result, we consider changes to the knowledge and screening sets of an

organization such that νl remains unchanged for each l ∈ L and, for some C,C ′ ∈ C and

ε > 0, F (C) increases by ε > 0, F (C ′) decreases by ε and F (D) remains unchanged for

each D ∈ C \ {C,C ′}. To state it formally, we treat the vector (νl)l∈L as a constant in

the above formula for output and replace the vector (F (C))C∈C with an arbitrary vector

(ϕC)C∈C. The resulting output is denoted by y((ϕC)C∈C), i.e.

y((ϕC)C∈C) =
ϕA1 − ν1 +

∑L
l=2

(∑
C∈C(Al)

(1− hνl)ϕC − πνl(1−
∑

C∈Cl ϕC)
)

1 +
∑L

l=2

(
h
∑

C∈C(Al)
ϕC + π(1−∑C∈Cl ϕC)

) .

We then let yF (C),F (C′)(ε) be the output resulting from increasing F (C) and decreasing

F (C ′) by ε > 0, i.e.

yF (C),F (C′)(ε) = y((ϕC))C∈C)

with ϕC = F (C) + ε, ϕC′ = F (C ′)− ε and ϕD = F (D) for each D ∈ C \ {C,C ′}.

Theorem A.1 If O is an optimal organization and C,C ′ ∈ C are such that there is

0 < ε̄ ≤ min{F (C), F (C ′)} such that yF (C),F (C′)(ε) > y for each 0 < ε < ε̄, then C < C ′.
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Proof. Let O be an optimal organization and C,C ′ ∈ C and ε̄ > 0 be as in the

statement. Suppose that C < C ′ does not hold. Then there exist a, a′ ∈ Ω and ε > 0 such

that a′ + ε < a, [a′, a′ + ε) ⊆ C ′ and [a, a+ ε) ⊆ C. Let ε′ = F ([a′, a′ + ε))−F ([a, a+ ε));

it follows by Lemma A.12 that ε′ > 0. Since ε′ → 0 as ε → 0, reduce ε if necessary so

that ε′ < ε̄.

Consider an organization Ô equal to O except that Ĉ = (C \ [a, a + ε)) ∪ [a′, a′ + ε)

and Ĉ ′ = (C ′ \ [a′, a′ + ε)) ∪ [a, a + ε). Reducing ε further if necessary, we may assume

that α̂l > 0 for each l ∈ L and, therefore, that Ô is indeed an organization. Then

µ(D̂) = µ(D) for each D ∈ C, F (Ĉ) = F (C) + ε′, F (Ĉ ′) = F (C ′)− ε′ and F (D̂) = F (D)

for each D ∈ C \ {C,C ′}. It then follows that ŷ = yF (C),F (C′)(ε
′) > y. But this together

with L̂ = L contradicts the optimality of O. This contradiction then shows that C < C ′.

A.8 Proof of Corollary 1

For part (a), note that cAl∩(Bj\Aj) = αlc+ αjξ > αlc = cAl∩(∩k<l−1(Bk\Ak)c) since αj > 0 by

Lemma A.7. Theorem 3 then implies Al ∩ (Bj \ Aj) < Al ∩ (∩k<l−1(Bk \ Ak)c).
For part (b), note that cAl∩(Bj\Aj) = αlc+ αjξ > αjξ = c(Bj\Aj)∩(∩k>j+1A

c
k)

since αl > 0

by Lemma A.7. Theorem 3 then implies Al ∩ (Bj \ Aj) < (Bj \ Aj) ∩ (∩k>j+1A
c
k).

For part (c), ξ < c implies cAl∩(∩j<l−1(Bj\Aj)c) = αlc > αlξ = c(Bl\Al)∩(∩j>l+1A
c
j)

since

αl > 0 by Lemma A.7. Theorem 3 then implies Al ∩ (∩j<l−1(Bj \ Aj)c) < (Bl \ Al) ∩
(∩j>l+1A

c
j).

A.9 Proof of Corollary 2

We will use the following lemma in the proof of Corollaries 2 and 3. It states that every

layer other than layer 1 has a nonempty screening set. This is because a layer with an

empty screening set is of no use to layer 1 and could be removed to obtain an organization

with a higher output and a smaller number of layers.

Lemma A.16 If O is an optimal organization, then µ(Bj) > 0 for all j ∈ L \ {1}.

Proof. Let O be an optimal organization and let J = {j ∈ L \ {1} : µ(Bj) = 0}.
Assume that J ̸= ∅ and define an organization Ô as follows: L̂ = L \ J ; for each k ∈ L̂,

58



Âk = Ak and B̂k = Bk; for each k ∈ L̂ \ {1}, l̂k = lk, β̂k = α̂k

γ̂
, t̂pk = 0 and t̂hk = 1; and

l̂1 = L̂, ≺̂1 =<, β̂1 =
1
γ̂
, t̂p1 = 1 and t̂h1 = 0.

Let k ∈ L̂ \ {1}, Lk = {1, . . . , k − 1} and L̂k = {l ∈ L̂ : l < k}. For each j ∈ J ,

µ(Bj) = 0 and Bj ∈ I imply that Bj = ∅ and Aj = ∅, the latter because Aj ⊆ Bj. Hence,

∪l∈L̂k
Al = ∪l∈Lk

Al and ∪l∈L̂k
Bl = ∪l∈Lk

Bl. Thus, α̂k = αk for each k ∈ L̂. We have that

αj > 0 for each j ∈ L (otherwise, βj = 0 for some j ∈ L) and, hence, βj > 0 for all

j ∈ L̂. Thus, Ô is indeed an organization. Furthermore, γ̂ =
∑

k∈L̂ αk <
∑

k∈L αk = γ.

Since µ(Bj) = 0 for each j ∈ J , it follows that νj = 0 for each j ∈ J and, thus,

θ̂ = F (∪k∈L̂Ak)−
∑

k∈L̂ αkνk = F (∪k∈LAk)−
∑

k∈L αkνk = θ. Therefore, ŷ = θ
γ̂
> θ

γ
= y.

This, together with L̂ < L, contradicts the optimality of O.

Proof of Corollary 2. For part (a), let C ∈ C \ {A1}. We will show that

yF (A1),F (C)(ε) > y for each 0 < ε < min{F (A1), F (C)}.
Analogously to y = θ

γ
, write yF (A1),F (C)(ε) =

θF (A1),F (C)(ε)

γF (A1),F (C)(ε)
. Since A1 ∈ Cl \ C(Al), it

follows that

θF (A1),F (C)(ε)− θ = ε

[
1−

L∑
l=2

(
(1− hνl)1C(Al)(C) + πνl(1− 1Cl(C))

)]
and

γF (A1),F (C)(ε)− γ = ε
L∑
l=2

[
−h1C(Al)(C) + π(−1 + 1Cl(C))

]
.

We have that γF (A1),F (C)(ε) − γ ≤ 0. In addition, note that if C ∈ C(Al) for some

l > 1, then C ⊆ Al and, hence, C ̸∈ C(Aj) for each j ̸= l. Thus, θF (A1),F (C)(ε) − θ ≥
ε[1−maxl≥2(1− hνl)] = εhminl≥2 νl > 0, where the last inequality follows from Lemma

A.16. It then follows that yF (A1),F (C)(ε) > y. Thus, part (a) follows from Theorem A.1.

For part (b), let C = Al ∩ (Bj \ Aj) and C ′ = Al ∩ (Bk \ Ak). Then C,C ′ ∈ C(Al),
C ∈ Ci for each i ≥ j + 1 and C ′ ∈ Ci for each i ≥ k + 1. We may assume that C

and C ′ are nonempty since otherwise there is nothing to prove. Then, for each 0 < ε <

min{F (C), F (C ′)},

yF (C),F (C′)(ε) =
θ + επ

∑k
i=j+1 νi

γ − ε(k − j)π
> y.

Thus, part (b) follows from Theorem A.1.

For part (c), let C = (Bj \ Aj) ∩ (∩l>j+1A
c
l ) and C = (Bk \ Ak) ∩ (∩l>k+1A

c
l ). Then

C,C ′ ̸∈ C(Al) for each l ∈ L, C ∈ Ci for each i ≥ j + 1 and C ′ ∈ Ci for each i ≥ k + 1.

We may assume that C and C ′ are nonempty since otherwise there is nothing to prove.
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Then, for each 0 < ε < min{F (C), F (C ′)},

yF (C),F (C′)(ε) =
θ + επ

∑k
i=j+1 νi

γ − ε(k − j)π
> y.

Thus, part (c) follows from Theorem A.1.

For part (d), let C = Ak ∩ (∩j<k−1(Bj \ Aj)c) and C ′ = Al ∩ (∩j<l−1(Bj \ Aj)c).
Then C ∈ C(Ak) ∩ (∩i≥kCi), C ′ ∈ C(Al) ∩ (∩i≥lCi). We may assume that C and C ′

are nonempty since otherwise there is nothing to prove. Then, using π = h, for each

0 < ε < min{F (C), F (C ′)},

yF (C),F (C′)(ε) =
θ + εh

∑l
j=k+1 νj

γ − ε(l − k)h
> y.

Thus, part (d) follows from Theorem A.1.

For part (e), we may assume that l > 1 since the conclusion follows from part (a) of

Corollary 2 when l = 1. We may also assume that C and C ′ are nonempty since otherwise

there is nothing to prove.

