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1 Introduction

This paper contains supplementary material to our paper “Improving the Organiza-

tion of Knowledge in Production by Screening Problems”. It contains:

Section 2: A proof of Theorem 4 on the existence of η-optimal organizations.

Section 3: Sufficient conditions for optimal organizations to have at least two

layers and nonexistence of lexicographically optimal organizations when ξ is

sufficiently small.

Section 4: Codes for the computations in Section 5.2.

Section 5: Description of the simulations used in Section 5.3 and results for

other parameter values.

Section 6: An example to illustrate Theorem 7.

Section 7: Proofs for the results with cumulative knowledge.

2 Existence of optimal organizations

This section contains the proof of Theorem 4. It requires strengthening the proofs

of the results stated in the main body of the paper in a way that they shows that

not only optimal organizations have certain properties but also that any organization

that does not have them is dominated, according to the relation > defined below, by

another one that satisfies them.
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2.1 Notation

Recall the following notation: For each i, k ∈ L,

νi = cµ(Ai) + ξµ(Bi \ Ai) and

αik =

hF (Ai \ ∪l≺kiAl) + πF (Aci \ ∪l≺kiBl) if i ∈ lk and k ̸= i,

0 otherwise.

In addition, sometimes we abuse notation and use L to denote the cardinality of the

set L.

Given two organizations O and Ô, we write Ô > O if (i) ŷ > y and L̂ ⊆ L, or

(ii) ŷ = y and L̂ ⊂ L or (iii) ŷ = y, L = L̂, l̂i ⊆ li for all i ∈ L and l̂j ̸= lj for

some j ∈ L. Note that, while the relation > is neither the relation in the definition

of lexicographical optimality nor in the definition of η-optimality, we have that if

Ô > O, then O is not an optimal organization.

In addition, we write Ô ≥ O if Ô = O or Ô > O. Furthermore, we write Ô ≳ O

if Ô > O or ŷ = y, L̂ = L and l̂i = li for all i ∈ L.

2.2 Allocation of labor

In this section we show that any optimal organization satisfies tpi + thi = 1 for each

i ∈ L and lj = {j} for each j ∈ L such that tpj = 0. More generally, any organization

that fails to satisfy at least one of these condition is dominated by some organization

that satisfies all of them.

Let O1 be the set of organizations O such that y > 0 and li = {i} for each i ∈ L

with tpi = 0.

Lemma 2.1 If O ̸∈ O1 and y > 0, then there is Ô ∈ O1 such that Ô > O.

Proof. Let O ̸∈ O1 be such that y > 0 and I = {i ∈ L : tpi = 0 and {i} ⊂ li};

then I ̸= ∅. Define Ô as follows: L̂ = L; for each j ∈ L, set: Âj = Aj, B̂j = Bj,

β̂j = βj, t̂
p
j = tpj and t̂hj = thj ; finally, set l̂j = lj and ≺̂j =≺j for each j ∈ L \ I and

l̂j = {j} for each j ∈ I.

4



Since t̂pk = tpk = 0 for each k ∈ I, we have that β̂it̂
h
i = βit

h
i =

∑
k∈L\I βkt

p
kαik =∑

k∈L\I β̂k t̂
p
kα̂ik =

∑
k∈L β̂k t̂

p
kα̂ik for each i ∈ L and, hence, Ô is an organization.

Using again t̂pi = tpi = 0 for each i ∈ I, it follows that ŷ =
∑

i∈L\I βi(t
p
iF (∪l∈liAl) −

cµ(Ai)− ξµ(Bi \Ai))−
∑

i∈I βi(cµ(Ai)+ ξµ(Bi \Ai)) = y. This, together with L̂ = L,

l̂j = lj for all j ∈ L \ I and l̂j ⊂ lj for each j ∈ I ̸= ∅, show that Ô > O. Since y > 0,

it follows that ŷ > 0 and, by construction, Ô ∈ O1.

Let O2 be the set of organizations O such that y > 0 and tpi + thi > 0 for each

i ∈ L.

Lemma 2.2 If O ∈ O1 \ O2, then there is Ô ∈ O1 ∩ O2 such that Ô > O.

Proof. Let O ∈ O1 \ O2 and I = {i ∈ L : tpi + thi = 0}; then I ̸= ∅. Since y > 0,

then I ̸= L; hence λ := 1/(
∑

i∈L\I βi) > 1. Define Ô as follows: L̂ = L \ I; for each

j ∈ L̂, set: Âj = Aj, B̂j = Bj, β̂j = λβj, l̂j = lj \ I, ≺̂j =≺j |l̂j (i.e., for each i, l ∈ l̂j,

i≺̂jl if and only if i ≺j l), t̂
p
j = tpj and t̂

h
j = thj . Thus, provided that ŷ > 0 and that Ô

is indeed an organization, it follows that Ô ∈ O1 ∩ O2.

Given the definition of λ, we have that
∑

i∈L̂ β̂i = 1. We claim that, to show that

Ô is an organization, it suffices to show that α̂ik = αik for each i, k ∈ L \ I such that

i ̸= k and i ∈ lk. Indeed, if this is the case, then t̂pk = tpk = 0 for each k ∈ I implies

that β̂it̂
h
i = λβit

h
i =

∑
k∈L\I λβkt

p
kαik =

∑
k∈L\I β̂k t̂

p
kα̂ik for each i ∈ L̂ = L \ I and,

hence, Ô is an organization.

We now show that α̂ik = αik for each i, k ∈ L \ I such that i ̸= k and i ∈ lk.

Let Lik = {l ∈ lk : l ≺k i} and L̂ik = {l ∈ l̂k : l≺̂ki} = {l ∈ l̂k : l ≺k i}. We

then have that L̂ik ⊆ Lik and that Lik \ L̂ik ⊆ I. If Lik = L̂ik, then α̂ik = αik;

thus, assume that L̂ik ⊂ Lik. Let j ∈ Lik \ L̂ik. Then j ∈ I and thj = 0. Thus,

0 = βjt
h
j =

∑
l∈L βlt

p
lαjl. In particular, it follows that tpk = 0 or αjk = 0. Because

O ∈ O1, the former would imply that lk = {k}, a contradiction to i ∈ lk and i ̸= k.

Thus, αjk = 0, implying that F (Aj \ ∪l≺kjAl) = 0 = F (Acj \ ∪l≺kjBl). Since both

Aj \ ∪l≺kjAl ∈ I and Acj \ ∪l≺kjBl ∈ I (i.e. both sets are finite unions of intervals),

we have that Aj ⊆ ∪l≺kjAl and A
c
j ⊆ ∪l≺kjBl by footnote 9 in the main text. Since

this holds for each j ∈ Lik \ L̂ik, it follows that ∪l∈Lik
Al = ∪l∈L̂ik

Al and, thus,
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Ai \ ∪l∈Lik
Al = Ai \ ∪l∈L̂ik

Al. By taking the smallest j ∈ Lik \ L̂ik according to ≺k,

we see that Ω = Aj ∪ Acj ⊆ ∪l≺kjBl and, hence, A
c
i \ ∪l∈L̂ik

Bl = ∅ = Aci \ ∪l∈Lik
Bl.

Thus, α̂ik = αik as claimed.

By taking, in the above argument, the greatest i ∈ l̂k according to ≺k, we obtain

that ∪l∈l̂kAl = Ai ∪ (∪l∈L̂ik
Al) = Ai ∪ (∪l∈Lik

Al) = ∪l∈lkAl for each k ∈ L \ I. Thus,

since λ > 1 and y > 0,

ŷ = λ
∑
k∈L\I

βk(t
p
kF (∪l∈lkAk)− cµ(Ak)− ξµ(Bk \ Ak)) >∑

k∈L\I

βk(t
p
kF (∪l∈lkAk)− cµ(Ak)− ξµ(Bk \ Ak))−

∑
i∈I

βi(cµ(Ai) + ξµ(Bi \ Ai)) = y.

This shows that ŷ > 0 and, together with L̂ ⊂ L, shows that Ô > O.

Let OL be the set of organizations O such that y > 0 and tpi + thi = 1 for each

i ∈ L (the subscript in OL stands for “labor”). Note that OL ⊆ O2.

Lemma 2.3 If O ∈ (O1 ∩ O2) \ OL, then there is Ô ∈ O1 ∩ OL such that Ô > O.

Proof. Let O ∈ (O1 ∩O2) \ OL and I = {i ∈ L : tpi + thi < 1}; thus, I ̸= ∅. Since

O ∈ O2, it follows that y > 0 and tpi + thi > 0 for each i ∈ L.

We now show that there is Õ ∈ O1 ∩ O2 such that Õ > O and |Ĩ| = |I| − 1, i.e.

the number of layers i of Õ with t̃pi + t̃hi < 1 equals the cardinality of I minus one.

Repeating this argument |I| times, produces the desired Ô.

Let i ∈ I. Set λ = 1
tpi+t

h
i
> 1 and γ = 1

1−βi+
βi
λ

> 1. Define Õ as follows: The

layers are the same: L̃ = L; for all j ∈ L: Ãj = Aj, B̃j = Bj, l̃j = lj, ≺̃j =≺j; for all

j ̸= i, β̃j = γβj, t̃
p
j = tpj , t̃

h
j = thj ; and, finally, β̃i =

γ
λ
βi, t̃

p
i = λtpi and t̃

h
i = λthi . Thus,

t̃pi + t̃hi = 1 and, hence, |Ĩ| = |I| − 1.

We have that β̃j t̃
p
j = γβjt

p
j and β̃j t̃

h
j = γβjt

h
j for all j ∈ L. Since α̃jk = αjk for each

k, j ∈ L (as L̃ = L, Ãj = Aj, B̃j = Bj, l̃j = lj and ≺̃j =≺j for all j ∈ L), it follows

that β̃j t̃
h
j =

∑
k∈L α̃jkβ̃k t̃

p
k for each j ∈ L. Moreover,

∑
j∈L β̃j = γ

∑
j ̸=i βj +

γ
λ
βi =

γ
(
1− βi +

βi
λ

)
= 1. Thus, Õ satisfies all requirements of an organization. Moreover,

provided that ỹ > 0, we have that Õ ∈ O1 ∩O2 as l̃j = lj and t̃
p
j + t̃hj ≥ tpj + thj for all

j ∈ L̃ = L.
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We have that −γ
λ
βiνi ≥ −γβiνi since λ > 1. Since y > 0 and γ > 1, it follows

that

ỹ = γ
∑
j∈L

βjt
p
jF (∪l∈ljAl)− γ

∑
j ̸=i

βjνj −
γ

λ
βiνi

≥ γ
∑
j∈L

βjt
p
jF (∪l∈ljAl)− γ

∑
j∈L

βjνj = γy > y.

This shows that ỹ > 0 and, together with L = L̃, shows that Õ > O as claimed.

Corollary 2.1 If O ̸∈ OL and y > 0, then there is Ô ∈ O1 ∩ OL such that Ô > O.

Proof. Let O ̸∈ OL be such that y > 0. Let O1 = O if O ∈ O1, and O1 ∈ O1 be

given by Lemma 2.1 otherwise. Then O1 ≥ O. Proceeding by induction, we obtain

O2 ∈ O1∩O2 such that O2 ≥ O. If O2 ∈ OL, then O2 > O and set Ô = O2; otherwise,

by Lemma 2.3, there is Ô ∈ O1 ∩ OL such that Ô > O2 and, hence, Ô > O.

2.3 Specialization

In this section we show that any organization that does not have the properties stated

in Theorem 1 is dominated by some organization that has them.

Given an organization O, let M be the set of i ∈ L such that δi =
1
γi

and δj = 0

for all j ∈ L \ {i} is a solution to (19)–(21). It follows by Lemma A.6 that M ̸= ∅.

Corollary 2.2 If O ∈ OL, then
θi
γi

≥ y.

Proof. Indeed, y is (6) at (β, tp, th) and (β, tp, th) satisfies (7)–(12) as O ∈ OL.

Thus, letting (β̄, t̄p, t̄h) be a solution to (6)–(12) and ȳ be (6) at (β̄, t̄p, t̄h), then ȳ ≥ y

and, by Lemmas A.4, A.5 and A.6 respectively, ȳ is also (13) at δ̄ = (β̄1t̄
p
1, . . . , β̄Lt̄

p
L),

(19) at δ̄ and (19) at δ̂, the latter being given in Lemma A.6.

The focus of this section is on the class of organizations such that the conclusion

of Theorem 1 holds. Let OS be the set of organizations O such that y > 0 and there

is i ∈ M such that tpi = 1, thi = 0, li = L, βi =
1
γi
, y = θi

γi
, tpj = 0, thj = 1, αji > 0,

lj = {j} and βj =
αji

γi
for each j ∈ L \ {i}.
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However, it is convenient to first consider the class of organizations obtained from

OS by dropping the requirement that i ∈ M . Thus, we let Let OA be the set of

organizations O such that there is i ∈ L such that tpi = 1, thi = 0, li = L, βi =
1
γi
,

y = θi
γi
, tpj = 0, thj = 1, αji > 0, lj = {j} and βj =

αji

γi
for each j ∈ L \ {i}. Here and

above, the subscript in OS stands for “specialization” and the one in OA stands for

“auxiliary”.

We will build from organizations in OL to organizations in OS. The first step is

provided by the following class of organizations. Let O3 be the set of organizations

O such that there is i ∈M such that li = L and αji > 0 for all j ∈ L \ {i}.

Lemma 2.4 If O ∈ OL \ O3, then there is Ô ∈ OA such that Ô > O.

Proof. Let O ∈ OL \ O3, i ∈ M and L̂ = {j ∈ li : αji > 0} ∪ {i}. Since O ̸∈ O3,

we have that L̂ ⊂ L. Note that L̂ ̸= ∅ as i ∈ L̂. Now remove layers L \ L̂; formally,

define Ô as follows: Layers are L̂; for each j ∈ L̂, set: Âj = Aj and B̂j = Bj; for each

j ∈ L̂ \ {i}, set l̂j = {j}, β̂j = αji

γi
, t̂pj = 0, and t̂hj = 1; finally, set l̂i = L̂, ≺̂i =≺i |l̂i ,

β̂i =
1
γi
, t̂pi = 1 and t̂hi = 0.

We first claim that, for each j ∈ L̂ \ {i}, α̂ji = αji. Let Lji = {l ∈ li : l ≺i j} and

L̂ji = {l ∈ l̂i : l≺̂ij} = {l ∈ l̂i : l ≺i j}. We then have that L̂ji ⊆ Lji and that αki = 0

for each k ∈ Lji \ L̂ji.

If Lji = L̂ji, then α̂ji = αji; thus, assume that L̂ji ⊂ Lji. Let k ∈ Lji \ L̂ji.

Then αki = 0, implying that F (Ak \ ∪l≺ikAl) = 0 = F (Ack \ ∪l≺ikBl). Since both

Ak \ ∪l≺ikAl ∈ I and Ack \ ∪l≺ikBl ∈ I, we have that Ak ⊆ ∪l≺ikAl and A
c
k ⊆ ∪l≺ikBl

by footnote 9 in the main text. Since this holds for each k ∈ Lji \ L̂ji, it follows

that ∪l∈Lji
Al = ∪l∈L̂ji

Al and, thus, Aj \ ∪l∈Lji
Al = Aj \ ∪l∈L̂ji

Al. By taking the

smallest k ∈ Lji \ L̂ji according to ≺i, we see that Ω = Ak∪Ack ⊆ ∪l≺ikBl and, hence,

Acj \ ∪l∈L̂ji
Bl = ∅ = Acj \ ∪l∈Lji

Bl. Thus, α̂ji = αji as claimed.

By taking, in the above argument, the greatest j ∈ l̂i according to ≺i, we obtain

that ∪l∈l̂iAl = Aj ∪ (∪l∈L̂ji
Al) = Aj ∪ (∪l∈Lji

Al) = ∪l∈liAl. Thus, as αji = 0 for each

j ∈ L \ L̂,

θi = F (∪l∈liAl)− νi −
∑
j∈L

αjiνj = F (∪l∈l̂iAl)− νi −
∑
j∈L̂

α̂jiνj = θ̂i.
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Furthermore, γi = 1 +
∑

j∈L αji = 1 +
∑

j∈L̂ α̂ji = γ̂i. It then follows that Ô

is an organization and that Ô ∈ OA. Moreover, it follows by Corollary 2.2 that

ŷ = θi
γi

≥ y > 0 which, together with L̂ ⊂ L, implies that Ô > O.

Let O4 be the set of organizations O such that there is i ∈ M such that lj = {j}

for all j ∈ L \ {i}.

Lemma 2.5 If O ∈ (OL ∩ O3) \ O4, then there is Ô ∈ OA such that Ô > O.

Proof. Let O ∈ (OL ∩ O3) \ O4. Since O ∈ O3, there is i ∈ M such that li = L

and αji > 0 for all j ∈ L \ {i}. It follows by Corollary 2.2 that θi
γi

≥ y > 0, the latter

because O ∈ OL.

Since O ̸∈ O4, there is k ̸= i such that {k} ⊂ lk. Define Ô as follows: Layers are

L; for each j ∈ L, set: Âj = Aj and B̂j = Bj; for each j ̸= i, set l̂j = {j}, β̂j = αji

γi
,

t̂pj = 0 and t̂hj = 1; finally, set l̂i = li, ≺̂i =≺i, β̂i =
1
γi
, t̂pi = 1 and t̂hi = 0.

Since l̂i = li, ≺̂i =≺i, Âj = Aj and B̂j = Bj for each j ∈ L, it follows that

α̂ij = αij for all j ∈ L and, hence, γ̂i = γi and θ̂i = θi. This, together with αji > 0

for all j ̸= i, implies that Ô is an organization, that ŷ = θi
γi

and, thus, that O ∈ OA.

Finally, ŷ = θi
γi

≥ y, L̂ = L and l̂j ⊆ lj for all j ∈ L and l̂j ⊂ lj for some j ∈ L

shows that Ô > O.

Lemma 2.6 If O ∈ (OL ∩ O3 ∩ O4) \ OA, then there is Ô ∈ OS such that Ô > O.

Proof. Let O ∈ (OL∩O3∩O4)\OA; then there is i ∈M such that li = L, αji > 0

and lj = {j} for each j ∈ L \ {i} (indeed, by O ∈ O3, there is i1 ∈ M such that

li1 = L and αji1 > 0 for each j ∈ L \ {i1} and, by O ∈ O4, there is i2 ∈M such that

lj = {j} for all j ∈ L \ {i2}. But i1 = i2 since otherwise li1 = {i1} ⊂ {i1, i2} ⊆ L).

We consider first the case where (β, tp, th) does not solve (6)–(12). Since O ∈ OL, it

follows that tpi + thi = 1 for all i ∈ L and, hence, (β, tp, th) satisfies (7)–(12). Thus, by

Lemma A.5 and A.6, it follows that θi
γi
> y > 0, the latter because O ∈ OL.

Let Ô be equal to O except that, for each j ̸= i, β̂j =
αji

γi
, t̂pj = 0 and t̂hj = 1, and

β̂i =
1
γi
, t̂pi = 1 and t̂hi = 0. Clearly, α̂jk = αjk, γ̂j = γj and θ̂j = θj for all k, j ∈ L.
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Since O ∈ O3 ∩ O4 and, in particular, i ∈ M = M̂ , it follows that Ô ∈ OS. We also

have that Ô > O because ŷ = θi
γi
> y and L̂ = L.

By the above, we may therefore assume that (β, tp, th) solves (6)–(12). Since

O ̸∈ OA, then (β, tp, th) ̸= (β̂, t̂p, t̂h) (where the latter is as defined in the previous

paragraph). Letting δ = (β1t
p
1, . . . , βLt

p
L) and δ̂ = (β̂1t̂

p
1, . . . , β̂Lt̂

p
L), it follows that

δ ̸= δ̂: Indeed, if δ = δ̂, then βjt
p
j = β̂j t̂

p
j for each j ∈ L. Thus, for each j ̸= i,

βjt
p
j = 0 and, hence, tpj = 0 = t̂pj by (8). Moreover, thj = 1 = t̂hj by (11) for each j ̸= i

and thi = 0 = t̂hi by (12) and (8). Hence, tpi = 1 = t̂pi by (11) and βi = βit
p
i = β̂it̂

p
i = β̂i.

Finally, for each j ̸= i, βj = βjt
h
j = αjiβit

p
i = αjiβi = αjiβ̂i = β̂j. In conclusion, if

δ = δ̂, then (β, tp, th) = (β̂, t̂p, t̂h).

Since δ ̸= δ̂, there exists j ̸= i such that δj > 0; in particular, it follows that

|L| ≥ 2. Since the convex combination of two solutions of a linear programming

problem is also a solution, there exists a solution δ̃ to (19)–(21) such that δ̃i > 0

and δ̃j > 0. Put zi = 1, zj = − γi
γj

and zl = 0 for all l ̸∈ {i, j}; then, for all ε in a

neighborhood of zero (in R), δ̃ − εz satisfies (20)–(21). Optimality of δ̃ then implies

that
θi
γi

=
θj
γj
.

