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1 Introduction

This paper contains supplementary material to our paper “Improving the Organiza-

tion of Knowledge in Production by Screening Problems”. It contains:

Section 2: A proof of Theorem 4 on the existence of n-optimal organizations.

Section 3: Sufficient conditions for optimal organizations to have at least two
layers and nonexistence of lexicographically optimal organizations when ¢ is

sufficiently small.
Section 4: Codes for the computations in Section 5.2.

Section 5: Description of the simulations used in Section 5.3 and results for

other parameter values.
Section 6: An example to illustrate Theorem 7.

Section 7: Proofs for the results with cumulative knowledge.

2 Existence of optimal organizations

This section contains the proof of Theorem 4. It requires strengthening the proofs
of the results stated in the main body of the paper in a way that they shows that
not only optimal organizations have certain properties but also that any organization
that does not have them is dominated, according to the relation > defined below, by

another one that satisfies them.



2.1 Notation

Recall the following notation: For each ¢,k € L,

vi = cp(A;) + Eu(B; \ 4;) and
hF (Az \ Ul-<kz'Al) + wF (AZC \ Ul—<kiBl) if 1 € lk and k 7é i,

Qi =
0 otherwise.
In addition, sometimes we abuse notation and use L to denote the cardinality of the
set L.

Given two organizations O and O, we write O > O if (i) g > y and LCL,or
(ii)g):yandicLor(iii)@:y,L:j}, figliforallieLandij#ljfor
some j € L. Note that, while the relation > is neither the relation in the definition
of lexicographical optimality nor in the definition of n-optimality, we have that if
O > O, then O is not an optimal organization.

In addition, we write O > O if O = O or O > O. Furthermore, we write O 20

ifO>0org=y, L=Landl; =1 foralliec L.

2.2 Allocation of labor

In this section we show that any optimal organization satisfies ¢! + t# = 1 for each
i € L and [; = {j} for each j € L such that ¢} = 0. More generally, any organization
that fails to satisfy at least one of these condition is dominated by some organization
that satisfies all of them.

Let O; be the set of organizations O such that y > 0 and [; = {i} for each i € L
with ¢ = 0.

Lemma 2.1 IfO & Oy and y > 0, then there is O € Oy such that O > O.

Proof. Let O ¢ Oy be such that y > 0 and I = {i € L : t! = 0 and {i} C ;};
then I # (). Define O as follows: L = L; for each 7 € L, set: Aj = A, Bj = B;,
Bj = B}, f? = t? and f? = t?; finally, set l} = l; and <; =<; for each j € L'\ I and

I; = {j} for each j € I.



Since tN’,; =t} = 0 for each k € I, we have that B@ff = Bith = ZkeL\] Brthou, =
D keI kaiézik = > el kaidik for each i € L and, hence, O is an organization.
Using again #/ = t¥ = 0 for each i € I, it follows that § = > icn Bt F (U, Ar) —
cp(As) = Eu(Bi\ A)) = icy Bilep(As) +Eu(B; \ A;)) = y. This, together with L=1L,
I; =1, forall j € L\ T and [; C I; for each j € I # 0, show that O > O. Since y > 0,
it follows that ¢y > 0 and, by construction, OcO,. m

Let Oy be the set of organizations O such that y > 0 and ¢ + ¢! > 0 for each

1€ L.
Lemma 2.2 IfO € O;\ Oy, then there is O € O,N O, such that O > O.

Proof. Let O € O;\ Oy and I = {i € L : t¥ +t# = 0}; then I # (). Since y > 0,
then I # L; hence A :=1/(3;c;\;8;) > 1. Define O as follows: L = L\ I; for each
j €L, set: Aj = A;, B; = B, Bj = \Gj, Zj =1L\ 1, <; == ’l}- (i.e., for each i, € l}-,
i<l if and only if i <, 1), tz) = t? and f? = t?. Thus, provided that ¢ > 0 and that O
is indeed an organization, it follows that OeONO,.

Given the definition of A, we have that ), ; BZ = 1. We claim that, to show that
O is an organization, it suffices to show that &, = ay, for each i,k € L\ I such that
1 # k and i € [. Indeed, if this is the case, then fﬁ =t} = 0 for each k € I implies
that Bzfﬁ = \Bith = ZkeL\I ABithau, = ZkeL\I kaidik for eachi € L = L \ [ and,
hence, O is an organization.

We now show that &y, = ay, for each i,k € L\ I such that ¢ # k and i € Ij.
Let Lo = {l € lx : 1 < i} and Ly, = {l € I : 1X4i} = {l € ), - | <4 i}. We
then have that £ C L and that Ly, \ Lo CI. If Ly = ﬁik, then &, = ay;
thus, assume that L5 C L. Let j € Ly \ Lir. Then j € I and t? = 0. Thus,
0= ﬁjt;? = > er Bit]ag. In particular, it follows that #; = 0 or ay; = 0. Because
O € Oy, the former would imply that [, = {k}, a contradiction to i € [, and i # k.
Thus, oy, = 0, implying that F(A; \ Uix, ;A1) = 0 = F(AS\ Ui, ;B1). Since both
Aj\ Ui, ;A € T and A§\ Uj,;B; € T (i.e. both sets are finite unions of intervals),
we have that A; C U5, ;A; and AS C U4, ;B; by footnote 9 in the main text. Since

this holds for each j € L \ ﬁik, it follows that Ujee, A1 = UleéikAl and, thus,



A\ Uer,, A = A\ UleéikAl' By taking the smallest j € Ly \ ﬁzk according to <,
we see that 0 = A; U A5 C U5, ;B and, hence, Af\ U,z By = 0 = A\ Uier, Br.
Thus, &, = oy, as claimed.

By taking, in the above argument, the greatest ¢ € I according to <j, we obtain
that U,g; A = A; U (Ulec}val) = A; U (Uer,, Ai) = Ui, Ay for each k € L\ I. Thus,

since A > 1 and y > 0,

§=X Y BelthF (Ui, Ax) — cp(Ar) — Eu(By \ Ay)) >

keL\I

> Bt F(Uier, Ar) — cu(Ak) — Eu(Bi \ Ak)) = Y Bilep(Ai) + Eu(Bi \ A) =y

keL\I i€l

This shows that y > 0 and, together with L C L, shows that O > O. m
Let Op, be the set of organizations O such that y > 0 and ¢/ + ¢! = 1 for each
i € L (the subscript in Oy, stands for “labor”). Note that O C Os.

Lemma 2.3 If O € (O; N Oy) \ Oy, then there is O € Oy N Oy, such that O > O.

Proof. Let O € (O;NOy)\Op and I = {i € L : t +t! < 1}; thus, I # (). Since
O € O, it follows that y > 0 and ¢/ + t* > 0 for each i € L.

We now show that there is O € O; N O, such that O > O and |I| = |I| — 1, i..
the number of layers i of O with t? +th < 1 equals the cardinality of I minus one.
Repeating this argument |/| times, produces the desired 0.
> 1. Define O as follows: The

Let 1 € I. Set)\:ﬁ>1and”y— ,62
layers are the same: L = L; for all j € L: AJ = AJ, B» = B;, l- =1l;, <; ==; for all
j # 1, Bj = v5;, tp =t t? = th, and, finally, 3; = 16, 7 = Xt? and th = \th. Thus,
 + " =1 and, hence, |I| = |I| — 1.

We have that ngp = Bt} and ijh = ’yﬁjt’? for all j € L. Since & = oy, for each
k,jeL (asL=1L, A; = A;, B; = B;, [; = l; and <, ==, for all j € L), it follows
that Bjtj =Y ker a;jpBktt for each j € L. Moreover, > e B; = VDBt 3B =
v (1 — B + %) = 1. Thus, O satisfies all requirements of an organization. Moreover,
provided that § > 0, we have that O € O; N O, as [; = [; and f? + f;” >t 4t for all
jelL=L.



We have that —%52-%- > —~Bv; since A > 1. Since y > 0 and v > 1, it follows
that

ﬂZVE:@ﬁFW@ﬁm—VE:@%—%@W

jel i
>y Bt F (Ui, A) =y Y By =y >y
jeL jeL

This shows that § > 0 and, together with L = L, shows that O > O as claimed. m
Corollary 2.1 If O & Oy, and y > 0, then there is O € O1 N Oy, such that O > O.

Proof. Let O ¢ O be such that y > 0. Let O; = O if O € Oy, and O, € O; be
given by Lemma 2.1 otherwise. Then O; > O. Proceeding by induction, we obtain
Oy € O1NO4y such that Oy > O. If Oy € Of, then Oy > O and set O = Oy; otherwise,
by Lemma 2.3, there is Oe 01 N Oy, such that O > O, and, hence, O0>0. m

2.3 Specialization

In this section we show that any organization that does not have the properties stated
in Theorem 1 is dominated by some organization that has them.

Given an organization O, let M be the set of ¢ € L such that ¢; = vi and 6; = 0
for all j € L\ {i} is a solution to (19)—(21). It follows by Lemma A.6 that M # ().

Corollary 2.2 If O € Oy, then % > .

Proof. Indeed, y is (6) at (5,7, t") and (B,t?,t") satisfies (7)—(12) as O € Oy.
Thus, letting (3,7, ") be a solution to (6)—(12) and g be (6) at (3,7, "), then § > y
and, by Lemmas A.4, A.5 and A.6 respectively, § is also (13) at 6 = (518}, ...,BLth),
(19) at & and (19) at 0, the latter being given in Lemma A.6. m

The focus of this section is on the class of organizations such that the conclusion
of Theorem 1 holds. Let Og be the set of organizations O such that y > 0 and there
isz'EMsuchthattle,t?:(),li:L,Bi:%,yz%,t?zO,t?zl,aﬂ>O,
l; ={j} and B; = 22 for each j € L\ {i}.

Yi




However, it is convenient to first consider the class of organizations obtained from
Ogs by dropping the requirement that ¢ € M. Thus, we let Let O4 be the set of
organizations O such that there is i € L such that ! =1, ¢} = 0,1, = L, §; = %,
Y= %, th =0, t;? =1, a; >0,1;={j} and 8; = 22 for each j € L\ {i}. Here and

Vi

above, the subscript in Og stands for “specialization” and the one in O 4 stands for
“auxiliary”.

We will build from organizations in Oy, to organizations in Og. The first step is
provided by the following class of organizations. Let O3 be the set of organizations

O such that there is ¢ € M such that [; = L and «j; > 0 for all j € L\ {i}.
Lemma 2.4 [fO € Oy \ Os, then there is O ¢ O 4 such that O > 0.

Proof. Let O € Oy \ Os,i€ M and L ={j € l; : aj; > 0} U {i}. Since O & O,
we have that L € L. Note that L #Pasie L. Now remove layers L \ L; formally,
define O as follows: Layers are L; for each J € L, set: /lj = A; and Bj = B;; for each
jel \ {i}, set Zj ={j}, Bj = a;;, fg =0, and Lt? = 1; finally, set [; = L, =; ==;
Bz‘:%,fﬁ’zlandfﬁzo.

We first claim that, for each j € L\ {i}, &;; = a ;. Let L;; = {l €1, : 1 <; j} and

lAi’

ﬁji ={lel;: 1%} ={l€l;:1=;j}. We then have that ﬁji C Lj; and that ag; =0
for each k € L;; \ Lji.

If £;; = ﬁji, then &; = aj; thus, assume that ﬁji C Lj. Let ke L\ EAﬂ
Then ay; = 0, implying that F(Ag \ U<,k A1) = 0 = F(AS \ U<, B;). Since both
A \ U<,k Ai € T and A§ \ U<, B € Z, we have that Ay C Ui, A; and A C U<,1 B

by footnote 9 in the main text. Since this holds for each k € Lj; \ L;;, it follows

%
that UleﬁjiAl = Uleﬁjl’Al and, thus, Aj \ UleﬁjiAl = Aj \ UleﬁjiAl‘ By taking the
smallest k € Eji\ﬁji according to <;, we see that 2 = A, UA{ C U<, B; and, hence,
AS\ UleﬁjiBl =0 = A\ Uier,, Bi. Thus, &j; = ay; as claimed.

By taking, in the above argument, the greatest j € l; according to <;, we obtain
that UZE[iAl = Aj U (UlelijiAl) = Aj U (UleﬁjiAl) = UleliAl- ThU_S7 as Qj; = 0 for each
jeL\L,

Qi = F(UleliAl) —V; — Z V= F(UleiiAl) —V; — Z@jiyj = Ql

jeL ]Ei



Furthermore, v; = 1 + ZjeL aj; =1+ Zjd &j; = ;. It then follows that O
is an organization and that O € O4. Moreover, it follows by Corollary 2.2 that
y= 3— > y > 0 which, together with L C L, implies that O > O. m

Let Oy be the set of organizations O such that there is ¢ € M such that [; = {j}
for all j € L\ {i}.

Lemma 2.5 If O € (O, N O3) \ Oy, then there is O € O4 such that O > O.

Proof. Let O € (O, NO3) \ Oy. Since O € Oy, there is i € M such that [; = L
and aj; > 0 for all j € L\ {¢}. It follows by Corollary 2.2 that joy— >y > 0, the latter
because O € Oy.

Since O & Oy, there is k # i such that {k} C l;. Define O as follows: Layers are
L; for each j € L, set: 121]- = A; and éj = B;; for each j # i, set Zj ={j}, Bj =23

Vi

f? =0 and f;-‘ = 1; finally, set I; = I;, =; ==, 3; = %, ' =1and th = 0.

Since I; = li, =i ==, Aj = A; and Bj = Bj for each j € L, it follows that
&;; = a;j for all j € L and, hence, 4; = «; and él = 0,. This, together with a;; > 0
for all 7 # 7, implies that O is an organization, that y = j‘;— and, thus, that O € Q4.

Finally, § = % >y, L = L and [; C I; for all j € L and i; C I; for some j € L

shows that O > O. =
Lemma 2.6 IfO € (O, NO3NOy) \ O4, then there is O € Og such that O > O.

Proof. Let O € (O,NOs5NO,)\ O4; then thereis i € M such that [; = L, aj; > 0
and l; = {j} for each j € L\ {i} (indeed, by O € Os, there is i3 € M such that
l;; = L and a;, > 0 for each j € L\ {i1} and, by O € Oy, there is iy € M such that
l; = {j} for all j € L\ {iz}. But i; = iy since otherwise l;, = {i1} C {i1,i2} C L).
We consider first the case where (3, t?,t") does not solve (6)—(12). Since O € Oy, it
follows that ¢! + " =1 for all i € L and, hence, (3,7, t") satisfies (7)—(12). Thus, by
Lemma A.5 and A.6, it follows that % > y > 0, the latter because O € Oy,

Let O be equal to O except that, for each j # i, Bj = O;], f? =0 and f? =1, and

Bi =2, =1and i = 0. Clearly, d;x = aji, 55 = 7; and 6; = 6, for all k,j € L.