First assume that C = Al ∩ (∩j<l−1(Bj \ Aj)c) and C ′ = (Bl \ Al) ∩ (∩j>l+1A
c
j). It

then follows that C ∈ C(Al) ∩ (∩i≥lC(Ai)) and C ′ ∈ (∩i∈LC(Al)c) ∩ (∩i≥l+1C(Ai)). Then,
for each 0 < ε < min{F (C), F (C ′)},

yF (C),F (C′)(ε) =
θ + ε(1 + (π − h)νl)

γ − ε(π − h)
=
θ + ε

γ
> y.

If instead C ′ = Aj ∩ (Bl \Al) for some j > l+1, then C ′ ∈ C(Aj)∩ (∩i≥l+1C(Ai)) and

yF (C),F (C′)(ε) =
θ + ε(π − h)νl + εhνj
γ − ε(π − h)− εh

=
θ + εhνj
γ − εh

> 0.

In each case, C < C ′ follows from Theorem A.1.

Part (e) then follows by noting that in the remaining case where C = Al ∩ (Bj \ Aj)
for some j < l − 1, then C < Al ∩ (∩j<l−1(Bj \ Aj)c) < C ′ by part (a) of Corollary 1.

A.10 Existence and computation of optimal organizations

In this section we outline our proof of the existence of η-optimal organizations and provide

a method to compute them, which we use in our simulations.

It follows from our previous results that any optimal organization is such that, for some

L ∈ N, β1 = 1
γ
, (tp1, t

h
1) = (1, 0), l1 = {1, . . . , L}, βi = αi

γ
, (tpi , t

h
i ) = (0, 1) and li = {i}.

Furthermore, ∪C∈CC is an interval that contains 0 and we may assume that each C ∈ C is
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an interval as well. Thus, all that is left to determine is the number L of layers, an ordering

of C, i.e. to write C = {C1, . . . , Cm} with C1 < · · · < Cm and m = |C|, and the size µ(C)

of each C ∈ C. Letting µj = µ(Cj) for each j = 1, . . . ,m, we then have C1 = [0, µ1),

C2 = [µ1, µ1 + µ2) and so on, so that, for each j = 1, . . . ,m, Cj =
[∑j−1

i=1 µi,
∑j

i=1 µi

)
.

We then obtain {A1, B1, . . . , AL, BL} via the formulas in Footnote 13.

Note, however, that fixing the number L ∈ N of layers, an ordering ψ of C (formally,

ψ is a bijection from C onto {1, . . . ,m}) and µ = (µ1, . . . , µm) ∈ Rm
+ such that

∑m
j=1 µj ≤

µ(Ω) may fail to define an organization because the requirement that βl > 0 for each

l ∈ L may fail. To allow for this case, we say that O is a quasi-organization if it satisfies

βl ≥ 0 for each l ∈ L and all the conditions of the definition of an organization except

possibly the one requiring βl > 0 for each l ∈ L. For each (L, ψ, µ), let yL,ψ(µ1, . . . , µm)

be the output of the resulting quasi-organization (computed using (1)) and

yL,ψ = max
(µ1,...,µm)∈Rm

+

yL,ψ(µ1, . . . , µm) (22)

subject to
m∑
j=1

µj ≤ µ(Ω). (23)

Then an optimal organization O∗ is obtained by letting L∗ be such that

max
ψ

yL∗,ψ − η(L∗ − 1) = max
L

(
max
ψ

yL,ψ − η(L− 1)
)
, (24)

ψ∗ be such that

yL∗,ψ∗ = max
ψ

yL∗,ψ (25)

and (µ∗
1, . . . , µ

∗
m) ∈ Rm

+ be such that

m∑
j=1

µ∗
j ≤ µ(Ω) and yL∗,ψ∗(µ∗

1, . . . , µ
∗
m) = yL∗,ψ∗ . (26)

It turns out that O∗ is actually an organization which is η-optimal since it maximizes

Y = y − (L − 1)η. Problem (22)–(23) has a solution provided that Ω is bounded and

problems (24) and (25) have choice sets that are effectively finite.37 Thus, η-optimal

organizations exist.

The proof is more complicated than what has been described above for the following

reason. The above argument produces an organization O∗ which is optimal only within

37Note that the output of any organization is bounded above by 1, hence yL,ψ−(L−1)η ≤ 1−(L−1)η ≤
0 if L ≥ 1+η

η . Thus, the set of relevant numbers of layers is {1, . . . , L′} with L′ = max{L ∈ N : L <

(1 + η)/η}.
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the class of organizations that satisfy our previous results. If O∗ fails to be optimal, then

there is an organization O such that y − (L − 1)η > y∗ − (L∗ − 1)η or y = y∗, L = L∗,

li ⊆ l∗i for each i ∈ L and lj ̸= l∗j for some j ∈ L. The organization O cannot satisfy our

previous results because O is optimal within those organizations that satisfy them. We

complete the proof by showing that there is an organization Ô that satisfy our results

and is weakly better than O in the sense that it has at least the same output and at the

most the same number of layers than O. The proof of this last step requires strengthening

the argument of our previous results and it is left for the supplementary material of this

paper.

The above method to compute η-optimal organizations can be easily modified to com-

pute lexicographically optimal organizations. Indeed, all it takes is to replace condition

(24) that determines the optimal number of layers with the requirement that L∗ be the

smallest L̂ such that

max
ψ

yL̂,ψ = max
L

max
ψ

yL,ψ. (27)

A.11 Proof of Corollary 3

The proof of (a) is by induction and, thus, we start by showing that B1 = A1. Suppose

not; then B1 \ A1 ̸= ∅. Define Õ equal to O except that Ã1 = B1. It may happen that

Õ fails to be an organization since the requirement β̃i > 0 may fail for some i ∈ L, which

happens if and only if α̃i = 0.

Let i ∈ L be such that α̃i = 0. Then Ãi ⊆ ∪l<iÃl ⊆ ∪l<iB̃l and Ãci ⊆ ∪l<iB̃l.

Since B̃i \ Ãi ⊆ Ãci , we have that B̃i = Ãi ∪ (B̃i \ Ãi) ⊆ ∪l<iB̃l. Let Ô be such that

L̂ = L \ {i ∈ L : α̃i = 0} and l̂1 = L̂ but otherwise equal to O. It then follows easily

by induction that, for each j ∈ L, ∪l<jÃl = ∪l∈L̂:l<jÃl and ∪l<jB̃l = ∪l∈L̂:l<jB̃l. It then

follows that α̂j = α̃j for each i ∈ L̂. Hence, Ô is an organization and that, for each j ∈ L̂,

α̂j = hF (Âj \ ∪l<jÂl) + πF (Âcj \ ∪l<jB̂l).

Then ν̂1 = cµ(B1) = cµ(A1)+ cµ(B1 \A1) = cµ(A1)+ ξµ(B1 \A1) = ν1. Furthermore,

we clearly have that, for each j > 1, νj = ν̂j, ∪l<jBl = ∪l<jB̂l, ∪l<jAl ⊆ ∪l<jÂl and
∪l∈LAl ⊆ ∪l∈LÂl. In particular, this implies that α̂j ≤ αj for each j > 1.

Suppose first that ∪l∈LAl ⊂ ∪l∈LÂl. Since (∪l∈LÂl) \ (∪l∈LAl) ∈ I, it follows that

F (∪l∈LÂl) > F (∪l∈LAl). This, together with α̂j ≤ αj for each j > 1, implies that θ̂ > θ

and γ̂ ≤ γ; hence, ŷ > y. Since L̂ ≤ L, this contradicts the optimality of O.
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Thus, assume that ∪l∈LAl = ∪l∈LÂl. Hence, B1 \A1 ⊆ ∪l∈LAl and, in fact, B1 \A1 ⊆
∪l>1Al since (B1 \ A1) ∩ A1 = ∅. Thus, there is j > 1 and a, b ∈ Ω such that a < b and

[a, b) ⊆ Aj ∩ (B1 \ A1). Hence, Aj \ (∪l<jÂl) ⊆ Aj \ [a, b) whereas Aj \ (∪l<jAl) = Aj

by part 1 of Lemma 1. It then follows that F (Aj \ (∪l<jÂl)) < F (Aj \ (∪l<jAl)). This,

together with Acj \ (∪l<jB̂l) = Acj \ (∪l<jBl), implies that α̂j < αj. This, together with

∪l∈LAl = ∪l∈LÂl and α̂l ≤ αl for each l > 1, implies that θ̂ ≥ θ and γ̂ < γ; hence,

ŷ > y. Since L̂ ≤ L, this contradicts the optimality of O. This contradiction shows that

B1 = A1.

Let 1 < i < L and assume that Bj = Aj for all j < i. Suppose that Bi ̸= Ai;

then Bi \ Ai ̸= ∅. Define an organization Ô equal to O except that Âi = Bi and L̂ =

L \ {j ∈ L : α̂j = 0}. Then, for each j ∈ L, νj = ν̂j, ∪l<jBl = ∪l<jB̂l, ∪l<jAl ⊆ ∪l<jÂl
and ∪l∈LAl ⊆ ∪l∈LÂl as above. In particular, this implies that α̂j ≤ αj for each j ̸= i.

Furthermore, since Bj = Aj for all j < i and h = π, αi = h(F (Ai \ ∪l<iAl) + F (Aci \
∪l<iAl)) = h(1− F (∪l<iAl)) = h(F (Âi \ ∪l<iAl) + F (Âci \ ∪l<iAl)) = α̂i. Hence, α̂j ≤ αj

for each j ∈ L.