We have that y = θi/γi by Lemmas A.5 and A.6. Moreover, lj = {j} implies that

∪l∈ljAl = Aj and that αlj = 0 for each l ∈ L; hence, θj = F (∪l∈ljAl) − (νj +∑L
l=1 νlαlj) = F (Aj)− νj and γj = 1 +

∑L
l=1 νlαlj = 1. Thus,

y =
θi
γi

=
θj
γj

= F (Aj)− νj.

Therefore, the organization Ô with just layer j, i.e. L̂ = {j}, and B̂j = Bj, Âj = Aj,

β̂j = 1, t̂pj = 1 and t̂hj = 0 belongs to OS (note that M̂ = {j} since M̂ is a nonempty

subset of L̂) and obtains as much output as O. Since |L| > 1, it follows that Ô > O.

Lemma 2.7 If O ∈ OA \OS, then there is Ô ∈ OS such that Ô > O.

Proof. Let O ∈ OA \ OS. Then there is i ∈ L such that tpi = 1, thi = 0, li = L,

βi =
1
γi
, y = θi

γi
, tpj = 0, thj = 1, αji > 0, lj = {j} and βj =

αji

γi
for each j ∈ L \ {i}.
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Since O ̸∈ OS, it follows that i ̸∈ M . Thus, letting k ∈ M , which, in particular,

implies that |L| ≥ 2, we have that y = θi
γi
< θk

γk
= F (Ak) − νk, the latter equality

because lk = {k}.

Therefore, the organization Ô with just layer k, i.e. L̂ = {k}, and B̂k = Bk,

Âk = Ak, β̂k = 1, t̂pk = 1 and t̂hk = 0 belongs to OS (note that M̂ = {k} since M̂ is a

nonempty subset of L̂) and satisfies ŷ = F (Ak) − νk > y and L̂ ⊂ L. Thus, Ô > O.

Any organization in OS has all the properties considered so far:

OS = O1 ∩ O2 ∩ O3 ∩ O4 ∩ OL ∩ OA. (2.1)

The following result summarizes this section.

Corollary 2.3 If O ̸∈ OS and y > 0, then there is Ô ∈ OS such that Ô > O.

Proof. Note that, by (2.1), OL ⊆ O2 and (OL ∩ O3 ∩ O4 ∩ OA) \ O1 = ∅,

OL \ OS = (OL \ O3) ∪ ((OL ∩ O3) \ O4) ∪ ((OL ∩ O3 ∩ O4) \ OA).

Let O ̸∈ OS be such that y > 0. Let OL = O if O ∈ OL, and OL ∈ OL be

given by Corollary 2.1 otherwise. Then OL ≥ O. If OL > O and OL ∈ OS, then set

Ô = OL; if, otherwise, OL ̸∈ OS, then OL ∈ OL \ O3 or OL ∈ (OL ∩ O3) \ O4 or

OL ∈ (OL ∩ O3 ∩ O4) \ OA. In either case, by Lemmas 2.4, 2.5 and 2.6 respectively,

there is Õ ∈ OA such that Õ > OL and, hence, Õ > O. If Õ ∈ OS, then let Ô = Õ;

otherwise, let Ô ∈ OS be given by Lemma 2.7 so that Ô > Õ. In either case, we have

that Ô ∈ OS and Ô > O.

We conclude this section with sufficient conditions for an organization to belong

to OS.

Lemma 2.8 Let O be an organization such that y > 0.

(a) If L = 1 and tp1 = 1, then O ∈ OS.

(b) Let l1 = L, β1 = 1
γ1
, tp1 = 1 and, for each j ∈ L \ {1}, lj = {j}, βj = αj1

γ1
and

thj = 1. If αj1 > 0 for all j ∈ L \ {1} and 1 ∈M , then O ∈ OS.

11



Proof. If L = {1}, then all the conditions defining OS are satisfied since l1 =

{1} = L, M = {1} (recall that M is a nonempty subset of L), β1 = 1, th1 = 0, γ1 = 1

and θ1 = F (A1)− ν1. This shows (a). Part (b) is immediate.

2.4 No overlap

In this section we show that any organization that does not have the properties stated

in Lemma 1 is dominated by some organization that has them, as well as those in

Theorem 1.

Let OD1 be the set of organizations such that Al ∩Ak = ∅ and (Bl \Al)∩Bk = ∅

for each k, l ∈ L such that k < l.

Lemma 2.9 If O ∈ OS \ OD1, then there is Ô ∈ OS ∩ OD1 such that Ô > O.

Proof. Let O ∈ OS \ OD1 and let P be the set of pairs (k, l) ∈ L2 with k < l

such that Al ∩Ak ̸= ∅ or (Bl \Al)∩Bk ̸= ∅. We show that there is Ȯ ∈ OS such that

Ȯ > O and (i) Ȯ ∈ OS ∩OD1 or (ii) |Ṗ | = |P | − 1. Repeating this argument at most

|P | times produces the desired Ô.

Let (k, l) ∈ P . Define an organization Õ to be equal to O except that Ãl =

Al \ Ak and B̃l = (Bl \ Bk) ∪ Ãl. We have that Ãj \ ∪i<jÃi = Aj \ ∪i<jAi and

Ãcj \ ∪i<jB̃i = Acj \ ∪i<jBi for each j ∈ L. Indeed, this is clear for all j < l. When

j = l, we have that Ãl \∪i<lÃi = (Al∩Ack)∩ (∩i<lAci) = Al \∪i<lAi and Ãcl \∪i<lB̃i =

(Acl ∪Ak)∩(∩i<lBc
i ) = Acl ∩(∩i<lBc

i ) = Acl \∪i<lBi since Ak∩(∩i<lBc
i ) ⊆ Ak∩Bc

k = ∅.

Finally, if j > l, ∪i<jÃi = ∪i<jAi and ∪i<jB̃i = ∪i<jBi and the result follows. We

then have that α̃j = αj for each j ∈ L. Hence, under the standard normalization that

layer 1 consists of the workers (i.e. tp1 = 1), Õ is an organization and belongs to OS

by Lemma 2.8 provided 1 ∈ M̃ since, for each j ∈ L, β̃j = βj, t̃
p
j = tpj , t̃

h
j = thj , l̃j = lj

and ≺̃j =≺j.
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Assume first that 1 ∈ M̃ . As Ak ⊆ Bk, we have that

B̃l \ Ãl = (Bl \Bk) \ (Al \ Ak) = (Bl ∩Bc
k ∩ Acl ) ∪ (Bl ∩Bc

k ∩ Ak)

= Bl ∩Bc
k ∩ Acl = (Bl \ Al) ∩Bc

k,

(B̃l \ Ãl) ∩Bk = (Bl \ Al) ∩Bc
k ∩Bk = ∅,

Ãl ∩ Ak = Al ∩ Ack ∩ Ak = ∅ and

ỹ − y = βl [c(µ(Al)− µ(Al \ Ak)) + ξ(µ(Bl \ Al)− µ((Bl \ Al) ∩Bc
k))]

= βl [cµ(Ak ∩ Al) + ξµ((Bl \ Al) ∩Bk)] .

Since (k, j) ∈ P and Ak, Al, Bl \ Al and Bk belong to I, it follows from Ak ∩ Al ̸= ∅

or (Bl \ Al) ∩ Bk ̸= ∅ that µ(Ak ∩ Al) > 0 or µ((Bl \ Al) ∩ Bk) > 0. In either case,

ỹ > y. Since L̃ = L, this implies that Õ > O. Thus, in the case where 1 ∈ M̃ , set

Ȯ = Õ.

If 1 ̸∈ M̃ , then take i ∈ M̃ and define Ȯ by L̇ = {i}, β̇i = 1, ṫpi = 1, Ȧi = Ãi and

Ḃi = B̃i. Then ẏ > ỹ > y, L̇ ≤ L̃ = L and, thus, Ȯ > O. Moreover, Ȯ ∈ OS by

Lemma 2.8 and Ȯ ∈ OD1 trivially.

Lemma 2.10 If O ∈ OD1, then

(a) Bl ∩ Ak = ∅ and (Bl \ Al) ∩Bk = ∅ for each k, l ∈ L such that k < l, and

(b) Al ∩ Ak = ∅ and (Bl \ Al) ∩ (Bk \ Ak) = ∅ for each k, l ∈ L such that k ̸= l.

Proof. Let O ∈ OD1 and k, l ∈ L be such that k < l. Then (Bl \ Al) ∩ Bk = ∅

and Al ∩Ak = ∅. Thus, Bl ∩Ak = Bl ∩Ak ∩Acl = (Bl \Al)∩Ak ⊆ (Bl \Al)∩Bk = ∅.

This shows (a).

As for (b), let k, l ∈ L be such that k ̸= l. Then either k < l or l < k; for

concreteness, let k < l. Then Al∩Ak = ∅ and (Bl\Al)∩(Bk\Ak) ⊆ (Bl\Al)∩Bk = ∅

from (a). This shows (b).

Let OD2 be the set of organizations such that BL = AL.

Lemma 2.11 If O ∈ (OS ∩OD1) \OD2, then there is Ô ∈ OS ∩OD1∩OD2 such that

Ô > O.
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Proof. Let O ∈ (OS∩OD1)\OD2; then BL \AL ̸= ∅. Define an organization Õ to

be equal to O except that B̃L = AL. We have, clearly, that Ãj \∪i<jÃi = Aj \∪i<jAi
and Ãcj \ ∪i<jB̃i = Acj \ ∪i<jBi for each j ∈ L. Hence, α̃j = αj for all j ∈ L. It then

follows that Õ is an organization and belongs to OS by Lemma 2.8 provided that

1 ∈ M̃ . It is also clear that Õ ∈ OD1 ∩ OD2, the former because Ãj ⊆ Aj, B̃j ⊆ Bj

and B̃j \ Ãj ⊆ Bj \ Aj for each j ∈ L and the latter by construction.

We have that ν̃L < νL which, together with α̃j = αj for all j ∈ L, implies that

ỹ > y. Since L̃ = L, this implies that Õ > O. Thus, set Ô = Õ if 1 ∈ M̃ .

If 1 ̸∈ M̃ , then let i ∈ M̃ , i.e. F (Ai)− ν̃i > ỹ. Since ν̃j = νj for each 1 < j < L, it

follows that i = L. Thus, define Ô by L̂ = {L}, β̂L = 1, t̂pL = 1, ÂL = ÃL = AL and

B̂L = B̃L = AL. Then ŷ > ỹ > y, L̂ ≤ L̃ = L and, thus, Ô > O. Moreover, Ô ∈ OS

by Lemma 2.8, Ô ∈ OD1 trivially and Ô ∈ OD2 since B̂L = ÂL.

Let OD3 be the set of organizations such that Bi ∩ Ai+1 = ∅ for each 1 ≤ i < L.

Lemma 2.12 If O ∈ (OS∩OD1∩OD2)\OD3, then there is Ô ∈ OS∩OD1∩OD2∩OD3

such that Ô > O.

Proof. Let O ∈ (OS∩OD1∩OD2)\OD3 and I = {i ∈ {1, . . . , L−1} : Bi∩Ai+1 ̸=

∅}; then I ̸= ∅. We show that there is Ȯ ∈ OS ∩OD1 ∩OD2 such that Ȯ > O and (i)

Ȯ ∈ OS ∩OD1 ∩OD2 ∩OD3 or (ii) |İ| = |I| − 1. Repeating this argument at most |I|

times produces the desired Ô.

Let i ∈ I; then Bi ∩ Ai+1 ̸= ∅. Hence, (Bi \ Ai) ∩ Ai+1 ̸= ∅ since Ai ∩ Ai+1 = ∅

as O ∈ OD1. Define an organization Õ to be equal to O except that B̃i = Bi \ Ai+1.

We clearly have that α̃j = αj for all j ≤ i. Since ∪l<jB̃l = ∪l<jBl for each j > i, it

follows that α̃j = αj for all j > i as well. Hence, Õ is an organization and belongs

to OS by Lemma 2.8 provided that 1 ∈ M̃ . It is also clear that Õ ∈ OD1 ∩ OD2, the

former because Ãj ⊆ Aj, B̃j ⊆ Bj and B̃j \ Ãj ⊆ Bj \Aj for each j ∈ L and the latter

because i ̸= L. Moreover, |Ĩ| = |I| − 1.

We have that B̃i \ Ãi = (Bi \Ai) \Ai+1. Hence, µ(B̃i \ Ãi) = µ(Bi \Ai)− µ((Bi \

Ai) ∩ Ai+1) < µ(Bi \ Ai) since (Bi \ Ai) ∩ Ai+1 ̸= ∅ and (Bi \ Ai) ∩ Ai+1 ∈ I. Thus,

ν̃i < νi which, together with α̃j = αj for all j ∈ L, implies that ỹ > y. Since L̃ = L,
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this implies that Õ > O. Thus, in the case where 1 ∈ M̃ , set Ȯ = Õ.

If 1 ̸∈ M̃ , then take i ∈ M̃ and define Ȯ by L̇ = {i}, β̇i = 1, ṫpi = 1, Ȧi = Ãi

and Ḃi = Ãi. Then ẏ = F (Ãi) − cµ(Ãi) ≥ F (Ãi) − cµ(Ãi) − ξµ(B̃i \ Ãi) > ỹ > y,

L̇ ≤ L̃ = L and, thus, Ȯ > O. Moreover, Ȯ ∈ OS by Lemma 2.8, Ȯ ∈ OD1 ∩ OD3

trivially and Ȯ ∈ OD2 since Ḃi = Ȧi.

Let

OD = OD1 ∩ OD2 ∩ OD3.

Summing up this section:

Corollary 2.4 If O ̸∈ (OS ∩ OD) and y > 0, then there is Ô ∈ OS ∩ OD such that

Ô > O.

Proof. Let O ̸∈ (OS ∩ OD) be such that y > 0. Let O1 = O if O ∈ OS, and

O1 ∈ OS be given by Corollary 2.3 otherwise. Then O1 ≥ O.

Let O2 = O1 if O1 ∈ OS ∩ OD1, and O2 ∈ OS ∩ OD1 be given by Lemma 2.9

otherwise. Then O2 ≥ O.

Let O3 = O2 if O2 ∈ OS ∩ OD1 ∩ OD2, and O3 ∈ OS ∩ OD1 ∩ OD2 be given by

Lemma 2.11 otherwise. Then O3 ≥ O.

Finally, Let Ô = O3 if O3 ∈ OS ∩ OD, and Ô ∈ OS ∩ OD be given by Lemma

2.12 otherwise. Then Ô ≥ O and, since O ̸∈ (OS ∩ OD), we have Ô ̸= O and, hence,

Ô > O.

For each O ∈ OD, let

C = {Al ∩ (Bj \ Aj) : l, j ∈ L and j < l − 1}

∪{Al ∩ (∩j<l−1(Bj \ Aj)c) : l ∈ L}

∪{(Bl \ Al) ∩ (∩j>l+1A
c
j) : 1 ≤ l < L}

with the usual convention that the intersection of an empty family of subsets of Ω is

Ω itself. As discussed in Section 4, we have that C is a partition of ∪l∈LBl.

Recall that

C(Al) = {Al ∩ (Bj \ Aj) : j < l − 1} ∪ {Al ∩ (∩j<l−1(Bj \ Aj)c)}
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for each l ∈ L and

C(Bl \ Al) = {Aj ∩ (Bl \ Al) : j > l + 1} ∪ {(Bl \ Al) ∩ (∩j>l+1A
c
j)}

for each 1 ≤ l < L. Thus,

Al = ∪C∈C(Al)C for each l ∈ L and (2.2)

Bl \ Al = ∪C∈C(Bl\Al)C for each 1 ≤ l < L; (2.3)

thus, C(Al) (resp. C(Bl \Al)) is a partition of Al (resp. Bl \Al). Moreover, as noted

in Section 4, we can obtain {Al, Bl}l∈L from C by using (2.2) and (2.3) together with

BL = AL and (2.4)

Bl = Al ∪ (Bl \ Al) for each 1 ≤ l < L. (2.5)

Note that (2.2)–(2.5) simply reproduce the formulas in Footnote 13 in the main text.

We have that {C(Al), C(Bl \ Al) : l ∈ L} is a collection of subsets of Ω such that

C(Al) ∩ C(Ak) = ∅ for each k, l ∈ L with k ̸= l, (2.6)

C(Bl \ Al) ∩ C(Bk \ Ak) = ∅ for each k, l ∈ L with k ̸= l, and (2.7)

C(Ak) ∩ C(Bl \ Al) = ∅ for each k, l ∈ L with k ≤ l + 1. (2.8)

It then follows that if C is pairwise disjoint and {Al, Bl}l∈L are defined from C via

(2.2)–(2.5), then O automatically belongs to OD as the following lemma shows.

Lemma 2.13 Let O be an organization such that y > 0. If C is a pairwise disjoint

collection of subsets of Ω such that {C(Al), C(Bl \ Al) : l ∈ L} satisfies (2.6)–(2.8),

and {Al, Bl}l∈L satisfies (2.2)–(2.5), then O ∈ OD.

Proof. It follows immediately from (2.4) that O ∈ OD2. Note that Bi ∩ Ai+1 =

((Bi\Ai)∩Ai+1)∪(Ai∩Ai+1) for each 1 ≤ i < L and (Bl\Al)∩Bk = ((Bl\Al)∩(Bk \

Ak)) ∪ ((Bl \Al) ∩Ak) whenever k < l. Thus, it is enough to show that Al ∩Ak = ∅

and (Bl \Al) ∩ (Bk \Ak) = ∅ for each k, l ∈ L with k ̸= l, and (Bl \Al) ∩Ak = ∅ for

each k, l ∈ L with k < l and k = l + 1.
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Let k, l ∈ L be such that k < l or k = l + 1. In either case, k ≤ l + 1 and, hence,

C(Bl \ Al) ∩ C(Ak) = ∅. Thus,

(Bl \ Al) ∩ Ak = ∪C∈C(Bl\Al)

(
∪C∈C(Ak)(C ∩ C ′)

)
= ∅

since C ∩ C ′ = ∅ if C ̸= C ′ and C(Bl \ Al) ∩ C(Ak) = ∅. The argument for the

remaining intersections is analogous, thus we obtain that O ∈ OD.

2.5 No gaps

In this section we show that any organization that does not have the properties stated

in Theorem 2 is dominated by some organization that has them, as well as those in

the previous results.

Let OG1 be the set of organizations O such that min1≤i≤L ai = 0, where, recall,

ai = minBi for each i ∈ L with the standard convention that min ∅ = ∞.

Lemma 2.14 If O ∈ (OS ∩ OD) \ OG1, then there is Ô ∈ OS ∩ OD ∩ OG1 such that

Ô > O.

Proof. Let O ∈ (OS ∩ OD) \ OG1. For each C ∈ C, let aC = minC; then

min1≤i≤L ai = minC∈C aC . Thus, letting C ∈ C be such that aC = min1≤i≤L ai, the

fact that O ̸∈ OG1 implies that aC > 0. Thus, [0, aC) ⊆ (∪Ll=1Bl)
c.

Let ε > 0 be such that [aC , aC + ε) ⊆ C and let 0 < ε′ < ε be such that

F ([0, ε′)) = F ([aC , aC + ε)); the existence of ε′ follows by Lemma A.12.

Define an organization Õ equal to O except that C̃ = [0, ε′) ∪ (C \ [aC , aC + ε))

and {Ãl, B̃l}Ll=1 are defined from {D̃ : D ∈ C} via (2.2)–(2.5). Note that C̃ ∩ D̃ = ∅

whenever D ∈ C is such that C ̸= D because [0, ε) ⊆ (∪Ll=1Bl)
c.

We have that F (D̃) = F (D) for each D ∈ C. Thus, F (Ãj) =
∑

D∈C(Aj)
F (D̃) =∑

D∈C(Aj)
F (D) = F (Aj) for each j ∈ L. In addition, for each j ∈ L, let Cj =

(∪l≤jC(Al)) ∪ (∪l<jC(Bl \ Al)). Then,

F (Aj ∪ (∪l<jBl)) = F ((∪l≤jAl) ∪ (∪l<j(Bl \ Al))) = F (∪D∈CjD) =
∑
D∈Cj

F (D)

=
∑
D∈Cj

F (D̃) = F (Ãj ∪ (∪l<jB̃l)).
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It then follows from Lemma A.11 that α̃j = αj for all j ∈ L. Thus, Õ ∈ OS by

Lemma 2.8 provided that 1 ∈ M̃ . In addition, it follows that Õ ∈ OD by Lemma

2.13 and that Õ ∈ OG1 by construction.

We have that µ(C̃) < µ(C) and µ(D̃) = µ(D) for each D ∈ C \ {C}. Moreover,

since Õ ∈ OD, F (∪l∈LÃl) =
∑

l∈L F (Ãl) =
∑

l∈L F (Al) = F (∪l∈LAl) since F (Ãl) =

F (Al) for each l ∈ L. It then follows that ỹ > y. This, together with L̃ = L, shows

that Õ > O. Thus, in the case where 1 ∈ M̃ , set Ô = Õ.

