
Replication Data for “Improving the Organization

of Knowledge in Production by Screening Problems”

Guilherme Carmona∗

University of Surrey

Krittanai Laohakunakorn†

University of Surrey

July 23, 2023

Contents

1 List of files 2

2 Codes for the small ξ case 2

3 Codes for intermediate values of ξ 3

3.1 Computations . 3

3.1.1 L = 1 . 3

3.1.2 L = 2 . 3

3.1.3 L = 3 . 4

3.1.4 L = 4 . 5

3.2 Code description . 7

∗Address: University of Surrey, School of Economics, Guildford, GU2 7XH, UK; email:

g.carmona@surrey.ac.uk.
†Address: University of Surrey, School of Economics, Guildford, GU2 7XH, UK; email:

k.laohakunakorn@surrey.ac.uk.

1

1 List of files

We have provided the following files to allow replication of our numerical results in

Sections 5.2, 5.3 and 5.5:

1. org.py

2. hier.py

3. diff.py

4. orders.py

5. orgL2.py

6. orgL3.py

7. orgL4.py

8. orgLaux.py

9. orgL.py

10. orgLoptimal.py

11. orgLh.py

2 Codes for the small ξ case

The following three codes are used for the computations in Section 5.2: First, org.py

computes the optimal organization as a function of the parameters and hier.py com-

putes the best hierarchy, also as a function of the parameters.1 Then diff.py makes

all the reported computations for the chosen parameter values.

1Both of these codes use the built-in function minimize. We have tried replacing it in org.py

with basinhopping and the results are virtually the same but the program takes far longer to run.

2

3 Codes for intermediate values of ξ

In this section, we describe the computational approach used in Sections 5.3 and 5.5.

3.1 Computations

We assume that π = h and that h < 1. The former simplifies the expression for αi

for each i ∈ L \ {1} since, by Lemma A.11, αi = h(1− F ((∪j<iBj) \Ai)). The latter

then implies that αi < 1 and Lemma A.16 implies that αi > 0.

We use the approach described in Section A.10 to compute optimal organiza-

tions. In what follows, we describe the candidates for optimal organizations when the

number of layers is L and L ∈ {1, 2, 3, 4}.

3.1.1 L = 1

The best organization with one layer does not depend on ξ, i.e. B1 \ A1 = ∅ always.

In this case, µ1 = min
{
max

{
a−c
b
, 0
}
, 1
}
and y1 = F (µ1)− cµ1.

3.1.2 L = 2

In this case, C = {A1, A2, B1 \ A1}. Since A1 < C for each C ∈ C, there are two

possible orders:

1. A1 < A2 < B1 \ A1, and

2. A1 < B1 \ A1 < A2.

We let µ0 = µ(A1), µ1 = µ(A2) and µ2 = µ(B1 \ A1). In order 1, A1 = [0, µ0),

A2 = [µ0, µ0 + µ1) and B1 \A1 = [µ0 + µ1, µ0 + µ1 + µ2). Hence, α2 = h(1− F (µ0)−

F (
∑2

i=0 µi) + F (µ0 + µ1)) and y = (F (µ0 + µ1)− cµ0 − cα2µ1 − ξµ2)/(1 + α2).

In order 2, A1 = [0, µ0), B1 \A1 = [µ0, µ0 + µ2) and A2 = [µ0 + µ2, µ0 + µ1 + µ2).

Hence, α2 = h(1 − F (µ0 + µ2)) and y = (F (µ0) + F (
∑2

i=0 µi) − F (µ0 + µ2) − cµ0 −

cα2µ1 − ξµ2)/(1 + α2).

3

3.1.3 L = 3

In this case, C = {A3∩(B1\A1), A1, A2, A3∩(B1\A1)
c, (B1\A1)∩Ac3, B2\A2}. We have

that A1 < C for each C ∈ C\{A1} and A2 < A3∩(B1\A1)
c by Corollary 2. Moreover,

Corollary 1 implies that A3∩(B1\A1) < A3∩(B1\A1)
c, A3∩(B1\A1) < (B1\A1)∩Ac3,

(B1 \ A1) ∩ Ac3 < B2 \ A2 and A2 < B2 \ A2.

When L = 3, we have that

B1 \ A2 = A1 ∪ (A3 ∩ (B1 \ A1)) ∪ ((B1 \ A1) ∩ Ac3) and

(B1 ∪B2) \ A3 = A1 ∪ ((B1 \ A1) ∩ Ac3) ∪ A2 ∪ (B2 \ A2).

Then:

α2 = h(1− F (A1)− F (A3 ∩ (B1 \ A1))− F ((B1 \ A1) ∩ Ac3)),

α3 = h(1− F (A1)− F ((B1 \ A1) ∩ Ac3)− F (A2)− F (B2 \ A2)),

γ = 1 + α2 + α3 and

θ = F (A1) + F (A2) + F (A3 ∩ (B1 \ A1)) + F (A3 ∩ (B1 \ A1)
c)

−cµ(A1)− ξµ((B1 \ A1) ∩ Ac3)− cα2µ(A2)− ξα2µ(B2 \ A2)

−cα3µ(A3 ∩ (B1 \ A1)
c)− (cα3 + ξ)µ(A3 ∩ (B1 \ A1)).