If ∪l∈LAl ⊂ ∪l∈LÂl, then ŷ > y as above. But this, together with L̂ ≤ L, contradicts

the optimality of O. Thus, we may assume that ∪l∈LAl = ∪l∈LÂl. Hence, Bi\Ai ⊆ ∪l∈LAl
and, in fact, Bi \ Ai ⊆ ∪l>iAl since (Bi \ Ai) ∩ Ai = ∅ obviously and (Bi \ Ai) ∩ Aj = ∅
for each j < i by part 1 of Lemma 1. Thus, as above, there is j > i such that α̂j < αj

and ŷ > y. Since L̂ ≤ L, this contradicts the optimality of O. This contradiction shows

that Bi = Ai.

The above shows that Bl = Al for each l ∈ {1, . . . , L − 1} and part 2 of Lemma 1

shows that BL = AL. Thus, (a) follows.

By (a), we have that Bl\Al = ∅ and, hence, Al ∈ C for each l ∈ L. For each 1 < i < L,

we have that αi = h(1 −∑i−1
l=1 F (Al)) > h(1 −∑i−1

l=1 F (Al) − F (Ai)) = αi+1 by Lemma

A.16. Hence, Theorem 3 implies that Ai < Ai+1. It follows by Corollary 2 that A1 < A2.

Hence, A1 < A2 < . . . < AL and, thus, (b) holds. Moreover, βi =
αi

γ
> αi+1

γ
= βi+1,

proving (c).

Since α2 = h(1 − F (A1)), we have that α2 < 1 if h < 1. If A1 ̸= ∅, then A1 < A2

together with Theorem 3 imply that c = cA1 > cA2 = α2c and, hence, α2 < 1. Thus, in

both cases, β1 =
1
γ
> α2

γ
= β2, proving (d).
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A.12 Proof of Theorem 5

We establish Theorem 5 in a series of lemmas. Throughout this section, we assume

that Assumptions (A1) and (A2) hold. Let η > 0; we will consider η-optimal as well

as lexicographically optimal organizations but in the latter case η has no interpretation

other than a strictly positive constant.

We next define a function y∗
L̄
which we latter use to describe the output of any optimal

organization. Let L̄ = max{l ∈ N : l < 1+η
η
} and define XL̄ = {(µ1, . . . , µL̄) ∈ RL̄

+ :∑L̄
l=1 µl ≤ ω̄}. Let, for each (µ1, . . . , µL̄) ∈ XL̄,

yL̄(µ1, . . . , µL̄) =
F (
∑L̄

i=1 µi)− cµ1 − c
∑L̄

i=2 αi(µ1, . . . , µL̄)µi − ξ(ω̄ − µ1 − µ2)

1 + h(
∑L̄

i=1 F (µi)− F (µ1))
,

α2(µ1, . . . , µL̄) = h(F (
L̄∑
i=1

µi)− F (µ1 +
L̄∑
i=3

µi)), and

αi(µ1, . . . , µL̄) = h(F (µ1 +
i∑
l=3

µi)− F (µ1 +
i−1∑
l=3

µl)) for each i = 3, . . . , L̄.

This is the output of an organization that satisfies the conclusions of the theorem; if,

instead, (B1 \ A1) ∩ (∩j>2A
c
j) < A2, then the resulting output is as follows (see Lemma

A.27 below for both claims). Let, for each (µ1, . . . , µL̄) ∈ XL̄,

ỹL̄(µ1, . . . , µL̄) =
ϕ(µ1, . . . , µL̄)− cµ1 − c

∑L̄
i=2 α̃i(µ1, . . . , µL̄)µi − ξ(ω̄ − µ1 − µ2)

1 + h(1− F (ω̄ − µ2) + F (µ1 +
∑L̄

i=3 µi)− F (µ1)))
,

ϕ(µ1, . . . , µL̄) = F (µ1 +
L̄∑
i=3

µi) + 1− F (ω̄ − µ2),

α̃2(µ1, . . . , µL̄) = h(1− F (ω̄ − µ2)), and

α̃i(µ1, . . . , µL̄) = αi(µ1, . . . , µL̄) for each i = 3, . . . , L̄.

As we will show below (see Lemma A.27), µi = µ(Ai) for each i ∈ {1, . . . , L̄} in both

cases.

Let y∗
L̄
(µ1, . . . , µL̄) = max{yL̄(µ1, . . . , µL̄), ỹL̄(µ1, . . . , µL̄)} and recall that

y1 = max
0≤µ1≤ω̄

(F (µ1)− cµ1).

Lemma A.17 states that the output of an organization where µi is small for each i > 1

cannot be much bigger than the output of best organization with just one layer.

Lemma A.17 If (µ1, µ2, . . . , µL̄) ∈ XL̄ and max2≤l≤L̄ µl <
η2

f(0)
, then y∗

L̄
(µ1, . . . , µL̄) <

y1 + η.
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Proof. For convenience, let δ = η2

f(0)
. We have that if max2≤l≤L̄ µl < δ then

yL̄(µ1, . . . , µL̄) ≤ F (µ1+ δ(L̄−1))− cµ1 and also ỹL̄(µ1, . . . , µL̄) ≤ F (µ1+ δ(L̄−1))− cµ1.

The former is immediate and so is the latter when µ1+δ(L̄−1) ≥ ω̄; when µ1+δ(L̄−1) < ω̄,

then µ1+
∑L̄

i=3 µi < µ1+δ(L̄−2) < ω̄−δ < ω̄−µ2, hence ϕ(µ1, µ2, . . . , µL̄) < F (
∑L̄

i=1 µi)

by Lemma A.12. Thus, ϕ(µ1, µ2, . . . , µL̄) ≤ F (µ1 + δ(L̄ − 1)) and ỹL̄(µ1, . . . , µL̄) ≤
F (µ1 + δ(L̄− 1))− cµ1.

Next note that F (µ1 + δ(L̄ − 1)) = F (µ1) + F (µ1 + δ(L̄ − 1)) − F (µ1) < F (µ1) +

f(µ1)δ(L̄− 1). This is clear when µ1 + δ(L̄− 1) ≤ ω̄ since f is strictly decreasing. When

µ1 + δ(L̄ − 1) > ω̄, then F (µ1 + δ(L̄ − 1)) − F (µ1) = F (ω̄) − F (µ1) ≤ f(µ1)(ω̄ − µ1) <

f(µ1)δ(L̄− 1).

Thus, y∗
L̄
(µ1, . . . , µL̄) < F (µ1) − cµ1 + f(µ1)δ(L̄ − 1) = F (µ1) − cµ1 +

f(µ1)(L̄−1)η2

f(0)
<

F (µ1)− cµ1 + η ≤ y1 + η since f(µ1)
f(0)

≤ 1, L̄− 1 < 1
η
and F (µ1)− cµ1 ≤ y1.

Define ξ1 = chf(ω̄)η2

f(0)
; then ξ1 > 0 by (A1). Define also ξ2 = πf(ω̄)y1; then y1 > 0 by

(A2) and, thus, ξ2 > 0 by (A1). Then define ξ̄ = min{ξ1, ξ2}.
Suppose that O is an optimal organization, that 0 < ξ < ξ̄ and that L ≥ 2. Lemma

A.18 states that the set of problems that layer 1 screens but does not solve are those that

neither layer 1 nor layer 2 solve. Its argument consists in showing that if there is some

problems that are neither screened nor solved by layer 1, nor solved by layer 2, then it

pays to have layer 1 screen them. This is so since, at the very least, the expected amount

of time α2 spent by layer 2 helping layer 1 decreases and, thus, some fraction of people

can be transferred from layer 2 to layer 1, increasing output.

Lemma A.18 B1 \ A1 = Ω \ (A1 ∪ A2).

Proof. Suppose not; then there is a ∈ Ω and ε > 0 such that [a, a+ε) ⊆ (A1∪A2∪B1\
A1)

c. Consider an organization Ô equal to O except that B̂1 \ Â1 = (B1 \A1)∪ [a, a+ ε).

We have that α2 = (h−π)F (A2)+π(1−F (B1)) by part 3 of Lemma 1 and Lemma A.11.

In addition, B̂1\Â2 = (B1∪[a, a+ε))\A2 = B1∪[a, a+ε), where B1∩[a, a+ε) = ∅. Thus,
α̂2(ε) = α2 − πF ([a, a + ε)) and α̂′

2(0) = −πf(a). Since (∪j<iBj) \ Ai ⊆ (∪j<iB̂j) \ Âi,
it follows by Lemma A.11 that α̂i(ε) ≤ αi and, thus, α̂

′
i(0) = limε→0

α̂i(ε)−αi

ε
≤ 0 for each

i > 2. Hence, θ̂(ε) = θ− ξε−∑L
i=2(α̂i(ε)−αi)νi, where, recall, νi = cµ(Ai) + ξµ(Bi \Ai)

for each i ∈ L. It follows that

γŷ′(0) = −ξ + πf(a)ν2 +
∑
i>2

(−α̂′
i(0))νi + πf(a)y + y

∑
i>2

(−α̂′
i(0)) > πf(ω̄)y − ξ
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since f(a) > f(ω̄). We then have that y ≥ y1 since L ≥ 2 and πf(ω̄)y−ξ ≥ πf(ω̄)y1−ξ =
ξ2−ξ > 0 since ξ < ξ̄. It then follows that there is ε > 0 such that ŷ(ε) > y, a contradiction

to the optimality of O. This contradiction shows that B1 \ A1 = Ω \ (A1 ∪ A2).