If 1 ̸∈ M̃ , then take i ∈ M̃ and, therefore, F (Ãi)− (cµ(Ãi)+ ξµ(B̃i \ Ãi)) > ỹ > y.

Define Ô by L̂ = {i}, β̂i = 1, t̂pi = 1,

Âi =

Ãi if min Ãi = 0,

[0, ε′) ∪ (Ãi \ [minAi,minAi + ε)) otherwise,

where 0 < ε < maxAi and 0 < ε′ < ε is such that F ([0, ε′)) = F ([minAi,minAi+ε)),

and B̂i = Âi. Then, F (Âi) = F (Ãi) and µ(Âi) ≤ µ(Ãi). Hence, ŷ = F (Âi)−cµ(Âi) ≥

F (Ãi) − cµ(Ãi) − ξµ(B̃i \ Ãi) > ỹ > y, L̂ ≤ L̃ = L and, thus, Ô > O. Moreover,

Ô ∈ OS by Lemma 2.8, Ô ∈ OD1∩OD3 trivially, Ô ∈ OD2 since B̂i = Âi and Ô ∈ OG1

by construction.

Let OG be the set of organizations O ∈ OG1 such that ∪Li=1Bi = [0,max1≤i≤L bi)

where, recall, bi = maxBi with the convention that max ∅ = −∞.

Lemma 2.15 If O ∈ (OS ∩OD ∩OG1) \ OG, then there is Ô ∈ OS ∩OD ∩OG such

that Ô > O.

Proof. Let O ∈ (OS ∩ OD ∩ OG1) \ OG. Since ∪l∈LBl = ∪C∈CC and C ∈ I

for each C ∈ C, we write C = ∪mC
r=1[aCr, bCr) where [aCr, bCr) ∩ [aCr′ , bCr′) = ∅

whenever r ̸= r′. We then order the set {aCr, bCr : C ∈ C, 1 ≤ r ≤ mC} and

write it as {a1, b1, . . . , am, bm} with a1 < b1 ≤ a2 < b2 ≤ · · · ≤ am < bm, so that

∪l∈LBl = ∪mr=1[ar, br). Let G = {i ∈ {2, . . . ,m} : ai > bi−1} be the set of “gaps”.

Since O ∈ OG1 \ OG, G ̸= ∅.

We will define an organization Ȯ ∈ OS ∩ OD ∩ OG1 such that Ȯ > O and (i)

Ȯ ∈ OS ∩ OD ∩ OG or (ii) Ċ = {Ċ : C ∈ C}, Ċ = ∪mC
r=1[ȧCr, ḃCr), with [ȧCr, ḃCr) ∩
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[ȧCr′ , ḃCr′) = ∅ whenever r ̸= r′, for each C ∈ C (and, hence, |{ȧCr : C ∈ C, 1 ≤

r ≤ mC}| = m) and min Ġ = minG + 1. Repeating this argument at most m times

produces the desired Ô since then |{âCr : C ∈ C, 1 ≤ r ≤ mC}| = m and min Ĝ > m

implies that Ĝ = ∅.

We have that [bminG−1, aminG) ⊆ (∪Ll=1Bl)
c. Let C ∈ C and 1 ≤ r′ ≤ mC be such

that aCr′ = aminG. By Lemma A.12, let ε > 0 be such that F ([bminG−1, bCr′ − ε)) =

F ([aCr′ , bCr′)) and µ([bminG−1, bCr′ − ε)) < µ([aCr′ , bCr′)).

Define an organization Õ equal to O except that

C̃ = (C \ [aCr′ , bCr′)) ∪ [bminG−1, bCr′ − ε)

and {Ãl, B̃l}Ll=1 are defined from {D̃ : D ∈ C} via (2.2)–(2.5). Note that C̃ ∩ D̃ = ∅

whenever D ∈ C is such that C ̸= D because [bminG−1, aminG) ⊆ (∪Ll=1Bl)
c.

We clearly have that C̃ = {D̃ : D ∈ C} and that D̃ = ∪mD
r=1[ãDr, b̃Dr) for each

D ∈ C (with ãCr′ = bminG−1, b̃Cr′ = bCr′ − ε, and ãDr = aDr and b̃Dr = bDr whenever

(D, r) ̸= (C, r′)). In addition, min G̃ = minG + 1 since ãi = ai and b̃i = bi for each

i ̸= minG, ãminG = bminG−1 = b̃minG−1 and b̃minG < bminG ≤ aminG+1.

Furthermore, we have that a1 = 0 since O ∈ OG1 and minG > 1 by definition.

Hence, ã1 = a1 = 0 and, thus, Õ ∈ OG1.

In the case where 1 ∈ M̃ , an argument completely analogous to the proof of

Lemma 2.14 shows that setting Ȯ = Õ gives the desired conclusions.

If 1 ̸∈ M̃ , then take i ∈ M̃ and define

Ȧi = [0, ȧ)

where ȧ > 0 is such that F ([0, ȧ)) = F (Ãi). If F (Ãi) = 1, then set ȧ = supΩ;

otherwise, the existence of ȧ follows by an argument analogous to that of Lemma

A.12: Consider g : R+ → R+ defined by g(a) = F ([0, a)) for each a ∈ R+. Then

g is continuous, g(0) = 0 < F (Ãi) and lima→supΩ g(a) = 1 > F (Ãi). Hence, ȧ

exists by the intermediate value theorem. We then have that µ([0, ȧ)) ≤ µ(Ãi).

To see this, first note that Ãi ∈ I and, hence, we write Ãi = ∪mr=1[ar, br) where

[ar, br) ∩ [ar′ , br′) = ∅ whenever r ̸= r′. If µ([0, ȧ)) > µ(Ãi), then ȧ >
∑m

r=1(br − ar).
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Since
∑j−1

r=1(br − ar) ≤ aj for each j = 1, . . . ,m with
∑0

r=1(br − ar) = 0 (which can

easily be established by induction), it follows by Lemma A.12 that

F ([0,
m∑
r=1

(br − ar))) =
m∑
j=1

F ([

j−1∑
r=1

(br − ar),

j∑
r=1

(br − ar))) ≥
m∑
j=1

F ([aj, bj)) = F (Ãi)

and, hence, F ([0, ȧ)) > F ([0,
∑m

r=1(br − ar))) ≥ F (Ãi), a contradiction. Thus,

µ([0, ȧ)) ≤ µ(Ãi).

Define Ȯ by L̇ = {i}, β̇i = 1, ṫpi = 1, Ȧi = [0, ȧ) as above and Ḃi = Ȧi. We then

have that Ȯ ∈ OG by construction. An argument completely analogous to the proof

of Lemma 2.14 shows that Ȯ > O and Ȯ ∈ OS ∩ OD ∩ OG.

Summing up this section:

Corollary 2.5 If O ̸∈ OS ∩ OD ∩ OG and y > 0, then there is Ô ∈ OS ∩ OD ∩ OG

such that Ô > O.

Proof. Let O ̸∈ OS ∩OD ∩OG be such that y > 0. Let O1 = O if O ∈ OS ∩OD,

and O1 ∈ OS ∩ OD be given by Corollary 2.4 otherwise. Then O1 ≥ O.

Let O2 = O1 if O1 ∈ OS∩OD∩OG1, and O2 ∈ OS∩OD∩OG1 be given by Lemma

2.14 otherwise. Then O2 ≥ O.

Finally, let Ô = O2 if O2 ∈ OS ∩ OD ∩ OG, and Ô ∈ OS ∩ OD ∩ OG be given by

Lemma 2.15 otherwise. Then Ô ≥ O and, since O ̸∈ OS ∩OD ∩OG, we have Ô ̸= O

and, hence, Ô > O.

2.6 Order of sets

In this section we establish Theorem 3. For convenience, let

Ô = OS ∩ OD ∩ OG.

Let O<1 be the set of organizations O such that C < C ′ for all C,C ′ ∈ C with

cC > cC′ .

Lemma 2.16 If O ∈ Ô \ O<1, then there is Ô ∈ Ô ∩ O<1 such that Ô > O.
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Proof. For each organization O and each C ∈ C, let IC be the set of C ′ ∈ C \{C}

such that cC > cC′ but C < C ′ does not hold. Let I = {C ∈ C : IC ̸= ∅}. It follows

by definition that if I = ∅ then O ∈ O<1.

Let O ∈ Ô \ O<1; then I ̸= ∅. Order C and write C = {C1, . . . , Cn} such that

cCl
≥ cCl+1

for each l = 1, . . . , n. Let i ∈ {1, . . . , n} be the smallest l ∈ {1, . . . , n}

such that ICl
̸= ∅ and let j ∈ {1, . . . , n} be the smallest l ∈ {1, . . . , n} such that

Cl ∈ ICi
. We will define an organization Õ ∈ Ô such that Õ > O and either (i)

Õ ∈ Ô ∩ O<1 or (ii) C̃ = {C̃ : C ∈ C}, |ĨC̃i
| ≤ |ICi

| − 1 and |ĨC̃l
| = ∅ for each l < i.

By repeating this argument at most
∑

C∈I |IC | times, we obtain the desired Ô.

Since Ci, Cj ∈ I, Ci = ∪mr=1Er and Cj = ∪m′
r=1E

′
r where {Er : r = 1, . . . ,m}

is a collection of pairwise disjoint intervals and so is {E ′
r : r = 1, . . . ,m′}. Since

Ci ∩ Cj = ∅, Er ∩ E ′
s = ∅ for each 1 ≤ r ≤ m and 1 ≤ s ≤ m′. Since Ci < Cj does

not hold, there is 1 ≤ r ≤ m and 1 ≤ s ≤ m′ such that E ′
s < Er.

We will define an organization Ȯ ∈ Ô by just changing Er and E
′
s such that

(a) Ȯ > O,

(b) |{(r, s) ∈ {1, . . . ,m} × {1, . . . ,m′} : Ė ′
s < Ėr}| ≤ |{(r, s) ∈ {1, . . . ,m} ×

{1, . . . ,m′} : E ′
s < Er}| − 1,

(c) Ċ = {Ċ : C ∈ C},

(d) Ḋ = D for each D ∈ C \ {Ci, Cj},

(e) Ċi ∪ Ċj = Ci ∪ Cj,

(f) α̇l = αl for each l ∈ L and, hence, ċḊ = cD for each D ∈ C,

(g) max Ċi ≤ maxCi and

(h) min Ċj ≥ minCj.

By repeating this argument at most |{(r, s) : E ′
s < Er}| times, we obtain the desired

Õ. Indeed, we then have that C̃i < C̃j by (b), and that all the properties (a) and

(c)–(h) hold in Õ. Since C̃i < C̃j, it follows that C̃j ̸∈ ĨC̃i
. In addition, we claim
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that if D ̸∈ ICi
, then D̃ ̸∈ ĨC̃i

. To see this, note that D ̸∈ ICi
implies cD ≥ cCi

or

cD < cCi
and Ci < D. We have that D̃ = D by (d); moreover, c̃C̃i

= cCi
and c̃D̃ = cD

by (f). Hence, c̃D̃ ≥ c̃C̃i
if cD ≥ cCi

and, thus, D̃ ̸∈ ĨC̃i
. If cD < cCi

and Ci < D, then

max C̃i ≤ maxCi ≤ minD = min D̃ by (g) and (d). Thus, C̃i < D̃ and D̃ ̸∈ ĨC̃i
.

By combining C̃j ̸∈ ĨC̃i
with the fact that D ̸∈ ICi

implies D̃ ̸∈ ĨC̃i
, we obtain that

|ĨC̃i
| ≤ |ICi

| − 1.

We finally show that ĨC̃l
= ∅ for all l < i. Let l < i be given. By the definition of

i, we have that ICl
= ∅ and, by (d), C̃l = Cl. Let D ∈ C be such that c̃D̃ < c̃C̃l

. Then

cD < cCl
by (f); since ICl

= ∅, Cl < D and, hence, maxCl ≤ minD. If D ̸∈ {Ci, Cj},

then max C̃l = maxCl ≤ minD = min D̃ by (d). If D = Ci, then cCj
< cCi

< cCl

and, due to ICl
= ∅, Cl < Ci and Cl < Cj. Because C̃i ∪ C̃j = Ci ∪ Cj and C̃i < C̃j,

it follows that

min C̃i = min(C̃i ∪ C̃j) = min(Ci ∪ Cj) ≥ maxCl = max C̃l

and, thus, C̃l < C̃i = D̃. Finally, if D = Cj, then ICl
= ∅ implies Cl < Cj and, hence,

max C̃l = maxCl ≤ minCj ≤ min C̃j by (h). Thus, C̃l < C̃j. This shows that ĨC̃l
= ∅

and completes the argument to show that Õ has all the desired properties.

We turn now to the properties of Ȯ. Let Er = [a, b) and E ′
s = [a′, b′); then

a′ < b′ ≤ a < b. Let Ω′ = Er ∪ E ′
s and let â ∈ Ω be such that F (Ω′ ∩ [0, â)) =

F (Er); the existence and uniqueness of â follows by an argument analogous to that

of Lemma A.12, i.e. use the continuity and monotonicity of the function g defined

by g(a) = F (Ω′ ∩ [0, a)) for each a ∈ Ω, g(0) = 0 < F (Er) and lima→supΩ g(a) =

F (Er) + F (E ′
s) > F (Er).

In addition, µ(Ω′ ∩ [0, â)) < µ(Er). To see this, note that Ω′ ∩ [0, â) = [a′, â)

or Ω′ ∩ [0, â) = [a′, b′) ∪ [a, â). In the first case, the conclusion follows from Lemma

A.12. In the second case, it follows that F ([a′, b′)) + F ([a, â)) = F ([a, b)) and, hence,

F ([a′, b′)) = F ([â, b)). Lemma A.12 implies that b′ − a′ < b− â; thus, µ(Ω′ ∩ [0, â)) =

b′ − a′ + â− a < b− a = µ(Er).

Let Ȯ be equal to O except that Ėr = Ω′ ∩ [0, â) and Ė ′
s = Ω′ \ [0, â). Thus,

F (Ḋ) = F (D) for each D ∈ C and, hence, α̇l = αl for each l ∈ L; in particular (f)
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holds. Thus, Ȯ ∈ OS by Lemma 2.8 provided that 1 ∈ Ṁ . It is clear that Ȯ ∈ OG

since ∪l∈LḂl = ∪l∈LBl. Furthermore, it follows by Lemma 2.13 that Ȯ ∈ OD. Thus,

Ȯ ∈ Ô.

Properties (b)–(e) are satisfied by construction and we have already pointed out

that (f) holds. We will show (a) below. As for (g), we have that max Ċi = maxCi if

b < maxCi and max Ċi < maxCi if b = maxCi; thus, max Ċi ≤ maxCi. Similarly,

we have that min Ċj = minCj if a′ > minCj and min Ċj > minCj if a′ = minCj;

thus, min Ċj ≥ minCj and (h) holds.

Furthermore, µ(Ḋ) = µ(D) for each D ∈ C \ {Ci, Cj}, µ(Ċi) < µ(Ci) and µ(Ċj) +

µ(Ċi) = µ(Cj) + µ(Ci). We have that F (∪l∈LAl) = F (∪l∈LȦl) since both O and Ȯ

belong to OD and F (D) = F (Ḋ) for each D ∈ C. Using O, Ȯ ∈ OS and Lemma A.10,

y =
F (∪l∈LAl)−

∑
D∈C µ(D)cD

γ
and ẏ =

F (∪l∈LAl)−
∑

D∈C µ(Ḋ)cD

γ
.

Consequently, letting ρ = µ(Ci) − µ(Ċi), we have that ẏ − y =
(cCi

−cCj
)ρ

γ
> 0. This,

together with L̇ = L, implies that Ȯ > O. This completes the proof when 1 ∈ Ṁ .

If 1 ̸∈ Ṁ , then define instead Õ as in the proof of Lemma 2.15 to obtain Õ ∈ Ô

and Õ > O. Since L = {i}, it follows that C̃ = {Ãi} and, thus, Õ ∈ O<1 trivially.

Let O< be the set of organizations O ∈ O<1 such that C is an interval for each

C ∈ C.

Lemma 2.17 If O ∈ Ô ∩ O<1 and C = {C1, . . . , C|C|} is such that cC1 ≥ · · · ≥ cC|C|,

then there is Ô ∈ Ô ∩ O< such that ŷ ≥ y and L̂ ≤ L. Moreover, when ŷ = y

and L̂ = L, then l̂i = li for each i ∈ L, Ĉ = {Ĉ : C ∈ C}, Ĉ1 < · · · < Ĉ|C| and

F (Ĉ) = F (C) for each C ∈ C.

Proof. Let O ∈ Ô ∩ O<1. Define {c1, . . . , cn} = {cC : C ∈ C} with c1 > . . . > cn

and Ci = {C ∈ C : cC = ci} for each 1 ≤ i ≤ n. For each 1 ≤ i ≤ n, there is

ki ∈ {1, . . . , |C|} and ri ∈ {0, . . . , |C| − 1} such that Ci = {Cki , . . . , Cki+ri}. Let I

be the set of i ∈ {1, . . . , n} such that Cki < · · · < Cki+ri does not hold; we may

assume that I ̸= ∅ since, otherwise, just set Ô = O. We will define an organization

Õ ∈ Ô ∩ O<1 such that ỹ ≥ y, L̃ ≤ L such that (a) if ỹ = y and L̃ = L, then l̃i = li
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for each i ∈ L, C̃ = {C̃ : C ∈ C}, C̃ki < · · · < C̃ki+ri for each i ̸∈ Ĩ, F (C̃) = F (C)

for each C ∈ C and |Ĩ| = |I| − 1, and (b) otherwise, Õ ∈ Ô ∩ O<. By repeating this

argument at most |I| times, we obtain the desired Ô.

Since O ∈ O<1, ∪C∈CiC < ∪C∈Ci+1
C for each i = 1, . . . , n − 1. Since O ∈ OG,

∪l∈LBl = ∪ni=1 ∪C∈Ci C is an interval. Thus, it follows that ∪C∈CiC is an interval for

each i = 1, . . . , n.

Let i ∈ I and ∪C∈CiC = [a, b). Then obtain {C̃ : C ∈ Ci} such that C̃ is an

interval and F (C̃) = F (C) for each C ∈ Ci as follows. Write Ci = {Cki , . . . , Cki+ri} =

{Ci1 , . . . , Ciri+1}. Let b1 be such that F ([a, b1)) = F (Ci1) and set C̃i1 = [a1, b1)

with a1 = a; assuming that C̃i1 , . . . , C̃ij−1
are such that, for each 1 ≤ l ≤ j − 1,

F (C̃il) = F (Cil) and C̃il = [al, bl) with a = a1 < b1 = a2 < b2 = · · · = aj−1 < bj−1,

let aj = bj−1 and bj such that F ([aj, bj)) = F (Cij). The existence and uniqueness of

bj follows by an argument analogous to that of Lemma A.12, i.e. use the continuity

and monotonicity of the function g defined by g(x) = F ([aj, x)) for each x ∈ Ω,

g(aj) = 0 < F (Cij) and limx→b g(x) ≥ F (Cij).

Let Õ be equal to O except that, for each C ∈ Ci, C is replaced with C̃. We have

that L̃ = L with l̃i = li for each i ∈ L, C̃ = {C̃ : C ∈ C}, C̃ki < · · · < C̃ki+ri , F (C̃) =

F (C) for each C ∈ C and |Ĩ| = |I| − 1 by construction. Also, ∪C∈CiC = ∪C∈CiC̃ so

that
∑

C∈Ci µ(C) =
∑

C∈Ci µ(C̃). It then follows by Lemma A.10 that

ỹ − y = ci

(∑
C∈Ci

µ(C)−
∑
C∈Ci

µ(C̃)

)
= 0.

This completes the proof when 1 ∈ M̃ .

If 1 ̸∈ M̃ , then define instead Õ as in the case 1 ̸∈ M̃ in proof of Lemma 2.15. In

particular, L̃ = 1 ≤ L and B̃1 = Ã1 = [0, ã) and ỹ > y, thus, we obtain Õ ∈ Ô ∩ O<.

Let

O∗ = OS ∩ OD ∩ OG ∩ O<.

Recall that, given two organizations O and O′, we write Ô ≳ O if Ô > O or ŷ = y,

L̂ = L and l̂i = li for all i ∈ L.

Summing up this section:
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Corollary 2.6 If O ̸∈ O∗ and y > 0, then there is Ô ∈ O∗ such that Ô ≳ O.

Proof. Let O ̸∈ O∗ be such that y > 0. Let O1 = O if O ∈ Ô, and O1 ∈ Ô be

given by Corollary 2.5 otherwise. Then O1 ≥ O.