Since O € O3 N Oy and, in particular, i € M = M , it follows that O € Og. We also
have that O > O because Uy = z— > y and L=1L.

By the above, we may therefore assume that (3,7, ") solves (6)-(12). Since
O ¢ Oy, then (B,t7,t") # (B,fp,fh) (where the latter is as defined in the previous
paragraph). Letting 6 = (51}, ..., .t") and o = (B, ... ,BAL?}J), it follows that
0 # 5 Indeed, if § = §, then Bﬂf? = B]t? for each j € L. Thus, for each j # i,
Bt =0 and, hence, t =0 = f§ by (8). Moreover, t§ =1 = f? by (11) for each j # i
and tI = 0 = £ by (12) and (8). Hence, t” =1 = by (11) and §; = B;t? = Bif’ = f.
Finally, for each j # i, 8; = Bt = a;ifit} = a;ifs = ajifi = B;. In conclusion, if
§ =6, then (8,2, th) = (B, 17, ).

Since 0 # 5, there exists J # i such that 6; > 0; in particular, it follows that
|L| > 2. Since the convex combination of two solutions of a linear programming
problem is also a solution, there exists a solution ¢ to (19)-(21) such that §; > 0
and 6; > 0. Put z; = 1, z; = —;’—;’_ and z; = 0 for all | ¢ {i,j}; then, for all € in a
neighborhood of zero (in R), § — éz satisfies (20)(21). Optimality of § then implies
that

We have that y = 6;/v; by Lemmas A.5 and A.6. Moreover, [; = {j} implies that
Ui, A1 = A; and that oy; = 0 for each [ € L; hence, 0; = F(Ujg, A1) — (v; +
Zle vioyj) = F(Aj) —vjand v, =1 + Zle vioy; = 1. Thus,

Therefore, the organization O with just layer j, i.e. L = {j}, and Bj = B;, flj = A,
B, =1, f? =1 and % = 0 belongs to Os (note that M = {j} since M is a nonempty

subset of L) and obtains as much output as O. Since |L| > 1, it follows that O > O.

[
Lemma 2.7 IfO € O4\ Og, then there is O € Og such that O > O.

Proof. Let O € O4 \ Os. Then there is i € L such that t/ =1, tf =0, [, = L,
BZ:%,y:%, tf:O, t?zl, Oéji>07 l]:{j} andﬁj:%foreachjel}\{z}

10



Since O ¢ Qg, it follows that ¢ € M. Thus, letting & € M, which, in particular,
implies that |L| > 2, we have that y = z— < z—i = F(Ay) — v, the latter equality
because [, = {k}.

Therefore, the organization O with just layer k, i.e. L = {k}, and B, = By,
A = Ag, B =1, 1 =1 and # = 0 belongs to Og (note that M = {k} since M is a
nonempty subset of I:) and satisfies y = F'(Ay) — vx > y and L c L. Thus, O > O.
[

Any organization in Og has all the properties considered so far:
Os=01N0:N0sNO0;NOLNOg. (2.1)
The following result summarizes this section.
Corollary 2.3 If O &€ Og and y > 0, then there is O € Og such that O > O.
Proof. Note that, by (2.1), O € Oy and (O, N O3N O NOy) \ O1 =0,
O\ Ogs = (0L \ O5) U((OLNO3)\ Og) U ((OLNO3NO4) \ Oa).

Let O ¢ Og be such that y > 0. Let O, = O if O € Oy, and O, € O, be
given by Corollary 2.1 otherwise. Then Oy, > O. If O > O and Op, € Og, then set
O = Oy; if, otherwise, O} ¢ Og, then O, € O\ O3 or O, € (O, NO3) \ Oy or
O € (O, NO3NOy) \ O4. In either case, by Lemmas 2.4, 2.5 and 2.6 respectively,
there is O € O, such that O > Oy, and, hence, O > O. If O € O, then let O = O;
otherwise, let O € Og be given by Lemma 2.7 so that O > O. In either case, we have
that O € Og and O > O. =

We conclude this section with sufficient conditions for an organization to belong

to Os.
Lemma 2.8 Let O be an organization such that y > 0.
(a) If L=1 and t} =1, then O € Og.

(b) Letly = L, ) = VLI, t =1 and, for each j € L\ {1}, I; = {j}, B; = % and
th=1. If oy >0 for all j € L\ {1} and 1 € M, then O € O,

11



Proof. If L = {1}, then all the conditions defining Og are satisfied since I, =
{1} = L, M = {1} (recall that M is a nonempty subset of L), 3y =1, th =0, v, =1
and 0, = F(A;) — v;. This shows (a). Part (b) is immediate. m

2.4 No overlap

In this section we show that any organization that does not have the properties stated
in Lemma 1 is dominated by some organization that has them, as well as those in
Theorem 1.

Let Op; be the set of organizations such that A;N Ay =0 and (B, \ A) N Bx =0
for each k,l € L such that k£ < [.

Lemma 2.9 If O € Og\ Opy, then there is O € 05N Op; such that O > O.

Proof. Let O € Og \ Op; and let P be the set of pairs (k,l) € L* with k < [
such that A;N Ay # 0 or (B;\ A;) N By, # (). We show that there is O € Og such that
O > O and (i) O € O3 N Op, or (ii) |P| = |P| — 1. Repeating this argument at most
|P| times produces the desired O.

Let (k,1) € P. Define an organization O to be equal to O except that A, =
A\ Ag and B, = (B, \ Bg) U A;. We have that flj \ UK]fL = A, \ Uic;A; and
flj \ Ui<JBZ- = A \ Ui<;B; for each j € L. Indeed, this is clear for all j < [. When
j = [, we have that A, \ Ui A; = (AINAS) N (N AS) = A\ Ui A and /Nllc\UKlBi =
(AFUAR) N (M BY) = AN (N BS) = AF\ Ui B; since AN (N, Bf) C AxNB§ = 0.
Finally, if j > [, Ui<jf1i = U;<;A; and UZ-<JB¢ = U;«;B; and the result follows. We
then have that &; = a; for each j € L. Hence, under the standard normalization that
layer 1 consists of the workers (i.e. t] = 1), O is an organization and belongs to Og
by Lemma 2.8 provided 1 € M since, for each j € L, Bj = 0, f? =t f? =t Z~J =1

and :%j ==j.

12



Assume first that 1 € M. As A, C By, we have that

B\ 4 = (B \ Bp) \ (A \ Ap) = (BiN BN AY) U (BN BN Ay)
=B NB,NA=(B\ 4)N By,
(BI\A)N By = (B/\ A)NBiN B =10,
ANA,  =ANANA =0and
J—y = Bile(u(A) — p(A\ Ap)) + (B \ A) — p((Br\ Ar) N BY))]
= B [en(Ap 0 Ar) + Epu((Bi\ Ar) N By)] -

Since (k,j) € P and Ay, A;, By \ A; and By, belong to Z, it follows from A, N A; # ()
or (B;\ 4;) N By, # 0 that u(Ax, N A;) > 0 or u((B;\ A;) N By) > 0. In either case,
y > y. Since L = L, this implies that O > O. Thus, in the case where 1 € M, set
0=0.

If 1 ¢ M, then take i € M and define O by L = {i}, §; =1, =1, A; = 4, and
B; = B;. Theny > § >y, L < L = L and, thus, O > O. Moreover, O € Og by

Lemma 2.8 and O € Op, trivially. m

Lemma 2.10 If O € Op,, then
(a) BiNAr =0 and (B, \ A)) N By =0 for each k,l € L such that k <, and
(b)) AiN Ay =0 and (B, \ A) N (Bg \ Ax) = 0 for each k,1 € L such that k # 1.

Proof. Let O € Op; and k,l € L be such that k < [. Then (B;\ A)) N By =
and AyNAg = 0. Thus, BNA, = BINA.NAf = (B \ 4)NAx C (B \ A4)N By = 0.
This shows (a).

As for (b), let k,l € L be such that k # . Then either k¥ < [ or [ < k; for
concreteness, let £ < [. Then AN A, = 0 and (B;\ A)N(Br\ Ax) C (B\A;)NBr =10
from (a). This shows (b). m

Let Ops be the set of organizations such that By, = Aj.

Lemma 2.11 IfO € (OsNOp1) \ Opa, then there is O € OsNOp,NOpy such that
0> 0.

13



Proof. Let O € (OsNOp1)\ Ops; then B\ Ay # (). Define an organization O to
be equal to O except that By = A;. We have, clearly, that flj \ UKJ%L- = A; \Uic; A
and flj \ Ui<j£~3,~ = A%\ Ui;B; for each j € L. Hence, &; = «a; for all j € L. It then
follows that O is an organization and belongs to Og by Lemma 2.8 provided that
1€ M. Tt is also clear that O € Op; N Opo, the former because flj C A, Bj C B,
and B; \ A; C B, \ A, for each j € L and the latter by construction.

We have that 7, < vy which, together with &; = «; for all j € L, implies that
§ > vy. Since L = L, this implies that O > O. Thus, set O = O if 1 € M.

If 1 ¢ M, thenlet i € M, ie. F(A;)—; > 7. Since i; = v; for each 1 < j < L, it
follows that i = L. Thus, define O by L = {L}, B, =1, =1, A, = A, = A, and
By, =Bp=A;. Then § >4 >y, L <L = L and, thus, O > O. Moreover, O € Og
by Lemma 2.8, Oe€Om trivially and O € Opy since B, = A;. m

Let Ops be the set of organizations such that B; N A4, = 0 for each 1 <1 < L.

Lemma 2.12 [fO € (OsﬂODlﬂODQ)\Opg, then there is O € OsNOp1NOpaNOps
such that O > O.

Proof. Let O € (OsNOp1NOpa)\Opzand I ={i € {1,...,L—1}: BiNA; 41 #
0}; then I # (). We show that there is O € OsNOp; NOpy such that O > O and (i)
O € OsNOp; NOpyNOps or (ii) ][] = |I| — 1. Repeating this argument at most |/|
times produces the desired 0.

Let i € I; then B; N A;y1 # (. Hence, (B; \ A;) N A;11 # 0 since A, N A1 =10
as O € Op;. Define an organization O to be equal to O except that B; = B, \ Ait1.
We clearly have that &; = «; for all j < 4. Since Ul<]Bl = Uj;B; for each j > 1, it
follows that &; = «; for all j > i as well. Hence, O is an organization and belongs
to Og by Lemma 2.8 provided that 1 € M. Tt is also clear that O € Op; N Opa, the
former because A; C A;, B; C B; and B;\ A; C B;\ A, for each j € L and the latter
because i # L. Moreover, |I| = |I| — 1.

We have that B; \ A; = (B; \ A;) \ Aip1. Hence, u(B; \ A;) = u(B; \ 4;) — u((B; \
A) N Air) < (B \ 4;) since (B; \ A;) N Ajr1 # 0 and (B; \ 4;) N A;11 € Z. Thus,

V; < v; which, together with &; = a; for all j € L, implies that y > y. Since L=1L,
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this implies that O > O. Thus, in the case where 1 € M, set O = O.

If 1 ¢ M, then take i € M and define O by L = {i}, B = 1, & = 1, A; = A,
and B; = A;. Then § = F(A;) — cu(A) > F(A) — ep(Ay) = Eu(Bi \ Ai) > § >,
L<L=1L and, thus, O > 0. Moreover, O € Og by Lemma 2.8, O € Op; NOps
trivially and O € Opy since B; = A;. m

Let

Op = Op1 N Opa N Ops.

Summing up this section:

Corollary 2.4 If O ¢ (Os N Op) and y > 0, then there is O € OsNOp such that
0> 0.

Proof. Let O ¢ (Os N Op) be such that y > 0. Let O; = O if O € Og, and
O, € Og be given by Corollary 2.3 otherwise. Then O; > O.

Let Oy = Oy if Oy € Os N Opy, and Oy € Os N Op; be given by Lemma 2.9
otherwise. Then Oy > O.

Let O3 = Oy if Oy € Os N Op1 N Ops, and O3 € Og N Opy N Ops be given by
Lemma 2.11 otherwise. Then O3 > O.

Finally, Let O =05if O3 € OsN Op, and O € OsnN Op be given by Lemma
2.12 otherwise. Then O > O and, since O Z (Os N Op), we have O # O and, hence,
0>0. =

For each O € Op, let

C :{AZQ(BJ\AJ>l,jELade<l—1}
U{A N (Nj1(B; \ A5)°) : L € L}
U{(Bl \ Al) N (ﬂj>l+1A§) 1< < L}
with the usual convention that the intersection of an empty family of subsets of €2 is
Q) itself. As discussed in Section 4, we have that C is a partition of U;c; B;.
Recall that
C(A) ={AN(Bj\ 4j) 1 j <=1 U{A N (Nja-1(B; \ A4;))}
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for each [ € L and
C(B\ A) ={A; N (B \ Ay) 1 j > 1+ 1FU{(B\ A) N (Nys11A45) }
for each 1 <1 < L. Thus,

A; = Ugec(a,)C for each | € L and (2.2)

B\ A = UCEC(BZ\AZ)C for each 1 <[ < L; (2.3)

thus, C(A;) (resp. C(B;\ A;)) is a partition of A; (resp. B;\ A;). Moreover, as noted
in Section 4, we can obtain {4;, B, };cr, from C by using (2.2) and (2.3) together with

BL = AL and (24)
B, = Al U (Bl \ Al) foreach 1 <[ < L. (25)

Note that (2.2)—(2.5) simply reproduce the formulas in Footnote 13 in the main text.
We have that {C(4;),C(B;\ A;) : 1 € L} is a collection of subsets of €2 such that

C(A) NC(Ag) =0 for each k,l € L with k # 1, (2.6)
C(B;\ A)NC(Bx \ Ar) =0 for each k,l € L with k # [, and (2.7)
C(Ax)NC(B\ A) =0 for each k,l € L with k <1+ 1. (2.8)

It then follows that if C is pairwise disjoint and {A;, B}, are defined from C via
(2.2)-(2.5), then O automatically belongs to Op as the following lemma shows.

Lemma 2.13 Let O be an organization such that y > 0. If C is a pairwise disjoint
collection of subsets of 2 such that {C(A;),C(B;\ A;) : | € L} satisfies (2.6)—(2.8),
and { Ay, B}, satisfies (2.2)—(2.5), then O € Op.