Lemma A.19 shows that each layer other than 1 does not screen problems that it does

not solve. Indeed, layer 1 screens all problems other than those that layer 2 does not solve

by Lemma A.18.

Lemma A.19 Bl \ Al = ∅ for each l > 1.

Proof. It follows by Lemma A.18 that Ω = (B1 \A1)∪A1 ∪A2 = B1 ∪A2. Thus, for

each l > 1, Bl \ Al = ((Bl \ Al) ∩B1) ∪ ((Bl \ Al) ∩ A2) = ∅ by part 1 of Lemma 1.

Lemma A.20 characterizes the expected amount of time αl that layer l spends helping

layer 1.

Lemma A.20 If O is an organization such that Al ∩Ak = ∅ for each k, l ∈ L with k ̸= l

and B1 \ A1 = (A1 ∪ A2)
c, then αl = hF (Al) for each l ≥ 2.

Proof. By Lemma A.11, αl = (h−π)F (Al)+π(1−F (∪i<lBi \Al)) for each l ≥ 2. We

have that α2 = (h− π)F (A2) + π(1− F (A1)− F (B1 \A1)) = (h− π)F (A2) + πF (A2) =

hF (A2) since A2 = Ω\(A1∪(B1\A1)). For each l > 2, Ω\Al = (A1∪(B1\A1)∪A2)\Al ⊆
(∪i<lBi) \ Al ⊆ Ω \ Al. Hence, αl = (h− π)F (Al) + π(1− (1− F (Al))) = hF (Al).

Lemma A.21 to characterize expected output.

Lemma A.21 The output of the an optimal organization is

y =

∑L
i=1 F (Ai)− cµ(A1)− ch

∑L
i=2 F (Ai)µ(Ai)− ξ(ω̄ − µ(A1)− µ(A2))

1 + h
∑L

i=2 F (Ai)
.

Proof. We have that y = θ
γ
; hence, the conclusion follows by Lemmas A.18–A.20.

Lemma A.22 states that the size µ(A2) of the knowledge set of layer 2 is the highest

among those of the managerial layers. This follows by the formula for output provided by

Lemma A.21 since swapping A2 and Al for some l > 2 affects only the cost of screening

ξµ(B1 \ A1) = ξ(1− µ(A1)− µ(A2)). Thus, the costs of screening decline by maximizing

µ(A2).

Lemma A.22 µ(A2) = max2≤l≤L µ(Al).
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Proof. Suppose not; let l ∈ {3, . . . , L} be such that µ(Al) > µ(A2). Consider an orga-

nization Ô equal to O except that Â2 = Al, Âl = A2 and B̂1\Â1 = Ω\(A1∪Â2). We then

have that α̂i = hF (Âi) for each i ≥ 2 by Lemma A.20. Clearly, whenever J ⊆ L is such

that 2, l ∈ J ,
∑

j∈J F (Âj) =
∑

j∈J F (Aj) and
∑

j∈J F (Âj)µ(Âj) =
∑

j∈J F (Aj)µ(Aj).

Then γ̂ = 1 + h
∑L

j=2 F (Aj) = γ and

θ̂ =
∑
j∈L

F (Aj)− cµ(A1)−
L∑
j=2

chF (Aj)µ(Aj)− ξ(1− µ(A1)− µ(Â2))

>
∑
j∈L

F (Aj)− cµ(A1)−
L∑
j=2

chF (Aj)µ(Aj)− ξ(1− µ(A1)− µ(A2)) = θ.

Thus, ŷ > y, a contradiction to the optimality of O.

We are heading towards the characterization of the order of the sets in C. Lemma A.23

shows that the cost cA2 of A2 is no greater than the cost cAl∩(B1\A1) of Al∩(B1\A1) for each

l > 2, which implies that there is an optimal organization in which Al = Al ∩ (B1 \A1) <

A2. Later on we will strengthen this conclusion by showing that Al < A2 in any optimal

organization.

Lemma A.23 α2c ≤ αlc+ ξ for each l > 2.

Proof. Let l ∈ L \ {1, 2} and suppose that α2c > αlc+ ξ. Then A2 < Al ∩ (B1 \ A1)

by Theorem 3 since A2 ∈ C and Al ∩ (B1 \A1) ∈ C. Since Al ⊆ B1 \A1 by Lemma A.18,

it follows that A2 < Al.

Let a, a′ ∈ Ω and ε > 0 be such that a + ε < a′, [a, a + ε) ⊆ A2 and [a′, a′ + ε) ⊆ Al.

Consider an organization Ô equal to O except that Â2 = (A2 \ [a, a + ε)) ∪ [a′, a′ + ε),

Âl = (Al \ [a′, a′ + ε))∪ [a, a+ ε) and B̂1 \ Â1 = Ω \ (A1 ∪ Â2). Let ε
′ = F (A2)−F (Â2) =

F ([a, a + ε)) − F ([a′, a′ + ε)) > 0, where the inequality follows by Lemma A.12. Then

F (Â2) < F (A2), F (Â2) + F (Âl) = F (A2) + F (Al) and F (Âl) > F (Al). Furthermore,

µ(Â2) = µ(A2) and µ(Âl) = µ(Al).

We have that α̂2 = hF (Â2) = α2 − hε′ and α̂l = αl + hε′. As ε′ → 0 when ε → 0,

pick ε > 0 such that α̂2c > α̂lc + ξ. Since Â2 < Âl ∩ (B̂1 \ Â1) does not hold, it follows

by Theorem 3 that Ô is not optimal and, therefore, ŷ < y since L̂ = L and l̂i = li for

each i ∈ L. But γ̂ = 1 + h
∑L

i=2 F (Ai) = γ and, due to µ(A2) = max2≤l≤L µ(Al) by

Lemma A.22, θ̂ = θ + chε′(µ(A2) − µ(Al)) ≥ θ, it follows that ŷ ≥ y, a contradiction.

This contradiction shows that α2c ≤ αlc+ ξ.

67



The knowledge set A1 of layer 1 contains the most frequent problems by Corollary 2.

Lemma A.24, which is a direct consequence of Theorem 3, adds to this by showing that

the problems that are screened by layer 1 but not solved by any layer other than layer 2

are the least frequent problems (if any).

Lemma A.24 A1 < Al < (B1 \ A1) ∩ (∩j>2A
c
j) for each l > 2.

Proof. Let l > 2, C = (B1 \A1)∩ (∩j>2A
c
j) for convenience and note that, by Lemma

A.18, Al = Al ∩ (B1 \A1) ∈ C. Since αl > 0 by Theorem 1, cAl∩(B1\A1) = cαl+ ξ > ξ = cC

and it follows by Theorem 3 that Al < C. That A1 < Al follows by Corollary 2.

The conclusion of Lemma A.25 follows from the first order conditions of the problem

of maximizing output.

Lemma A.25 F (Ai) ̸= F (Aj) for each i, j ∈ {3, . . . , L} such that i ̸= j.

Proof. Let g : {2, . . . , L} → {2, . . . , L} be such that g(L) = 2, F (Ag(2)) = max3≤l≤L F (Al)

and

F (Ag(l)) = max{F (Aj) : j ∈ {3, . . . , L} \ {g(2), . . . , g(l − 1)}}.

Then g is a bijection, g({2, . . . , L − 1}) = {3, . . . , L} and F (Ag(2)) ≥ · · · ≥ F (Ag(L−1)).

Thus, by Lemma A.20,

cAg(2)∩(B1\A1) ≥ · · · ≥ cAg(L−1)∩(B1\A1).

Since cAg(L−1)∩(B1\A1) ≥ cA2 by Lemma A.23, it follows by Theorem 3 that there is an

optimal organization Ô such that Âg(2) < · · · < Âg(L−1) < Âg(L) and F (Ĉ) = F (C) for each

C ∈ C, thus, in particular, F (Âl) = F (Al) for all l ∈ L; in addition, B̂1 \ Â1 = (Â1 ∪ Â2)
c

since F ((B̂1 \ Â1) ∪ Â1 ∪ Â2) = F ((B1 \A1) ∪A1 ∪A2) = 0 and (B̂1 \ Â1) ∪ Â1 ∪ Â2 ∈ I
imply that (B̂1 \ Â1) ∪ Â1 ∪ Â2 = ∅. Thus, Âg(L−1) < (B̂1 \ Â1) ∩ (∩j>2Â

c
j) by Lemma

A.24.

Fix l ∈ {2, . . . , L − 2}. By Theorem 2, there exists a,m, b ∈ Ω such that a < m < b,

Âg(l) = [a,m) and Âg(l+1) = [m, b). Consider ε < 0 and an organization Õ equal to Ô

except that Ãg(l) = [a,m+ ε) and Ãg(l+1) = [m+ ε, b). We then have that

α̃g(l)(ε) = α̂g(l) − hF ([m+ ε,m)), α̃′
g(l)(0) = hf(m),

α̃g(l+1)(ε) = α̂g(l) + hF ([m+ ε,m)), α̃′
g(l+1)(0) = −hf(m),

θ̃(ε) = θ̂ + cα̃g(l+1)(ε)ε− cα̃g(l)(ε)ε−
l+1∑
i=l

(α̃g(i)(ε)− α̂g(i))cµ(Âg(i)) and

γ̂ỹ′(0) = cα̂g(l+1) − cα̂g(l) + chf(m)(µ(Âg(l+1))− µ(Âg(l))) ≥ 0,
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the latter because ε < 0 and ỹ(ε) ≤ ŷ since Ô is optimal.