There are eight possible orders consistent with Corollaries 1 and 2:

1. A1 < A3 ∩ (B1 \ A1) < A2 < A3 ∩ (B1 \ A1)
c < (B1 \ A1) ∩ Ac3 < B2 \ A2.

2. A1 < A3 ∩ (B1 \ A1) < A2 < (B1 \ A1) ∩ Ac3 < A3 ∩ (B1 \ A1)
c < B2 \ A2.

3. A1 < A3 ∩ (B1 \ A1) < (B1 \ A1) ∩ Ac3 < A2 < A3 ∩ (B1 \ A1)
c < B2 \ A2.

4. A1 < A2 < A3 ∩ (B1 \ A1) < A3 ∩ (B1 \ A1)
c < (B1 \ A1) ∩ Ac3 < B2 \ A2.

5. A1 < A2 < A3 ∩ (B1 \ A1) < (B1 \ A1) ∩ Ac3 < A3 ∩ (B1 \ A1)
c < B2 \ A2.

6. A1 < A3 ∩ (B1 \ A1) < A2 < (B1 \ A1) ∩ Ac3 < B2 \ A2 < A3 ∩ (B1 \ A1)
c.

7. A1 < A3 ∩ (B1 \ A1) < (B1 \ A1) ∩ Ac3 < A2 < B2 \ A2 < A3 ∩ (B1 \ A1)
c.

8. A1 < A2 < A3 ∩ (B1 \ A1) < (B1 \ A1) ∩ Ac3 < B2 \ A2 < A3 ∩ (B1 \ A1)
c.

It turns out that, in fact, order 1 is the optimal one in all of our simulations.

4

3.1.4 L = 4

In this case, C = {A1, A3 ∩ (B1 \ A1), A4 ∩ (B1 \ A1), A2, A4 ∩ (B2 \ A2), A3 ∩ (B1 \

A1)
c, A4 ∩ (B1 \ A1)

c ∩ (B2 \ A2)
c, (B1 \ A1) ∩ Ac3 ∩ Ac4, (B2 \ A2) ∩ Ac4, B3 \ A3}.

First, we rule out as many orders as we can. Corollaries 1 and 2 imply that:

1. A1 < C for each C ∈ C \ {A1} (Corollary 2).

2. A3 ∩ (B1 \ A1) < A3 ∩ (B1 \ A1)
c (Corollary 1).

3. A3 ∩ (B1 \ A1) < (B1 \ A1) ∩ Ac3 ∩ Ac4 (Corollary 1).

4. A4 ∩ (B1 \ A1) < A4 ∩ (B2 \ A2) (Corollary 2).

5. A4 ∩ (B1 \ A1) < A4 ∩ (B1 \ A1)
c ∩ (B2 \ A2)

c (Corollary 1).

6. A4 ∩ (B1 \ A1) < (B1 \ A1) ∩ Ac3 ∩ Ac4 (Corollary 1).

7. A4 ∩ (B2 \ A2) < A4 ∩ (B1 \ A1)
c ∩ (B2 \ A2)

c (Corollary 1).

8. A4 ∩ (B2 \ A2) < (B2 \ A2) ∩ Ac4 (Corollary 1).

9. A2 < (B2 \ A2) ∩ Ac4 (Corollary 1).

10. A3 ∩ (B1 \ A1)
c < B3 \ A3 (Corollary 1).

11. (B1 \ A1) ∩ Ac3 ∩ Ac4 < (B2 \ A2) ∩ Ac4 (Corollary 2).

12. (B1 \ A1) ∩ Ac3 ∩ Ac4 < B3 \ A3 (Corollary 2).

13. A2 < A3 ∩ (B1 \ A1)
c (Corollary 2).

14. A3 ∩ (B1 \ A1)
c < A4 ∩ (B1 \ A1)

c ∩ (B2 \ A2)
c (Corollary 2).

15. (B2 \ A2) ∩ Ac4 < B3 \ A3 (Corollary 2).

16. A2 < A4 ∩ (B2 \ A2) (Corollary 2).

5

When L = 4, we have that

B1 \ A2 = (A3 ∩ (B1 \ A1)) ∪ (A4 ∩ (B1 \ A1))

∪((B1 \ A1) ∩ (Ac3 ∩ Ac4)) ∪ A1,

(B1 ∪B2) \ A3 = ((B1 \ A1) ∩ A4) ∪ ((B1 \ A1) ∩ (Ac3 ∩ Ac4)) ∪ A1

∪(A4 ∩ (B2 \ A2)) ∪ ((B2 \ A2) ∩ Ac4) ∪ A2, and

(B1 ∪B2 ∪B3) \ A4 = (A3 ∩ (B1 \ A1)) ∪ ((B1 \ A1) ∩ (Ac3 ∩ Ac4)) ∪ A1

∪((B2 \ A2) ∩ Ac4) ∪ A2 ∪ (B3 \ A3) ∪ (A3 ∩ (B1 \ A1)
c).