Proof. It follows immediately from (2.4) that O € Op,. Note that B; N A;41 =
(Bi\Ai)NA;j41)U(A;NA; ) foreach 1 <i < Land (B;\ A)NBr = (Bi\ A)N (B \
A))U (B \ A) N Ay,) whenever k < [. Thus, it is enough to show that 4, N Ay = ()
and (B, \ A;) N (B \ Ax) = 0 for each k,l € L with k # [, and (B, \ 4;) N Ay = 0 for
each k,l € L with k <l and k =1+ 1.
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Let k,l € L be such that k <l or k =1+ 1. In either case, kK <[+ 1 and, hence,
C(Bl \ Al) N C(Ak) = Q) ThU_S7

(Bi\ A)) N Ay, = Uceepay) (Uoeea,)(CNC')) =0

since CNC" =0 if C # C" and C(B; \ A) NC(A;) = 0. The argument for the

remaining intersections is analogous, thus we obtain that O € Op. =

2.5 No gaps

In this section we show that any organization that does not have the properties stated
in Theorem 2 is dominated by some organization that has them, as well as those in
the previous results.

Let Ogi be the set of organizations O such that min;<;<z a; = 0, where, recall,

a; = min B; for each ¢ € L with the standard convention that min () = oco.

Lemma 2.14 If O € (OsNOp) \ Og1, then there is O € 0OsNOpn O such that
0>0.

Proof. Let O € (Os N Op) \ Ogy. For each C € C, let ac = minC; then
min;<;<z, @; = mingee ac. Thus, letting C' € C be such that ac = min;<;<, a;, the
fact that O & Ogy implies that ac > 0. Thus, [0,ac) C (UE, By)°.

Let ¢ > 0 be such that [ac,ac +¢) € C and let 0 < & < e be such that
F([0,€") = F([ac,ac + €)); the existence of ¢’ follows by Lemma A.12.

Define an organization O equal to O except that C' = [0,£') U (C'\ [ac, ac + €))
and {A;, B/}, are defined from {D : D € C} via (2.2)-(2.5). Note that C N D =@
whenever D € C is such that C' # D because [0,¢) C (U, B))“.

We have that F(D) = F(D) for each D € C. Thus, F(4;) = > pec(4y) F(D) =
ZDGC(AJ_)F(D) = F(A,) for each j € L. In addition, for each j € L, let C; =
(Ui<iC(A1)) U (Ui;C(Br \ Ar)). Then,

F(A; U (Ui B)) = F((Uig; A) U (Ui (B \ A1) = F(Upee, D) = Y F(D)

Dec;

- Z A U(Ul<]Bl))

DeC;
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It then follows from Lemma A.11 that &; = «; for all j € L. Thus, O € Og by
Lemma 2.8 provided that 1 € M. In addition, it follows that O € Op by Lemma
2.13 and that O € Og1 by construction.

We have that u(C) < p(C) and (D) = p(D) for each D € C\ {C'}. Moreover,
since O € Op, F(UierA) = Y1 F(A) = Y0, F(A) = F(UierAy) since F(A) =
F(A)) for each | € L. Tt then follows that § > y. This, together with L = L, shows
that O > O. Thus, in the case where 1 € M, set O =0.

If 1 & M, then take i € M and, therefore, F(A;) — (cu(A;) +Epu(B; \ 4;)) > § > .
Define O by L = {i}, fi =1, & =1,

R A; if min A; =0,
Ai -

0,') U (4; \ [min A;, min 4; +¢)) otherwise,
where 0 < ¢ < max A; and 0 < ¢’ < € is such that F([0,¢)) = F([min A;, min A;+¢)),
and B; = A;. Then, F(4;) = F(A;) and u(4;) < u(4;). Hence, j = F(A;)—cu(4;) >
F(A;) — ep(A) — Eu(B; \ 4;) > § >y, L < L = L and, thus, O > O. Moreover,
Oe Og by Lemma 2.8, O e Op1NOp;z trivially, O c Ops since B@- = Ai and O € Ox
by construction. m
Let Og be the set of organizations O € Og; such that UiLleZ- = [0, max;<;<g, b;)

where, recall, b; = max B; with the convention that max ) = —oo.

Lemma 2.15 IfO € (OsNOpNOc1) \ Og, then there is O e 0sNOpNOg such
that O > O.

Proof. Let O € (Os N Op N Oc1) \ Og. Since Uiep By = UgeeC and C € T
for each C' € C, we write C' = UG [acr, bor) where [ac,, ber) N [acy, bor) = 0
whenever r # r’. We then order the set {ac,,bcr : C € C,1 < r < m¢g} and
write it as {a1,b1,...,am, by} with a3 < by < as < by < -+ < @y, < by, so that
Uier B = U Jar, b,). Let G = {i € {2,...,m} : a; > b;_1} be the set of “gaps”.
Since O € O \ Og, G # 0.

We will define an organization O € Og N Op N Og such that O > O and (i)
0Oec0sNOpNOgor (i) C = {C:C e}, C=U"acy bey), With [acy, bor) N
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[acrr, Do) = O whenever r # 7/, for each C' € C (and, hence, [{ac, : C € C,1 <
r < meg}| = m) and min G = min G + 1. Repeating this argument at most m times
produces the desired O since then |{ac, : C € C,1 <7 < mc}| =m and min G > m
implies that G = 0.

We have that [buming_1,ming) C (UZ,B))¢. Let C € C and 1 < 1’ < m¢ be such
that acy = aming. By Lemma A.12, let € > 0 be such that F([bping_1,bcr —€)) =
F(lacy, bey)) and pu([bmin -1, ber — €)) < p[acy, berr)).

Define an organization O equal to O except that
é = (C \ [(ZCT/, bC’r’)) U [bminG—h bCr’ - 5)

and {A;, B;}L, are defined from {D : D € C} via (2.2)-(2.5). Note that C N D =
whenever D € C is such that C' # D because [bminc—1, minc) € (UX, B))°.

We clearly have that C = {D : D € C} and that D = U"3[ap,,bp,) for each
D € C (with acr = buing—1, bow = bow — e, and dp, = ap, and bp, = bp, whenever
(D,7) # (C,7")). In addition, min G = min G + 1 since @; = a; and b; = b; for each
i # Min G, fmine = bminG-1 = bminG-1 N bininG < bmine < GminG+1-

Furthermore, we have that a; = 0 since O € Og; and min G > 1 by definition.
Hence, a1 = a; = 0 and, thus, O € Og.

In the case where 1 € M, an argument completely analogous to the proof of

Lemma 2.14 shows that setting 0=0 gives the desired conclusions.

If 1 ¢ M, then take i € M and define

A; =0,4a)

where @ > 0 is such that F([0,a)) = F(A;). If F(A;)) = 1, then set @ = sup(Q;
otherwise, the existence of a follows by an argument analogous to that of Lemma

A.12: Consider g : Ry — R, defined by g(a) = F([0,a)) for each a € R,. Then
g is continuous, ¢(0) = 0 < F(A;) and lim,spag(a) = 1 > F(A;). Hence, @

exists by the intermediate value theorem. We then have that p([0,a)) < u(A;).
To see this, first note that A; € 7 and, hence, we write A4; = U™, [ar, b.) where

lar, b.) N [ay, by) = 0 whenever r 2 /. If p([0,a)) > p(A;), then a > > 7" (b, — a).
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Since YV_1(b, — a,) < a; for each j = 1,...,m with 3.°_ (b, — a,) = 0 (which can
easily be established by induction), it follows by Lemma A.12 that

m m j—1

F0,) (b —a) =D F(D_(br—a), > (b —ar) =Y F(lag, b)) = F(A)

r=1 7j=1 r=1 r=1 7j=1

and, hence, F([0,a)) > F([0,3",(b, — a,))) > F(A;), a contradiction. Thus,

r=1

p((0,d)) < p(Ai).

Define O by L = {i}, ; =1, " = 1, A; = [0,4) as above and B; = A;. We then
have that O € Og by construction. An argument completely analogous to the proof
of Lemma 2.14 shows that O > O and O € OsNOpN0O¢g. =

Summing up this section:

Corollary 2.5 If O € OsNOp N Og and y > 0, then there is O € Og N Op N Og
such that O > O.

Proof. Let O ¢ Os N Op N O¢ be such that y > 0. Let O; = O it O € Os N Op,
and O; € Og N Op be given by Corollary 2.4 otherwise. Then O; > O.

Let Oy = 01 if O € OsNOpNOg, and O3 € OsNOpNOg; be given by Lemma
2.14 otherwise. Then O, > O.

Finally, let O=0,if Oy € Os N Op N Og, and O € OsnOpnOs be given by
Lemma 2.15 otherwise. Then O > O and, since O Z OsNOpNQOg, we have O #+0

and, hence, O0>0. m

2.6 Order of sets

In this section we establish Theorem 3. For convenience, let
O =0sN0pN0O.

Let O.; be the set of organizations O such that C' < C’ for all C,C" € C with

Cc > Ccr.

Lemma 2.16 If O € O\ Oy, then there is O € O N Oy such that O > O.
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Proof. For each organization O and each C' € C, let I be the set of C" € C\ {C'}
such that ¢ > ¢ but C' < C” does not hold. Let [ ={C € C: I # (}. Tt follows
by definition that if I = () then O € O_;.

Let O € O\ O.y; then I # 0. Order C and write C = {C},...,C,} such that
cc, > ¢y, foreach I = 1,...,n. Let i € {1,...,n} be the smallest [ € {1,...,n}
such that I, # 0 and let j € {1,...,n} be the smallest [ € {1,...,n} such that
C; € I,. We will define an organization O € O such that O > O and either (i)
0OeONO_ or(ii)C={C:Cec}, \1:@| < |Ig| — 1 and ]l:él\ = () for each I < i.
By repeating this argument at most )., |/¢| times, we obtain the desired 0.

Since C;,C; € I, C; = U™ E, and C; = U™, E'" where {E, : r = 1,...,m}
is a collection of pairwise disjoint intervals and so is {E. : » = 1,...,m'}. Since
C;NCj=0,E,NE. =0 foreach 1 <r <mand 1< s <m' Since C; < C; does
not hold, there is 1 <7 <m and 1 < s < m/ such that E. < E,.

We will define an organization 0eb by just changing F, and E. such that
(a) O > O,

(b) H(r,s) € {1,...,m} x {1,....m'} : B, < E} < [{(r,s) € {1,...,m} x
{1,...,m'}: EL. < E.}| -1,

(c) C={C:Cec},

(d) D = D for each D € C\ {C;, C;},

(e) C;UC; = CiUC;,

(f) &y = oy for each [ € L and, hence, ¢, = ¢p for each D € C,
(g) maxC; < maxC; and

(h) minC; > min C}.

By repeating this argument at most |{(r,s) : E/ < E,}| times, we obtain the desired
O. Indeed, we then have that C; < C; by (b), and that all the properties (a) and
(¢)~(h) hold in O. Since C; < C}, it follows that C; ¢ f@. In addition, we claim
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that if D & I, then D ¢ l:@. To see this, note that D ¢ I, implies cp > c¢, or
¢p < c¢, and C; < D. We have that D = D by (d); moreover, e, = cc; and ép = cp
by (f). Hence, ¢ > ¢g, if cp > cc, and, thus, D ¢ f@. If cp < ce, and C; < D, then
max C; < max C; < min D = min D by (g) and (d). Thus, C; < D and D ¢ iéi'

By combining C'j ¢ 1:@ with the fact that D ¢ I, implies D¢ INCYZ_, we obtain that
e, | < e, — 1.

We finally show that I, e = () for all I < 7. Let I < i be given. By the definition of
i, we have that I, = () and, by (d), C; = C;. Let D € C be such that ¢ < ¢¢,- Then
cp < ¢, by (f); since I, = 0, C; < D and, hence, maxC; < min D. If D ¢ {C;, C}},
then max C; = max(C; < min D = min D by (d). If D = Cj, then c¢, < c¢, < ¢,
and, due to I, =0, C; < C; and C; < C;. Because C; U C’j = (C; UCj and C, < éj,
it follows that

min C; = min(é’i U C~'J) = min(C; U C;) > max C; = max C,

and, thus, C; < C; = D. Finally, if D = C}, then I, = 0 implies C; < C; and, hence,
max C; = max C; < min C; < min C; by (h). Thus, C; < C;. This shows that fél =0
and completes the argument to show that O has all the desired properties.

We turn now to the properties of O. Let E, = [a,b) and E! = [d’,V); then
a <b <a<b Let ¥ = FE UE, and let a € Q be such that F(Q' N[0,a)) =
F(E,); the existence and uniqueness of a follows by an argument analogous to that
of Lemma A.12, i.e. use the continuity and monotonicity of the function ¢ defined
by g(a) = F(' N [0,a)) for each a € Q, g(0) = 0 < F(E,) and lim, ,sup0 g(a) =
F(E,)+ F(E.) > F(E,).

In addition, p(€' N [0,a)) < w(FE,). To see this, note that ' N [0,a) = [d/,a)
or ¥ NJ0,a) = [a,V)Ula,a). In the first case, the conclusion follows from Lemma
A.12. In the second case, it follows that F([a/, ")) + F([a,a)) = F([a,b)) and, hence,
F([a',V)) = F([a,b)). Lemma A.12 implies that b’ —a’ < b— a; thus, u(¥'N[0,a)) =
V—d+a—a<b—a=pu(E).

Let O be equal to O except that £, = Q' N [0,a) and £, = Q' \ [0,a). Thus,
F(D) = F(D) for each D € C and, hence, &; = o for each | € L; in particular (f)
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holds. Thus, O € Og by Lemma 2.8 provided that 1 € M. Tt is clear that O € Og
since UZGLBZ = Ujer B;. Furthermore, it follows by Lemma 2.13 that O € Op. Thus,
0€O0.

Properties (b)—(e) are satisfied by construction and we have already pointed out
that (f) holds. We will show (a) below. As for (g), we have that max C; = max C; if
b < max C; and max C’Z < max (; if b = max C}; thus, max C’Z < max C;. Similarly,
we have that min C’j = minCj if ¢’ > min C; and min Cj > minCj; if ¢’ = minCy;
thus, min C; > min C; and (h) holds.

Furthermore, (D) = (D) for each D € C\ {C;, C;}, u(C;) < u(C;) and u(C;) +
w(Cs) = u(Cy) 4+ u(Cy). We have that F(UjepA)) = F(UierA;) since both O and O
belong to Op and F(D) = F(D) for each D € C. Using O,0 € Og and Lemma A.10,

y = F(UierAr) — ZDeC N(D)CD and § = F(UerAy) — ZDeC N(D)CD'

gl g

. (CC,L- _CC]‘ )

Consequently, letting p = u(C;) — u(C;), we have that y —y = ’ > 0. This,
together with L = L, implies that O > O. This completes the proof when 1 € M.
If 1 ¢ M, then define instead O as in the proof of Lemma 2.15 to obtain O € O
and O > O. Since L = {i}, it follows that C = {4;} and, thus, O € O trivially. m
Let O, be the set of organizations O € O,y such that C is an interval for each
CecC.