Considering now ε > 0, we obtain that

cα̂g(l+1) − cα̂g(l) + chf(m)(µ(Âg(l+1))− µ(Âg(l))) ≤ 0.

Since α̂g(i) = hF (Âg(i)), it follows that

F (Âg(l))− F (Âg(l+1)) = f(m)(µ(Âg(l+1))− µ(Âg(l))).

We have that F (Âg(l)) ≥ F (Âg(l+1)), which implies that µ(Âg(l+1)) ≥ µ(Âg(l)); if µ(Âg(l+1)) =

µ(Âg(l)), then F (Âg(l)) = F (Âg(l+1)) which, together with Âg(l) < Âg(l+1), contradicts

Lemma A.12. This contradiction shows that µ(Âg(l+1)) > µ(Âg(l)) and F (Âg(l)) > F (Âg(l+1)).

Thus, F (Âl) = F (Al) for all l ∈ L, together with the above conclusion, implies that

F (Ag(2)) > · · · > F (Ag(L−1)) from which the conclusion of the lemma follows.

Let g(3), . . . , g(L) ∈ {3, . . . , L} be such that αg(3) > · · · > αg(L); such bijection g :

{3, . . . , L} → {3, . . . , L} exists by Lemma A.25. Thus, Ag(3) < . . . < Ag(L). In addition,

as shown in the proof of Lemma A.25, for each l ∈ {3, . . . , L− 1},

F (Ag(l))− F (Ag(l+1)) = f(bl)(µ(Ag(l+1))− µ(Ag(l)))

for some bl ∈ Ω. Since F (Ag(l)) > F (Ag(l+1)), it follows that µ(Ag(l+1)) > µ(Ag(l)).

Lemma A.26 strengthens Lemma A.23 by showing that layer 2 solves the least frequent

problems. It also establishes an upper bound on the probability of A2.

Lemma A.26 Ag(L) < A2 and F (A2) < F (Ag(L)) +
ξ
ch
.

Proof. We have that cα2 ≤ cαg(L) + ξ by Lemma A.23. Assume first that cα2 =

cαg(L) + ξ. Then, by Theorem 1, cα2 = cαg(L) + ξ > ξ and A2 < (B1 \ A1) ∩ (∩l>2A
c
l )

by Theorem 3. Theorem 3 also implies that there is an optimal organization Ô such that

Âg(L) < Â2, Ĉ = {Ĉ : C ∈ C} and F (Ĉ) = F (C) for all C ∈ C. Thus, B̂1 \ Â1 = (Â1∪ Â2)
c

as in the proof of Lemma A.25, F (Âl) = F (Al) and α̂l = αl for all l ∈ L.

Thus, it follows by the above and by Theorem 2 that there exists a,m, b ∈ Ω such that

a < m < b, Âg(L) = [a,m) and Â2 = [m, b). Arguing as in the proof of Lemma A.25, we

obtain that

cαg(L) + ξ − cα2 = chf(m)(µ(Â2)− µ(Âg(L))).
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Since cαg(L)+ξ = cα2, it follows that µ(Â2) = µ(Âg(L)) and F (Âg(L))−F (Â2) = − ξ
ch
< 0, a

contradiction to Lemma A.12 since Âg(L) < A2. This contradiction shows that cαg(L)+ξ >

cα2. Hence, F (A2) < F (Ag(L)) +
ξ
ch

and, by Theorem 3, Ag(L) < A2.

From now onwards, we assume that O is an η-optimal organization. Lemma A.27

formalizes the claim that the function y∗
L̄
gives the output of the optimal organization.

Lemma A.27 y = y∗
L̄
(µ1, . . . , µL̄) where (µ1, . . . , µL̄) ∈ XL̄ is such that µ1 = µ(A1),

µ2 = µ(A2), µl = µ(Ag(l)) for each 2 < l ≤ L, and µl = 0 for each L < l ≤ L̄.

Proof. We have that y ≤ 1. Hence, if L > L̄, then L ≥ 1+η
η

⇔ L − 1 ≥ 1
η
and

Y = y − η(L− 1) ≤ 1− 1 = 0, a contradiction. Thus, L ≤ L̄.

Let C = (B1 \ A1) ∩ (∩j>2A
c
j) for convenience. We have A1 < Ag(3) < · · · < Ag(L),

Ag(L) < A2 and Ag(L) < C, in addition to ∪Ll=1Bl = Ω. Let µ1 = µ(A1), µ2 = µ(A2),

µi = µ(Ag(i)) for each 2 < i ≤ L and µi = 0 for each L < i ≤ L̄. Then y = yL̄(µ1, . . . , µL̄)

if A2 < C and y = ỹL̄(µ1, . . . , µL̄) if C < A2.

Lemma A.28 establishes a lower bound on the size µ(A2) = max2≤l≤L̄ µl of the knowl-

edge set of layer 2. It is a consequence of Lemma A.17 and the assumption that L ≥ 2 in

the optimal organization.

Lemma A.28 max2≤l≤L̄ µl ≥ η2

f(0)
.

Proof. Let, by Lemma A.27, (µ1, . . . , µL̄) ∈ XL̄ be such that y = y∗
L̄
(µ1, . . . , µL̄). If

max2≤l≤L̄ µl <
η2

f(0)
, then y∗

L̄
(µ1, . . . , µL) < y1 + η by Lemma A.17. But, as L ≥ 2, it

follows that Y = y − (L− 1)η ≤ y − η < y1, a contradiction to the optimality of O.

Lemma A.29 concludes the characterization of the order of the set in C by showing

that the problems that are screened by layer 1 but not solved by layers 1 and 2 are the

least frequent problems (if any). It uses the lower bound on µ2 from Lemma A.28 to show

that cA2 > c(B1\A1)∩(∩l>2A
c
l )
, from which the conclusion follows by Theorem 3.

Lemma A.29 A2 < (B1 \ A1) ∩ (∩l>2A
c
l ).

Proof. It follows by Lemmas A.22 and A.28 that µ2 = max2≤l≤L µl = max2≤µ≤L̄ µl ≥
η2

f(0)
. Hence, by Lemma A.20,

cA2 = cα2 = chF (A2) ≥ chf(ω̄)µ2 ≥
chf(ω̄)η2

f(0)
= ξ1 > ξ = c(B1\A1)∩(∩l>2A

c
l )
.
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Therefore, the conclusion follows from Theorem 3.

Lemma A.30 shows that the optimal organization is pyramidal in the sense of having

more workers than managers.

Lemma A.30 β1 >
∑L

l=2 βl if h < 1.

Proof. We have that
∑L

l=2 αl = hF (∪Ll=2Al) ≤ h(1 − F (A1)) < 1. Hence, it follows

that β1 =
1
γ
>

∑L
l=2 αl

γ
=
∑L

l=2 βl.

Lemma A.31 concludes the proof of part 5 of the theorem.

Lemma A.31 F (Ag(L)) > η and µ(A2) > µ(Ag(L)).

Proof. Consider an organization Ô equal to O except that L̂ = L\{g(L)} and β̂l =
α̂l

γ̂

for each l ∈ L̂. We have that α̂l = hF (Al) = αl for each l ∈ L̂, γ̂ = 1+
∑

l∈L\{g(L)} αl < γ

and θ̂ = θ − F (Ag(L)) + chF (Ag(L))µ(Ag(L)). Then,

θ − F (Ag(L))

γ
≤ θ̂

γ
<
θ̂

γ̂
≤ θ

γ
− η,

where the last inequality follows because O is η-optimal. Hence, F (Ag(L)) > γη > η since

γ > 1.

It follows by Lemmas A.26 and A.29 and by Theorem 2 that there exists a,m, b ∈ Ω

such that a < m < b, Ag(L) = [a,m) and A2 = [m, b). Arguing as in the proof of Lemma

A.25, we obtain that

cαg(L) + ξ − cα2 = chf(m)(µ(A2)− µ(Ag(L))).

Since cαg(L) + ξ = chF (Ag(L)) + ξ > chF (A2) = cα2, it follows that µ(A2) > µ(Ag(L)).

To conclude the proof of Theorem 5, recall from Lemma A.21 that

y =

∑L
i=1 F (Ai)− cµ(A1)− ch

∑L
i=2 F (Ai)µ(Ai)− ξ(ω̄ − µ(A1)− µ(A2))

1 + h
∑L

i=2 F (Ai)
.

Let ĝ : {3, . . . , L} → {3, . . . , L} be a bijection and consider an organization Ô equal to O

except that Âĝ(l) = Ag(l) for each 3 ≤ l ≤ L. Then ŷ = y and Ô is an optimal organization.

A.13 Proof of Theorem 6

Part 1: Let O be an optimal organization and L be the number of its layers. Suppose,

in order to reach a contradiction, that F (∪l∈LAl) < 1. Then there is a, b ∈ Ω such that
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[a, b) ⊆
(
∪Ll=1Al

)c
and a < b. Let 0 < ε < b − a and consider the organization Ô with L

layers equal to O except that B̂L = ÂL = AL ∪ [a, a + ε). Letting y(ε) be the resulting

output, it follows that

y(ε) =
θ + F ([a, a+ ε))− αL(ε)cε

γ + αL(ε)− αL
,

where, by Lemma A.11,

αL(ε) = hF (AL) + hF ([a, a+ ε)) + π(1− F (AL ∪ (∪j<LBj) ∪ [a, a+ ε))).

