Replication Data for “Improving the Organization

of Knowledge in Production by Screening Problems”

Guilherme Carmona® Krittanai Laohakunakorn'

University of Surrey University of Surrey

July 23, 2023

Contents
1 List of files 2
2 Codes for the small ¢ case 2
3 Codes for intermediate values of ¢ 3
3.1 Computations 3
311 L=1 .. 3
312 L=2 . . 3
313 L=3 . . . 4
314 L=4 . . 5
3.2 Code description 7

*Address: University of Surrey, School of Economics, Guildford, GU2 7XH, UK; email:

g.carmona@surrey.ac.uk.
TAddress: University of Surrey, School of Economics, Guildford, GU2 7XH, UK; email:

k.laohakunakorn@surrey.ac.uk.

1

List of files

We have provided the following files to allow replication of our numerical results in

Sections 5.2, 5.3 and 5.5:

—_

10.

11.

2

. Org.py

. hier.py

diff.py

. orders.py
. orgL2.py
. orgL3.py
. orglL4.py

. orgLaux.py

. orgL.py

orgLoptimal.py

orgLh.py

Codes for the small ¢ case

The following three codes are used for the computations in Section 5.2: First, org.py

computes the optimal organization as a function of the parameters and hier.py com-

putes the best hierarchy, also as a function of the parameters.! Then diff.py makes

all the reported computations for the chosen parameter values.

!Both of these codes use the built-in function minimize. We have tried replacing it in org.py

with basinhopping and the results are virtually the same but the program takes far longer to run.

3 Codes for intermediate values of ¢

In this section, we describe the computational approach used in Sections 5.3 and 5.5.

3.1 Computations

We assume that 7 = h and that A < 1. The former simplifies the expression for «;
for each i € L\ {1} since, by Lemma A.11, a; = h(1 — F((U;<;B;) \ 4;)). The latter
then implies that o; < 1 and Lemma A.16 implies that «; > 0.

We use the approach described in Section A.10 to compute optimal organiza-
tions. In what follows, we describe the candidates for optimal organizations when the

number of layers is L and L € {1,2,3,4}.

3.1.1 L=1

The best organization with one layer does not depend on &, i.e. By \ A; = () always.

In this case, p; = min {max {“T’C, 0} , 1} and y; = F(u1) — cp.

3.1.2 L=2

In this case, C = {Ay, Ay, By \ A1}. Since A; < C for each C € C, there are two

possible orders:
1. Al <A2 <Bl\A1, and
2. A1<Bl\A1<A2.

We let pop = p(Ar), 1 = p(Az) and pe = p(By \ A1). In order 1, Ay = [0, po),
Ay = [0, pio + pa) and By \ Ay = [uo + i, pio + pu1 + p2). Hence, ap = h(1 — F(uo) —
F(X7 o) + Fpo +) and y = (F(po + pr) — cpto — caopy — &) /(1 + o).

In order 2, Ay = [0, po), Br \ A1 = [po, pro + p2) and Ag = [po + pig, plo + pi1 + fiz).
Hence, a5 = h(1 — Flpo + 1)) and y = (F(sio) + F(X% 1) — Flpio + 1) — cpto —
caspy — {pi2) /(1 + a).

3.1.3 L=3

In this case, C = {AsN(B1\ A1), A1, A, AsN(B1\A1)¢, (B1\A1)NAS, B\ Ay}, We have
that A; < C foreach C' € C\{A;} and Ay < A3N(B;1\ A4;)° by Corollary 2. Moreover,
Corollary 1 implies that A3N(B1\ A1) < AsN(B1\ A1), AsN(B1\ A1) < (By\Ap)NAS,
(B1\ A1) NAS < By \ Ay and Ay < By \ As.