Lemma 2.17 I[fO € ON O, and C = {Cy, ..., Ciey} is such that co, > -+ > cop,
then there is O € O N O such that y >y and L < L. Moreover, when y =1y
and L = L, then l; = l; for eachi € L, C ={C : C €C}, ¢} < --- < é|c| and
F(C) = F(C) for each C € C.

Proof. Let O € O N O<1. Define {cy,...,¢,} ={cc: C €C} withey > ... > ¢,
and C; = {C € C : ¢ = ¢} for each 1 < ¢ < n. For each 1 < ¢ < n, there is
ki € {1,...,|C|} and r; € {0,...,|C| — 1} such that C; = {Ck,,...,Cl4r,}. Let I
be the set of i € {1,...,n} such that Cy, < --- < Cf,,, does not hold; we may
assume that I # () since, otherwise, just set O = 0. We will define an organization

O € ON O such that § >y, L < L such that (a) if j = y and L = L, then I; = I,
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for eachi € L, C = {C: C € C}, Cr, < -+ < Chyy, for each i ¢ I, F(C) = F(C)
for each C' € C and |I| = |I| — 1, and (b) otherwise, O € O N O.. By repeating this
argument at most |I| times, we obtain the desired O.

Since O € Oy, Ugee,C < Ugee,.,C for each i = 1,...,n — 1. Since O € Og,

i+1
Uier B = U, Ugee, C' is an interval. Thus, it follows that Ugec,C is an interval for
eachi=1,...,n.

Let i € I and Ugee,C' = [a,b). Then obtain {C' : C' € C;} such that C' is an

interval and F(C) = F(C) for each C € C; as follows. Write C; = {Cy,, ..., Criqr, } =
{Cir,...,Ci, ..} Let by be such that F([a,by)) = F(C;,) and set C;, = [a1,by)
with a7 = a; assuming that éil, e ,C’iﬁl

F(él) = F(CH) and éil = [al,bl) witha =a; < by =ays <by=---= aj—1 < bjfl,
let a; = b;_y and b; such that F([a;,b;)) = F(C;,). The existence and uniqueness of

J

are such that, for each 1 < [ < 5 — 1,

b; follows by an argument analogous to that of Lemma A.12, i.e. use the continuity
and monotonicity of the function g defined by ¢g(z) = F([a;,x)) for each z € €,
g(a;) =0 < F(Cy;) and lim,_, g(z) > F(Cj;).

Let O be equal to O except that, for each C' € C;, C is replaced with C. We have
that L = L with [; = I; for eachi € L,C = {C' : C € C}, Cp, < -+ < Chpr,, F(C) =
F(C) for each C € C and |I| = |I| — 1 by construction. Also, Ugee,C' = Ugee,C' s0

that > oce 1(C) = 2 cee, 1(C). Tt then follows by Lemma A.10 that
I—y=cq (ZM(C)— Zu(é)) =0.
cec; cec;
This completes the proof when 1 € M.

If 1 ¢ M, then define instead O as in the case 1 ¢ M in proof of Lemma 2.15. In
particular, L =1 < L and B; = A, = [0,a) and § > y, thus, we obtain O € Ono..
]

Let

O"=0sNOpNOzNO-.
Recall that, given two organizations O and O', we write O > 0 if O >0 or Uy =1y,
ﬁ:LandZi:liforalliGL.

Summing up this section:
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Corollary 2.6 If O & O* and y > 0, then there is O € O such that O 2 0.

Proof. Let O ¢ O* be such that y > 0. Let O; = O if O € O, and O; € O be
given by Corollary 2.5 otherwise. Then O; > O.

Let Oy = O, if Oy € on O.1, and Oy € on O,1 be given by Lemma 2.16
otherwise. Then O, > O.

Finally, let O = O, if O, € ©*, and O € O* be given by Lemma 2.17 otherwise.
Then O > 0. m

2.7 Existence of optimal organizations

Recall from Section A.10 that O € O* is fully specified by (L, 1, ) such that L € N,
1 is a bijection from C to {1,...,m} where m = |C|, and p = (u1,. .., pm) € RY is
such that » 7", p1; < p(€2).

We start with the following lemma. Let Og be the set of quasi-organization defined
by (L,, 1) as in Section A.10. Specifically, if O € Qg is actually an organization,
then O € O*. For further use, we say that O is a specialized quasi-organization if
=11t =0, 512%,11211, <;=< and, for each i # 1, t! =0, t?zl,ﬁlz% and
l; = {i}. Note that if O is a specialized quasi-organization, then O need not belong

to Og; for that C must be ordered.

Lemma 2.18 Let O be a specialized quasi-organization. If O is such that L = L\
{i € L : oy = 0} but otherwise equal to O, then &; = «; for each i € L and
UieiAi = Uier Ay Consequently, O is an organization, § =y, L < L and L = L if
and only if O is an organization. In addition, if O € O, then 0 e O

Proof. Let O be a specialized quasi-organization and let ¢ € L be such that
a; = 0. Then A; C Ui;A; C Uj;B; and AS C Uj;B;. Since B; \ A; C A¢, we have
that B; = A; U (B; \ 4;) C Ui« By.

Let O be such that L = L\ {i € L : a; = 0} and I; = L but otherwise equal to
O. We start by showing that, for each j € L, Uj<;A; = Uy ;A Let £; = {l e L:

[ < j} and proceed by induction. The conclusion trivially holds for j = 1. Assuming
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that Uyj_1 Ay = Ujer, , Aj, we have that, if j — 1 € L, UjA = (Uiej1 A) U Ay =
(Urer, ,A) U Aj1 = Ug, Ay if j — 1 ¢ L, then Ui A = (UejaA) U Ajy =
Uicj1 41 = Ui, A1 = Ui, Ap since Aj 1 C Ujoj 1 4;

An analogous argument, now using B; C U,.;B; for each i ¢ j}, shows that, for
each j € L, Uj.;B; = Ulei:l<jBl' It then follows that &; = «; for each ¢ € L.

Furthermore, U,.; Ay = UierA; since if L € L, Uger A, = (U< A)) U AL =
(Uree, A) U Ap = Uy Ay if L ¢ L, then Ui Ay = (UerA)) U Ap = Uiep Ay =
Uier, Ai = U Ay since Ap C Ui Ay

The remaining properties are now clear. m

Let X = {(p1,- - pm) € RT 23700 1y < ()} and recall that

max (mgx (Frtrel%gzi yL,w(M)))

exits when (2 is bounded.
Let O* € Og be defined by setting (L*,¥*, u*) according to (24)-(26). We then
have that, for each O € O, there is (L, ), 1) such that Y = yr (1) — (L — 1)n <

Yrp— (L—1)n < maxy yry — (L —1)n < maxy, (maxy yrs — (L —1)n) = Y. Hence,
Yy <Y™. (2.9)

Also note that if O € O* is such that L = L*, then |y = L= L* =[] and [; = {i} = [}
for each i € L'\ {1}; hence,

l; =17 for each i € L. (2.10)

We can now turn to the proof of Theorem 4 where we show that actually O* € O*
and that O* is an n-optimal organization.

Proof of Theorem 4. We have that O* is an organization. Suppose not; then
O € O* given by Lemma 2.18 is such that Y = § — (L — 1)y = y* — (L — 1) >
y* — (L* — 1)n = Y*, a contradiction to (2.9).

It suffices to show that O* is an n-optimal organization. Suppose not; then there
exists an organization O such that (i) Y > Y™* or (ii) y = y*, L = L*, [; C [} for each
i € L* and [; # [} for some j € L*. It is clear from (2.9) and (2.10) that O ¢ O*.
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Thus, it follows from Corollary 2.6 that there exists O € O* such that (iii) O > O or
(iv) g=vy, L=Land [; =1; for all i € L.

If (iii) holds or if (iv) holds together with (i) we obtain that ¥ > Y*. But this is
a contradiction since O € O* together with (2.9) imply Y <Y

If, instead, (iv) and (ii) hold, then L = L*, I; C I¥ for each i € L* and [; # I} for
some j € L. But this is a contradiction since O € O* together with (2.10) imply that
[, = [} for each ¢+ € L*. This contradiction shows that O* is an n-optimal organization

and completes the proof of Theorem 4. m

3 Optimal organizations with at least two layers
and nonexistence of lexicographically optimal or-
ganizations

In this section we provide sufficient conditions for optimal organizations to have at
least two layers when ¢ is sufficiently small. We then use this result to show that no
lexicographically optimal organization exists when ¢ is sufficiently small.

The sufficient conditions for optimal organizations to have at least two layers
require that communication is not too costly and that organizations with one layer

do not have full knowledge:
(A3) h < 1.
(Ad) f(w) < e

Indeed, if (A4) holds, then the solution u; to the maximization problem defining 1
is less than w. More importantly, if we add (A3) and (A4) to (Al), we obtain that
any lexicographically optimal organization has L > 2 when ¢ is sufficiently small.
To see the above and to see what happens in the case of n-optimal organizations,
consider the organization with two layers described in Theorem 5. It satisfies L = 2,

Bl \Al = (Al U AQ)C, Al = [O,/,Ll) and AQ = [,ul,ul -+ /,1,2) for some (/,Ll,lug) € X2 =
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{(271,%2) € R%r M R i 1) < (ZJ} Let

fy= max F(p1 + pa) — cpy — ch(F(p1 + pe) — Fpa))pe

(k1,112) €X L+ R(F (1 + p2) — F(pa))

be its output when p; and ps are chosen optimally and when £ = 0 (as we assume £ >
0 throughout the paper, ¥, is merely an auxiliary concept).! As we show in Appendix
A, we then have that gy, > y;. Thus, any lexicographically optimal organization has
L > 2 when ¢ is sufficiently small and, if n < ¢ — y;, then the same holds for any
n-optimal organization.

We now show formally that if £ and 7 are sufficiently small and (A1), (A3) and
(A4) hold, then any n-optimal organization has at least two layers (in fact, only the
requirement that {2 be bounded in (Al) is needed). Lemma 3.1 shows that g is

strictly above the output of the best organization with one layer.
Lemma 3.1 If (A1), (A3) and (A4) hold, then ys > y; > 0.

Proof. Let p; € Q be such that y; = F(u1) — cuy. It is clear that 0 < y; < 1 and

that 1 < @, the latter by (A4). Letting ga(wy, zy) = S22l ta) Fln))os

for each (x1,z5) € Xo, it follows that g,(u1,0) = y; and %“;’0) = f(u1)(1 — y1h).

Since h < 1 by (A3) and y; < 1, it follows that there is pg > 0 such that go(p1, o) >

Ya(p1,0) = y1. m

Lemma 3.2 states and proves the main conclusion of this section.

Lemma 3.2 If (A1), (A3) and (A4) hold and 0 < n < g2 — y1, then there is & > 0

such that, for each 0 < & < &', L > 2 in any n-optimal organization.

Proof. Let ¢ = grf}—“"; then £ > 0 by Lemma 3.1. Let O be a lexicographically
optimal organization and suppose that L < 2. Then L = 1 and y = y;. Consider
O with [ = 2, B, = (Al U 1212)‘3, A = [0, 141) and Ay = [f1, p1 + p2) for some

(g1, o) € Xo such that §o(p1, p2) = 2. Then § = g, — Hh(é((i;f;;)’f%(m)) > o — E@.

!To obtain the output of this organization, we need to subtract £(1 — 3 — p2) to the numerator

of :ljg.
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Hence, Yy > Yo —&w —m >y =Y since £ < £'. But this contradicts the optimality
of O. m

Existence of n-optimal organizations follows from Theorem 4. As the next result
shows, under (A1)—(A4), there is no lexicographically optimal organization when & is

sufficiently small.

Theorem 3.1 If (A1)-(A4) hold, then there exists € > 0 such that there is no lexi-

cographically optimal organization for each 0 < £ < é .

The intuition for Theorem 3.1 is as follows. Under (A1)-(A4), if a lexicographically
optimal organization exists, then L > 2 and it has the structure described in Theorem
5 (the latter is shown in its proof). To be concrete, consider the case where L = 3 (the
proof of Theorem 3.1 considers the general case). Since ay = hF'(As), ag = hF'(As3)
and By \ Ay = Q\ (41 U Ay), its output is

X F(A) —ep(Ar) — ch Y37, F(ADu(A) — €@ — p(Ar) — p(Az))
L+ hY), F(A)

Y

Output can now be increased by adding a forth layer and by splitting Az in half, so
that if A3 = [a,b) and Ag and A, denote the knowledge sets of layers 3 and 4 in the
new organization, then Ay = [a, (a+b)/2) and A, = [(a+b)/2,b). The only change to
output is that —chF(As)u(As) is replaced with —Ch(F(A:g)/J,(Ag) + F(fl4),u(/l4)) =
—w. Thus, the learning costs of Az are cut in half and output increases.

The proof of Theorem 3.1 requires the following technical lemma showing that if

L = 2 is optimal, then the size u(Ay) of layer 2’s knowledge set would necessarily be
bounded below. Let & > 0 be given by Theorem 5 and ¢ > 0 be given by Lemma 3.2.

Lemma 3.3 If (A1)-(A4) hold, then there is e > 0 such that, for each & € (0, min{¢, ¢'}),
if O is a lezicographically optimal organization with L = 2, then u(As) > e.

Proof. Suppose not; then, there are sequences {&x}72, {Or}e2, and {pax}i2,
such that, for each k € N, 0 < & < min{&, ¢}, Oy is a lexicographically optimal

organization with Ly = 2 and po = p(Asx) — 0. Let g = p(Ay i) for each k € N;
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since {&}52, and {1}, are bounded, we may assume that they converge; let
§ = limy & and g = limy, g .

For each k € N, it follows by Lemma A.21 that

F(pap 4 pog) — cpng — ch(F (g + pog) — F(par)) pog — Ex(©0 — par — Hog)
L+ h(F(prg + pox) — F(pig))

We then have that pp > 0 for all & € N. Indeed, if por = 0 for some £,

Yk =

then yi, = F(uix) — cpnp — &(w — 1) < v and this contradicts the optimality
of Op. Furthermore, u; > 0; indeed, otherwise, y. — 0 and, hence, y, < y; for
all k sufficiently large, contradicting the optimality of Oy (recall that (A2) implies
that y; > 0). Thus, g1, > 0 and pey > 0 for all k£ sufficiently large. In addition,
¢ = 0 since, otherwise, limyyp = F(p1) — cpn — &0 — pq) < y1 if py < @ and
limg yr, = F(0) — cw < y1 by (A4) if p; = @; hence, y, < y; for all £ sufficiently large,
contradicting the optimality of Oy.