Let O2 = O1 if O1 ∈ Ô ∩ O<1, and O2 ∈ Ô ∩ O<1 be given by Lemma 2.16

otherwise. Then O2 ≥ O.

Finally, let Ô = O2 if O2 ∈ O∗, and Ô ∈ O∗ be given by Lemma 2.17 otherwise.

Then Ô ≳ O.

2.7 Existence of optimal organizations

Recall from Section A.10 that O ∈ O∗ is fully specified by (L, ψ, µ) such that L ∈ N,

ψ is a bijection from C to {1, . . . ,m} where m = |C|, and µ = (µ1, . . . , µm) ∈ Rm
+ is

such that
∑m

j=1 µj ≤ µ(Ω).

We start with the following lemma. LetOQ be the set of quasi-organization defined

by (L, ψ, µ) as in Section A.10. Specifically, if O ∈ OQ is actually an organization,

then O ∈ O∗. For further use, we say that O is a specialized quasi-organization if

tp1 = 1, th1 = 0, β1 =
1
γ
, l1 = L, ≺1=< and, for each i ̸= 1, tpi = 0, thi = 1, β1 =

αi

γ
and

li = {i}. Note that if O is a specialized quasi-organization, then O need not belong

to OQ; for that C must be ordered.

Lemma 2.18 Let O be a specialized quasi-organization. If Ô is such that L̂ = L \

{i ∈ L : αi = 0} but otherwise equal to O, then α̂i = αi for each i ∈ L̂ and

∪l∈L̂Al = ∪l∈LAl. Consequently, Ô is an organization, ŷ = y, L̂ ≤ L and L̂ = L if

and only if O is an organization. In addition, if O ∈ OQ, then Ô ∈ O∗.

Proof. Let O be a specialized quasi-organization and let i ∈ L be such that

αi = 0. Then Ai ⊆ ∪l<iAl ⊆ ∪l<iBl and A
c
i ⊆ ∪l<iBl. Since Bi \ Ai ⊆ Aci , we have

that Bi = Ai ∪ (Bi \ Ai) ⊆ ∪l<iBl.

Let Ô be such that L̂ = L \ {i ∈ L : αi = 0} and l̂1 = L̂ but otherwise equal to

O. We start by showing that, for each j ∈ L, ∪l<jAl = ∪l∈L̂:l<jAl. Let Lj = {l ∈ L̂ :

l < j} and proceed by induction. The conclusion trivially holds for j = 1. Assuming
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that ∪l<j−1Al = ∪l∈Lj−1
Al, we have that, if j − 1 ∈ L̂, ∪l<jAl = (∪l<j−1Al) ∪ Aj−1 =

(∪l∈Lj−1
Al) ∪ Aj−1 = ∪Lj

Al; if j − 1 ̸∈ L̂, then ∪l<jAl = (∪l<j−1Al) ∪ Aj−1 =

∪l<j−1Al = ∪l∈Lj−1
Al = ∪l∈Lj

Al since Aj−1 ⊆ ∪l<j−1Al.

An analogous argument, now using Bi ⊆ ∪l<iBl for each i ̸∈ L̂, shows that, for

each j ∈ L, ∪l<jBl = ∪l∈L̂:l<jBl. It then follows that α̂i = αi for each i ∈ L̂.

Furthermore, ∪l∈L̂Al = ∪l∈LAl since if L ∈ L̂, ∪l∈LAl = (∪l<LAl) ∪ AL =

(∪l∈LL
Al) ∪ AL = ∪l∈L̂Al; if L ̸∈ L̂, then ∪l∈LAl = (∪l<LAl) ∪ AL = ∪l<LAl =

∪l∈LL
Al = ∪l∈L̂Al since AL ⊆ ∪l<LAl.

The remaining properties are now clear.

Let XL = {(µ1, . . . , µm) ∈ Rm
+ :
∑m

j=1 µj ≤ µ(Ω)} and recall that

max
L

(
max
ψ

(
max
µ∈XL

yL,ψ(µ)
))

exits when Ω is bounded.

Let O∗ ∈ OQ be defined by setting (L∗, ψ∗, µ∗) according to (24)–(26). We then

have that, for each O ∈ O∗, there is (L, ψ, µ) such that Y = yL,ψ(µ) − (L − 1)η ≤

yL,ψ− (L−1)η ≤ maxψ yL,ψ− (L−1)η ≤ maxL
(
maxψ yL,ψ− (L−1)η

)
= Y ∗. Hence,

Y ≤ Y ∗. (2.9)

Also note that if O ∈ O∗ is such that L = L∗, then l1 = L = L∗ = l∗1 and li = {i} = l∗i

for each i ∈ L \ {1}; hence,

li = l∗i for each i ∈ L. (2.10)

We can now turn to the proof of Theorem 4 where we show that actually O∗ ∈ O∗

and that O∗ is an η-optimal organization.

Proof of Theorem 4. We have that O∗ is an organization. Suppose not; then

Ô ∈ O∗ given by Lemma 2.18 is such that Ŷ = ŷ − (L̂ − 1)η = y∗ − (L̂ − 1)η >

y∗ − (L∗ − 1)η = Y ∗, a contradiction to (2.9).

It suffices to show that O∗ is an η-optimal organization. Suppose not; then there

exists an organization O such that (i) Y > Y ∗ or (ii) y = y∗, L = L∗, li ⊆ l∗i for each

i ∈ L∗ and lj ̸= l∗j for some j ∈ L∗. It is clear from (2.9) and (2.10) that O ̸∈ O∗.
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Thus, it follows from Corollary 2.6 that there exists Ô ∈ O∗ such that (iii) Ô > O or

(iv) ŷ = y, L̂ = L and l̂i = li for all i ∈ L.

If (iii) holds or if (iv) holds together with (i) we obtain that Ŷ > Y ∗. But this is

a contradiction since Ô ∈ O∗ together with (2.9) imply Ŷ ≤ Y ∗.

If, instead, (iv) and (ii) hold, then L̂ = L∗, l̂i ⊆ l∗i for each i ∈ L∗ and l̂j ̸= l∗j for

some j ∈ L̂. But this is a contradiction since Ô ∈ O∗ together with (2.10) imply that

l̂i = l∗i for each i ∈ L∗. This contradiction shows that O∗ is an η-optimal organization

and completes the proof of Theorem 4.

3 Optimal organizations with at least two layers

and nonexistence of lexicographically optimal or-

ganizations

In this section we provide sufficient conditions for optimal organizations to have at

least two layers when ξ is sufficiently small. We then use this result to show that no

lexicographically optimal organization exists when ξ is sufficiently small.

The sufficient conditions for optimal organizations to have at least two layers

require that communication is not too costly and that organizations with one layer

do not have full knowledge:

(A3) h < 1.

(A4) f(ω̄) < c.

Indeed, if (A4) holds, then the solution µ1 to the maximization problem defining y1

is less than ω̄. More importantly, if we add (A3) and (A4) to (A1), we obtain that

any lexicographically optimal organization has L ≥ 2 when ξ is sufficiently small.

To see the above and to see what happens in the case of η-optimal organizations,

consider the organization with two layers described in Theorem 5. It satisfies L = 2,

B1 \ A1 = (A1 ∪ A2)
c, A1 = [0, µ1) and A2 = [µ1, µ1 + µ2) for some (µ1, µ2) ∈ X2 =
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{(x1, x2) ∈ R2
+ : x1 + x2 ≤ ω̄}. Let

ȳ2 = max
(µ1,µ2)∈X2

F (µ1 + µ2)− cµ1 − ch(F (µ1 + µ2)− F (µ1))µ2

1 + h(F (µ1 + µ2)− F (µ1))

be its output when µ1 and µ2 are chosen optimally and when ξ = 0 (as we assume ξ >

0 throughout the paper, ȳ2 is merely an auxiliary concept).1 As we show in Appendix

A, we then have that ȳ2 > y1. Thus, any lexicographically optimal organization has

L ≥ 2 when ξ is sufficiently small and, if η < ȳ2 − y1, then the same holds for any

η-optimal organization.

We now show formally that if ξ and η are sufficiently small and (A1), (A3) and

(A4) hold, then any η-optimal organization has at least two layers (in fact, only the

requirement that Ω be bounded in (A1) is needed). Lemma 3.1 shows that ȳ2 is

strictly above the output of the best organization with one layer.

Lemma 3.1 If (A1), (A3) and (A4) hold, then ȳ2 > y1 ≥ 0.

Proof. Let µ1 ∈ Ω be such that y1 = F (µ1)− cµ1. It is clear that 0 ≤ y1 < 1 and

that µ1 < ω̄, the latter by (A4). Letting ȳ2(x1, x2) =
F (x1+x2)−cx1−ch(F (x1+x2)−F (x1))x2

1+h(F (x1+x2)−F (x1))

for each (x1, x2) ∈ X2, it follows that ȳ2(µ1, 0) = y1 and ∂ȳ2(µ1,0)
∂x2

= f(µ1)(1 − y1h).

Since h < 1 by (A3) and y1 < 1, it follows that there is µ2 > 0 such that ȳ2(µ1, µ2) >

ȳ2(µ1, 0) = y1.

Lemma 3.2 states and proves the main conclusion of this section.

Lemma 3.2 If (A1), (A3) and (A4) hold and 0 < η < ȳ2 − y1, then there is ξ′ > 0

such that, for each 0 < ξ < ξ′, L ≥ 2 in any η-optimal organization.

Proof. Let ξ′ = ȳ2−y1−η
ω̄

; then ξ′ > 0 by Lemma 3.1. Let O be a lexicographically

optimal organization and suppose that L < 2. Then L = 1 and y = y1. Consider

Ô with L̂ = 2, B̂1 = (Â1 ∪ Â2)
c, Â1 = [0, µ1) and Â2 = [µ1, µ1 + µ2) for some

(µ1, µ2) ∈ X2 such that ȳ2(µ1, µ2) = ȳ2. Then ŷ = ȳ2 − ξ(ω̄−µ1−µ2)
1+h(F (µ1+µ2)−F (µ1))

≥ ȳ2 − ξω̄.

1To obtain the output of this organization, we need to subtract ξ(1− µ1 − µ2) to the numerator

of ȳ2.
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Hence, Ŷ ≥ ȳ2 − ξω̄ − η > y1 = Y since ξ < ξ′. But this contradicts the optimality

of O.

Existence of η-optimal organizations follows from Theorem 4. As the next result

shows, under (A1)–(A4), there is no lexicographically optimal organization when ξ is

sufficiently small.

Theorem 3.1 If (A1)–(A4) hold, then there exists ξ̃ > 0 such that there is no lexi-

cographically optimal organization for each 0 < ξ < ξ̃.

The intuition for Theorem 3.1 is as follows. Under (A1)–(A4), if a lexicographically

optimal organization exists, then L ≥ 2 and it has the structure described in Theorem

5 (the latter is shown in its proof). To be concrete, consider the case where L = 3 (the

proof of Theorem 3.1 considers the general case). Since α2 = hF (A2), α3 = hF (A3)

and B1 \ A1 = Ω \ (A1 ∪ A2), its output is

y =

∑3
i=1 F (Ai)− cµ(A1)− ch

∑3
i=2 F (Ai)µ(Ai)− ξ(ω̄ − µ(A1)− µ(A2))

1 + h
∑3

i=2 F (Ai)
.

Output can now be increased by adding a forth layer and by splitting A3 in half, so

that if A3 = [a, b) and Â3 and Â4 denote the knowledge sets of layers 3 and 4 in the

new organization, then Â3 = [a, (a+b)/2) and Â4 = [(a+b)/2, b). The only change to

output is that −chF (A3)µ(A3) is replaced with −ch
(
F (Â3)µ(Â3) + F (Â4)µ(Â4)

)
=

− chF (A3)µ(A3)
2

. Thus, the learning costs of A3 are cut in half and output increases.

The proof of Theorem 3.1 requires the following technical lemma showing that if

L = 2 is optimal, then the size µ(A2) of layer 2’s knowledge set would necessarily be

bounded below. Let ξ̄ > 0 be given by Theorem 5 and ξ′ > 0 be given by Lemma 3.2.

Lemma 3.3 If (A1)–(A4) hold, then there is ε > 0 such that, for each ξ ∈ (0,min{ξ̄, ξ′}),

if O is a lexicographically optimal organization with L = 2, then µ(A2) > ε.

Proof. Suppose not; then, there are sequences {ξk}∞k=1, {Ok}∞k=1 and {µ2,k}∞k=1

such that, for each k ∈ N, 0 < ξk < min{ξ̄, ξ′}, Ok is a lexicographically optimal

organization with Lk = 2 and µ2,k = µ(A2,k) → 0. Let µ1,k = µ(A1,k) for each k ∈ N;
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since {ξk}∞k=1 and {µ1,k}∞k=1 are bounded, we may assume that they converge; let

ξ = limk ξk and µ1 = limk µ1,k.

For each k ∈ N, it follows by Lemma A.21 that

yk =
F (µ1,k + µ2,k)− cµ1,k − ch(F (µ1,k + µ2,k)− F (µ1,k))µ2,k − ξk(ω̄ − µ1,k − µ2,k)

1 + h(F (µ1,k + µ2,k)− F (µ1,k))
.

We then have that µ2,k > 0 for all k ∈ N. Indeed, if µ2,k = 0 for some k,

then yk = F (µ1,k) − cµ1,k − ξk(ω̄ − µ1,k) ≤ y1 and this contradicts the optimality

of Ok. Furthermore, µ1 > 0; indeed, otherwise, yk → 0 and, hence, yk < y1 for

all k sufficiently large, contradicting the optimality of Ok (recall that (A2) implies

that y1 > 0). Thus, µ1,k > 0 and µ2,k > 0 for all k sufficiently large. In addition,

ξ = 0 since, otherwise, limk yk = F (µ1) − cµ1 − ξ(ω̄ − µ1) < y1 if µ1 < ω̄ and

limk yk = F (ω̄)− cω̄ < y1 by (A4) if µ1 = ω̄; hence, yk < y1 for all k sufficiently large,

contradicting the optimality of Ok.

Suppose first that µ1,k + µ2,k < ω̄ for all k sufficiently large and fix such k. For

each i = 1, 2, µi,k satisfies the first-order condition

∂yk(µ1,k, µ2,k)

∂µi,k
= 0 ⇔ yk =

∂θk(µ1,k,µ2,k)

∂µi,k

∂γk(µ1,k,µ2,k)

∂µi,k

.

In particular, for i = 2, we obtain

yk =
f(µ1,k + µ2,k)− ch(F (µ1,k + µ2,k)− F (µ1,k))− chf(µ1,k + µ2,k)µ2,k + ξk

hf(µ1,k + µ2,k)
. (3.1)

Thus, (3.1), together with f(ω̄) > 0, implies that limk yk =
f(µ1)
hf(µ1)

= 1
h
> 1. But this

is a contradiction, since yk ≤ 1 for all k ∈ N.

Hence, µ1,k+µ2,k = ω̄ for infinitely many k; taking a subsequence if necessary, we

may assume that µ1,k + µ2,k = ω̄ for all k. Hence, µ1 = ω̄ and limk yk = 1 − cω̄ =

F (ω̄)− cω̄ < y1 since f(ω̄) < c by (A4). Hence, yk < y1, contradicting the optimality

of Ok. This contradiction establishes our claim and concludes the proof.

We now prove Theorem 3.1. Let ξ̄ > 0 be given by Theorem 5, ξ′ > 0 be given

by Lemma 3.2 and ε > 0 be given by Lemma 3.3. Define ξ̃ = min{ξ̄, ξ′, chf(ω̄)ε}

(note that f(ω̄) > 0 by (A1) and, hence, ξ̃ > 0) and let 0 < ξ < ξ̃. Suppose that a
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lexicographically optimal organization O exists. Then L ≥ 2 by Lemma 3.2 and

y =

∑L
i=1 F (Ai)− cµ(A1)− ch

∑L
i=2 F (Ai)µ(Ai)− ξ(ω̄ − µ(A1)− µ(A2))

1 + h
∑L

i=2 F (Ai)

by Lemma A.21.

Consider first the case where L > 2. In this case, write AL = [a, b) with a < b,

m = (a + b)/2 and consider an organization Ô equal to O except that it has L + 1

layers, ÂL = [a,m) and ÂL+1 = [m, b). Then

F (ÂL)µ(ÂL) + F (ÂL+1)µ(ÂL+1) =
µ(AL)

2
(F (ÂL) + F (ÂL+1)) =

F (AL)µ(AL)

2

and, hence, ŷ > y. But this contradicts the optimality of O. This contradiction shows

that no lexicographically optimal organization exists when L > 2.

We finally consider the case where L = 2. In this case, µ(A2) > ε by Lemma 3.3

and, hence, F (A2) > f(ω̄)ε. Write A2 = [a, b) with a < b, m = (a+ b)/2 and consider

an organization Ô equal to O except that it has 3 layers, Â1 = A1, Â2 = [a,m),

Â3 = [m, b) and B̂1 \ Â1 = Ω \ (Â1 ∪ Â2). Since F (Â2) + F (Â3) = F (A2) and

µ(Â2) = µ(Â3) = µ(A2)/2,

ŷ − y =
−chF (Â2)µ(Â2)− chF (Â3)µ(Â3) + chF (A2)µ(A2) + ξµ(Â2)− ξµ(A2)

1 + hF (A2)
.

Since chF (A2) > chf(ω̄)ε > ξ, it follows that

ŷ − y =
−chF (A2)

µ(A2)
2

+ chF (A2)µ(A2)− ξ µ(A2)
2

1 + hF (A2)
=

(chF (A2)− ξ)µ(A2)
2

1 + hF (A2)
> 0.

But this contradicts the optimality of O. This contradiction shows that no lexico-

graphically optimal organization exists.

4 Codes for the small ξ case

In this section we include the codes used for the computations in Section 5.2. The

codes are written in python and executed in spyder 3.3.6. The following three codes

are used: First, org.py computes the optimal organization as a function of the param-
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eters and hier.py computes the best hierarchy, also as a function of the parameters.2

Then diff.py makes all the reported computations for the chosen parameter values.