We have that αL(ε) ≤ αL + hF ([a, a+ ε)) and, by defining

ŷ(ε) =
θ + F ([a, a+ ε))− αLcε− chF ([a, a+ ε))ε

γ + hF ([a, a+ ε))
,

we obtain that y(ε) ≥ ŷ(ε).

We have that

γŷ′(0) = f(a)− αLc− hyf(a).

Since f(0) ≥ f(a) ≥ f(ω̄) > 0 and αL ≤ h[F (AL)+ 1−F (AL ∪ (∪j<LBj))] ≤ h, it follows

that γŷ′(0) ≥ f(ω̄) − h(c + f(0)) and that ŷ′(0) > 0 whenever h is sufficiently small.

Therefore, there exists ε > 0 such that y(ε) ≥ ŷ(ε) > ŷ(0) = y. But this contradicts the

optimality of O and shows that F (∪l∈LAl) = 1.

Part 2: Let O be an optimal organization and L be the number of its layers. Note

first that L > 1 if h is sufficiently small; indeed, if L = 1, then output is y1 < 1 whereas

the output of a hierarchy Õ with two layers and (µ̃1, µ̃2) = (0, ω̄) is 1−chω̄
1+h

; since 1−chω̄
1+h

> y1

whenever h is sufficiently small, this shows that L > 1.

Suppose, in order to reach a contradiction, that B1 ̸= ∅. Then there is a, b ∈ Ω such

that [a, b) ⊆ B1 and a < b. By adjusting b if necessary, we may assume that (i) [a, b) ⊆ A1

or (ii) [a, b) ⊆ B1 \ A1; the former is possible if a ∈ A1 and the latter if a ∈ B1 \ A1.

Let 0 < ε < b− a and consider the organization Ô with L layers equal to O except that

Â2 = A2 ∪ [a, a+ ε), B̂2 = B2 ∪ [a, a+ ε), Â1 = A1 \ [a, a+ ε) and B̂1 = B1 \ [a, a+ ε) in

case (i) and B̂2 = B2 ∪ [a, a+ ε) and B̂1 = B1 \ [a, a+ ε) in case (ii). Letting y(ε) be the

resulting output, it follows that

y(ε) =
F (∪l∈LAl)−

∑
l∈L αl(ε)νl(ε)∑

l∈L αl(ε)

and

γy′(0) = −
∑
l∈L

α′
l(0)νl −

∑
l∈L

αlν
′
l(0)− y

∑
l∈L

α′
l(0).
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Using Lemma A.11, we have that

αl(ε) = hF (Âl) + π(1− F (Âl ∪ (∪j<lB̂j))) for each l > 1, and

νl(ε) = cµ(Âl) + ξµ(B̂l \ Âl) for each l ∈ L.

Then α′
l(0) = ν ′l(0) = 0 for each l > 2 and α′

1(0) = 0 since α1(ε) = 1.

Furthermore, α2(ε) = hF (Â2) + π(1− F (Â2)− F (B̂1)) since B̂1 ∩ Â2 = ∅ and, hence,

α′
2(0) ≤ hf(a); indeed, α2(ε) = hF (A2) + hF ([a, a + ε)) + π(1 − F (A2) − F (B1)) and

α′
2(0) = hf(a) in case (i), and α2(ε) = hF (A2) + π(1 − F (A2) − F (B1) + F ([a, a + ε)))

and α′
2(0) = πf(a) ≤ hf(a) in case (ii).

We also have that ν1(ε) = ν1 − cε and ν ′1(0) = −c in case (i), and ν1(ε) = ν1 − ξε

and ν ′1(0) = −ξ in case (ii); thus, −ν ′1(0) ≥ ξ. Analogously, ν ′2(0) ≤ c. Using y ≤ 1,

f(a) ≤ f(0), ν2 ≤ cω̄ and α2 ≤ h, it then follows that

γy′(0) = −(ν2 + y)α′
2(0)− ν ′1(0)− ν ′2(0)α2 ≥ ξ − h(f(0)(cω̄ + 1) + c).

Thus, y′(0) > 0 whenever h is sufficiently small. Therefore, there exists ε > 0 such that

y(ε) > y(0) = y. But this contradicts the optimality of O and shows that B1 = ∅.
Part 3: We have that y ≤ 1 in any organization, hence y − (L − 1)η ≤ 0 whenever

L ≥ 1+η
η
. Let y∗ be the output of O∗

2. Since 1 − η > y1, 1 − η > 1 − (L − 1)η for each

2 < L < 1+η
η

and y∗2 = 1−chω̄
1+h

→ 1 as h → 0, it follows that there is h̄ > 0 such that

y∗2 − η > y − (L − 1)η for each organization with output y and L ̸= 2 layers and such

that parts 1 and 2 of the theorem hold. Parts 1 and 2 of the theorem then imply that

y∗2 − η > y − η for each organization with output y and L = 2 layers.

A.14 Proof of Theorem 7

We use the following notion in the proof of Theorem 7. Letting µj = µ(Aj) for each j ∈ L,

we then have that optimal hierarchies (i.e. optimal organizations in the ξ = c and π = h

case) satisfy Aj =
[∑j−1

i=1 µi,
∑j

i=1 µi

)
for each 1 ≤ j ≤ L and µi > 0 for each i > 1 (see

Lemma A.16 for the latter). The vector (µ1, . . . , µL) is obtained by solving

max
(µ1,...,µL)∈RL

+

F (
∑L

i=1 µi)− cµ1 − ch
∑L

i=2 µi(1− F (
∑i−1

l=1 µl))

1 + h
∑L

i=2(1− F (
∑i−1

l=1 µl))
(28)

subject to
L∑
i=1

µi ≤ ω̄. (29)
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For each L ∈ N, let µL = (µL,1, . . . , µL,L) be a solution to (28)–(29), let yL(µ1, . . . , µL)

be the value of the objective function at (µ1, . . . , µL) and let yL = θL
γL

be the value of the

objective function at µL, i.e. yL = yL(µL).

Part 1: The conclusion follows from the following claim.

Claim 1 A lexicographically optimal organization exists if (A1), ξ = c, π = h and f(0) >

min{ch, c} hold.

Proof. We start by showing that if f(0) > min{ch, c} then supL∈N yL > 0. Consider

first the case where min{ch, c} = ch; in this case, consider the hierarchy with L = 2 with

A1 = ∅ and A2 = [0, µ2). Then y(µ2) = F (µ2)−chµ2
1+h

and dy(0)
dµ2

= f(0)−ch
1+h

> 0, implying

that there exists µ∗
2 > 0 such that y(µ∗

2) > 0. Thus, y2 > 0. In the case min{ch, c} = c

consider the hierarchy with L = 1 with A1 = [0, µ1). Then y(µ1) = F (µ1) − cµ1 and

dy(0)
dµ1

= f(0)− c > 0, implying that there exists µ∗
1 > 0 such that y(µ∗

1) > 0. Thus, y1 > 0.

Recall that, for each L ∈ N, µL = (µL,1, . . . , µL,L) is a solution to (28)–(29), yL(µ) is

the value of the objective function at µ, yL = yL(µL), θL is the numerator of yL and γL is

the denominator of yL.

Consider first the case where maxL∈N yL exists. In this case, let L∗ be the smallest

L′ such that yL′ = maxL∈N yL > 0. Then the hierarchy O with L = L∗ and Ai =

[
∑i−1

j=1 µL∗,j,
∑i

j=1 µL∗,j) for each i ∈ L∗ is an optimal organization. If not, then there

exists a hierarchy Ô such that (i) ŷ > yL∗ or (ii) ŷ = yL∗ and L̂ < L∗ or (iii) ŷ = yL∗ ,

L̂ = L∗, l̂i ⊆ li for all i ∈ L∗ and l̂j ̸= lj for some j ∈ L∗. Case (iii) cannot hold

because l1 = L∗ = L̂ = l̂1 and lj = {j} = l̂j for each j ∈ L∗ \ {1}. Since Ô is a

hierarchy, ŷ ≤ yL̂ ≤ yL∗ , hence (i) does not hold. Thus, (ii) must hold. But since

L∗ = min{L′ : yL′ = maxL∈N yL} and L̂ < L∗, we get ŷ ≤ yL̂ < yL∗ , a contradiction.

Due to the above, we may now assume that yL < supL′∈N yL′ for each L ∈ N. Let

{Lk}∞k=1 be such that L1 = 1, Lk ≥ max{k, Lk−1 + 1} and yL < yLk
for all L < Lk.

38

For convenience, let yk = yLk
, θk = θLk

, γk = γLk
and µk = µLk

for each k ∈ N. Then

yk ↑ supL∈N yL. Furthermore, µk,i > 0 for all 1 < i ≤ Lk and k ∈ N. If not, let Ô be the

hierarchy obtained from the hierarchy defined by µk by removing the layers i ∈ {2, . . . , Lk}
38In more detail, let L1 = 1; assuming that L1, . . . , Lk have been defined such that Lk ≥ k, let Lk+1

be the smallest L ≥ Lk + 1 such that yL > yLk
.
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with µk,i = 0, i.e. let L̂ = {1} ∪ {l ∈ Lk \ {1} : µk,l > 0}. Then L̂ < Lk and yLk
≤ ŷ.39

But then yLk
≤ ŷ ≤ yL̂ and L̂ < Lk, which is a contradiction to yL < yLk

for all L < Lk.