Suppose first that g, + o < @ for all k£ sufficiently large and fix such k. For

each i = 1,2, p;  satisfies the first-order condition

00k (141, k5142, k)

0 , 4
yk(,ul,k ,U2,k) — 0oy = _ (8uz,k ;.
aﬂi,k Vi ng;N2k

In particular, for i = 2, we obtain

J(pap + prog) — ch(F(pig + pog) — Fpar)) — chf (g + pop)pior + &k
hf(,ul,k + MQ,k)

Yk = . (3.1)

Thus, (3.1), together with f(@w) > 0, implies that limy y, = % = + > 1. But this
is a contradiction, since y, < 1 for all £ € N.

Hence, pt1 j + po, = @ for infinitely many k; taking a subsequence if necessary, we
may assume that py  + por = @ for all k. Hence, 1y = @ and limpy, = 1 — cio =
F(w) —cw < y; since f(w) < ¢ by (A4). Hence, y, < y1, contradicting the optimality
of Oy. This contradiction establishes our claim and concludes the proof. m

We now prove Theorem 3.1. Let & > 0 be given by Theorem 5, & > 0 be given
by Lemma 3.2 and ¢ > 0 be given by Lemma 3.3. Define £ = min{¢, &', chf(@)e}

(note that f(w) > 0 by (Al) and, hence, €>0)and let 0 < £ < £. Suppose that a
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lexicographically optimal organization O exists. Then L > 2 by Lemma 3.2 and

_ S F(A) = ep(Ay) — ch Yo F(A)(A) — €@ — p(Ar) — p(Ay))
L+ hYr, F(A)

Y

by Lemma A.21.

Consider first the case where L > 2. In this case, write A;, = [a,b) with a < b,
m = (a+ b)/2 and consider an organization O equal to O except that it has L + 1
layers, A;, = [a,m) and Ap,y = [m,b). Then

1(ArL)
2

F(AL)u(Ar)
2

F(Ap)u(Ar) + F(Apy)m(Apn) = (F(Ap) + F(Ap)) =

and, hence, § > y. But this contradicts the optimality of O. This contradiction shows
that no lexicographically optimal organization exists when L > 2.

We finally consider the case where L = 2. In this case, u(As) > ¢ by Lemma 3.3
and, hence, F'(Ag) > f(w)e. Write Ay = [a,b) with a < b, m = (a+b)/2 and consider
an organization O equal to O except that it has 3 layers, A; = A;, A, = la, m),
As = [m,b) and By \ 4 = Q\ (4, U A,). Since F(A,) + F(A3) = F(A,) and
N(A2) = M(A3) = p1(A2)/2,

—chF(Ay)(Ag) — chF(As)u(As) + chF(Ay)p(As) + Eu(As) — Eu(Ay)
1+ hF(4y)

y—y=

Since chF(As) > chf(w)e > &, it follows that

—chF(Ag) M2 4 chF(As)u(As) — €442) (chF(A,) — €)#42)

2 2

1+ hF(Ay) 1+ hF(A)

y—y= > 0.

But this contradicts the optimality of O. This contradiction shows that no lexico-

graphically optimal organization exists.

4 Codes for the small £ case

In this section we include the codes used for the computations in Section 5.2. The
codes are written in python and executed in spyder 3.3.6. The following three codes

are used: First, org.py computes the optimal organization as a function of the param-
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eters and hier.py computes the best hierarchy, also as a function of the parameters.?

Then diff.py makes all the reported computations for the chosen parameter values.

4.1 org.py

Computes the optimal organization when the density is affine,
f(x)=a-bx,

as a function of the parameters c, h, b and barL

def sol(c,h,b,barl):

import numpy as np

from scipy.optimize import minimize, LinearConstraint

a=(2+b)/2 #so that f is indeed a density
def F(x):
return (x*(2*a-b*x))/2

#this is the cumulative distribution

#bound on parameters to compute xi
cl=0.1
cu=1.49
bl=1
bu=1.99
al=(2+bl)/2
au=(2+bu) /2
h1=0.1

2Both of these codes use the built-in function minimize. We have tried replacing it in org.py

with basinhopping and the results are virtually the same but the program takes far longer to run.
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hu=1
barxil=(clxhl*(2-bu))/ (2% (aux*2)* (barL**x2))
barxi2=(hl*(2-bu)*(al*x*x2-cu*x*x2))/4

xi=min(barxil,barxi2)/2

#Initial guess is x0=(0,...,0)

#The variable cons=(1,...,1) is used to define the constraint
x0=[]
cons=[]

for i in range(barl):
x0.append (0)
cons.append (1)
#y(x) is output as a function of (mu_1,...,mu_{\bar L})
def y(x):
ss=[F(sum(x))-F(x[0]+sum(x[2:1en(x)]))]
s=[ss[0]*x[1]]
for i in range(3,len(x)+1):
ss.append (F(x[0]+sum(x[2:1]))-F(x[0]+sum(x[2:i-1])))
s.append (ss[i-2]*x[i-1])
return (F(sum(x))-c*x[0]-c*h*sum(s)-xi*(1-x[0]-x[1]))/(1+h*sum(ss))
def g(x):
return -y(x)
#The built-in function minimize is used to maximize y, hence to minimize g
#variable bigmu contains the solution, which is a vector of dimension barL,
#for each L=1,...,bar L
bigmu=[]
con = LinearConstraint([cons], [-np.infl]l, [1])

#con is the constraint mu_1+...+mu_{\bar L}\leq 1

for j in range(1,barL+1):

33



#this is the numner of layers; if il\leq j, then mu_i is between O and 1

#otherwise, it must be zero - beta captures this
print(’org’,j)
beta=[]
for i in range(barL):
if i+1<=j:
beta.append((0,1))
else:
beta.append((0,0))
res=minimize(g,x0,bounds=beta,constraints=con)
x0=res.x #initial guess of next iteration is the solution to this one

bigmu.append(res.x)

#Next we find the optimal L
mu=bigmu [0]
L=1
for i in range(2,barlL+1):
if y(bigmul[i-1]1)-(i-1)/barL>y (mu)-(L-1)/barL:
mu=bigmu[i-1]
L=1

#Next compute alpha and beta (called here size)
alpha=[F(sum(mu[0:L]))-F(mu[0] +sum(mul[2:L]))]
for i in range(3,L+1):

alpha.append (F(mu[0]+sum(mu([2:1i]))-F(mu[0]+sum(mu[2:i-1])))
size=[1/(1+sum(alpha))]

for i in range(0,L-1):

size.append(alphali]/(1+sum(alpha)))
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return [L,mu,y(mu)-(L-1)/barL,sizel

4.2 hier.py

def sol(c,h,b,barl):

import numpy as np

from scipy.optimize import minimize, LinearConstraint

a=(2+b)/2
def F(x):

return (x*(2*a-b*x))/2

x0=[]

cons=[]

for i in range(barLl):
x0.append (0)
cons.append (1)

def y(1,x):
s=[]
ss=[]
for i in range(2,len(x)+1):
ss.append (1-F(sum(x[0:1-11)))
s.append(ss[i-2]*x[i-1])
return (F(sum(x[0:1]))-c*x[0]-c*h*sum(s[0:1-1]))/(1+h*sum(ss[0:1-1]))

bigmu=[]

con = LinearConstraint([cons], [-np.infl]l, [1])

for j in range(1,barL+1):
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print (’hier’, j)
beta=[]
for i in range(barLl):
if it+1<=j:
beta.append((0,1))
else:
beta.append((0,0))
def g(x):
return -y(j,x)
res=minimize(g,x0,bounds=beta,constraints=con)
x0=res.x

bigmu.append(res.x)

mu=bigmu [0]
L=1
for i in range(2,barL+1):
if y(i,bigmuli-1])-(i-1)/barL>y(L,mu)-(L-1) /barL:
mu=bigmu[i-1]
L=1

alpha=[]
for i in range(2,L+1):

alpha.append (1-F(sum(mu[0:i-1])))

size=[1/(1+sum(alpha))]
for i in range(0,L-1):

size.append(alphali]/(1+sum(alpha)))

return [L,mu,y(L,mu)-(L-1)/barL,size]
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4.3 diff.py

import org, hier

c=1.4
h=0.5
b=1
barL=100

a=(2+b) /2

cl=0.1

cu=1.49

bl=1

bu=1.99

al=(2+bl)/2

au=(2+bu) /2

h1=0.1

hu=1
barxil=(cl*hl*(2-bu))/ (2% (aux*2)* (barL**2))
barxi2=(hl*(2-bu) * (al**2-cu*x2))/4

xi=min(barxil,barxi2)/2

x=org.sol(c,h,b,barl)

y=hier.sol(c,h,b,barL)

d=(x[2]+(x[0]-1) /parL-y[2]-(y[0]-1) /barL)/(y[2]+(y[0]-1) /barL)
dn=(x[2]-y[2])/y[2]

print(’a’,a,’b’,b,’xi’,xi,’eta’,1/barL,’c’,c,’h’ ,h)
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print (’Increase in net output is’,100%*dn)

print (’Increase in output is’,100%*d)

print (’Optimal organization’)

print (°L’,x[0])

print (*net output’, x[2])

print (’output’,x[2]+(x[0]-1)/barL)

print(’sum of mu’,sum(x[1]))

for i in range(0,x[0]):
print(’mu’,i,’is’,x[1] [1])

print(’beta’,i,’is’,x[3][i])

print (’Best hierarchy’)

print ("L’ ,y[0])

print (*net output’, y[2])

print (’output’,y[2]+(y[0]-1)/barL)

print (’sum of mu’,sum(x[1]))

for i in range(0,y[0]):
print(’mu’,i,’is’,y[1] [i])

print(’beta’,i,’is’,y[3][i])

def F(x):
return (x*(2%a-b*x))/2

w=y [1]

ss=[F (sum(w))-F(w[0]+sum(w[2:1en(w)]))]

s=[ss[0]*w[1]]

for i in range(3,len(w)+1):
ss.append (F(w[0]+sum(w[2:1]))-F(w[0]+sum(w[2:1-1])))
s.append(ss[i-2]*w[i-1])

o=(F (sum(w) ) -cxw[0] ~cxh*sum(s) -xi* (1-w[0]-w[1]))/(1+h*sum(ss))
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g1=100*(o-y[2]) /y [2]

g2=100*(x[2]-0) /y[2]

print(’gain with same L’,gl,’%’,gl/dn)
print(’gain from L’,g2,’%’,g2/dn)

5 Simulations for intermediate values of ¢

In this section, we describe the computational approach used in Section 5.3, and we

report simulation results for other configurations of parameter values.

5.1 Computations

We assume that 7 = h and that A < 1. The former simplifies the expression for «;
for each ¢ € L\ {1} since, by Lemma A.11, a; = h(1 — F((U;<;B;) \ 4;)). The latter
then implies that o; < 1 and Lemma A.16 implies that «; > 0.

We use the approach described in Section A.10 to compute optimal organiza-
tions. In what follows, we describe the candidates for optimal organizations when the

number of layers is L and L € {1,2,3,4}.

5.1.1 L=1

The best organization with one layer does not depend on &, i.e. By \ A; = ) always.

In this case, y; = min {max {2:¢,0},1} and y; = F (1) — cpur.

5.1.2 L=2

In this case, C = {41, Ay, By \ A1}. Since A; < C for each C € C, there are two

possible orders:
1. Al < AQ < B1 \Al, and

2. A1<Bl\A1<A2.
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We let pop = p(Ar), pn = p(Az) and pe = p(By \ Ay). In order 1, Ay = [0, uo),
Ay = [po, po + 1) and By \ Ay = [po + i, po + pa + p2). Hence, oy = h(1 — F(po) —
F(37gma) + Fuo + m)) and y = (F(uo + ) — cpio — canpn — Epa) /(1 + ).

In order 2, Ay = [0, o), By \ A1 = [po, o + p2) and Ay = [pg + 2, po + p1 + 12).
Hence, ay = h(1 = F(uo + p2)) and y = (F(po) + F(37g i) — Fpo + p2) — cpo —
cagpiy — Epa) /(1 + ).

5.1.3 L=3

In this case, C = {A3N(B1\ A1), A1, Aa, AsN(B1\ A1), (B1\A1)NAS, B\ As}. We have
that A; < C for each C' € C\{A4;} and Ay < A3N(B1\A41)¢ by Corollary 2. Moreover,
Corollary 1 implies that A3N(B1\ A1) < AsN(B1\ A1), AsN(B1\Ap) < (By\Ap)NAS,
(B1\ A1) NAS < By \ Ay and Ay < By \ As.

When L = 3, we have that

Bl \ A2 = A1 U (A3 N (Bl \ Al)) U ((Bl \ A1> N Ag) and
(ByUBs) \ Ay = A, U ((By \ A)) N AS) U Ay U (By \ Ay).

Then:

ay = h(l = F(A) = F(As N (B \ A1) — F((B1\ A1) N A3)),

ag = h(l —F(A) = F((B1\ A1) N A3) — F(Az) — F(B: \ Az)),

vy= 1+ ay+ asand

0= F(A)+ F(A) + F(AsN (B \ A1)+ F(AsN (B \ 41)°9)
—cp(Ar) = Eu(Br\ A1) MAF) — cani(Az) — aop(Ba \ Az)
—cagp(Az N (Br\ A1)°) — (caz + E)pu(As N (By\ Ay)).

The following lemma uses A3 N (B \ A1) < (B \ A1) N A§ to obtain an inequality
via Theorem A.1 that will be used to order additional members of C. The idea is
that when swapping part of As N (By \ A;) with part of (B; \ A1) N A§, keeping
their Lebesgue measures constant, F'(A;N (B \ A1)) decreases and F((B; \ Ay) N AS)
increases since Az N (By \ A1) < (B \ A1) N AS. Consequently, there is a trade-off
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between production and fraction of workers, because a decrease in F'(A3 N (B \ 41))
makes production decline while an increase in F((B; \ A1) N A§), by reducing as,
increases the fraction of workers. But this change cannot be beneficial and, therefore,

the first effect must dominate.
Lemma 5.1 If A3;N(By\ A1) # 0 and (B, \ A1) N A§ # 0, then kch};;(As) >y

Proof. For each 0 < ¢ < min{F (A3 N (B \ 41)), F((By \ A1) N A§)}, we have
that

YF((B1\A)NAS), F(Asn(Bi\A1) (€) =

0 — e+ chu(As)e

v — he '
Since A3 N (B1 \ A1) < (B1 \ A1) N A§ by Theorem 3, then there is € € (0, F/(A3 N
(B1\ A1))) such that yp(s,\a,)nAs),F(asn(B:\A1)(E) < y by Theorem A.1. In fact, it
must be that ?JF((&\Al)mAg),F(Agm(Bl\Al))(5) < y since, otherwise, there is an optimal
organization where A3 N (By \ A1) < (B1 \ 41) N A§ does not hold, contradicting
Theorem 3. Indeed, let A3 N (By \ A1) = [a,b) with ¢ < b — a and consider an
organization O equal to O except that (B \ A;) NAS) = (By \ 4;1) NAS) U [a,¢) and
AsN (B \ Ay) = A30 (By\ A1)\ [a,€). Then § = y, showing that O is also optimal.