4.1 org.py

"""

Computes the optimal organization when the density is affine,

f(x)=a-bx,

as a function of the parameters c, h, b and barL

"""

def sol(c,h,b,barL):

import numpy as np

from scipy.optimize import minimize, LinearConstraint

a=(2+b)/2 #so that f is indeed a density

def F(x):

return (x*(2*a-b*x))/2

#this is the cumulative distribution

#bound on parameters to compute xi

cl=0.1

cu=1.49

bl=1

bu=1.99

al=(2+bl)/2

au=(2+bu)/2

hl=0.1

2Both of these codes use the built-in function minimize. We have tried replacing it in org.py

with basinhopping and the results are virtually the same but the program takes far longer to run.
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hu=1

barxi1=(cl*hl*(2-bu))/(2*(au**2)*(barL**2))

barxi2=(hl*(2-bu)*(al**2-cu**2))/4

xi=min(barxi1,barxi2)/2

#Initial guess is x0=(0,...,0)

#The variable cons=(1,...,1) is used to define the constraint

x0=[]

cons=[]

for i in range(barL):

x0.append(0)

cons.append(1)

#y(x) is output as a function of (mu_1,...,mu_{\bar L})

def y(x):

ss=[F(sum(x))-F(x[0]+sum(x[2:len(x)]))]

s=[ss[0]*x[1]]

for i in range(3,len(x)+1):

ss.append(F(x[0]+sum(x[2:i]))-F(x[0]+sum(x[2:i-1])))

s.append(ss[i-2]*x[i-1])

return (F(sum(x))-c*x[0]-c*h*sum(s)-xi*(1-x[0]-x[1]))/(1+h*sum(ss))

def g(x):

return -y(x)

#The built-in function minimize is used to maximize y, hence to minimize g

#variable bigmu contains the solution, which is a vector of dimension barL,

#for each L=1,...,bar L

bigmu=[]

con = LinearConstraint([cons], [-np.inf], [1])

#con is the constraint mu_1+...+mu_{\bar L}\leq 1

for j in range(1,barL+1):
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#this is the numner of layers; if i\leq j, then mu_i is between 0 and 1

#otherwise, it must be zero - beta captures this

print(’org’,j)

beta=[]

for i in range(barL):

if i+1<=j:

beta.append((0,1))

else:

beta.append((0,0))

res=minimize(g,x0,bounds=beta,constraints=con)

x0=res.x #initial guess of next iteration is the solution to this one

bigmu.append(res.x)

#Next we find the optimal L

mu=bigmu[0]

L=1

for i in range(2,barL+1):

if y(bigmu[i-1])-(i-1)/barL>y(mu)-(L-1)/barL:

mu=bigmu[i-1]

L=i

#Next compute alpha and beta (called here size)

alpha=[F(sum(mu[0:L]))-F(mu[0]+sum(mu[2:L]))]

for i in range(3,L+1):

alpha.append(F(mu[0]+sum(mu[2:i]))-F(mu[0]+sum(mu[2:i-1])))

size=[1/(1+sum(alpha))]

for i in range(0,L-1):

size.append(alpha[i]/(1+sum(alpha)))
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return [L,mu,y(mu)-(L-1)/barL,size]

4.2 hier.py

def sol(c,h,b,barL):

import numpy as np

from scipy.optimize import minimize, LinearConstraint

a=(2+b)/2

def F(x):

return (x*(2*a-b*x))/2

x0=[]

cons=[]

for i in range(barL):

x0.append(0)

cons.append(1)

def y(l,x):

s=[]

ss=[]

for i in range(2,len(x)+1):

ss.append(1-F(sum(x[0:i-1])))

s.append(ss[i-2]*x[i-1])

return (F(sum(x[0:l]))-c*x[0]-c*h*sum(s[0:l-1]))/(1+h*sum(ss[0:l-1]))

bigmu=[]

con = LinearConstraint([cons], [-np.inf], [1])

for j in range(1,barL+1):
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print(’hier’,j)

beta=[]

for i in range(barL):

if i+1<=j:

beta.append((0,1))

else:

beta.append((0,0))

def g(x):

return -y(j,x)

res=minimize(g,x0,bounds=beta,constraints=con)

x0=res.x

bigmu.append(res.x)

mu=bigmu[0]

L=1

for i in range(2,barL+1):

if y(i,bigmu[i-1])-(i-1)/barL>y(L,mu)-(L-1)/barL:

mu=bigmu[i-1]

L=i

alpha=[]

for i in range(2,L+1):

alpha.append(1-F(sum(mu[0:i-1])))

size=[1/(1+sum(alpha))]

for i in range(0,L-1):

size.append(alpha[i]/(1+sum(alpha)))

return [L,mu,y(L,mu)-(L-1)/barL,size]
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4.3 diff.py

import org, hier

c=1.4

h=0.5

b=1

barL=100

a=(2+b)/2

cl=0.1

cu=1.49

bl=1

bu=1.99

al=(2+bl)/2

au=(2+bu)/2

hl=0.1

hu=1

barxi1=(cl*hl*(2-bu))/(2*(au**2)*(barL**2))

barxi2=(hl*(2-bu)*(al**2-cu**2))/4

xi=min(barxi1,barxi2)/2

x=org.sol(c,h,b,barL)

y=hier.sol(c,h,b,barL)

d=(x[2]+(x[0]-1)/barL-y[2]-(y[0]-1)/barL)/(y[2]+(y[0]-1)/barL)

dn=(x[2]-y[2])/y[2]

print(’a’,a,’b’,b,’xi’,xi,’eta’,1/barL,’c’,c,’h’,h)
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print(’Increase in net output is’,100*dn)

print(’Increase in output is’,100*d)

print(’Optimal organization’)

print(’L’,x[0])

print(’net output’, x[2])

print(’output’,x[2]+(x[0]-1)/barL)

print(’sum of mu’,sum(x[1]))

for i in range(0,x[0]):

print(’mu’,i,’is’,x[1][i])

print(’beta’,i,’is’,x[3][i])

print(’Best hierarchy’)

print(’L’,y[0])

print(’net output’, y[2])

print(’output’,y[2]+(y[0]-1)/barL)

print(’sum of mu’,sum(x[1]))

for i in range(0,y[0]):

print(’mu’,i,’is’,y[1][i])

print(’beta’,i,’is’,y[3][i])

def F(x):

return (x*(2*a-b*x))/2

w=y[1]

ss=[F(sum(w))-F(w[0]+sum(w[2:len(w)]))]

s=[ss[0]*w[1]]

for i in range(3,len(w)+1):

ss.append(F(w[0]+sum(w[2:i]))-F(w[0]+sum(w[2:i-1])))

s.append(ss[i-2]*w[i-1])

o=(F(sum(w))-c*w[0]-c*h*sum(s)-xi*(1-w[0]-w[1]))/(1+h*sum(ss))
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g1=100*(o-y[2])/y[2]

g2=100*(x[2]-o)/y[2]

print(’gain with same L’,g1,’%’,g1/dn)

print(’gain from L’,g2,’%’,g2/dn)

5 Simulations for intermediate values of ξ

In this section, we describe the computational approach used in Section 5.3, and we

report simulation results for other configurations of parameter values.

5.1 Computations

We assume that π = h and that h < 1. The former simplifies the expression for αi

for each i ∈ L \ {1} since, by Lemma A.11, αi = h(1− F ((∪j<iBj) \Ai)). The latter

then implies that αi < 1 and Lemma A.16 implies that αi > 0.

We use the approach described in Section A.10 to compute optimal organiza-

tions. In what follows, we describe the candidates for optimal organizations when the

number of layers is L and L ∈ {1, 2, 3, 4}.

5.1.1 L = 1

The best organization with one layer does not depend on ξ, i.e. B1 \ A1 = ∅ always.

In this case, µ1 = min
{
max

{
a−c
b
, 0
}
, 1
}
and y1 = F (µ1)− cµ1.

5.1.2 L = 2

In this case, C = {A1, A2, B1 \ A1}. Since A1 < C for each C ∈ C, there are two

possible orders:

1. A1 < A2 < B1 \ A1, and

2. A1 < B1 \ A1 < A2.
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We let µ0 = µ(A1), µ1 = µ(A2) and µ2 = µ(B1 \ A1). In order 1, A1 = [0, µ0),

A2 = [µ0, µ0 + µ1) and B1 \A1 = [µ0 + µ1, µ0 + µ1 + µ2). Hence, α2 = h(1− F (µ0)−

F (
∑2

i=0 µi) + F (µ0 + µ1)) and y = (F (µ0 + µ1)− cµ0 − cα2µ1 − ξµ2)/(1 + α2).

In order 2, A1 = [0, µ0), B1 \A1 = [µ0, µ0 + µ2) and A2 = [µ0 + µ2, µ0 + µ1 + µ2).

Hence, α2 = h(1 − F (µ0 + µ2)) and y = (F (µ0) + F (
∑2

i=0 µi) − F (µ0 + µ2) − cµ0 −

cα2µ1 − ξµ2)/(1 + α2).

5.1.3 L = 3

In this case, C = {A3∩(B1\A1), A1, A2, A3∩(B1\A1)
c, (B1\A1)∩Ac3, B2\A2}. We have

that A1 < C for each C ∈ C\{A1} and A2 < A3∩(B1\A1)
c by Corollary 2. Moreover,

Corollary 1 implies that A3∩(B1\A1) < A3∩(B1\A1)
c, A3∩(B1\A1) < (B1\A1)∩Ac3,

(B1 \ A1) ∩ Ac3 < B2 \ A2 and A2 < B2 \ A2.

When L = 3, we have that

B1 \ A2 = A1 ∪ (A3 ∩ (B1 \ A1)) ∪ ((B1 \ A1) ∩ Ac3) and

(B1 ∪B2) \ A3 = A1 ∪ ((B1 \ A1) ∩ Ac3) ∪ A2 ∪ (B2 \ A2).

Then:

α2 = h(1− F (A1)− F (A3 ∩ (B1 \ A1))− F ((B1 \ A1) ∩ Ac3)),

α3 = h(1− F (A1)− F ((B1 \ A1) ∩ Ac3)− F (A2)− F (B2 \ A2)),

γ = 1 + α2 + α3 and

θ = F (A1) + F (A2) + F (A3 ∩ (B1 \ A1)) + F (A3 ∩ (B1 \ A1)
c)

−cµ(A1)− ξµ((B1 \ A1) ∩ Ac3)− cα2µ(A2)− ξα2µ(B2 \ A2)

−cα3µ(A3 ∩ (B1 \ A1)
c)− (cα3 + ξ)µ(A3 ∩ (B1 \ A1)).

The following lemma uses A3 ∩ (B1 \A1) < (B1 \A1)∩Ac3 to obtain an inequality

via Theorem A.1 that will be used to order additional members of C. The idea is

that when swapping part of A3 ∩ (B1 \ A1) with part of (B1 \ A1) ∩ Ac3, keeping

their Lebesgue measures constant, F (A3∩ (B1 \A1)) decreases and F ((B1 \A1)∩Ac3)

increases since A3 ∩ (B1 \ A1) < (B1 \ A1) ∩ Ac3. Consequently, there is a trade-off
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between production and fraction of workers, because a decrease in F (A3 ∩ (B1 \A1))

makes production decline while an increase in F ((B1 \ A1) ∩ Ac3), by reducing α3,

increases the fraction of workers. But this change cannot be beneficial and, therefore,

the first effect must dominate.

Lemma 5.1 If A3 ∩ (B1 \ A1) ̸= ∅ and (B1 \ A1) ∩ Ac3 ̸= ∅, then 1−chµ(A3)
h

> y.

Proof. For each 0 < ε < min{F (A3 ∩ (B1 \ A1)), F ((B1 \ A1) ∩ Ac3)}, we have

that

yF ((B1\A1)∩Ac
3),F (A3∩(B1\A1))(ε) =

θ − ε+ chµ(A3)ε

γ − hε
.

Since A3 ∩ (B1 \ A1) < (B1 \ A1) ∩ Ac3 by Theorem 3, then there is ε ∈ (0, F (A3 ∩

(B1 \ A1))) such that yF ((B1\A1)∩Ac
3),F (A3∩(B1\A1))(ε) ≤ y by Theorem A.1. In fact, it

must be that yF ((B1\A1)∩Ac
3),F (A3∩(B1\A1))(ε) < y since, otherwise, there is an optimal

organization where A3 ∩ (B1 \ A1) < (B1 \ A1) ∩ Ac3 does not hold, contradicting

Theorem 3. Indeed, let A3 ∩ (B1 \ A1) = [a, b) with ε < b − a and consider an

organization Ô equal to O except that (B̂1 \ Â1) ∩ Âc3) = (B1 \A1) ∩Ac3) ∪ [a, ε) and

Â3 ∩ (B̂1 \ Â1) = A3 ∩ (B1 \A1) \ [a, ε). Then ŷ = y, showing that Ô is also optimal.

It then follows from yF ((B1\A1)∩Ac
3),F (A3∩(B1\A1))(ε) < y that 1−chµ(A3)

h
> y.

The following ordering follows from Lemma 5.1 together with Theorem A.1.

Lemma 5.2 If A3 ∩ (B1 \ A1) ̸= ∅ and (B1 \ A1) ∩ Ac3 ̸= ∅, then A3 ∩ (B1 \ A1)
c <

(B2 \ A2).

Proof. This is trivial if A3 ∩ (B1 \ A1)
c = ∅ or B2 \ A2 = ∅ and it follows from

Theorem A.1 otherwise. Indeed, for each 0 < ε < min{F (A3∩(B1\A1)
c), F (B2\A2)},

yF (A3∩(B1\A1)c),F (B2\A2)(ε) =
θ + ε− chµ(A3)ε

γ + hε
> y

since 1−chµ(A3)
h

> y by Lemma 5.1.

The above discussion, together with the conclusion of Lemma 5.2, gives us the

following orders:

1. A1 < A3 ∩ (B1 \ A1) < A2 < A3 ∩ (B1 \ A1)
c < (B1 \ A1) ∩ Ac3 < B2 \ A2.
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2. A1 < A3 ∩ (B1 \ A1) < A2 < (B1 \ A1) ∩ Ac3 < A3 ∩ (B1 \ A1)
c < B2 \ A2.

3. A1 < A3 ∩ (B1 \ A1) < (B1 \ A1) ∩ Ac3 < A2 < A3 ∩ (B1 \ A1)
c < B2 \ A2.

4. A1 < A2 < A3 ∩ (B1 \ A1) < A3 ∩ (B1 \ A1)
c < (B1 \ A1) ∩ Ac3 < B2 \ A2.

5. A1 < A2 < A3 ∩ (B1 \ A1) < (B1 \ A1) ∩ Ac3 < A3 ∩ (B1 \ A1)
c < B2 \ A2.

However, since Lemma 5.2 has assumptions that may fail to hold, we also consider

the following additional three orders:

6. A1 < A3 ∩ (B1 \ A1) < A2 < (B1 \ A1) ∩ Ac3 < B2 \ A2 < A3 ∩ (B1 \ A1)
c.

7. A1 < A3 ∩ (B1 \ A1) < (B1 \ A1) ∩ Ac3 < A2 < B2 \ A2 < A3 ∩ (B1 \ A1)
c.

8. A1 < A2 < A3 ∩ (B1 \ A1) < (B1 \ A1) ∩ Ac3 < B2 \ A2 < A3 ∩ (B1 \ A1)
c.

It turns out that neither of these three additional orders is optimal in any of our

simulations; in fact, order 1 is the optimal one in all of them.

5.1.4 L = 4

In this case, C = {A1, A3 ∩ (B1 \ A1), A4 ∩ (B1 \ A1), A2, A4 ∩ (B2 \ A2), A3 ∩ (B1 \

A1)
c, A4 ∩ (B1 \ A1)

c ∩ (B2 \ A2)
c, (B1 \ A1) ∩ Ac3 ∩ Ac4, (B2 \ A2) ∩ Ac4, B3 \ A3}.

First, we rule out as many orders as we can. Corollaries 1 and 2 imply that:

1. A1 < C for each C ∈ C \ {A1} (Corollary 2).

2. A3 ∩ (B1 \ A1) < A3 ∩ (B1 \ A1)
c (Corollary 1).

3. A3 ∩ (B1 \ A1) < (B1 \ A1) ∩ Ac3 ∩ Ac4 (Corollary 1).

4. A4 ∩ (B1 \ A1) < A4 ∩ (B2 \ A2) (Corollary 2).

5. A4 ∩ (B1 \ A1) < A4 ∩ (B1 \ A1)
c ∩ (B2 \ A2)

c (Corollary 1).

6. A4 ∩ (B1 \ A1) < (B1 \ A1) ∩ Ac3 ∩ Ac4 (Corollary 1).

7. A4 ∩ (B2 \ A2) < A4 ∩ (B1 \ A1)
c ∩ (B2 \ A2)

c (Corollary 1).
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8. A4 ∩ (B2 \ A2) < (B2 \ A2) ∩ Ac4 (Corollary 1).

9. A2 < (B2 \ A2) ∩ Ac4 (Corollary 1).

10. A3 ∩ (B1 \ A1)
c < B3 \ A3 (Corollary 1).

11. (B1 \ A1) ∩ Ac3 ∩ Ac4 < (B2 \ A2) ∩ Ac4 (Corollary 2).

12. (B1 \ A1) ∩ Ac3 ∩ Ac4 < B3 \ A3 (Corollary 2).

13. A2 < A3 ∩ (B1 \ A1)
c (Corollary 2).

14. A3 ∩ (B1 \ A1)
c < A4 ∩ (B1 \ A1)

c ∩ (B2 \ A2)
c (Corollary 2).

15. (B2 \ A2) ∩ Ac4 < B3 \ A3 (Corollary 2).

16. A2 < A4 ∩ (B2 \ A2) (Corollary 2).

When L = 4, we have that

B1 \ A2 = (A3 ∩ (B1 \ A1)) ∪ (A4 ∩ (B1 \ A1))

∪((B1 \ A1) ∩ (Ac3 ∩ Ac4)) ∪ A1,

(B1 ∪B2) \ A3 = ((B1 \ A1) ∩ A4) ∪ ((B1 \ A1) ∩ (Ac3 ∩ Ac4)) ∪ A1

∪(A4 ∩ (B2 \ A2)) ∪ ((B2 \ A2) ∩ Ac4) ∪ A2, and

(B1 ∪B2 ∪B3) \ A4 = (A3 ∩ (B1 \ A1)) ∪ ((B1 \ A1) ∩ (Ac3 ∩ Ac4)) ∪ A1

∪((B2 \ A2) ∩ Ac4) ∪ A2 ∪ (B3 \ A3) ∪ (A3 ∩ (B1 \ A1)
c).

Hence,

α2 = h(1− F (A3 ∩ (B1 \ A1))− F (A4 ∩ (B1 \ A1))

−F ((B1 \ A1) ∩ (Ac3 ∩ Ac4))− F (A1)),

α3 = h(1− F ((B1 \ A1) ∩ A4)− F ((B1 \ A1) ∩ (Ac3 ∩ Ac4))− F (A1)

−F (A4 ∩ (B2 \ A2))− F ((B2 \ A2) ∩ Ac4)− F (A2)), and

α4 = h(1− F (A3 ∩ (B1 \ A1))− F ((B1 \ A1) ∩ (Ac3 ∩ Ac4))− F (A1)

−F ((B2 \ A2) ∩ Ac4)− F (A2)− F (B3 \ A3)− F (A3 ∩ (B1 \ A1)
c)).
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Also,

γ = 1 + α2 + α3 + α4 and

θ = F (A1) + F (A3 ∩ (B1 \ A1)) + F (A4 ∩ (B1 \ A1)) + F (A2)

+F (A4 ∩ (B2 \ A2)) + F (A3 ∩ (B1 \ A1)
c) + F (A4 ∩ (B1 \ A1)

c ∩ (B2 \ A2)
c)

−cµ(A1)− (cα3 + ξ)µ(A3 ∩ (B1 \ A1))− (cα4 + ξ)µ(A4 ∩ (B1 \ A1))

−cα2µ(A2)− (cα4 + ξα2)µ(A4 ∩ (B2 \ A2))− cα3µ(A3 ∩ (B1 \ A1)
c)

−cα4µ(A4 ∩ (B1 \ A1)
c ∩ (B2 \ A2)

c)− ξµ((B1 \ A1) ∩ Ac3 ∩ Ac4)

−ξα2µ((B2 \ A2) ∩ Ac4)− ξα3µ(B3 \ A3).

We use orders.py to find all orders consistent with the above results; there are 192

in total which are listed in the code.

We note that as it was the case where L = 3, order 1, which is now

A1 < A4 ∩ (B1 \ A1) < A3 ∩ (B1 \ A1) < A2 < A3 ∩ (B1 \ A1)
c < A4 ∩ (B2 \ A2)

< A4 ∩ (B1 \ A1)
c ∩ (B2 \ A2)

c < (B1 \ A1) ∩ Ac3 ∩ Ac4 < (B2 \ A2) ∩ Ac4 < B3 \ A3,

is optimal in all our simulations.

5.2 Codes

We briefly describe the codes used in our simulations. The codes were written in

Python 3, and are available here.

The starting point are the codes orgL2.py, orgL3.py and orgL4.py, each of which

computes the optimal organization for the corresponding number of layers. In each of

these codes, each possible optimal ordering of C is considered and the built-in function

minimize is used to find the size of each element of C and corresponding output.3

Then the order that leads to the highest such output is selected; the code returns the

order of C, the size of each element of C, the output of the optimal organization, the

size βi of each layer and the costs of learning νi of each layer.

3We use the solution to the optimal organization with L = 1 as the initial guess except when it

features µ(A1) = 0. In this case, we use basinhopping instead of minimize.
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One aspect of the above codes which is worth discussing concerns the choice of the

ordering of C, which we illustrate in the case where L = 2. In this case there are two

possible orderings: ψ1 = (A1 < A2 < B1 \A1) and ψ2 = (A1 < B1 \A1 < A2). These

two orders are the same if B1\A1 = ∅, namely A1 < A2. Hence, in orgL2.py, the order

A1 < B1\A1 < A2 is the optimal one only if yL,ψ2 > yL,ψ1 and µ(B1\A1) > 1/100000,

i.e. µ(B1 \ A1) is significantly above 0.4

The next step is performed by orgLaux.py, which solves maxL∈{1,2,3,4} yL. One

issue with this maximization problem is that often yL+1 ≥ yL (and then possibly

yL+1 > yL due to approximation errors) by simply taking the organization that yields

yL and adding layer L + 1 with BL+1 = AL+1 = ∅. To avoid this, for e.g. L = 3

to be better than L = 2, we require not only that y3 > y2 but also that µ(A3) =

µ(A3 ∩ (B1 \ A1)) + µ(A3 ∩ (B1 \ A1)
c) > 1/100000.

Finally, the computations and graphs reported in Section 5.3 are produced using

orgL.py, orgLoptimal.py and orgLh.py.

5.3 Simulations for other configurations of paramters

In the main text we consider the baseline case c = 1, h = 0.5, and b = 1, where the

optimal hierarchy when ξ = c has 3 layers. Here we start by considering alternative

values of c, chosen so that the optimal hierarchy has 4 layers (c = 1.2), 2 layers

(c = 0.6) and 1 layer (c = 0.2). Then we consider changes to the density by varying

b relative to the baseline case. Next we consider changes to the relative and absolute

values of c and h. Finally, we reconsider the effects of a 10% fall in h for different

values of c.