When L = 3, we have that

B\ Ay =AU(A3N (B \ A1) U ((By\ A1) N A3) and
(ByUBs)\ As = A, U (B \ Ay) N AS) U Ay U (By \ Ay).
Then:
ay = h(l = F(A) = F(AsN (B \ A1) — F((B1\ A1) N A3)),
as = h(l—=F(A) = F((B1\ A1) N A3) — F(A) — F(By \ A2)),
v= 1+as+ a; and
6= F(A)+F(Ay) + F(As 0 (B \ A1)+ F(As N (By \ A1)°)
—cp(Ar) = Eu((Br\ A1) N AF) — caspi(As) — Eaap(Bs \ A)
—cazp(As N (B1\ A1)°) — (cas + §)u(As N (By \ Ar)).

There are eight possible orders consistent with Corollaries 1 and 2:

1. Ay < AsnN(B1\ A1) < As < AsnN (B \ A1) < (B1\ A1) NA§ < By \ Ao
2. Al < AN (B \Ay) <Ay < (Bi\ A1) NAS < AsN(By\ A1)° < By \ As.
3. A <AsN(Bi\ A1) < (B1\A1)NAS < Ay < AsnN (B \ A1)° < By \ As.
4. A <A < A3N (B \ A1) <AsN(Br\ A1) < (B \ A1) NA§ < By \ As.
5. A <Ay < A3N(B1\A)) < (B1\ A1) NA§ < AsnN (B \ A1) < By \ As.
6. Al < A3N(B1\A)) <Ay < (B1\ A1) NAS < By \ Ay < A3 N (B \ Ay)“.
7. A <A3sN(Bi\ A1) < (B1\A1)NAS < Ay < Bo\ Ay < A3N (B \ 4y)°.

8. Al<A2<A3Q(B1\A1)<(Bl\Al)ﬂAg<B2\A2<A3H(BI\A1)C.

It turns out that, in fact, order 1 is the optimal one in all of our simulations.

4

3.14 L=4

In this case, C = {A;, A3 N (B \ A1), Ay N (B \ Ay), Ag, Ay N (Be \ Az), A3 N (By \
A%, Ay 1 (By\ Ay 1 (B \ As)e, (By \ Ay) 1 AS A AS, (By \ Ag) M AS, By \ Ay).

First, we rule out as many orders as we can. Corollaries 1 and 2 imply that:
1. Ay < C foreach C € C\ {A;} (Corollary 2).
2. AsN (B \ A1) < A3N(By \ Ap)¢ (Corollary 1).
3. AsN (B \ A1) < (B1\ 41) N AN Ag (Corollary 1).
4. AynN (B \ A1) < AyN(By\ Ay) (Corollary 2).
5. AynN (B \ A1) < AynN (B \ A1) N (B2 \ Ay)¢ (Corollary 1).
6. AyN (B \ A1) < (B \ A1) N AN Af (Corollary 1).
7. AyN(By\ Ag) < AyN (B \ A1) N (By \ Ag)¢ (Corollary 1).
8. AyN(By\ As) < (Bs \ Ay) N Ag (Corollary 1).
9. Ay < (By\ Az) N A§ (Corollary 1).
10. AsN (B \ A1)¢ < B3\ Az (Corollary 1).
11. (B \ A1) NA5NAS < (By\ Ay) N A (Corollary 2).
12. (B1\ A1) NASN A < By \ Az (Corollary 2).
13. Ay < A3N(By\ A1)° (Corollary 2).
4. AN (B \ A1) < AgnN (B \ A1) N (B2 \ A2)¢ (Corollary 2).
15. (By \ Ay) N A < Bs \ A; (Corollary 2).

16. Ay < AyN (B2 \ Ay) (Corollary 2).

When L = 4, we have that

B\ Ay = (A3N (B \ A1) U (AsnN (B \ Ay))
U((B1\ A1) N (A5 N AS)) U Ay,
(BiUB2)\ Az = (B \ A1) N A) U ((B1\ A1) N (A5N A7) U A
U(AsN (Ba \ Ag)) U ((By \ A2) N AS) U As, and
(BiUByUB3)\ Ay = (AsN (B \ A1) U((Br\ A)N(ASN A7) U A,
U((Ba \ A2) N A7) U Ay U (Bs \ A3) U (A3 N (By \ 47)9).