1—chu(As)
h

It then follows from yF((Bl\Al)ﬁAg),F(Agﬂ(Bl\Al))(5) <y that >y. 1

The following ordering follows from Lemma 5.1 together with Theorem A.1.

Lemma 5.2 ]f A3 N (Bl \ Al) 7& @ and (Bl \ Al) N Ag 75 @, then A3 N (Bl \ Al)c <
(B2 \ Az).

Proof. This is trivial if A3 N (B \ A1) =0 or By \ A2 = ) and it follows from
Theorem A.1 otherwise. Indeed, for each 0 < ¢ < min{F(AsN(B1\A1)), F(B2\A42)},

0+ ¢ — chu(As)e
YF(AsN(B1\ 1)), F(B2\42) (€) = v+ he ~

1—chu(As

since 7 ) > y by Lemma 5.1. m

The above discussion, together with the conclusion of Lemma 5.2, gives us the

following orders:
1. Al < Agm(Bl\Al) < AQ < Agﬂ(Bl\Al)c < (Bl\Al)ﬂAg < BQ\AQ.
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2. A < A3N(Br\Ay) <Ay < (B1\ A1) NAS < AsnN (B \ A1) < By \ As.
3. A <AsN(Bi\ A1) < (B1\ A1) NA§ < Ay < AsnN (B \ A1)¢ < By \ As.
4. Ay <Ay < AsnN(B1\ A1) < AsN(Br\ A1) < (B \ A1) NAS < By \ As.
5. Al < Ay < AsN(B1\ A1) < (B1\ A1) NA§ < AsN(B1\ A1) < By \ As.

However, since Lemma 5.2 has assumptions that may fail to hold, we also consider

the following additional three orders:
6. A1 <AsN(B1\A)) <Ay < (B1\ A1) NAS < By \ Ay < A3 N (B \ Ay)“.
7. AL <AsN(Bi\A)) < (Bi\A)NAS < Ay < By \ Ay < A3 N (B \ Ay)“.
8. A <Ay <A3N(B1\A4)) < (B1\ A1) NA < By \ Ay < A3N (By \ 4p)°.

It turns out that neither of these three additional orders is optimal in any of our

simulations; in fact, order 1 is the optimal one in all of them.

514 L=14

In thlS case, C = {Al,Ag N (B1 \ Al),A4 N (Bl \ A1>,A2,A4 N (B2 \ AQ),Ag N (B1 \
A Ay (By\ AN (Bo \ Ao)S, (By \ A NAS N AS, (Ba \ As) N AS, By \ Az}

First, we rule out as many orders as we can. Corollaries 1 and 2 imply that:
1. Ay < C foreach C € C\ {A;} (Corollary 2).

2. AsN (B \ A1) < A3N(By \ Ap)¢ (Corollary 1).

3. AsN (B \ A1) < (B \ A1) N A5 N A§ (Corollary 1).

4. Ayn (B \ A1) < AyN(By\ Ay) (Corollary 2).

5. AynN (B \ A1) < Ayn (B \ A1) N (B2 \ Ay)¢ (Corollary 1).

6. AyN (B \ A1) < (B \ 4) NnA§N Af (Corollary 1).

7. A4 N (B2 \ AQ) < A4 N (Bl \ Al)c N (Bg \ AQ)C (Corollary ].)
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8. AyN(By\ Az) < (B2 \ A2) N A§ (Corollary 1).
9. Ay < (By\ A2) N Ag (Corollary 1).
10. A3N(B1\ A1)° < B3\ As (Corollary 1).
11. (B1\ A)) NASN A < (By\ Ay) N AS (Corollary 2).
12. (By\ A1) N AN AS < B\ A (Corollary 2).
13. Ay < A3N(B; \ A1) (Corollary 2).
4. A3N(B1\ A1) < Ayn (B \ A1) N (B2 \ Ay)¢ (Corollary 2).
15. (By\ Ay) N AS < Bs \ A; (Corollary 2).
16. Ay < AyN(By\ Ag) (Corollary 2).
When L = 4, we have that
Bi\ Ay = (A3 N (B1\ A1) U (AN (B1\ 4y))
U((B1\ A1) N (AN Af)) U Ay,
(BiUB)\ A3 = ((Bi\ A1) N A U((B1r\ Ar) N (A5NA)) U A
U(AsN (B2 \ A2)) U (B2 \ Az) N Af) U Ap, and

(BiUByUB3)\ Ay = (AsnN (B \ A1) U((B1\ A)N(ASNAJ))U A
U((B2\ Ag) N AS) U Ay U (B \ A3) U (A3 N (By \ A41)9).

Hence,

ay =h(l—F(A3sN (B \ A1) — F(AsN (B \ 4))
—F((B1\ A1) N (A5 N AJ)) — F(A)),
as = h(1 —F((By\ A1) N Ag) = F((B1\ A1) N (A5 N A7) — F(A)
—F(AyN (B \ Ay)) — F((Ba \ A2) N AY) — F(As)), and
s = h(l = F(A3 0 (Bi\ A1) — F((By \ A1) N (A5 AS)) — F(A)

—F((B2\ A2) N AY) — F(Az) — F(Bs \ Az) — F(A3N (B \ A1)9)).
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Also,

v =1+as+as+ as and

§ =F(A)+F(AsN (B \ A1)+ F(AiN (B \ A1) + F(Ay)
+F(A;N(Ba\ Ay)) + F(AsN (B \ A1) + F(Ay N (B \ A1) N (B2 \ Ag)9)
—cp(Ar) — (cas + §)u(As N (Br\ A1) — (o + Eu(As N (Br \ A1)
—caspi(Az) — (cou + §an)u(As N (B \ Az)) — caspu(As N (Br\ A1)°)
—coupi(As N (Br\ A1) N (Ba \ A2)) — Eul(Br \ A1) N A5 N AJ)

—Eagu((By \ A2) N Af) — Eazu(Bs \ Az).

We use orders.py to find all orders consistent with the above results; there are 192
in total which are listed in the code.

We note that as it was the case where L = 3, order 1, which is now

Ay < Ain (Bi\ Ay) < As 1 (Bi\ A1) < Ay < A0 (B \ Ay)° < Ay (Ba \ As)
<A4ﬂ(Bl\A1)cﬂ(Bg\A2)c<(Bl\Al)ﬂAgﬂAj<(BQ\AQ)HAZ<Bg\A3,

is optimal in all our simulations.

5.2 Codes

We briefly describe the codes used in our simulations. The codes were written in
Python 3, and are available here.

The starting point are the codes orgl.2.py, orgl.3.py and orgl4.py, each of which
computes the optimal organization for the corresponding number of layers. In each of
these codes, each possible optimal ordering of C is considered and the built-in function
minimize is used to find the size of each element of C and corresponding output.?
Then the order that leads to the highest such output is selected; the code returns the
order of C, the size of each element of C, the output of the optimal organization, the

size [3; of each layer and the costs of learning v; of each layer.

3We use the solution to the optimal organization with L = 1 as the initial guess except when it

features (A7) = 0. In this case, we use basinhopping instead of minimize.
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One aspect of the above codes which is worth discussing concerns the choice of the
ordering of C, which we illustrate in the case where L = 2. In this case there are two
possible orderings: 1 = (A; < Ay < By \ A;) and ¥y = (A1 < By \ A1 < Ay). These
two orders are the same if B\ A} = (), namely A; < Ay. Hence, in orgl.2.py, the order
Ay < B\ Ay < A, is the optimal one only if yy, 4, > vy, and (B \ A1) > 1/100000,
i.e. u(By\ Ap) is significantly above 0.4

The next step is performed by orgLaux.py, which solves maxre(i 234} yr. One
issue with this maximization problem is that often y;,1 > vy, (and then possibly
yr+1 > yr due to approximation errors) by simply taking the organization that yields
yr and adding layer L + 1 with Bry; = A1 = (0. To avoid this, for e.g. L = 3
to be better than L = 2, we require not only that y3 > y, but also that u(As) =
(A3 N (By\ A1) + p(As N (By \ A1)¢) > 1/100000.

Finally, the computations and graphs reported in Section 5.3 are produced using

orgL.py, orgloptimal.py and orgLh.py.

5.3 Simulations for other configurations of paramters

In the main text we consider the baseline case ¢ = 1, h = 0.5, and b = 1, where the
optimal hierarchy when ¢ = ¢ has 3 layers. Here we start by considering alternative
values of ¢, chosen so that the optimal hierarchy has 4 layers (¢ = 1.2), 2 layers
(¢ =0.6) and 1 layer (¢ = 0.2). Then we consider changes to the density by varying
b relative to the baseline case. Next we consider changes to the relative and absolute
values of ¢ and h. Finally, we reconsider the effects of a 10% fall in h for different

values of c.

4This approach requires checking that the relevant sets that distinguish between certain orders
are (significantly) nonempty. An alternative approach is to require that yr, 4, > yr,4, + 1/1000000
for 15 to be considered better than 1, which also ensures that differences between the orders are not
just the result of the approximate nature of the minimize algorithm. We take the latter approach

in orgL4.py, where it is more convenient because of the large number of possible orders.
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53.1 c¢c=12,h=05and b=1

The case where ¢ = 1.2 is illustrated in Figure 1.> We have an analogous pattern to
the baseline case except that in the high range of &, the optimal organization has 4
layers (by design) and in the middle range A; is already empty. It is also the case
that Ay C B; \ A; in the middle range, hence the optimal organization has the same

structure as in the case where ¢ = 1.

532 ¢=06,h=05andb=1

The case where ¢ = 0.6 is illustrated in Figure 2. In this case there is no middle range
and A; is never empty. The latter fact increases the learning costs of layer 1, which
is always above those of layer 4 and also of those of layer 3, except when & = 0.06

where 15 is slightly above v.

533 ¢c=02,h=05and b=1

The case where ¢ = 0.2 is illustrated in Figure 3. Here the optimal organization has
just one layer because h = 0.5 is sufficiently high to prevent adding additional layers

which could benefit from screening.

534 c¢c=1,h=05and b=0.1

The case where the density is flatter than the baseline case is illustrated in Figure 4.
This case is analogous to the baseline case: The optimal organization is an hierarchy
when ¢ € {0.9,1}, it is fully screening when £ < 0.4 and there is a middle range
with A3 C (B \ A1) and Ay C By \ A;. The differences are: (i) the transition from

SFor the optimal organization, figure “Pure knowledge sets” gives the sizes of A; (red), Az (blue),
AsN (B \ A1) (yellow) and A4 N (By\ A1)°N(Bs \ Az)¢ (black); figure “B1\ A1” gives the sizes of
A3z (By\ A1) (red), AyN(B1\ A1) (blue) and (B \ A1) N A5 N AS (yellow); figure “beta” gives (1
(red), B2 (blue), B3 (yellow) and B4 (black); and figure “Costs of learning” gives vy (red), vo (blue),
vs (yellow) and vy (black). The sizes of the elements of C are given as a percentage of the total

measure of .
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hierarchy to the middle range happens before (£ = 0.8 vs £ = 0.7 in the baseline case)

and (i) A; becomes empty earlier too (at £ = 0.7 vs £ = 0.4 in the baseline case).

53.5 c¢c=1,h=05and b=1.9

The case where the density is steeper than the baseline case is illustrated in Figure
5. The pattern is similar to the baseline case: The optimal organization, which has
always 4 layers, is an hierarchy when £ > 0.6. It is followed by a middle range, when
€ €{0.3,0.4,0.5}, where ) # Ay C By \ A; and A3 N (By \ Ap)° is nonempty. When
€ <0.2, A3UA, C By \ A;. There are, however, the following interesting differences:

1. The first time A3 N (B; \ 4;) is nonempty is at £ = 0.3 and it is also the case
that A3 N (B; \ A1) is nonempty.

2. When € < 0.2, (B, \ A2) N A§ is nonempty.

536 c¢c=05,h=025and b=1

Same density as in the baseline case, costs are both low, with ¢ still bigger than h.
This case, illustrated in Figure 6, is analogous to the baseline case except that there
is no middle range. The optimal organization is a hierarchy with 3 layers whenever

€ > 0.3 (hence, for a larger set of £s) and is fully screening when £ < 0.3.

5.3.7 ¢=025 h=05andb=1

Same density as in the baseline case, costs are both low, with h now bigger than c.
This case, illustrated in Figure 7, favors small organizations: The optimal organization
is, for each £ € {0.1,...,1}, a hierarchy with 2 layers. The workers know about 85%

of 2 and the managers know the remaining 15%.

5.3.8 Response to a 10% fall in A

Finally we consider the response of an optimal organization to a fall in h when ¢ €

{0.2,0,6, 1.2} in addition to the baseline case considered in the main text where ¢ = 1.
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Layers and order when ¢=0.25,h=0.5,b=1
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The case where ¢ = 1.2 is described in Figure 8.° It is analogous to the case where
¢ = 1, except in the middle range of £&. When ¢ = 1, u(A;) declines but here A; = ()
before the fall in h; hence, the increase in Ay and Az N (B; \ A;)¢ is done at the
expense of Ay N (By \ A1) — the organization substitutes screening for knowledge.
Consequently, v, falls while it remained constant when ¢ = 1.

The case where ¢ = 0.6 is described in Figure 9. Recall that in this case there is
no middle range for £ when h = 0.5 and this continues to the be case when h is 10%
lower. In the range of ¢ where the optimal organization is a hierarchy, the pattern is
similar to the case of ¢ = 1. It is, however, different when the optimal organization
is fully screening. In both cases, the size of A, increases but, whereas when ¢ = 1,
A3 = A3N (B \ A1) and Ay = Ay N (By \ A4y) declined, now they increase. The
increase in the sizes of Ay, A3z and Ay is compensated by a decrease in the size of
A1, which is possible because, unlike when ¢ = 1, A; is nonempty when ¢ = 0.6.
Thus, when ¢ = 1, the drop in h forces a substitution from screening to knowledge
which does not happen when ¢ = 0.6; in this case, there is a substitution between
knowledge that does not require communication to one that does. As a result, the
changes to personnel are opposite and so are the changes to the learning costs of the
middle layers.

The case where ¢ = 0.2 is described in Figure 10. The 10% drop in h is large
enough to lead to an increase in the number of layers, from 1 to 2. Consequently,

there is an increase in p(Asy), 2 and v, and a decline in u(A;), f1 and vy.