4This approach requires checking that the relevant sets that distinguish between certain orders

are (significantly) nonempty. An alternative approach is to require that yL,ψ2
> yL,ψ1

+ 1/1000000

for ψ2 to be considered better than ψ1, which also ensures that differences between the orders are not

just the result of the approximate nature of the minimize algorithm. We take the latter approach

in orgL4.py, where it is more convenient because of the large number of possible orders.
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5.3.1 c = 1.2, h = 0.5 and b = 1

The case where c = 1.2 is illustrated in Figure 1.5 We have an analogous pattern to

the baseline case except that in the high range of ξ, the optimal organization has 4

layers (by design) and in the middle range A1 is already empty. It is also the case

that A4 ⊆ B1 \A1 in the middle range, hence the optimal organization has the same

structure as in the case where c = 1.

5.3.2 c = 0.6, h = 0.5 and b = 1

The case where c = 0.6 is illustrated in Figure 2. In this case there is no middle range

and A1 is never empty. The latter fact increases the learning costs of layer 1, which

is always above those of layer 4 and also of those of layer 3, except when ξ = 0.06

where ν3 is slightly above ν1.

5.3.3 c = 0.2, h = 0.5 and b = 1

The case where c = 0.2 is illustrated in Figure 3. Here the optimal organization has

just one layer because h = 0.5 is sufficiently high to prevent adding additional layers

which could benefit from screening.

5.3.4 c = 1, h = 0.5 and b = 0.1

The case where the density is flatter than the baseline case is illustrated in Figure 4.

This case is analogous to the baseline case: The optimal organization is an hierarchy

when ξ ∈ {0.9, 1}, it is fully screening when ξ ≤ 0.4 and there is a middle range

with A3 ⊆ (B1 \ A1)
c and A4 ⊆ B1 \ A1. The differences are: (i) the transition from

5For the optimal organization, figure “Pure knowledge sets” gives the sizes of A1 (red), A2 (blue),

A3 ∩ (B1 \A1)
c (yellow) and A4 ∩ (B1 \A1)

c ∩ (B2 \A2)
c (black); figure “B1 \A1” gives the sizes of

A3 ∩ (B1 \A1) (red), A4 ∩ (B1 \A1) (blue) and (B1 \A1)∩Ac3 ∩Ac4 (yellow); figure “beta” gives β1

(red), β2 (blue), β3 (yellow) and β4 (black); and figure “Costs of learning” gives ν1 (red), ν2 (blue),

ν3 (yellow) and ν4 (black). The sizes of the elements of C are given as a percentage of the total

measure of Ω.
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Figure 1: Optimal organization at different levels of ξ when c = 1.2, h = 0.5 and

b = 1
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Figure 2: Optimal organization at different levels of ξ when c = 0.6, h = 0.5 and

b = 1
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Figure 3: Optimal organization at different levels of ξ when c = 0.2, h = 0.5 and

b = 1
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hierarchy to the middle range happens before (ξ = 0.8 vs ξ = 0.7 in the baseline case)

and (ii) A1 becomes empty earlier too (at ξ = 0.7 vs ξ = 0.4 in the baseline case).

5.3.5 c = 1, h = 0.5 and b = 1.9

The case where the density is steeper than the baseline case is illustrated in Figure

5. The pattern is similar to the baseline case: The optimal organization, which has

always 4 layers, is an hierarchy when ξ ≥ 0.6. It is followed by a middle range, when

ξ ∈ {0.3, 0.4, 0.5}, where ∅ ̸= A4 ⊆ B1 \ A1 and A3 ∩ (B1 \ A1)
c is nonempty. When

ξ ≤ 0.2, A3 ∪A4 ⊆ B1 \A1. There are, however, the following interesting differences:

1. The first time A3 ∩ (B1 \ A1) is nonempty is at ξ = 0.3 and it is also the case

that A3 ∩ (B1 \ A1)
c is nonempty.

2. When ξ ≤ 0.2, (B2 \ A2) ∩ Ac4 is nonempty.

5.3.6 c = 0.5, h = 0.25 and b = 1

Same density as in the baseline case, costs are both low, with c still bigger than h.

This case, illustrated in Figure 6, is analogous to the baseline case except that there

is no middle range. The optimal organization is a hierarchy with 3 layers whenever

ξ ≥ 0.3 (hence, for a larger set of ξs) and is fully screening when ξ < 0.3.

5.3.7 c = 0.25, h = 0.5 and b = 1

Same density as in the baseline case, costs are both low, with h now bigger than c.

This case, illustrated in Figure 7, favors small organizations: The optimal organization

is, for each ξ ∈ {0.1, . . . , 1}, a hierarchy with 2 layers. The workers know about 85%

of Ω and the managers know the remaining 15%.

5.3.8 Response to a 10% fall in h

Finally we consider the response of an optimal organization to a fall in h when c ∈

{0.2, 0, 6, 1.2} in addition to the baseline case considered in the main text where c = 1.
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Figure 4: Optimal organization at different levels of ξ when c = 1, h = 0.5 and b = 0.1
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Figure 5: Optimal organization at different levels of ξ when c = 1, h = 0.5 and b = 1.9
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Figure 6: Optimal organization at different levels of ξ when c = 0.5, h = 0.25 and

b = 1
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Figure 7: Optimal organization at different levels of ξ when c = 0.25, h = 0.5 and

b = 1
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The case where c = 1.2 is described in Figure 8.6 It is analogous to the case where

c = 1, except in the middle range of ξ. When c = 1, µ(A1) declines but here A1 = ∅

before the fall in h; hence, the increase in A2 and A3 ∩ (B1 \ A1)
c is done at the

expense of A4 ∩ (B1 \ A1) — the organization substitutes screening for knowledge.

Consequently, ν4 falls while it remained constant when c = 1.

The case where c = 0.6 is described in Figure 9. Recall that in this case there is

no middle range for ξ when h = 0.5 and this continues to the be case when h is 10%

lower. In the range of ξ where the optimal organization is a hierarchy, the pattern is

similar to the case of c = 1. It is, however, different when the optimal organization

is fully screening. In both cases, the size of A2 increases but, whereas when c = 1,

A3 = A3 ∩ (B1 \ A1) and A4 = A4 ∩ (B1 \ A1) declined, now they increase. The

increase in the sizes of A2, A3 and A4 is compensated by a decrease in the size of

A1, which is possible because, unlike when c = 1, A1 is nonempty when c = 0.6.

Thus, when c = 1, the drop in h forces a substitution from screening to knowledge

which does not happen when c = 0.6; in this case, there is a substitution between

knowledge that does not require communication to one that does. As a result, the

changes to personnel are opposite and so are the changes to the learning costs of the

middle layers.

The case where c = 0.2 is described in Figure 10. The 10% drop in h is large

enough to lead to an increase in the number of layers, from 1 to 2. Consequently,

there is an increase in µ(A2), β2 and ν2 and a decline in µ(A1), β1 and ν1.

6 An example on the optimal number of layers

when h is small

Let Ω = [0, 1] (i.e. ω̄ = 1), f(z) = a − 2(a − 1)z for each z ∈ Ω with 1 < a < 2 and

a > ch. Thus, f is strictly decreasing since a > 1, Ω is bounded and f(ω̄) = 2−a > 0.

6See Footnote 5 for the meaning of the variables in this figure. The change in output is given as

a percentage change. However, changes in β, ν, and in the sizes of the knowledge and screening sets

are absolute changes, since these variables are initially zero in some cases.
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Figure 8: Effects of a 10% drop in h on the optimal organization when c = 1.2,

h = 0.5 and b = 1
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Figure 9: Effects of a 10% drop in h on the optimal organization when c = 0.6,

h = 0.5 and b = 1
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Figure 10: Effects of a 10% drop in h on the optimal organization when c = 0.2,

h = 0.5 and b = 1
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Suppose that 0 < c < 1 and 1 < a < 2− c. Then f(ω̄) > c and, hence, y1 = 1− c.

Since c
f(ω̄)

= c
2−a and y2 = 1−ch

1+h
, (3) holds if and only if h ≤ 2−a−c

c+c(2−a) , in which case

we can conclude that O∗
2 is the optimal organization. For example, if a = 1.5 and

c = 0.25, then the latter inequality requires h ≤ 2
3
; thus, when h is sufficiently small,

O∗
2 is the optimal organization.

If, instead, a ≥ 2 − c, then c
f(ω̄)

= c
2−a ≥ 1 > supL yL and O∗

2 is not an optimal

organization. In fact, any optimal organization has L > 2 layers. For example, if

c = 1 (which immediately implies that a ≥ 2 − c since a > 1) and a > 5/3, then

y3(0, 1/2, 1/2) > y2(0, 1) for all h sufficiently small, which shows more explicitly that

O∗
2 is not optimal.

Claim 1 If c = 1 and a > 5/3, then y3(0, 1/2, 1/2) > y2(0, 1) for all h sufficiently

small.

Proof. Indeed, F (1/2) = 1+a
4
, y2(0, 1) = 1−h

1+h
, y3(0, 1/2, 1/2) =

1−h
2
−h

2
(1−F (1/2))

1+h+h(1−F (1/2))

and

y3(0, 1/2, 1/2)− y2(0, 1) =
h

γ2γ3

θ3γ2 − θ2γ3
h

,

writing y3(0, 1/2, 1/2) =
θ3
γ3

and y2(0, 1) =
θ2
γ2
. Since

θ3γ2 − θ2γ3
h

= −1 +
3

2
F (1/2) + h− h

2
F (1/2) > −1 +

3

2
F (1/2)

and, since a > 5/3,

−1 +
3

2
F (1/2) =

3a− 5

8
> 0,

it follows that y3(0, 1/2, 1/2) > y2(0, 1) for all h sufficiently small.

As we have shown, L > 2 in the optimal organization when c = 1. Theorem

7 implies that, for each a < 13/7, O∗
3 is the optimal organization whenever h is

sufficiently close to zero.

Claim 2 If c = 1 and a < 13/7, then O∗
3 is the optimal organization for all h

sufficiently small.
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Proof. First note that µ∗
2, which we write simply as µ2, satisfies

µ2 +
aµ2 − (a− 1)µ2

2

a− 2(a− 1)µ2

= y3 + 1,

which after some manipulation yields:

3(a− 1)µ2
2 − [2a+ 2(a− 1)(y3 + 1)]µ2 + (y3 + 1)a = 0.

The quadratic formula then implies that either

µ2 =
2a+ 2(a− 1)(y3 + 1) +

√
[2a+ 2(a− 1)(y3 + 1)]2 − 12a(a− 1)(y3 + 1)

6(a− 1)
or

µ2 =
2a+ 2(a− 1)(y3 + 1)−

√
[2a+ 2(a− 1)(y3 + 1)]2 − 12a(a− 1)(y3 + 1)

6(a− 1)
.

We have that y3 → 1 as h→ 0; thus, approximating y3 with 1, we get:

µ̄2 =
6a− 4 +

√
(6a− 4)2 − 24a(a− 1)

6(a− 1)
or µ̄2 =

6a− 4−
√
(6a− 4)2 − 24a(a− 1)

6(a− 1)
.

Since (6a− 4)2 − 24a(a− 1) = 12a(a− 2) + 16 ∈ (4, 16), the latter since 1 < a < 2,

and
6a−4+

√
(6a−4)2−24a(a−1)

6(a−1)
> 1, it follows that

µ̄2 =
6a− 4−

√
(6a− 4)2 − 24a(a− 1)

6(a− 1)
and

µ2 =
2a+ 2(a− 1)(y3 + 1)−

√
[2a+ 2(a− 1)(y3 + 1)]2 − 12a(a− 1)(y3 + 1)

6(a− 1)
;

in particular, µ2 → µ̄2 as h → 0. Thus, to conclude from Theorem 7 that O∗
3 is the

optimal organization for all h sufficiently close to zero, it suffices to show that (recall

that c = 1 and that supL yL → 1 as h→ 0)

1− F (µ̄2)

f(ω̄)
< 1. (6.1)

We now write µ̄2(a) to explicitly denote that µ̄2 depends on a. We have that

dµ̄2(a)

da
= −12 + 6

(√
16 + 12a(a− 2)− 12(a− 1)2√

16 + 12a(a− 2)

)
< 0

since √
16 + 12a(a− 2)− 12(a− 1)2√

16 + 12a(a− 2)
< 2 ⇔ 4 < 2

√
16 + 12a(a− 2)
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and
√

16 + 12a(a− 2) ∈ (2, 4) (recall that 16 + 12a(a− 2) ∈ (4, 16)). Moreover,

µ̄2(2) =
2

3
and µ̄2(1) = 1,

the latter using L’Hôpital’s rule. Thus, µ̄2 > 2/3 and

1− F (µ̄2)

f(ω̄)
<

1− F (2/3)

f(ω̄)
=

5− 2a

9(2− a)
< 1

since F (x) = ax− (a− 1)x2 for each x ∈ Ω and a < 13/7.

7 Cumulative knowledge

This section contains the proofs of our results for the case of cumulative knowledge.

It starts with an outline of the argument in Section 7.1. The proofs themselves follow

this introductory section.

7.1 Road map

The structure of the proofs is the same as in Section 2 and we use the same arguments

used there whenever this is possible. However, the presence of cumulative knowledge

introduces an extra condition to the notion of an organization which needs to be

checked. This is sometimes an easy task, illustrated by Lemma 7.1 below, in which

case the proofs in Section 2 can be used.

Some results in the non-cumulative knowledge case do not extend, namely Lemma

1 of the main paper that states, in particular, that knowledge sets of different layers

are disjoint. This creates the need of obtaining a partition of the union of the screening

sets different from the one obtained in main paper, which has been one of the major

difficulties that this proof had to overcome. Once such partition has been obtained,

the remainder of the argument for the general characterization results, Theorem 7.2,

is the same as in Section 2, requiring only small adjustment in some cases and new

versions of some lemmas.

Part of the complexity of the argument of the general characterization results is

that we actually establish a more general statement. In fact, Theorems 7.1 and 7.2
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state that any optimal organizations have a certain property and, to prove them, all

one needs is to show that if O is an organization with cumulative knowledge that

fails to satisfy that property, then there is another organization Ô with cumulative

knowledge which is better than O (i.e. yields an higher output, or has less layers, or

smaller lists). Instead, we show that Ô is not only better than O but also that it has

the property in question.

The reason why the stronger conclusion we establish is useful concerns existence

of optimal organizations. The difficulty with existence is that the “space of organiza-

tions” fails to have enough mathematical structure to allow for standard techniques

to be used. For instance, we need to specify the knowledge set of layer 1, which is, a

priori, just the union of disjoint intervals; the collection of the sets that are a union

of disjoint intervals do not form a space over which the maximization of the orga-

nization’s output can easily be done. In contrast, our approach allow us to restrict

attention to organizations that satisfy the properties in Theorems 7.1 and 7.2 and,

as we show, can be described by the elements of the product of a finite set and a

compact subset of an Euclidean space, thus a compact set overall. Since an organiza-

tion’s output is a continuous function, the well-known Weierstrass’ Theorem is then

all we need to obtain a solution of the maximization problem consisting of choosing

an element of such compact set to maximize the output of the organization.

After establishing the general characterization results, Theorems 7.1 and 7.2, and

the existence of optimal organizations, Theorem 7.3, we prove Theorem 7.4 on the

order of cumulative knowledge, Theorem 7.5 on hierarchies and Theorem 8 in the

main paper on the case of small ξ. The first of these results has no counterpart

in the case of non-cumulative knowledge; the other two, while exploring some ideas

similar to analogous results in the case of non-cumulative knowledge, have to deal

with several new issues that arise due to the cumulative nature of knowledge.

7.2 Specialization

The main result of this section is as follows.
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Theorem 7.1 If O is an optimal organization with cumulative knowledge, then there

is i ∈ L such that tpi = 1, thi = 0, li = L, βi =
1

1+
∑

l∈L\{i} αli
and y =

F (∪l∈LAl)−νi−
∑

l∈L\{i} αliνl

1+
∑

l∈L\{i} αli
.

Furthermore, for each j ̸= i, tpj = 0, thj = 1, αji > 0, lj = {j} and βj =
αji

1+
∑

l∈L\{i} αli
.

As noted above, we use the same notation as in Section 2 despite focusing on

organizations with cumulative knowledge. Thus, let OS now denotes the set of orga-

nizations O with cumulative knowledge such that y > 0 and there is i ∈M such that

tpi = 1, thi = 0, li = L, βi =
1
γi
, y = θi

γi
, tpj = 0, thj = 1, αji > 0, lj = {j} and βj =

αji

γi

for each j ∈ L \ {i}. The set M is as in the main paper, i.e. M is the set of i ∈ L

such that δi =
1
γi

and δj = 0 for all j ∈ L \ {i} is a solution to the maximization

problem defined by (19)–(21) in the main paper.

The results in Sections 2.2 and 2.3 are easily seen to extend to the case of cumu-

lative knowledge using the following lemma.

Lemma 7.1 If O is an organization with cumulative knowledge and Ô is an orga-

nization such that L̂ ⊆ L and Âi = Ai and B̂i = Bi for all i ∈ L̂, then there exists

a cumulative knowledge order ≺̂ such that (Ô, ≺̂) is an organization with cumulative

knowledge.

Proof. Let ≺̂ =≺ |L̂, i.e., for each i, j ∈ L̂, i≺̂j if and only if i ≺ j. Then (Ô, ≺̂)

is an organization with cumulative knowledge.

The organizations Ô in the proofs of the results in Sections 2.2 and 2.3 are such

that the set of layers is reduced and, hence, satisfy the conditions of Lemma 7.1.

Thus, Corollary 2.3 holds as stated for the case of cumulative knowledge, from which

Theorem 7.1 follows.

Corollary 7.1 If O ̸∈ OS and y > 0, then there is Ô ∈ OS such that Ô > O.

7.3 Partition

Consider the partition C of the union of the screening sets of an optimal organization

with cumulative knowledge introduced in Section 6 of the main paper. It is easy to
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see that C ∩ C ′ = ∅ if C,C ′ ∈ C and C ̸= C ′; moreover, ∪C∈CC = ∪l∈LBl follows by

the following lemma and, thus, C is indeed a partition of ∪l∈LBl.

Lemma 7.2 For each l ∈ L,

Bil\Bil−1
= ∩j<l(Bij\Aij)c∩[(Ail\Ail−1

)∪((Bil\Ail)∩(∪Lk=l+1(Aik\Aik−1
)∪(BiL\AiL)))].

Proof. For each l ∈ L, we have that

Bil \Bil−1
= Bil \ ∪j<lBij = (Ail ∪ (Bil \ Ail)) \ (Ail−1

∪ (∪j<lBij \ Aij))

= ∩j<l(Bij \ Aij)c ∩ [(Ail ∩ Acil−1
) ∪ ((Bil \ Ail) ∩ Acil−1

)]

= ∩j<l(Bij \ Aij)c ∩ [(Ail \ Ail−1
) ∪ ((Bil \ Ail) ∩ (∪k=l(Aik \ Aik−1

) ∪ (BiL \ AiL)))]

= ∩j<l(Bij \ Aij)c ∩ [(Ail \ Ail−1
) ∪ ((Bil \ Ail) ∩ (∪k=l+1(Aik \ Aik−1

) ∪BiL \ AiL))].

The sets in C can be used to describe an organization in place of the class of

the knowledge and screening sets {Al, Bl}l∈L, since the latter can be obtained from

the former. To see this, consider first the following lemma that does that for the

differences Ail \ Ail−1
.

Lemma 7.3 For each l ∈ L,

Ail \ Ail−1
= (∩j<l(Bij \ Aij)c ∩ (Ail \ Ail−1

)) ∪

∪

(
l−1⋃
k=1

(∩j<k(Bij \ Aij)c ∩ (Bik \ Aik) ∩ (Ail \ Ail−1
))

)
.

Proof. Let l ∈ L and note that the set in the right-hand side of the equation in

the statement of the lemma is

(Ail \ Ail−1
) ∩ (∩j<l(Bij \ Aij)c ∪

(
l−1⋃
k=1

(∩j<k(Bij \ Aij)c ∩ (Bik \ Aik)

)
= Ail \ Ail−1

since ∩j<l(Bij \ Aij)c = (∪j<l(Bij \ Aij))c and
⋃l−1
k=1(∩j<k(Bij \ Aij)c ∩ (Bik \ Aik) =

∪j<l(Bij \ Aij).

We then have that

Ail = ∪lj=1(Aij \ Aij−1
), (7.1)
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by noting that Ai1 ∈ C. In addition,

Bil = ∪lj=1(Bij \Bij−1
), (7.2)

where Bij \Bij−1
is as in Lemma 7.2.

The argument to establish some of our remaining results will consist in improving

a given organization O by changing some set C ∈ C and to argue that the output of

the organization increases through a decrease in its learning costs. For this reason,

we write the learning costs of an organization using the sets in C as follows. First, we

need to express the sets Bil \ Ail , with l ∈ L, using the elements of the partition C,

which is done in the following lemma.

Lemma 7.4 For each l ∈ L,

Bil \Ail = ∪lm=1

[
∩j<m(Bij \ Aij)c ∩ (Bim \ Aim) ∩ (∪k>l(Aik \ Aik−1

) ∪ (BiL \ AiL))
]
.