Hence,

α2 = h(1− F (A3 ∩ (B1 \ A1))− F (A4 ∩ (B1 \ A1))

−F ((B1 \ A1) ∩ (Ac3 ∩ Ac4))− F (A1)),

α3 = h(1− F ((B1 \ A1) ∩ A4)− F ((B1 \ A1) ∩ (Ac3 ∩ Ac4))− F (A1)

−F (A4 ∩ (B2 \ A2))− F ((B2 \ A2) ∩ Ac4)− F (A2)), and

α4 = h(1− F (A3 ∩ (B1 \ A1))− F ((B1 \ A1) ∩ (Ac3 ∩ Ac4))− F (A1)

−F ((B2 \ A2) ∩ Ac4)− F (A2)− F (B3 \ A3)− F (A3 ∩ (B1 \ A1)
c)).

Also,

γ = 1 + α2 + α3 + α4 and

θ = F (A1) + F (A3 ∩ (B1 \ A1)) + F (A4 ∩ (B1 \ A1)) + F (A2)

+F (A4 ∩ (B2 \ A2)) + F (A3 ∩ (B1 \ A1)
c) + F (A4 ∩ (B1 \ A1)

c ∩ (B2 \ A2)
c)

−cµ(A1)− (cα3 + ξ)µ(A3 ∩ (B1 \ A1))− (cα4 + ξ)µ(A4 ∩ (B1 \ A1))

−cα2µ(A2)− (cα4 + ξα2)µ(A4 ∩ (B2 \ A2))− cα3µ(A3 ∩ (B1 \ A1)
c)

−cα4µ(A4 ∩ (B1 \ A1)
c ∩ (B2 \ A2)

c)− ξµ((B1 \ A1) ∩ Ac3 ∩ Ac4)

−ξα2µ((B2 \ A2) ∩ Ac4)− ξα3µ(B3 \ A3).

We use orders.py to find all orders consistent with the above results; there are 192

in total which are listed in the code.

6

We note that as it was the case where L = 3, order 1, which is now

A1 < A4 ∩ (B1 \ A1) < A3 ∩ (B1 \ A1) < A2 < A3 ∩ (B1 \ A1)
c < A4 ∩ (B2 \ A2)

< A4 ∩ (B1 \ A1)
c ∩ (B2 \ A2)

c < (B1 \ A1) ∩ Ac3 ∩ Ac4 < (B2 \ A2) ∩ Ac4 < B3 \ A3,

is optimal in all our simulations.

3.2 Code description

The starting point are the codes orgL2.py, orgL3.py and orgL4.py, each of which

computes the optimal organization for the corresponding number of layers. In each of

these codes, each possible optimal ordering of C is considered and the built-in function

minimize is used to find the size of each element of C and corresponding output.2

Then the order that leads to the highest such output is selected; the code returns the

order of C, the size of each element of C, the output of the optimal organization, the

size βi of each layer and the costs of learning νi of each layer.

One aspect of the above codes which is worth discussing concerns the choice of the

ordering of C, which we illustrate in the case where L = 2. In this case there are two

possible orderings: ψ1 = (A1 < A2 < B1 \A1) and ψ2 = (A1 < B1 \A1 < A2). These

two orders are the same if B1\A1 = ∅, namely A1 < A2. Hence, in orgL2.py, the order

A1 < B1\A1 < A2 is the optimal one only if yL,ψ2 > yL,ψ1 and µ(B1\A1) > 1/100000,

i.e. µ(B1 \ A1) is significantly above 0.3

The next step is performed by orgLaux.py, which solves maxL∈{1,2,3,4} yL. One

issue with this maximization problem is that often yL+1 ≥ yL (and then possibly

yL+1 > yL due to approximation errors) by simply taking the organization that yields

yL and adding layer L + 1 with BL+1 = AL+1 = ∅. To avoid this, for e.g. L = 3

2We use the solution to the optimal organization with L = 1 as the initial guess except when it

features µ(A1) = 0. In this case, we use basinhopping instead of minimize.
3This approach requires checking that the relevant sets that distinguish between certain orders

are (significantly) nonempty. An alternative approach is to require that yL,ψ2 > yL,ψ1 + 1/1000000

for ψ2 to be considered better than ψ1, which also ensures that differences between the orders are not

just the result of the approximate nature of the minimize algorithm. We take the latter approach

in orgL4.py, where it is more convenient because of the large number of possible orders.

7

to be better than L = 2, we require not only that y3 > y2 but also that µ(A3) =

µ(A3 ∩ (B1 \ A1)) + µ(A3 ∩ (B1 \ A1)
c) > 1/100000.

Finally, the computations and graphs reported in Section 5.3 and 5.5 are produced

using orgL.py, orgLoptimal.py and orgLh.py.

8

	List of files
	Codes for the small case
	Codes for intermediate values of
	Computations
	L=1
	L=2
	L=3
	L=4

	Code description