Hence,

ay =h(l—F(A3sN (B \ A1) — F(A; N (B1\ 4))

() —
—F((Bi\ Ar) 0 (A3 N0 A) — F(Ar),
as =h(1—F((Bi1\ A1) N As) — F((Br\ A1) N (A5 N AS)) — F(A)
—F(AyN (Bo\ A5)) — F((Ba \ As) N AS) — F(A,)), and
as =h(l—F(A;0 (B \ A)) — F((B1\ A)) N (A5N AS) — F(A)
(

—F((B2\ A2) N A}) — F(A2) — F(Bs \ A3) — F(A3 N (B1 \ A1)9)).

Also,

v =1+as+as+ as and

0 =F(A)+ F(A3sN (B \ A1)+ F(AyN (B \ A1) + F(As)
+F(A;N(Ba\ Ay)) + F(AsN (B \ A1) + F(AyN (B \ A1) N (B2 \ Ag)9)
—cp(Ar) = (cas + u(As N (Br\ A1) — (caq + u(As N (Br \ Ar))
—cagp(Az) — (coy + o) u(Ag N (Ba \ A2)) — casp(As N (Br\ A)°)
—coupi(As N (Br\ A1) N (Ba \ A2)) — Eul(Br \ A1) N A5 N AG)

—Eagu((Ba \ A2) N Aj) — Easpu(Bs \ Az).

We use orders.py to find all orders consistent with the above results; there are 192

in total which are listed in the code.

We note that as it was the case where L = 3, order 1, which is now

Ay < Ain (Bi\ Ay) < As 1 (Bi\ A1) < Ay < A1 (B \ Ay)° < Ay (Ba \ As)
<A4m(B1\A1)Cﬂ(BQ\A2)C<(Bl\Al)ﬂAgﬂAi<(BQ\AQ)HA2<B3\A3,

is optimal in all our simulations.

3.2 Code description

The starting point are the codes orgl.2.py, orgl3.py and orgl4.py, each of which
computes the optimal organization for the corresponding number of layers. In each of
these codes, each possible optimal ordering of C is considered and the built-in function
minimize is used to find the size of each element of C and corresponding output.?
Then the order that leads to the highest such output is selected; the code returns the
order of C, the size of each element of C, the output of the optimal organization, the
size [3; of each layer and the costs of learning v; of each layer.

One aspect of the above codes which is worth discussing concerns the choice of the
ordering of C, which we illustrate in the case where L = 2. In this case there are two
possible orderings: 11 = (A1 < Ay < By \ A1) and ¥y = (A; < By \ 41 < Ay). These
two orders are the same if B;\ A} = (), namely A; < Ay. Hence, in orgl.2.py, the order
A < By\ Ay < Aj is the optimal one only if yr, y, > Y14, and p(B;\ A;) > 1/100000,
i.e. u(By\ Ap) is significantly above 0.3

The next step is performed by orgLaux.py, which solves maxjc(i 2343 ¥z One
issue with this maximization problem is that often y,.; > vy, (and then possibly
yr+1 > yr due to approximation errors) by simply taking the organization that yields

yr, and adding layer L + 1 with By, = Arp.; = 0. To avoid this, for e.g. L = 3

2We use the solution to the optimal organization with L = 1 as the initial guess except when it

features p(A1) = 0. In this case, we use basinhopping instead of minimize.
3This approach requires checking that the relevant sets that distinguish between certain orders

are (significantly) nonempty. An alternative approach is to require that yr 4, > yr.4, + 1/1000000
for 15 to be considered better than 1, which also ensures that differences between the orders are not
just the result of the approximate nature of the minimize algorithm. We take the latter approach

in orgL4.py, where it is more convenient because of the large number of possible orders.

7

to be better than L = 2, we require not only that y3 > yo but also that u(As) =
w(As N (By\ A1) + w(Asz N (By \ Ap)¢) > 1/100000.

Finally, the computations and graphs reported in Section 5.3 and 5.5 are produced
using orgL.py, orgLoptimal.py and orgLh.py.

	List of files
	Codes for the small case
	Codes for intermediate values of
	Computations
	L=1
	L=2
	L=3
	L=4

	Code description