Proof. Let l ∈ L and 1 ≤ m ≤ l. We have that

(Bim \ Aim) ∩ (∪k>l(Aik \ Aik−1
) ∪ (BiL \ AiL)) = Bim \ Aim ∩ Acil = Bim \ Ail .

Hence, for each m, the term in square brackets is contained in Bim \ Ail ⊆ Bil \ Ail .

Thus, the set in the right-hand side of the equation in the statement of the lemma is

contained in Bil \ Ail .

Conversely, let ω ∈ Bil \Ail and let m be the first 1 ≤ m′ ≤ l such that ω ∈ Bim′ ;

thus, ω ∈ Bim and ω ̸∈ Bim′ for all m
′ < m. Hence,

ω ∈ ∩j<m(Bij \ Aij)c ∩ (Bim \ Ail) =

∩j<m(Bij \ Aij)c ∩ (Bim \ Aim) ∩ (∪k>l(Aik \ Aik−1
) ∪ (BiL \ AiL)).

Thus, ω belongs to the set in the right-hand side of the equation in the statement of

the lemma.

Recall that, by Theorem 7.1, the output of an optimal organization is

y =
F (∪l∈LAl)−

∑
l∈L αlνl∑

l∈L αl
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where νl = cµ(Al) + ξµ(Bl \ Al), layer 1 is such that tp1 = 1, α1 = 1 and αl = αl1.

Using Lemmas 7.3 and 7.4 together with (7.1), we can write∑
l∈L

αlνl =
∑
l∈L

αilνil =
∑
C∈C

cCµ(C) (7.3)

by defining, for each C ∈ C, the cost cC of learning C as follows:

c∩j<l(Bij
\Aij

)c∩(Ail
\Ail−1

) = c

L∑
j=l

αij ,

c∩j<l(Bij
\Aij

)c∩(Bil
\Ail

)∩(Aik
\Aik−1

) = c
L∑
j=k

αij + ξ

L∑
j=l

αij and

c∩j<l(Bij
\Aij

)c∩(Bil
\Ail

)∩(BiL
\AiL

) = ξ
L∑
j=l

αij .

Based on the above partition and costs, we obtain the following characterization

result.

Theorem 7.2 If O is an optimal organization with cumulative knowledge, then:

1. ∪Li=1Bi = [min1≤i≤L ai,max1≤i≤L bi) and min1≤i≤L ai = 0.

2. For each C,C ′ ∈ C, if cC > cC′, then C < C ′.

3. If C = {C1, . . . , C|C|} is such that cC1 ≥ · · · ≥ cC|C|, then there exists an optimal

organization with cumulative knowledge Ô such that Ĉ = {Ĉ : C ∈ C}, Ĉ1 <

· · · < Ĉ|C|, Ĉ is an interval and F (Ĉ) = F (C) for each C ∈ C, ŷ = y, L̂ = L

and l̂i = li for each i ∈ L.

7.4 No gaps

In this section, we proof part 1 of Theorem 7.2. The proof is analogous to the proof

used in Section 2 although several adjustments are needed, mostly due to the fact

that a different partition of ∪l∈LBl is used. The following lemma provides a first of

such adjustments, namely on the formula for αj.
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Lemma 7.5 For each j ∈ L, let l, k ∈ L be such that j = il and k = max{m : im <

il}. Then

αj =

h
∑l

m=k+1 F (Aim \ Aim−1) + π(1− F (Ail ∪Bik)) if k < l,

π(1− F (Bik)) if k > l.

Proof. We have that ∪m<jAm = Aik and ∪m<jBj = Bik . If k > l, then Ail ⊆

Aik ⊆ Bik and, hence, Ail\Aik = ∅ and Acil∩B
c
ik
= Bc

ik
. Thus, αj = hF (∅)+πF (Bc

ik
) =

π(1− F (Bik)).

Suppose next that k < l. Then, Aj \ ∪m<jAm = Ail \ Aik and Acj \ ∪m<jBm =

Acil ∩ Bc
ik
. Since Ail \ Aik = ∪lm=k+1(Aim \ Aim−1), it follows that F (Ail \ Aik) =∑l

m=k+1 F (Aim \Aim−1). Thus, αj = h
∑l

m=k+1 F (Aim \Aim−1) + π(1− F (Ail ∪Bik).

From Lemma 7.3, we obtain a partition C(Ail \Ail−1
) of Ail \Ail−1

for each l ∈ L:

C(Ail \ Ail−1
) = {∩j<l(Bij \ Aij)c ∩ (Ail \ Ail−1

)}

∪{∩j<k(Bij \ Aij)c ∩ (Bik \ Aik) ∩ (Ail \ Ail−1
) : k < l}.

Similarly, we obtain partitions C(Ail) and C(Bil) of Ail and Bil , respectively, by using

Lemmas 7.2 and 7.3 together with (7.1) and (7.2):

C(Ail) = {∩j<m(Bij \ Aij)c ∩ (Aim \ Aim−1) : m ≤ l}

∪{∩j<k(Bij \ Aij)c ∩ (Bik \ Aik) ∩ (Aim \ Aim−1) : k < m ≤ l},

and

C(Bil) = {∩j<m(Bij \ Aij)c ∩ (Aim \ Aim−1) : m ≤ l}

∪{∩j<k(Bij \ Aij)c ∩ (Bik \ Aik) ∩ (Aim \ Aim−1) : m ≤ l and m < k}

∪{∩j<k(Bij \ Aij)c ∩ (Bim \ Aim) ∩ (BiL \ AiL) : m ≤ l}.

Thus, from Lemma 7.5, we can write

αj =

h
∑l

m=k+1

∑
C∈C(Aim\Aim−1

) F (C) + π(1−
∑

C∈C(Ail
)∪C(Bik

) F (C)) if k < l,

π(1−
∑

C∈C(Bik
) F (C)) if k > l.

(7.4)
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It follows from the above that the knowledge and screening sets can be defined from

the elements of the partition C. The question that we address now is the following.

Given an organization O, suppose that we change some sets C ∈ C to obtain sets

{Ĉ : C ∈ C} but leave all the remaining elements of the organization O intact. Do we

obtain a new organization Ô with cumulative knowledge? This question is addressed

in the following lemma.

Lemma 7.6 Let O be an organization with cumulative knowledge and C be the par-

tition of ∪l∈LBl. If {C̃ : C ∈ C} is a pairwise disjoint collection of subsets of Ω and

{Ãl, B̃l}l∈L are defined via (7.1) and (7.2), then Ãil ⊆ Ail+1
and B̃il ⊆ Bil+1

for each

l ∈ {1, . . . , L− 1}.

Proof. We have that, for each l ∈ {1, . . . , L − 1}, Ail = ∪lm=1(Aim \ Aim−1) ⊆

∪l+1
m=1(Aim \ Aim−1) = Ail+1

and, analogously, Bil = ∪lm=1(Bim \Bim−1) ⊆ ∪l+1
m=1(Bim \

Bim−1) = Bil+1
.

Let OG1 be the set of organizations O with cumulative knowledge such that

min1≤i≤L ai = 0, where, recall, ai = minBi for each i ∈ L with the standard conven-

tion that min ∅ = ∞.

Lemma 7.7 If O ∈ OS \ OG1, then there is Ô ∈ OS ∩ OG1 such that Ô > O.

Proof. Let O ∈ OS \ OG1. For each C ∈ C, let aC = minC; then min1≤i≤L ai =

minC∈C aC . Thus, let C ∈ C be such that aC = min1≤i≤L ai, the fact that O ̸∈ OG1

implies that aC > 0. Thus, [0, aC) ⊆ (∪Ll=1Bl)
c.

Let 0 < ε < aC be such that [aC , aC + ε) ⊆ C and let 0 < ε′ < 0 be such that

F ([0, ε′)) = F ([aC , aC + ε)); the existence of ε′ follows by Lemma A.12.

Define an organization Õ equal to O except that C̃ = [0, ε′)∪(C \ [aC , aC+ε)) and

{Ãl, B̃l}Ll=1 are defined from {C̃ : C ∈ C} via (7.1) and (7.2). Note that C̃ ∩ D̃ = ∅

whenever D ∈ C is such that C ̸= D because [0, ε) ⊆ (∪Ll=1Bl)
c.

We have that F (D̃) = F (D) for each D ∈ C. Thus, F (Ãil) =
∑

D∈C(Ail
) F (D̃) =∑

D∈C(Ail
) F (D) = F (Ail) for each l ∈ L. In addition, it follows from (7.4) that
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α̃j = αj for all j ∈ L. Thus, Õ ∈ OS by Lemmas 2.8 and 7.6 provided that 1 ∈ M̃ .

In addition, it follows that Õ ∈ OG1 by construction.

We have that µ(C̃) < µ(C) and µ(D̃) = µ(D) for each D ∈ C \ {C}. Moreover,

F (∪l∈LÃl) = F (ÃiL) = F (AiL) = F (∪l∈LAl) since F (Ãl) = F (Al) for each l ∈ L. It

then follows that ỹ > y. This, together with L̃ = L, shows that Õ > O. Thus, in the

case where 1 ∈ M̃ , set Ô = Õ.

If 1 ̸∈ M̃ , then take i ∈ M̃ and, therefore, F (Ãi)− (cµ(Ãi)+ ξµ(B̃i \ Ãi)) > ỹ > y.

Define Ô by L̂ = {i}, β̂i = 1, t̂pi = 1,

Âi =

Ãi if min Ãi = 0,

[0, ε′) ∪ (Ãi \ [minAi,minAi + ε)) otherwise,

where 0 < ε < maxAi and 0 < ε′ < ε is such that F ([0, ε′)) = F ([minAi,minAi+ε)),

and B̂i = Âi. Then, F (Âi) = F (Ãi) and µ(Âi) ≤ µ(Ãi). Hence, ŷ = F (Âi)−cµ(Âi) ≥

F (Ãi) − cµ(Ãi) − ξµ(B̃i \ Ãi) > ỹ > y, L̂ ≤ L̃ = L and, thus, Ô > O. Moreover,

Ô ∈ OS by Lemma 2.8 and Ô ∈ OG1 by construction.

Let OG be the set of organizations O ∈ OG1 such that ∪Li=1Bi = [0,max1≤i≤L bi)

where, recall, bi = maxBi with the convention that max ∅ = −∞. The argument in

the proof of Lemma 2.15 implies the following result.

Lemma 7.8 If O ∈ (OS ∩ OG1) \ OG, then there is Ô ∈ OS ∩ OG such that Ô > O.

7.5 Order of sets

Parts 2 and 3 of Theorem 7.2 follows from exactly the same arguments used in the

analogous result in Section 2. Let O<1 be the set of organizations O such that C < C ′

for all C,C ′ ∈ C with cC > cC′ . Furthermore, let O< be the set of organizations

O ∈ O<1 such that C is an interval for each C ∈ C. Then let

O∗ = OS ∩ OG ∩ O<.

Recall that, given two organizations O and O′, we write Ô ≳ O if Ô > O or ŷ = y,

L̂ = L and l̂i = li for all i ∈ L.

Summing up this section:
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Corollary 7.2 If O ̸∈ O∗ and y > 0, then there is Ô ∈ O∗ such that Ô ≳ O.

7.6 Existence

In this section we consider the existence of η-optimal organizations with cumulative

knowledge. Given our previous results, Theorems 7.1 and 7.2, all that is left to

determine is the number L of layers, the order ≺ of L, an ordering of C, i.e. to

write C = {C1, . . . , Cm} with C1 < · · · < Cm and m = |C|, and the size µ(C) of

each C ∈ C. Letting µj = µ(Cj) for each j = 1, . . . ,m, we then have C1 = [0, µ1),

C2 = [µ1, µ1 + µ2) and so on, so that, for each j = 1, . . . ,m,

Cj =

[
j−1∑
i=1

µi,

j∑
i=1

µi

)
.

Then we obtain {A1, B1, . . . , AL, BL} via (7.1)–(7.2).

Note, however, that fixing the number L ∈ N of layers, an ordering ≺ of L,

an ordering ψ of C (formally, ψ is a bijection from C onto {1, . . . ,m}) and µ =

(µ1, . . . , µm) ∈ Rm
+ such that

∑m
j=1 µj ≤ µ(Ω) may fail to define an organization

because the requirement that βl > 0 for each l ∈ L may fail. To allow for this

case, we say that O is a quasi-organization with cumulative knowledge if it satisfies

βl ≥ 0 for each l ∈ L and all the conditions of the definition of an organization with

cumulative knowledge except possibly the one requiring βl > 0 for each l ∈ L. For

each (L,≺, ψ, µ), let

yL,≺,ψ(µ1, . . . , µm)

be the output of the resulting quasi-organization with cumulative knowledge (com-

puted using (1)) and

yL,≺,ψ = max
(µ1,...,µm)∈Rm

+

yL,≺,ψ(µ1, . . . , µm) (7.5)

subject to
m∑
j=1

µj ≤ µ(Ω). (7.6)

Then an optimal organization with cumulative knowledge O∗ is obtained by letting

L∗ be such that

max
≺,ψ

(
yL∗,≺,ψ − η(L∗ − 1)

)
= max

L

(
max
≺,ψ

yL,≺,ψ − η(L− 1)
)
, (7.7)
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≺∗ be such that

max
ψ

yL∗,≺∗,ψ = max
≺,ψ

yL∗,≺,ψ, (7.8)

ψ∗ be such that

yL∗,≺∗,ψ∗ = max
ψ

yL∗,≺∗,ψ (7.9)

and (µ∗
1, . . . , µ

∗
m) ∈ Rm

+ be such that
∑m

j=1 µ
∗
j ≤ µ(Ω) and

yL∗,≺∗,ψ∗(µ∗
1, . . . , µ

∗
m) = yL∗,≺∗,ψ∗ . (7.10)

It turns out that O∗ is actually an organization with cumulative knowledge which is

η-optimal since it maximizes Y = y − (L− 1)η.

Theorem 7.3 If Ω is bounded, then an η-optimal organization with cumulative knowl-

edge exists.

We state the following lemma for further use, which is analogous and can be

established by the same argument used for Lemma 2.18. Let OQ be the set of

quasi-organizations with cumulative knowledge defined by (L,≺, ψ, µ). Specifically,

if O ∈ OQ is actually an organization with cumulative knowledge, then O ∈ O∗. Fur-

thermore, we say that O is a specialized quasi-organization with cumulative knowledge

if tp1 = 1, th1 = 0, β1 = 1
γ
, l1 = L, ≺1=< and, for each i ̸= 1, tpi = 0, thi = 1, β1 = αi

γ

and li = {i}.

Lemma 7.9 Let O be a specialized quasi-organization with cumulative knowledge. If

Ô is such that L̂ = L \ {i ∈ L : αi = 0} but otherwise equal to O, then α̂i = αi for

each i ∈ L̂ and ∪l∈L̂Al = ∪l∈LAl. Consequently, Ô is an organization with cumulative

knowledge, ŷ = y, L̂ ≤ L and L̂ = L if and only if O is an organization with

cumulative knowledge. In addition, if O ∈ OQ, then Ô ∈ O∗.

The remainder of the proof of Theorem 7.3 is analogous to that of Theorem 4.

7.7 The cumulative knowledge order

Theorem 7.4 If O is an optimal organization with cumulative knowledge, then ≺=<.
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Proof. The proof is by induction. We first claim that 1 ≺ i for each i ∈ L \ {1}.

Suppose not; then i ≺ 1 for some i ∈ L \ {i}. Define an organization Ô equal to O

except that L̂ = L \ {i} and, consequently, <̂ =< |L̂ and ≺̂ =≺ |L̂. For each j ∈ L̂,

let Lj = {l ∈ L̂ : l < j}. We then have that ∪l∈Lj
Al = ∪l<jAl since Ai ⊆ A1; this

also implies that ∪l∈L̂Al = ∪l∈LAl. In addition, ∪l∈Lj
Bl = ∪l<jBl since Bi ⊆ B1.

Thus, α̂j = αj for each j ∈ L̂ and, hence, γ̂ =
∑

j∈L̂ αj <
∑

j∈L αj = γ since αi > 0

by Theorem 7.1. Also, θ̂ ≥ θ. Thus, ŷ > y and L̂ ⊂ L, contradicting the optimality

of O. Thus, 1 ≺ i for each i ∈ L \ {1}.

Assume that 1 ≺ · · · ≺ k ≺ i for each i ∈ L\{1, . . . , k}; we now claim that k+1 ≺ i

for each i ∈ L \ {1, . . . , k + 1}. If not, then i ≺ k + 1 for some i ∈ L \ {1, . . . , k + 1}

and, hence, Ai ⊆ Ak+1 and Bi ⊆ Bk+1. The argument is now analogous to the above.

Then, by induction, it follows that 1 ≺ · · · ≺ L.

7.8 Hierarchies

In this section we establish the following result.

Theorem 7.5 If O is an optimal organization with cumulative knowledge, π = h and

ξ = c, then (a) Bl = Al for each l ∈ L, (b) A1 < A2 \ A1 < · · · < AL \ AL−1, (c)

β2 > · · · > βL, and (d) β1 > β2 if h < 1.

The proof of the above result starts with the following lemma, which follows from

the arguments used to prove Lemma A.16 together with Lemma 7.1.

Lemma 7.10 If O is an optimal organization with cumulative knowledge, then µ(Bj) >

0 for all j ∈ L \ {1}.

We turn to the proof of Theorem 7.5. While the argument is analogous to the

proof of Corollary 3, there are some difficulties that arise due to the requirement

imposed by the cumulative nature of knowledge.

Proof of Theorem 7.5. The proof of (a) is by induction and, thus, we start

by showing that B1 = A1. Suppose not; then B1 \ A1 ̸= ∅. Define an organization Ô

equal to O except that Â1 = B1, Âj = Aj ∪ (B1 \A1) for each j ∈ L (recall that 1 ≺ j
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for each j ̸= 1 by part 4 of Theorem 7.2) and L̂ = L \ {j ∈ L : α̂j = 0}. Lemma 7.9

implies that Ô is an organization and that, for each j ∈ L̂,

α̂j = hF (Âj \ ∪l<jÂl) + πF (Âcj \ ∪l<jB̂l).

Then ν̂j = cµ(Âj)+ξµ(B̂j\Aj) = cµ(B̂j) = cµ(Bj) = νj for each j ∈ L since ξ = c.

Furthermore, we clearly have that, for each j ∈ L, ∪l<jBl = ∪l<jB̂l, ∪l<jAl ⊆ ∪l<jÂl
and ∪l∈LAl ⊆ ∪l∈LÂl. In addition, we have that Âj \∪l<jÂl = (Aj \∪l<jAl)\(B1\A1)

for each j > 1. Indeed, Âj = Aj ∪ (B1 \ A1) and Âj \ ∪l<jÂl = (Aj ∪ (B1 \ A1)) ∩

(∪l<jAl)c∩(B1\A1)
c = [Aj∩(∪l<jAl)c∩(B1\A1)

c]∪[(B1\A1)∩(∪l<jAl)c∩(B1\A1)
c] =

(Aj \ ∪l<jAl) \ (B1 \ A1). In particular, this implies that α̂j ≤ αj for each j ∈ L.

Suppose first that ∪l∈LAl ⊂ ∪l∈LÂl. Since (∪l∈LÂl) \ (∪l∈LAl) ∈ I, it follows that

F (∪l∈LÂl) > F (∪l∈LAl). This, together with α̂j ≤ αj for each j ∈ L, implies that

θ̂ > θ and γ̂ ≤ γ; hence, ŷ > y. Since L̂ ≤ L, this contradicts the optimality of O.

Thus, assume that ∪l∈LAl = ∪l∈LÂl. Hence, B1 \ A1 ⊆ ∪l∈LAl and, in fact,

B1 \A1 ⊆ ∪l>1Al since (B1 \A1)∩A1 = ∅. Let j ∈ L be the smallest j′ ∈ L such that

(B1 \ A1) ∩ Aj′ ̸= ∅. Then (B1 \ A1) ∩ (Aj \ ∪l<jAl) ̸= ∅ and, thus, Âj \ (∪l<jÂl) =

(Aj \ ∪l<jAl) \ (B1 \A1) ⊂ Aj \ ∪l<jAl. Hence, F (Âj \ (∪l<jÂl)) < F (Aj \ (∪l<jAl)).

This, together with Âcj\(∪l<jB̂l) ⊆ Acj\(∪l<jBl), implies that α̂j < αj. This, together

with ∪l∈LAl = ∪l∈LÂl and α̂l ≤ αl for each l ∈ L, implies that θ̂ ≥ θ and γ̂ < γ;

hence, ŷ > y. Since L̂ ≤ L, this contradicts the optimality of O. This contradiction

shows that B1 = A1.