6 An example on the optimal number of layers
when h is small

Let Q =10,1] (i,e. @ =1), f(2) =a—2(a— 1)z for each z € Q with 1 < a < 2 and

a > ch. Thus, f is strictly decreasing since a > 1, € is bounded and f(w) =2—a > 0.

6See Footnote 5 for the meaning of the variables in this figure. The change in output is given as
a percentage change. However, changes in 3, v, and in the sizes of the knowledge and screening sets

are absolute changes, since these variables are initially zero in some cases.
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Suppose that 0 < ¢ < 1and 1 < a < 2—c. Then f(w) > ¢ and, hence, y; = 1 —c.

Since ﬁ = 5= and y; = 11;‘3:, (3) holds if and only if A < CJQFZ(‘;:Z), in which case

we can conclude that O3 is the optimal organization. For example, if a = 1.5 and
c = 0.25, then the latter inequality requires h < %; thus, when A is sufficiently small,

O; is the optimal organization.

If, instead, a > 2 — ¢, then ﬁ = 5% > 1 > supy yr and O3 is not an optimal
organization. In fact, any optimal organization has L > 2 layers. For example, if
¢ = 1 (which immediately implies that a > 2 — ¢ since @ > 1) and a > 5/3, then
y3(0,1/2,1/2) > y2(0,1) for all h sufficiently small, which shows more explicitly that

O3 is not optimal.
Claim 1 If ¢ =1 and a > 5/3, then y3(0,1/2,1/2) > y5(0,1) for all h sufficiently
small.

1-L-B(1-F(1/2)
1+h+h(1—F(1/2))

Proof. Indeed, F(1/2) = 12, 4,(0,1) = 7%, 53(0,1/2,1/2) =
and
h 0372 — Oay3
0,1/2,1/2) —y5(0,1) =
3s(0,1/2,1/2) = 1(0,1) = =

writing y3(0,1/2,1/2) = % and 4,(0,1) = 2. Since

Y

0372 — 0 h
372 . 273 :_1+2F(1/2)+h—§F(1/2) >—1+gF(1/2)

and, since a > 5/3,

3 3a— 5
—1+5F(1/2) = ¢

> 0,

it follows that y3(0,1/2,1/2) > y(0,1) for all h sufficiently small. =
As we have shown, L > 2 in the optimal organization when ¢ = 1. Theorem
7 implies that, for each a < 13/7, O} is the optimal organization whenever h is

sufficiently close to zero.

Claim 2 If ¢ = 1 and a < 13/7, then O} is the optimal organization for all h
sufficiently small.
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Proof. First note that p3, which we write simply as p9, satisfies

apts — (a — )3

He a—2(a—1)ug

= Y3+ 17
which after some manipulation yields:
3(a — 1) — 20+ 2(a — 1)(gs + Dlpia + (g5 + )a = 0.

The quadratic formula then implies that either

_20+2(0— D+ 1)+ y/Rat2a— D+ DP—ala— (g +1) _

H2 = 6(a—1)
C2a+42(a—1)(ys+1) — [2a+2(a— 1)(ys + 1)]> — 12a(a — 1)(ys + 1)
f2 = 6(a—1) '

We have that y3 — 1 as h — 0; thus, approximating y3 with 1, we get:

__6a—4+ \/(6a—4)? —24a(a — 1)

_ 6a—4—/(6a—4)2 —24a(a — 1)
He 6(a—1)

orfz = 6(a—1)

Since (6a — 4)* — 24a(a — 1) = 12a(a — 2) + 16 € (4,16), the latter since 1 < a < 2,

6a—4++/(6a—4)2—24a(a—1)
and 5D

> 1, it follows that

. 6a—4—/(6a—4)2—24a(a — 1)

M2 = 6(a — 1) and

_2a+2(a= 1y +1) — VRa+2a— Dy + DP — 2afa— Dy 1),
6(a—1) ’

K2

in particular, ps — fis as h — 0. Thus, to conclude from Theorem 7 that O is the
optimal organization for all & sufficiently close to zero, it suffices to show that (recall

that ¢ = 1 and that sup, y, — 1 as h — 0)

1= Fli) - a <)“2> <1 (6.1)
We now write fiz(a) to explicitly denote that fi; depends on a. We have that
di2(a) _ 194 <\/16 a(a—2) - 2= ) <0
da /16 + 12a(a — 2)
since
12(a — 1)?

V16 + 12a(a — 2) — <24 <24/16 + 12a(a — 2)

V16 + 12a(a — 2)
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and /16 + 12a(a — 2) € (2,4) (recall that 16 + 12a(a — 2) € (4,16)). Moreover,

2
pa(2) = - and jia(1) = 1,

the latter using L'Hopital’s rule. Thus, iz > 2/3 and

L= F(in) _1-F@2/3)  5-2a _,

f@ 7 f@ 92 -a)

since F'(z) = ax — (a — 1)z? for each x € Q and a < 13/7. =

7 Cumulative knowledge

This section contains the proofs of our results for the case of cumulative knowledge.
It starts with an outline of the argument in Section 7.1. The proofs themselves follow

this introductory section.

7.1 Road map

The structure of the proofs is the same as in Section 2 and we use the same arguments
used there whenever this is possible. However, the presence of cumulative knowledge
introduces an extra condition to the notion of an organization which needs to be
checked. This is sometimes an easy task, illustrated by Lemma 7.1 below, in which
case the proofs in Section 2 can be used.

Some results in the non-cumulative knowledge case do not extend, namely Lemma
1 of the main paper that states, in particular, that knowledge sets of different layers
are disjoint. This creates the need of obtaining a partition of the union of the screening
sets different from the one obtained in main paper, which has been one of the major
difficulties that this proof had to overcome. Once such partition has been obtained,
the remainder of the argument for the general characterization results, Theorem 7.2,
is the same as in Section 2, requiring only small adjustment in some cases and new
versions of some lemmas.

Part of the complexity of the argument of the general characterization results is

that we actually establish a more general statement. In fact, Theorems 7.1 and 7.2
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state that any optimal organizations have a certain property and, to prove them, all
one needs is to show that if O is an organization with cumulative knowledge that
fails to satisfy that property, then there is another organization O with cumulative
knowledge which is better than O (i.e. yields an higher output, or has less layers, or
smaller lists). Instead, we show that O is not only better than O but also that it has
the property in question.

The reason why the stronger conclusion we establish is useful concerns existence
of optimal organizations. The difficulty with existence is that the “space of organiza-
tions” fails to have enough mathematical structure to allow for standard techniques
to be used. For instance, we need to specify the knowledge set of layer 1, which is, a
priori, just the union of disjoint intervals; the collection of the sets that are a union
of disjoint intervals do not form a space over which the maximization of the orga-
nization’s output can easily be done. In contrast, our approach allow us to restrict
attention to organizations that satisfy the properties in Theorems 7.1 and 7.2 and,
as we show, can be described by the elements of the product of a finite set and a
compact subset of an Euclidean space, thus a compact set overall. Since an organiza-
tion’s output is a continuous function, the well-known Weierstrass’ Theorem is then
all we need to obtain a solution of the maximization problem consisting of choosing
an element of such compact set to maximize the output of the organization.

After establishing the general characterization results, Theorems 7.1 and 7.2, and
the existence of optimal organizations, Theorem 7.3, we prove Theorem 7.4 on the
order of cumulative knowledge, Theorem 7.5 on hierarchies and Theorem 8 in the
main paper on the case of small £&. The first of these results has no counterpart
in the case of non-cumulative knowledge; the other two, while exploring some ideas
similar to analogous results in the case of non-cumulative knowledge, have to deal

with several new issues that arise due to the cumulative nature of knowledge.

7.2 Specialization

The main result of this section is as follows.
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Theorem 7.1 If O is an optimal organization with cumulative knowledge, then there
P P __ h _ L L 1 _ F(UieLA)—vi—d e }Oélz'/l
isi € L suchthatty = 1,1 =0, =L, f; = D e (o) i andy = 14D e oy i

Furthermore, for each j # i, t] =0, t? =1, a;>0,1={j} and p; = m

As noted above, we use the same notation as in Section 2 despite focusing on
organizations with cumulative knowledge. Thus, let Og now denotes the set of orga-
nizations O with cumulative knowledge such that y > 0 and there is ¢« € M such that
tr=1t=0L=1L, 3= i,y—v,tf—O th =1, 0;;>0,1; ={j} and 3; = aji’
for each j € L\ {i}. The set M is as in the main paper, i.e. M is the set of 1 € L
such that ¢; = % and 6; = 0 for all j € L\ {i} is a solution to the maximization
problem defined by (19)—(21) in the main paper.

The results in Sections 2.2 and 2.3 are easily seen to extend to the case of cumu-

lative knowledge using the following lemma.

Lemma 7.1 If O is an organization with cumulative knowledge and O is an orga-
nization such that L C L and 1212 = A; and Bl = B; for all i € [:, then there exists
a cumulative knowledge order < such that (O, <) is an organization with cumulative

knowledge.

Proof. Let < =< |;, i.e., for each 4, j € f/, i=<j if and only if 4 < j. Then (O, <)
is an organization with cumulative knowledge. m

The organizations O in the proofs of the results in Sections 2.2 and 2.3 are such
that the set of layers is reduced and, hence, satisfy the conditions of Lemma 7.1.
Thus, Corollary 2.3 holds as stated for the case of cumulative knowledge, from which

Theorem 7.1 follows.

Corollary 7.1 If O & Og and y > 0, then there is O € Og such that O > O.

7.3 Partition

Consider the partition C of the union of the screening sets of an optimal organization

with cumulative knowledge introduced in Section 6 of the main paper. It is easy to
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see that CNC" =0 if C,C" € C and C # C’; moreover, UgccC' = Ujer, By follows by

the following lemma and, thus, C is indeed a partition of U;c; B;.

Lemma 7.2 For eachl € L,

Bi\B;,_, = Nj<a(Bi,\Ai; ) N[(Ai \Ai,_)U((Bi \Ai)N (U1 (A \ Ao )U(Bi, \Ai )
Proof. For each [ € L, we have that

Bil \ Bizq - Biz \Uj<lBij - (Alz U (Bil \Alz)) \ (Aizf1 U (Uj<lBij \AZJ»
= m]'<l(Bij \ Aij>c N [(A’Ll N Az?l,l) U ((BH \Alz) N Afl,l)]

= mj<l(Bij \Aij)c N [(A'Ll \Ail—l) U ((Blz \Alz) N (Uk=l<Aik \Aik—l) U (BiL \AZL)))]
= mj<l(Bij \Aly)c N [(AZZ \Ail_1> U ((Blz \AZZ) N (Uk:l-f-l(Aik \Aik—l) U BiL \AZL))]

The sets in C can be used to describe an organization in place of the class of
the knowledge and screening sets {A;, B }cr, since the latter can be obtained from

the former. To see this, consider first the following lemma that does that for the

differences A4;, \ A

i
Lemma 7.3 For eachl € L,
A\ Ai_, = (Nja(Bi; \ Aiy) N (A \ Ay U
-1
U (U(ﬁj<k(3z‘j \Ay) N (Bi \ Ai,) N (A, \Ail_l))) :
k=1
Proof. Let [ € L and note that the set in the right-hand side of the equation in

the statement of the lemma is

-1

(A’iz \Ail—l) N (mj<l(Bij \ Aij)c U (U(mj<k(Bij \ AiJ-)C N (Blk \ Azk)) = Ail \ Ail_l

k=1
since Mai(B, \ 4;,)° = (Usa(By, \ Aiy))° and Ui (Myer(By, \ A3)° N (Biy \ Ay) =
Uj<l(Bij \AZJ) |
We then have that
Ail - U.ZjZI(Ai]‘ \Aij—l)J (71)
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by noting that A;, € C. In addition,
B, = Uj_(B;;\ Bi,._,), (7.2)

where B;, \ B;,_, is as in Lemma 7.2.

The argument to establish some of our remaining results will consist in improving
a given organization O by changing some set C' € C and to argue that the output of
the organization increases through a decrease in its learning costs. For this reason,
we write the learning costs of an organization using the sets in C as follows. First, we
need to express the sets B;, \ A;,, with [ € L, using the elements of the partition C,

which is done in the following lemma.

Lemma 7.4 For eachl € L,

By, \ A, = U _, [ﬂj<m(Bij \Ai) N (B, \ Aiy) N (Ursi(Ag, \ A, ) U (B, \AZL))] .
Proof. Let l € L and 1 <m <. We have that
(Bin \ Ai) N (Uksi(Ai \ Aiy ) U (Bip \ Ai)) = Bi,, \ A, NAG = Bi, \ Ay,

Hence, for each m, the term in square brackets is contained in B;, \ A;, C B;, \ 4;,.
Thus, the set in the right-hand side of the equation in the statement of the lemma is
contained in B;, \ 4;,.

Conversely, let w € B;, \ A;, and let m be the first 1 <m’ <[ such that w € B; ,;

thus, w € B;,, and w ¢ B; , for all m" < m. Hence,

W€ Njem(Bi; \ Ag,) N (By,, \ Ay)) =

Nj<m(Bi; \ Ai)) N (Bi,, \ Ai) N (Uks(Ai \ Ai ) U (B, \ Aip)).

Thus, w belongs to the set in the right-hand side of the equation in the statement of
the lemma. m

Recall that, by Theorem 7.1, the output of an optimal organization is

_ F(UierAi) = > e qavy
> ter G
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where v, = cu(A)) + Eu(By \ A;), layer 1 is such that ] = 1, oy = 1 and o = ay3.
Using Lemmas 7.3 and 7.4 together with (7.1), we can write

Z oy = Z GV, = chu(C’) (7.3)

leL leL ceC

by defining, for each C' € C, the cost c¢¢ of learning C' as follows:
L
Cnjci(Biy\Aiy)on(Ai\Ay,_y) = CZ Qi
=1

L L
Cnjca(Bij\Ai;)en(Bi \Ai )N(Ay \Aiy_) — € E :aij +¢ § :aij and
=k j=l

L
iyt (B, \ sy o (Bi\ s (B \ iy ) = € D -
=l

Based on the above partition and costs, we obtain the following characterization

result.

Theorem 7.2 If O is an optimal organization with cumulative knowledge, then:
1. Ul-Llei = [minlSiSL A, MAX]<<L, bl> and minlgiSL a; = 0.
2. For each C,C" € C, if cc > ccr, then C < C".

3. IfC={Cy,...,Cp} is such that cc, > -+ - > ccie» then there exists an optimal
organization with cumulative knowledge O such that C = {é : C € C}, G <
-+ < Cy, C is an interval and F(C) = F(C) for each C €C, § =y, L =L

and Z, =1; for each i € L.