We have that F (
∑Lk−1

i=1 µk,i) → 1. Indeed, if F (
∑Lk−1

i=1 µk,i) ̸→ 1, then, taking a

subsequence if necessary, there is η > 0 such that F (
∑Lk−1

i=1 µk,i) ≤ 1 − η for each k.

Hence, 1 − F (
∑i−1

l=1 µk,l) ≥ 1 − F (
∑Lk−1

l=1 µk,l) ≥ η for each 2 ≤ i ≤ Lk and, therefore,

0 < yk ≤ 1
1+(Lk−1)hη

→ 0. But this contradicts yk → supL∈N yL > 0.

Next we claim that there is K > 2 such that
∑Lk

i=1 µk,i = ω̄ for each k ≥ K. Suppose

not; then, taking a subsequence if necessary,
∑Lk

i=1 µk,i < ω̄ for all k. For each k, since

µk,Lk
> 0, ∂y(µk)

∂µLk

= 0 and, thus

f(

Lk∑
i=1

µk,i) = ch(1− F (

Lk−1∑
i=1

µk,i)). (30)

Since f is strictly decreasing, f(ω̄) > 0 and F (
∑Lk−1

i=1 µk,i) → 1, we have that

f(

Lk∑
i=1

µk,i) > f(ω̄) > ch(1− F (

Lk−1∑
i=1

µk,i))

for all k sufficiently large, contradicting (30).

For each k ∈ N and 1 ≤ i ≤ Lk, let Ak,i = [
∑i−1

l=1 µk,i,
∑i

l=1 µk,i). We have that

F (Ak,Lk−1) → 0. Indeed, for each k ≥ K,
∑Lk

l=1 F (Ak,l) = F (∪Lk
l=1Ak,l) = 1 (recall that

the sets in {Ak,l}Lk
l=1 are pairwise disjoint) and, thus,

γk = 1 + h

Lk∑
i=2

(1− F (∪i−1
l=1Ak,l)) = 1 + h

Lk∑
i=2

Lk∑
l=i

F (Ak,l)

= 1 + h

Lk∑
i=2

(i− 1)F (Ak,i).

Since

yk =
θk
γk

≤ 1

1 + h
∑Lk

i=2(i− 1)F (Ak,i)

and limk yk > 0, it follows that there is B > 0 such that
∑Lk

i=2(i− 1)F (Ak,i) ≤ B for each

k ≥ K. In particular, (Lk−2)F (Ak,Lk−1) ≤ B for each k ≥ K and, as Lk → ∞, it follows

that F (Ak,Lk−1) → 0.

39For the latter, note first that
∑
l∈Lk:l≤i−1 µk,l =

∑
l∈L̂:l≤i−1 µk,l for each 2 ≤ i ≤ Lk + 1. Hence,

F (
∑Lk

i=1 µk,i) = F (
∑
l∈L̂ µk,i) and

∑Lk

i=2 µk,i(1− F (
∑i−1
l=1 µk,l)) =

∑
i∈L̂:i≥2 µk,i(1− F (

∑
l∈L̂:l≤i−1 µk,l)),

implying that θk = θ̂. Furthermore, γ̂ = 1 + h
∑
i∈L̂:i≥2(1 − F (

∑
l∈L̂:l≤i−1 µk,l)) = 1 + h

∑
i∈L̂:i≥2(1 −

F (
∑i−1
l=2 µk,l)) ≤ 1 + h

∑Lk

i=2(1− F (
∑i−1
l=2 µk,l)) = γk. Thus, ŷ = θ̂

γ̂ ≥ θk
γk

= yk.
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We now conclude the argument. Fix k ≥ K and recall that µk,i > 0 for all i > 1. If

µk,1 > 0 as well, then µk is a local maximizer of

max
(µ1,...,µLk

)

1− cµ1 − ch
∑Lk

i=2 µi(1− F (
∑i−1

l=1 µl))

1 + h
∑Lk

i=2(1− F (
∑i−1

l=1 µl))

subject to

Lk∑
i=1

µi = ω̄;

if µk,1 = 0, then µk is a local maximizer of

max
(µ2,...,µLk

)

1− ch
∑Lk

i=2 µi(1− F (
∑i−1

l=2 µl))

1 + h
∑Lk

i=2(1− F (
∑i−1

l=2 µl))

subject to

Lk∑
i=2

µi = ω̄.

In either case, by Luenberger and Ye (2008, Theorem, p. 327) (note that the regularity

assumption of the theorem is trivially satisfied because there is only one constraint), there

is λk (the Lagrange multiplier of the constraint
∑Lk

i=1 µi = ω̄) such that

∂y(µk)

∂µLk

− λk = 0,

∂y(µk)

∂µLk−1

− λk = 0.

The first of these equations gives

−ch(1− F (
∑Lk−1

i=1 µk,i))

γk
− λk = 0 ⇔ λk = −ch(1− F (ω̄ − µk,Lk

))

γk
.

The second of these equations gives

λk =
γk [−ch(1− F (ω̄ − µk,Lk

− µk,Lk−1)) + chµk,Lk
f(ω̄ − µk,Lk

)] + θkhf(ω̄ − µk,Lk
)

γ2k
.

Putting the two together yields

−ch(1− F (ω̄ − µk,Lk
)) = −ch(1− F (ω̄ − µk,Lk

− µk,Lk−1)) + chµk,Lk
f(ω̄ − µk,Lk

)

+ykhf(ω̄ − µk,Lk
)

and, hence,

yk = c

(
F (Ak,Lk−1)

f(ω̄ − µk,Lk
)
− µk,Lk

)
.

Since µk,Lk
> 0 and f(ω̄ − µk,Lk

) > f(ω̄) > 0, it follows that

0 < yk < c
F (Ak,Lk−1)

f(ω̄)
.
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Since F (Ak,Lk−1) → 0, it then follows that yk → 0, a contradiction to yk → supL∈N yL > 0.

This completes the proof of the claim.

We turn now to the proof of parts 2 and 3. Let h̄ > 0 be such that Theorem 6 and

part 1 hold for each 0 < h < h̄.

Lemma A.32 If O is an optimal hierarchy, then

c(1− F (
∑L−1

i=1 µi))

f(ω̄)
≤ yL. (31)

Proof. Let O be an optimal hierarchy and L be the number of its layers. Suppose,

in order to reach a contradiction, that
c(1−F (

∑L−1
i=1 µi))

f(ω̄)
> yL, i.e.

ch(1− F (
L−1∑
i=1

µi)) > yLhf(ω̄). (32)

Let ε > 0 and consider the hierarchy Ô with L + 1 layers, µ̂L+1 = ε, µ̂L = µL − ε and

µ̂i = µi for each i = 1, . . . , L − 1. It follows by Theorem 6 that
∑L

i=1 µi = ω̄. Thus, the

output of Ô is

ŷ(ε) =
1− cµ1 − ch

∑L
i=2 µi(1− F (

∑i−1
l=1 µl)) + chε(1− F (

∑L−1
l=1 µl))− chε(1− F (ω̄ − ε))

1 + h
∑L

i=2(1− F (
∑i−1

l=1 µl)) + h(1− F (ω̄ − ε))
.

Clearly, ŷ(0) = yL and, by (32),

γLŷ
′(0) = ch(1− F (

L−1∑
i=1

µi))− yLhf(ω̄) > 0.

Thus, for some ε > 0, ŷ(ε) > ŷ(0) = yL. But this contradicts the optimality of O and

shows that (31) holds.

Part 2: The necessity part follows by Lemma A.32. Indeed, the optimality of O∗
2

implies that supL yL = y2(0, ω̄) = y2 and that (31) holds with L = 2 and µ1 = 0. Thus,

c

f(ω̄)
=
c(1− F (

∑L−1
i=1 µi))

f(ω̄)
≤ y2 = sup

L
yL.

Conversely, assume that c
f(ω̄)

≤ supL′ yL′ . Let O be an optimal organization, which

exists by part 1, and L be the number of its layers; thus, yL = supL′ yL′ . Suppose, in

order to reach a contradiction, that L > 2. Since µL > 0 and µL−1 > 0 by Lemma A.16,

the first-order conditions imply that ∂yL(µ1,...,µL)
∂µL

= ∂yL(µ1,...,µL)
∂µL−1

; thus, using
∑L

i=1 µi = ω̄

by Theorem 6,

cF (ω̄ − µL) = c(F (ω̄ − µL−1 − µL) + µLf(ω̄ − µL)) + yLf(ω̄ − µL).
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Since F (ω̄ − µL−1 − µL) ≥ 0, it follows that

cF (ω̄ − µL) ≥ (cµL + yL)f(ω̄ − µL). (33)

Consider the function g : [0, ω̄] → R defined by setting, for each x ∈ [0, ω̄],

g(x) = cF (ω̄ − x)− (cx+ yL)f(ω̄ − x);

condition (33) then states that there is x∗ ∈ (0, ω̄) such that g(x∗) ≥ 0. But g is strictly

decreasing (since F is strictly increasing and f is strictly decreasing) and g(0) = c −
yLf(ω̄) ≤ 0, hence no such x∗ exists. This contradiction, in turn, implies that L = 2.

Theorem 6 together with L = 2 then implies that O = O∗
2, i.e. that O

∗
2 is an optimal

organization and the only one.