Let 1 < i ≤ L and assume that Bj = Aj for all j < i. Suppose that Bi ̸= Ai;

then Bi \ Ai ̸= ∅. We first claim that (Bi \ Ai) ∩ ∪i−1
l=1Al = ∅. Suppose not; then

(Bi \ Ai) ∩ ∪i−1
l=1Al ̸= ∅. Let E = (Bi \ Ai) ∩ (∪i−1

l=1Al)
c and define an organization

Õ equal to O except that B̃i = Ai ∪ E. Note that when j ≺ i, then j < i by part

4 of Theorem 7.2 and B̃j = Bj = Aj ⊆ Ai ⊆ B̃i; thus, Õ is an organization with

cumulative knowledge.

We have that ν̃i = c(µ(Bi)−µ((Bi \Ai)∩∪i−1
l=1Al)) < cµ(Bi) = νi since (Bi \Ai)∩

∪i−1
l=1Al is nonempty and belongs to I. In addition, ∪l<jB̃j = ∪l<jBj for all j ∈ L.

It then follows from ∪l<jB̃j = ∪l<jBj and Ãj = Aj for all j ∈ L that α̃j = αj for
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each j ∈ L and that ∪l∈LÃl = ∪l∈LAl. This, together with ν̃i < νi and αj > 0 for

all j ∈ L (by Theorem 7.1) implies that ỹ > y. Since L̃ = L, this contradicts the

optimality of O. This shows that Bi \ Ai ∩ ∪i−1
l=1Al = ∅.

Define an organization Ô equal to O except that Âi = Bi, Âj = Aj ∪ (Bi \ Ai)

for all j ∈ L such that i < j, and L̂ = L \ {j ∈ L : α̂j = 0}. Note that if j ∈ L is

such that j < i, then Âi = Bi ⊆ Bj = Aj = Âj; hence, Ô is an organization with

cumulative knowledge.

Then, for each j ∈ L, νj = ν̂j, ∪l<jBl = ∪l<jB̂l, ∪l<jAl ⊆ ∪l<jÂl, ∪l∈LAl ⊆ ∪l∈LÂl
and Âj \∪l<jÂl = (Aj \∪l<jAl) \ (Bi \Ai) for each j > i as above. Since Âj = Aj for

each j < i, we obtain that α̂j ≤ αj for each j ̸= i. Furthermore, since Bj = Aj for

all j < i and h = π, αi = h(F (Ai \ ∪l<iAl) + F (Aci \ ∪l<iAl)) = h(1 − F (∪l<iAl)) =

h(F (Âi \ ∪l<iAl) + F (Âci \ ∪l<iAl)) = α̂i. Hence, α̂j ≤ αj for each j ∈ L.

Suppose first that ∪Ll=iAl ⊂ ∪Ll=iÂl. Since ∪Ll=iÂl = (∪Ll=iAl)∪ (Bi \Ai), it follows

that (∪Ll=iAl)c∩ (Bi \Ai) ̸= ∅. By (Bi \Ai)∩ (∪i−1
l=1Al) = ∅ we obtain that (∪Ll=1Al)

c∩

(Bi \ Ai) = (∪Ll=iAl)c ∩ (Bi \ Ai) ∩ (∪i−1
l=1Al)

c = (∪Ll=iAl)c ∩ (Bi \ Ai) ̸= ∅. Hence,

∪l∈LAl ⊂ ∪l∈LÂl, and ŷ > y as above. But this, together with L̂ ≤ L, contradicts the

optimality of O.

Thus, we may assume that ∪Ll=iAl = ∪Ll=iÂl. Hence, Bi \Ai ⊆ ∪Ll=iAl and, in fact,

Bi \ Ai ⊆ ∪l>iAl since (Bi \ Ai) ∩ Ai = ∅ obviously. Thus, as above, there is j > i

such that α̂j < αj and ŷ > y. Since L̂ ≤ L, this contradicts the optimality of O. This

contradiction shows that Bi = Ai.

The above shows that Bl = Al for each l ∈ L; thus, (a) follows.

It follows from Bl = Al for each l ∈ L that C = {A1, A2 \ A1, . . . , AL \ AL−1}.

Since cAl
= c

∑L
j=l αj and αj > 0 for all j ∈ L by Theorem 7.1, it follows by part 2

of Theorem 7.2 that A1 < A2 \ A1 < · · · < AL \ AL−1. Thus, (b) follows.

By (a), we have that Bl = Al and, hence, F (Al) > 0 for each l ∈ L by Lemma

7.10. Thus, for each 1 < i < L,

αi = h(1−
i−1∑
l=1

F (Al)) > h(1−
i−1∑
l=1

F (Al)− F (Ai)) = αi+1.

Moreover, βi =
αi

γ
> αi+1

γ
= βi+1, proving (c).

74



Since α2 = h(1− F (A1)), we have that α2 < 1 if h < 1. Thus, β1 =
1
γ
> α2

γ
= β2

and (d) holds.

7.9 Optimal organizations when ξ is small

We establish Theorem 8 in this section using a series of lemmas. While some results

carry through from the proof of the analogous Theorem 5, there are many differences

which have already been noted regarding the statements of the theorems themselves.

Throughout this section, we assume that Assumptions (A1) and (A2) hold as well

as the assumptions made in Section 3. Let y1 = max0≤µ1≤ω̄(F (µ1)− cµ1) and define

ξ1 =
πf(ω̄)y1
1 + 2h

;

then y1 > 0 by (A2) and, thus, ξ1 > 0 by (A1). Define also

ξ2 =
chη

1 + hη
> 0.

Then define

ξ̄ = min{ξ1, ξ2}.

Suppose that O is an η-optimal organization with cumulative knowledge, that 0 <

ξ < ξ̄ and that L ≥ 2.

Lemma 7.11 B1 ∪ A2 = Ω.

Proof. Suppose not; then there is a ∈ Ω such that [a, a + ε) ⊆ (B1 ∪ A2)
c

for all ε > 0 sufficiently small. Consider an organization Ô equal to O except that

B̂1 = B1∪ [a, a+ ε) and B̂i = Bi∪ [a, a+ ε) for each i > 1. Since [a, a+ ε) ⊆ Ac2∩Bc
1,

we have that Âc2 \ B̂1 = (Ac2 \B1) \ [a, a+ ε). Thus, α̂2(ε) = α2 − πF ([a, a+ ε)) and

α̂′
2(0) = −πf(a). Since Âci \ ∪j<iB̂j ⊆ Aci \ ∪j<iBj, it follows that α̂i(ε) ≤ αi and,

thus, α̂′
i(0) = limε→0

α̂i(ε)−αi

ε
≤ 0 for each i > 2. Hence,

θ̂(ε) = θ − ξε− ξ
L∑
i=2

α̂i(µ(B̂i(ε))− µ(Bi))−
L∑
i=2

(α̂i(ε)− αi)νi,
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where, recall, νi = cµ(Ai) + ξµ(Bi \ Ai) for each i ∈ L. The above equation uses

µ(B̂1(ε)) − µ(B1) = µ([a, a + ε)) = ε; in addition, we have that µ(B̂i(ε)) − µ(Bi) ≤

µ([a, a+ ε)) = ε and, hence, letting bi(ε) = µ(B̂i(ε))− µ(Bi),

dbi(0)

dε
≤ 1.

It follows that

γŷ′(0) = −ξ − ξ
L∑
i=2

αi
dbi(0)

dε
+ πf(a)ν2 +

∑
i>2

(−α̂′
i(0))νi + πf(a)y + y

∑
i>2

(−α̂′
i(0))

> πf(ω̄)y − ξγ > πf(ω̄)y − ξ(1 + 2h)

since f(a) > f(ω̄) and γ = 1 + h
∑L

i=2 F (Ai \ Ai−1) + π
∑L

i=2 F (A
c
i \ Bi−1) ≤ 1 +

hF (AL \ A1) + πF (Ac1) ≤ 1 + 2h. We then have that y ≥ y1 and πf(ω̄)y − ξ ≥

πf(ω̄)y1 − ξ = ξ2(1 + 2h) − ξ(1 + 2h) > 0 since ξ < ξ̄. It then follows that there is

ε > 0 such that ŷ(ε) > y, a contradiction to the optimality of O. This contradiction

shows that B1 ∪ A2 = Ω.

Lemma 7.12 (B1 \ A1) ∩ A2 = ∅.

Proof. Suppose not; then (B1 \A1) ∩A2 ̸= ∅. Consider an organization Ô equal

to O except that B̂1 = B1 \ A2; since 1 ≺ i for each i ∈ L, Ô is an organization

with cumulative knowledge. Then Âc2 \ B̂1 = Ac2 ∩ (Bc
1 ∪ A2) = Ac2 \ B1 and, hence

α̂2 = α2. Moreover, for each i > 2, ∪l<iB̂l = ∪l<iBl and, hence, α̂i = αi. Thus, γ̂ = γ

and θ̂ > θ since ∪l∈LÂl = ∪l∈LAl and ν̂1 = ν1 − ξµ((B1 \ A1) ∩ A2) < ν1. It follows

that ŷ > y, a contradiction to the optimality of O. This contradiction shows that

(B1 \ A1) ∩ A2 = ∅.

It follows from Lemmas 7.11 and 7.12 that

B1 \ A1 = Ω \ (A1 ∪ A2) = Ac2.

Hence, for each l > 1,

Bl = Ω.

Lemma 7.13 If O is an organization with cumulative knowledge such that ≺=< and

B1 \ A1 = Ac2, then αl = hF (Al \ Al−1) for each l ≥ 2.
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Proof. Let l ≥ 2. We have that Al \∪j<lAj = Al \Al−1 and that Acl \∪j<lBj = ∅.

Hence, αl = hF (Al \ ∪j<lAj) + πF (Acl \ ∪j<lBj) = hF (Al \ Al−1).

Lemma 7.14 The output of the an optimal organization with cumulative knowledge

is y = θ
γ
where

θ =
L∑
i=1

F (Ai \ Ai−1)− µ(A1)(c− ξ)(1 + h

L∑
i=2

F (Ai \ Ai−1))

−µ(A2 \ A1)((c− ξ)h
L∑
i=2

F (Ai \ Ai−1)− ξ)

−
L∑
j=3

µ(Aj \ Aj−1)((c− ξ)h
L∑
i=j

F (Ai \ Ai−1))− ξω̄(1 + h
L∑
i=2

F (Ai \ Ai−1)) and

γ = 1 + h
L∑
i=2

F (Ai \ Ai−1).

Proof. The conclusion follows by Lemmas 7.11–7.13 and from µ(Al) =
∑l

i=1 µ(Ai\

Ai−1) for each l ∈ L, where, recall, A0 = ∅.

Lemma 7.15 The following holds: C = {A1, A2 \ A1, . . . , AL \ AL−1, A
c
L}, cA1 =

c
∑L

j=1 αj, cA2\A1 = c
∑L

j=2 αj, cAk\Ak−1
= c

∑L
j=k αj+ξ

∑L
j=1 αj for each k = 3, . . . , L

and cAc
L
= ξ

∑L
j=1 αj. Thus, A1 < A2 \ A1, A3 \ A2 < · · · < AL \ AL−1 < AcL and

A1 < AcL.

Proof. Recall that ≺=< by part 4 of Theorem 7.2 and, hence, i1 = 1, . . . , iL = L.

Thus, the partition C of ∪Ll=1Bl = Ω is

C = {∩j<l(Bj \ Aj)c ∩ (Al \ Al−1) : l ∈ L}

∪{∩j<l(Bj \ Aj)c ∩ (Bl \ Al) ∩ (Ak \ Ak−1) : l, k ∈ L and k > l}

∪{∩j<l(Bj \ Aj)c ∩ (Bl \ Al) ∩ (BL \ AL) : l ∈ L}.

Consider each of the sets C ∈ C, first noting that B1 \ A1 = Ac2 (hence, (B1 \ A1)
c =

A2) and, for each l > 1, Bl \ Al = Acl (hence, (Bl \ Al)c = Al) and recalling that

B0 = A0 = ∅.
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The set ∩j<l(Bj\Aj)c∩(Al\Al−1) equals A1 when l = 1 and A2∩(A2\A1) = A2\A1

when l = 2. Thus, A1, A2 \ A1 ∈ C, cA1 = c
∑L

j=1 αj and cA2\A1 = c
∑L

j=2 αj.

The set ∩j<l(Bj \Aj)c∩ (Bl \Al)∩ (Ak \Ak−1) equals A
c
2∩ (Ak \Ak−1) when l = 1

and k > 1; thus, it equals ∅ if k = 2 and Ak \Ak−1 if k > 2. Thus, Ak \Ak−1 ∈ C and

cAk\Ak−1
= c

∑L
j=k αj + ξ

∑L
j=1 αj for each k > 2. Moreover, when l > 1 and k > l, it

equals A2 ∩ · · · ∩ Al−1 ∩ Acl ∩ (Ak \ Ak−1) = A2 \ Ak−1 = ∅.

Finally, the set ∩j<l(Bj \ Aj)c ∩ (Bl \ Al) ∩ (BL \BL−1) equals A
c
2 ∩ (BL \ AL) =

Ac2 ∩ Ω ∩ AcL = AcL when l = 1 Thus, AcL ∈ C and cAc
L
= ξ

∑L
j=1 αj. Moreover, when

l > 1, it equals A2 ∩ · · · ∩ Al−1 ∩ Acl ∩ Ω ∩ AcL = A2 \ AL = ∅.

We have that αj > 0 for each j ∈ L by Theorem 7.1 and, thus, A1 < A2 \ A1,

A3 \ A2 < · · · < AL \ AL−1 < AcL and A1 < AcL follows by part 2 of Theorem 7.2.

Lemma 7.16 Al \ Al−1 ̸= ∅ for each l > 1.

Proof. This follows because αl = hF (Al\Al−1) > 0 by Lemma 7.13 and Theorem

7.1 and, hence, F (Al \ Al−1) > 0 for each l > 1.

Lemma 7.17 If L ≥ 3, then A2 \ A1 < A3 \ A2.

Proof. Suppose that A2 \ A1 < A3 \ A2 does not hold; then, cA3\A2 ≥ cA2\A1

by part 2 of Theorem 7.2 and, thus, we may assume, by part 3 of Theorem 7.2,

that A3 \ A2 < A2 \ A1. Let a, a′ ∈ Ω and ε > 0 be such that [a, a + ε) ⊆ A3 \ A2,

[a′, a′+ε) ⊆ A2\A1 and a+ε < a′. Consider an organization Ô equal to O except that

Â2\Â1 = ((A2\A1)\ [a′, a′+ε))∪ [a, a+ε), Â3\Â2 = ((A3\A2)\ [a, a+ε))∪ [a′, a′+ε)

(so that Â2 = A1 ∪ (Â2 \ A1) and Â3 = Â2 ∪ (Â3 \ Â2)) and B̂1 \ Â1 = Âc2.

We clearly have that µ(Ĉ) = µ(C) for each C ∈ C, F (Ĉ) = F (C) for each

C ̸∈ {A2 \A1, A3 \A2}, F (Â2 \ Â1) > F (A2 \A1) since F ([a, a+ ε)) > F ([a′, a′ + ε))

by Lemma A.12 and F (Â3 \ Â2) + F (Â2 \ Â1) = F (A3 \ A2) + F (A2 \ A1) since

(Â3 \ Â2) ∪ (Â2 \ Â1) = (A3 \ A2) ∪ (A2 \ A1). Thus, F (Â3 \ Â2) < F (A3 \ A2). By

choosing ε > 0 sufficiently small, α̂3 = hF (Â3 \ Â2) > 0 and Ô is an organization

with cumulative knowledge.
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It then follows that
∑L

i=j F (Âi \ Âi−1) =
∑L

i=j F (Âi \ Âi−1) for each j ̸= 3 and∑L
i=3 F (Âi \ Âi−1) <

∑L
i=3 F (Âi \ Âi−1). Lemma 7.14 then implies that ŷ > y, a

contradiction to the optimality of O. This contradiction shows that A2\A1 < A3\A2.

Lemma 7.18 If L = 2, then A2 \ A1 < Ac2.

Proof. We first show that F (A2 \ A1) ≥ η. Since L = 2, it follows that y = θ
γ
≥

y1 + η, i.e. θ ≥ (y1 + η)γ. Thus, θ > y1 + η since γ = 1 + α2 > 1. We have that

θ = F (A1 ∪ A2)−
2∑
i=1

αi(cµ(Ai) + ξµ(Bi \ Ai)

= F (A1) + F (A2 \ A1)− cµ(A1)− ξµ(B1 \ A1)− cα2µ(A2)− ξα2µ(B2 \ A2)

≤ F (A1)− cµ(A1) + F (A2 \ A1)

≤ y1 + F (A2 \ A1).

Hence, y1 + F (A2 \ A1) ≥ θ ≥ y1 + η and, thus, F (A2 \ A1) ≥ η.

Since ξ < ξ̄ ≤ ξ2 =
chη
1+hη

< c, it follows that ξ < (c− ξ)hη ≤ (c− ξ)hF (A2 \ A1),

i.e. ξ(1 + hF (A2 \ A1)) < chF (A2 \ A1). Hence,

cAc
2
= ξ(α1 + α2) = ξ(1 + hF (A2 \ A1)) < chF (A2 \ A1) = cα2 = cA2\A1 .

Therefore, it follows by part 2 of Theorem 7.2 that A2 \ A1 < Ac2.

It follows from Lemmas 7.15, 7.17 and 7.18 that A1 < A2 \ A1 < A3 \ A2 <

· · · < AL \ AL−1 < AcL. Let µi = µ(Ai \ Ai−1) (with µ1 = µ(A1)); we then have that

A1 = [0, µ1), A2 = [µ1, µ1 + µ2) and, in general, Ai \ Ai−1 = [
∑j−1

j=1 µj,
∑j

j=1 µj) for

each j ∈ L.

Lemma 7.19 F (A2 \ A1) =
ξ

(c−ξ)h + f(µ1 + µ2)µ3.

Proof. Let ε > 0 and let Ô be an organization with cumulative knowledge equal

to O except that Â2 \ Â1 = [µ1, µ1+µ2+ ε), Â3 \ Â2 = [µ1+µ2+ ε, µ1+µ2+µ3) and
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B̂1 \ Â1 = Âc2. Then, letting a = µ1+µ2, it follows by Lemma 7.14 that γ̂(ε) = γ and

θ̂(ε) = θ −

[
(µ2 + ε)((c− ξ)h

L∑
i=2

F (Ai \ Ai−1)− ξ)− µ2((c− ξ)h
L∑
i=2

F (Ai \ Ai−1)− ξ)

]

−

[
(µ3 − ε)(c− ξ)h(

L∑
i=3

F (Ai \ Ai−1)− F ([a, a+ ε)))− µ3(c− ξ)h
L∑
i=3

F (Ai \ Ai−1)

]
= θ − ξε− ε(c− ξ)hF (A2 \ A1) + µ3(c− ξ)hF ([a, a+ ε))− ε(c− ξ)hF ([a, a+ ε)).

Hence,

γŷ′(0) = ξ − (c− ξ)hF (A2 \ A1) + f(a)µ3(c− ξ)h.

Since O is optimal, it follows that γŷ′(0) ≤ 0 and, hence, using a = µ1 + µ2,

F (A2 \ A1) ≥
ξ

(c− ξ)h
+ f(µ1 + µ2)µ3.

Considering next an organization Ô with cumulative knowledge equal to O except

that Â2 \ Â1 = [µ1, µ1+µ2−ε), Â3 \ Â2 = [µ1+µ2−ε, µ1+µ2+µ3) and B̂1 \ Â1 = Âc2

and arguing as above yields

F (A2 \ A1) ≤
ξ

(c− ξ)h
+ f(µ1 + µ2)µ3.

The result then follows.

Using an argument analogous to the above, we obtain:

Lemma 7.20 F (Ai \ Ai−1) = f(
∑i

j=1 µj)µi+1 for each i > 2.

Lemma 7.21 α2 > α3 > · · · > αL.

Proof. We have that αl = hF (Al \ Al−1) for each l ≥ 2, hence, the statement of

the lemma is equivalent to F (A2 \ A1) > F (A3 \ A2) > · · · > F (AL \ AL−1).

For each i > 1, F (Ai \ Ai−1) =
∫∑i

j=1 µj∑i−1
j=1 µj

fdµ < f(
∑i−1

j=1 µj)µi since f is strictly

decreasing. Thus, by Lemma 7.19,

F (A3 \ A2) < f(µ1 + µ2)µ3 = F (A2 \ A1)−
ξ

(c− ξ)h
< F (A2 \ A1).

Moreover, by Lemma 7.20,

F (Ai+1 \ Ai) < f(
i∑

j=1

µj)µi+1 = F (Ai \ Ai−1)

for each i = 3, . . . , L− 1. Hence, the lemma follows.
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Lemma 7.22 If h < 1, then β1 >
∑L

l=2 βl.

Proof. We have that βl =
αl

γ
for each l ∈ L, hence β1 >

∑L
l=2 βl is equivalent

to α1 >
∑L

l=2 αl. This inequality holds because
∑L

l=2 αl = h
∑L

l=2 F (Al \ Al−1) =

hF (AL \ A1) ≤ h < 1 = α1.
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