Finally, note that (3) implies that y2 = supL yL and, hence, c
f(ω̄)

≤ y2. Conversely, the

latter implies (3) since we always have y2 ≤ supL yL.

Part 3: Suppose that f is differentiable and that (4) hold. Note first that

∂
(
F (x+y)−F (x)

f(x+y)

)
∂y

> 0 (34)

for each x, y ∈ Ω such that x+ y ≤ ω̄ since

∂
(
F (x+y)−F (x)

f(x+y)

)
∂y

=
f(x+ y)2 + (−f ′(x+ y))(F (x+ y)− F (x))

f(x+ y)2

and f ′(x+ y) < 0 since f is strictly decreasing.

For the necessity part, note that if O∗
3 is an optimal organization, then supL∈N yL = y3,

and (31) implies
c(1−F (µ∗2))

f(ω̄)
≤ y3. We also that that supL∈N yL <

c
f(ω̄)

because otherwise

part 2 of this theorem would imply that O∗
2 is the unique optimal organization and so O∗

3

could not be optimal.

Regarding sufficiency of (5), let O be an optimal organization, which exists by part

1, and L be the number of its layers. Suppose, in order to reach a contradiction, that

L > 3 (note that L ̸∈ {1, 2} by Theorems 6 and part 2) and let (µ1, . . . , µL) be a solution

to (28)–(29). By Lemma A.16 and Theorem 6, it follows that (µ2, . . . , µL−1) is such that

µi > 0 for each i = 2, . . . , L− 1 and it solves

yL = max
µ2,µ3,...,µL−1

1− ch
∑L−1

l=2 µl(1− F (
∑l−1

j=2 µj))− ch(ω̄ −∑L−1
l=2 µl)(1− F (

∑L−1
j=2 µj))

1 + h
∑L

l=2(1− F (
∑l−1

j=2 µj))
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subject to
∑L−1

j=2 µj < ω̄. The first-order condition FOCi with respect to µi is, for each

i ∈ {2, . . . , L− 1},

− ch

(
1− F

(
i−1∑
j=2

µj

))
+ ch

L−1∑
l=i+1

µlf

(
l−1∑
j=2

µj

)

+ chµLf

(
L−1∑
j=2

µj

)
+ ch

(
1− F

(
L−1∑
j=2

µj

))
+ yLh

L∑
l=i+1

f

(
l−1∑
j=2

µj

)
= 0.

Equivalently:

F (
∑i

j=2 µj)− F (
∑i−1

j=2 µj)

f(
∑i

j=2 µj)
=
yL
c

+ µi+1 for each i ∈ {2, . . . , L− 2}, and (35)

F (
∑L−1

j=2 µj)− F (
∑L−2

j=2 µj)

f(
∑L−1

j=2 µj)
=
yL
c

+ ω̄ −
L−1∑
j=2

µj, (36)

where (35) is obtained by subtracting FOCi+1 from FOCi for each i ∈ {2, . . . , L−2} and

(36) is just FOCL−1.

Suppose for a contradiction that
∑L−2

j=2 µj < µ∗
2. By the definition of µ∗

2, the assumption

that yL > y3, and because F (
∑L−3

j=2 µj) ≥ 0, it follows that

F (µ∗
2)− F (

∑L−3
j=2 µj)

f(µ∗
2)

≤ F (µ∗
2)

f(µ∗
2)

=
y3
c
+ ω̄ − µ∗

2 <
yL
c

+ ω̄ − µ∗
2.

Thus, if
∑L−2

j=2 µj < µ∗
2, (34) and (35) imply

yL
c

+ µL−1 =
F (
∑L−2

j=2 µj)− F (
∑L−3

j=2 µj)

f(
∑L−2

j=2 µj)
<
F (µ∗

2)− F (
∑L−3

j=2 µj)

f(µ∗
2)

<
yL
c

+ ω̄ − µ∗
2

and, hence, µL−1 < ω̄ − µ∗
2.

Letting x =
∑L−2

j=2 µj, y = µL−1 and x′ = ω̄ − µL−1, (4) together with the mean value

theorem imply that

1− F (ω̄ − µL−1)

f(ω̄)
>
F (
∑L−2

j=2 µj + µL−1)− F (
∑L−2

j=2 µj)

f(
∑L−2

j=2 µj + µL−1)
− (ω̄ − µL−1 −

L−2∑
j=2

µj).

This together with µL−1 < ω̄ − µ∗
2 and (5) imply that

F (
∑L−2

j=2 µj + µL−1)− F (
∑L−2

j=2 µj)

f(
∑L−2

j=2 µj + µL−1)
+

L−2∑
j=2

µj + µL−1 <
1− F (µ∗

2)

f(ω̄)
+ ω̄ ≤ yL

c
+ ω̄.

But this contradicts (36).
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The above contradiction implies that
∑L−2

j=2 µj ≥ µ∗
2. This together with (34) (use

x =
∑L−2

j=2 µj, y = µL−1 and y′ = ω̄ −∑L−2
j=2 µj),

∑L−1
j=2 µj < ω̄ and (5) imply that

F (
∑L−1

j=2 µj)− F (
∑L−2

j=2 µj)

f(
∑L−1

j=2 µj)
+

L−1∑
j=2

µj <
1− F (

∑L−2
j=2 µj)

f(ω̄)
+ ω̄

≤ 1− F (µ∗
2)

f(ω̄)
+ ω̄ ≤ yL

c
+ ω̄.

But this contradicts (36). This contradiction shows that we cannot have L > 3. Thus, it

follows that L = 3.

To complete the proof, we need to show that if (µ1, µ2, µ3) solves (28)–(29) for L = 3

then µ1 = 0, µ2 = µ∗
2 and µ3 = ω̄ − µ∗

2. Note that since µ2 > 0 and µ3 > 0, ∂y3(µ1,µ2,µ3)
∂µ2

=

∂y3(µ1,µ2,µ3)
∂µ3

. This equality together with µ1 = 0 and µ3 = ω̄ − µ2 (which follow from

Theorem 6) implies that

µ2 +
F (µ2)

f(µ2)
=
y3
c
+ ω̄.

Note that µ2 = 0 implies y3 = −cω̄ and that µ2 = ω̄ implies y3 =
c

f(ω̄)
; since 0 < y3 <

c
f(ω̄)

(the latter by (5)), neither µ2 = 0 nor µ2 = ω̄ is a solution to this equation. Since the

right hand side is strictly increasing in µ2, the equation has a unique solution µ∗
2. In

conclusion, O∗
3 is an optimal organization and the only one.

Finally, note that, (5) implies that y3 = supL yL and, hence,
c(1−F (µ∗2))

f(ω̄)
≤ y3 <

c
f(ω̄)

.

Conversely, the latter implies that
c(1−F (µ∗2))

f(ω̄)
≤ supL yL since we always have y3 ≤ supL yL.

If supL yL ≥ c
f(ω̄)

, then y2 = y2(0, ω̄) = supL yL by part 2 and, hence, y3 = y3(0, ω̄, 0) =

y2 = supL yL, contradicting y3 <
c

f(ω̄)
. Thus, supL yL <

c
f(ω̄)

and (5) holds.

A.15 Sufficient conditions for (4)

We first show that a sufficient condition for (4) is that

f(0) < 2f(ω̄). (37)

Indeed, note that

∂
(
F (x+y)−F (x)

f(x+y)

)
∂x

=
f(x+ y)− f(x)

f(x+ y)
+

(F (x+ y)− F (x))(−f ′(x+ y))

f(x+ y)2
. (38)

The second term is positive, and since f(0) < 2f(ω̄), the first term is bounded below by

f(ω̄)−f(0)
f(ω̄)

= 1− f(0)
f(ω̄)

> −1.
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While sufficient, (37) is not necessary for (4) as it can easily be seen for the case where

f is affine. Indeed, when ω̄ = 1 and f(z) = a − 2(a − 1)z for each z ∈ Ω and some

1 < a < 2, f(0) = a, f(ω̄) = 2 − a and f(0) < 2f(ω̄) holds if and only if a < 4/3. That

(4) holds for any affine f is a consequence of the fact that another sufficient condition for

(4) is that

f is concave. (39)

Indeed, we can write (38) as

∂
(
F (x+y)−F (x)

f(x+y)

)
∂x

=
y

f(x+ y)

[
f(x+ y)− f(x)

y
+
F (x+ y)− F (x)

y

(−f ′(x+ y))

f(x+ y)

]
.

Since F ′′(z) = f ′(z) < 0 for each z ∈ Ω, F is concave and F (x+y)−F (x)
y

≥ F ′(x + y) =

f(x+ y). Thus,

∂
(
F (x+y)−F (x)

f(x+y)

)
∂x

≥ y

f(x+ y)

[
f(x+ y)− f(x)

y
− f ′(x+ y)

]
≥ 0

if f is concave.

As before, (39) is not necessary for (4). This can be seen by considering the (truncated)

exponential distribution, e.g. let ω̄ = 1, λ > 0 and f(z) = λe−λz

1−e−λ for each z ∈ [0, 1]. Then

F (z) = 1−e−λz

1−e−λ for each z ∈ [0, 1] and, for each 0 ≤ x ≤ x+ y ≤ 1,

F (x+ y)− F (x)

f(x+ y)
=

e−λx(1− e−λy)

λe−λxe−λy
=

1− e−λy

λe−λy
.

It then follows that
∂(F (x+y)−F (x)

f(x+y) )
∂x

= 0.
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