7.4 No gaps

In this section, we proof part 1 of Theorem 7.2. The proof is analogous to the proof
used in Section 2 although several adjustments are needed, mostly due to the fact
that a different partition of U;c; B is used. The following lemma provides a first of

such adjustments, namely on the formula for «;.
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Lemma 7.5 For each j € L, let I,k € L be such that j = i; and k = max{m : i,, <
it}. Then

WY e F(A\ A, )+ 71— F(A,UB,)) ifk<l,

Oéj:

(1 — F(By,)) if k> 1.

Proof. We have that U,,«;A,, = A;, and U,,;B; = B;,. If kK > [, then A; C
A;, C By, and, hence, A;\A;, = 0 and A NB; = By.. Thus, o; = hF () +7F(B§) =
m(1 = F(By,)).

Suppose next that & < [. Then, A; \ Uy,;A, = A; \ Ay and AS\ Ui By =
AS N B:. Since A; \ A, = UL (Ai, \ Ai, ), it follows that F(A4; \ 4;,) =
S e F(AL N\ A, ). Thus, oy =h Y 0 F(Ai, \ A, )+ 7(1— F(A, UB;,).
[

From Lemma 7.3, we obtain a partition C(A;, \ 4;,_,) of A;, \ A;,_, for each [ € L:

i1
C(Alz \Aizq) = {mj<l(Bij \Aij)c N (AZL \ Ail—l)}
U{Mj<k(Bi; \ Ai))* 0 (Bi, \ Aiy) N (A \ Aiy) k< U}
Similarly, we obtain partitions C(A;,) and C(B;,) of A;, and B;,, respectively, by using
Lemmas 7.2 and 7.3 together with (7.1) and (7.2):
C(Ai) ={Njam(Bi; \ Ai))" N (Ai,, \ Ai,,_y) i m < 1}
U{Nj<k(Bi; \ Ai,)* N (Bi, \ Aiy) N (Ai, \ Ainy) 1k <m <

and
C(Bi) ={Mjem(Bi; \ Ai,)" N (A, \ Ay, ) i < 1}
ULy <r(Bi, \ AL )°0 (By \ Ay) O (Ag, \ Ai, ) :m < Land m < k}
U{ﬂj<k(B,-j \Aij)C N (B, \ Ai,,) N (B, \ Aip) :m < }.

Thus, from Lemma 7.5, we can write

! .
o LD ZCGC(AW\A%_I) F(C)+ (1 - ZCEC(A”)UC(B%) F(C)) itk <1,
;=

(1= Ceces,) FIO)) it k> 1.
(7.4)
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It follows from the above that the knowledge and screening sets can be defined from
the elements of the partition C. The question that we address now is the following.
Given an organization O, suppose that we change some sets C' € C to obtain sets
{C : C € C} but leave all the remaining elements of the organization O intact. Do we
obtain a new organization O with cumulative knowledge? This question is addressed

in the following lemma.

Lemma 7.6 Let O be an organization with cumulative knowledge and C be the par-
tition of Uier By. 1If {é : C € C} is a pairwise disjoint collection of subsets of Q0 and
{AI,BZ}ZGL are defined via (7.1) and (7.2), then A,;l C A, . and Bil CB
le{l,...,L —1}.

i1 i, Jor each

Proof. We have that, for each [ € {1,...,L — 1}, A; = U, _(A;,, \ A;,,_,) C
Ui (A \ Ay, ) = A
Bimfl) - B

and, analogously, B;, = U' _ (B;,, \ Bi,_,) C UYL (B, \

41
i .- W

Let Og1 be the set of organizations O with cumulative knowledge such that
min; <;<z, @; = 0, where, recall, a; = min B; for each 7 € L with the standard conven-

tion that min () = oo.

Lemma 7.7 If O € Og \ O¢1, then there is O e Os N Ogy such that 0> 0.

Proof. Let O € Og\ Og;. For each C € C, let ac = min C'; then miny<;<y a; =
mingcec ac. Thus, let C' € C be such that ac = minj<;<y, a;, the fact that O ¢ Oy
implies that ac > 0. Thus, [0,ac) C (UL, B))°.

Let 0 < € < a¢ be such that [ac,ac +¢) € C and let 0 < & < 0 be such that
F([0,¢") = F(lac, ac + ¢€)); the existence of € follows by Lemma A.12.

Define an organization O equal to O except that C' = [0,")U(C\ [ac, ac +¢)) and
{A;, B}, are defined from {C' : C' € C} via (7.1) and (7.2). Note that C N D = ()
whenever D € C is such that C' # D because [0,¢) C (U-, B))°.

We have that F(D) = F(D) for each D € C. Thus, F(A;) = ZDEC(A”) F(D) =
ZDGC(A”)F(D) = F(A;,) for each [ € L. In addition, it follows from (7.4) that
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&; = «j for all j € L. Thus, O € Og by Lemmas 2.8 and 7.6 provided that 1 € M.
In addition, it follows that O € Og; by construction.

We have that u(C) < u(C) and u(D) = u(D) for each D € C\ {C'}. Moreover,
F(UeA) = F(A;) = F(A;,) = F(Uep A)) since F(A;)) = F(A)) for each [ € L. Tt
then follows that § > y. This, together with L = L, shows that O > O. Thus, in the
case where 1 € M, set O =0.

If 1 ¢ M, then take i € M and, therefore, F'(A;) — (cu(A;) +Eu(B;\ 4;)) > 7 > v.
Define O by L = {i}, fi =1, # =1,

R A; if minA; =0,
Ai -

0,') U (4; \ [min A;, min 4; +¢)) otherwise,
where 0 < ¢ < max A; and 0 < ¢’ < € is such that F([0,¢)) = F([min A;, min A;+¢)),
and B; = A;. Then, F(4;) = F(A;) and u(4;) < u(4;). Hence, j = F(A;)—cu(4;) >
F(A) — ep(A) — (B \ A) > § >y, L < L = L and, thus, O > O. Moreover,
0 € Og by Lemma 2.8 and 0 €O by construction. m
Let O¢ be the set of organizations O € Og; such that UL, B; = [0, max;<;<r, b;)
where, recall, b; = max B; with the convention that max () = —oo. The argument in

the proof of Lemma 2.15 implies the following result.

Lemma 7.8 If O € (05N Oa) \ Og, then there is O € Og N Og such that O > O.

7.5 Order of sets

Parts 2 and 3 of Theorem 7.2 follows from exactly the same arguments used in the
analogous result in Section 2. Let O be the set of organizations O such that C' < C’
for all C,C" € C with ¢c > c¢cr. Furthermore, let O. be the set of organizations
O € O such that C is an interval for each C € C. Then let

O"=0sN0zNO-.

Recall that, given two organizations O and O', we write O > 0 if O >0 or Uy =1y,
E:Landii:liforalliGL.

Summing up this section:
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Corollary 7.2 If O & O* and y > 0, then there is O € O such that O 2 0.

7.6 Existence

In this section we consider the existence of n-optimal organizations with cumulative
knowledge. Given our previous results, Theorems 7.1 and 7.2, all that is left to
determine is the number L of layers, the order < of L, an ordering of C, i.e. to
write C = {C4,...,Cy} with C; < --- < (), and m = |C|, and the size u(C) of
each C € C. Letting p; = p(C;) for each j = 1,...,m, we then have C; = [0, 11),
Cy = [u1, 11 + po) and so on, so that, for each j =1,...,m,

j—1 J
i=1 i=1

Then we obtain {Ay, By, ..., Ar, B} via (7.1)—(7.2).

Cj:

Note, however, that fixing the number L € N of layers, an ordering < of L,
an ordering ¢ of C (formally, v is a bijection from C onto {1,...,m}) and u =
(H1, -5 ptm) € RY such that Y77 p; < p(Q) may fail to define an organization
because the requirement that 5, > 0 for each | € L may fail. To allow for this
case, we say that O is a quasi-organization with cumulative knowledge if it satisfies
By > 0 for each [ € L and all the conditions of the definition of an organization with
cumulative knowledge except possibly the one requiring 5; > 0 for each [ € L. For
each (L, <,v, n), let

Yr,<u (K1, -5 )
be the output of the resulting quasi-organization with cumulative knowledge (com-

puted using (1)) and

YL,<p = max yr < y(p,- -5 fm) (7.5)
(K1, b ) ERTY
subject to Z,uj < u(Q). (7.6)
=1

Then an optimal organization with cumulative knowledge O* is obtained by letting

L* be such that

max (yze <y = 7(L" = 1)) = max (maxys <y = (L~ 1)), (7.7)
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<* be such that
Max Yrx <+ = MAX YL+ < o5 7.8
o Yrx,<* oy Y=< (7.8)

1* be such that
Y= <x g = mfx Y=, <* (7~9)

and (pf, ..., py,) € RY be such that Y 7%, 5 < u(Q2) and

Yre <o (1o b)) = YLe <o (7.10)

It turns out that O* is actually an organization with cumulative knowledge which is

n-optimal since it maximizes Y =y — (L — 1)n.

Theorem 7.3 If() is bounded, then an n-optimal organization with cumulative knowl-

edge exists.

We state the following lemma for further use, which is analogous and can be
established by the same argument used for Lemma 2.18. Let Og be the set of
quasi-organizations with cumulative knowledge defined by (L, <, 1, ). Specifically,
if O € Qg is actually an organization with cumulative knowledge, then O € O*. Fur-
thermore, we say that O is a specialized quasi-organization with cumulative knowledge
iftﬁ’zl,t}fzo,&:%, Iy =L, <1=< and,foreachi;«él,tfzo,ti?zl,ﬁlz%
and [; = {i}.

Lemma 7.9 Let O be a specialized quasi-organization with cumulative knowledge. If
O is such that L = L\ {i € L : oy = 0} but otherwise equal to O, then &; = a; for
eachi € L and Uei At = Uier Ai. Consequently, O is an organization with cumulative
knowledge, § = y, L < L and L = L if and only if O is an organization with
cumulative knowledge. In addition, if O € Og, then 0 e O

The remainder of the proof of Theorem 7.3 is analogous to that of Theorem 4.

7.7 'The cumulative knowledge order
Theorem 7.4 IfO is an optimal organization with cumulative knowledge, then <=<.
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Proof. The proof is by induction. We first claim that 1 <4 for each i € L\ {1}.
Suppose not; then i < 1 for some ¢ € L\ {i}. Define an organization O equal to O
except that L = L \ {i} and, consequently, < =< |; and < =< |;. For each j € L,
let £L; ={l € L:l< j}. We then have that Ui, A; = Uj;A; since A; C Ay; this
also implies that U,.; A; = UierA;. In addition, Uieg, By = Ui; By since B; C Bj.
Thus, &; = a; for each j € L and, hence, 4 = doieh O < Dojep @ =7 since a; > 0
by Theorem 7.1. Also, 6> 6. Thus, § > y and Lc L, contradicting the optimality
of O. Thus, 1 < for each i € L\ {1}.

Assume that 1 < --- < k <iforeachi € L\{1,...,k}; we now claim that k+1 < i
for each i € L\ {1,...,k+1}. If not, then i < k+ 1 for some i € L\ {1,...,k+ 1}
and, hence, A; C A1 and B; C By,;. The argument is now analogous to the above.

Then, by induction, it follows that 1 < --- < L. =

7.8 Hierarchies

In this section we establish the following result.

Theorem 7.5 If O is an optimal organization with cumulative knowledge, m = h and
€ =c, then (a) By = A, for eachl € L, (b) Ay < A2\ A1 < --- < AL\ A1, (¢)
Bo >+ > PBr, and (d) By > Pa if h < 1.

The proof of the above result starts with the following lemma, which follows from

the arguments used to prove Lemma A.16 together with Lemma 7.1.

Lemma 7.10 IfO is an optimal organization with cumulative knowledge, then u(B;) >

0 for all j € L\ {1}.

We turn to the proof of Theorem 7.5. While the argument is analogous to the
proof of Corollary 3, there are some difficulties that arise due to the requirement
imposed by the cumulative nature of knowledge.

Proof of Theorem 7.5. The proof of (a) is by induction and, thus, we start
by showing that B; = A;. Suppose not; then By \ A; # ). Define an organization O
equal to O except that A, = By, A; = A;U(B; \ A;) for each j € L (recall that 1 < j
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for each j # 1 by part 4 of Theorem 7.2) and L = L\ {j € L : &; = 0}. Lemma 7.9

implies that O is an organization and that, for each j € I:,
&; = hF(A; \ Ui A) + mF(AS\ Ui By).

Then &; = cpu(A;)+Eu(B;\A;) = eu(B;) = cu(B;) = v; for each j € L since € = c.
Furthermore, we clearly have that, for each j € L, U, B; = UZ<JB1, Ui<jAi € Ul<jfll
and Ujer A; C Ui 4. In addition, we have that Aj\UKjAl = (A \Ui;A)\ (B1\ 41)
for each j > 1. Indeed, A; = A; U (By \ A1) and A; \ Ui;A; = (A; U (By \ A;)) N
(Ui A)°N(B1\ A1) = [A;N(Ui; A) N (B \ A JU[(B1\ A1) N (Ui; A1) N (Bi\ A1 )] =
(A; \ UijA) \ (B1\ 41). In particular, this implies that &; < «; for each j € L.

Suppose first that Ujer,4; C Ujer A;. Since (UZGLAI) \ (Uier4;) € Z, it follows that
F(UleLAl) > F(UierA4;). This, together with &; < «a; for each j € L, implies that
6 > 6 and 4 < ~; hence, § > y. Since L< L, this contradicts the optimality of O.

Thus, assume that Ui A; = UleLAl- Hence, By \ A1 C Ui A; and, in fact,
B1\ Ay C Ujs14; since (B1\ A1)NA; = 0. Let j € L be the smallest j* € L such that
(Bi\ A)) N Ay # 0. Then (By \ Ay) N (A; \ Ur;4) # 0 and, thus, A; \ (Uj<;4) =
(A5 \ Uicg A) \ (Bi\ A1) © Aj \ Uie; Ar Hence, F(A; \ (Ui A)) < F(A;\ (Uig; A1)
This, together with Aj\(UKJBZ) C A5\ (Ui<; By), implies that &; < a;. This, together
with Ujer 4; = UleLAl and a; < oy for each | € L, implies that 6 > 0 and v <
hence, § > y. Since L < L, this contradicts the optimality of O. This contradiction
shows that By = A;.

Let 1 < i < L and assume that B; = A; for all j < ¢. Suppose that B; # A;;
then B; \ A; # (. We first claim that (B; \ 4;) NU/_{4; = 0. Suppose not; then
(B \ A) NUZJA; # 0. Let E = (B; \ 4;) N (UZ{ A))¢ and define an organization
O equal to O except that B; = A; U E. Note that when J <1, then 57 < 7 by part
4 of Theorem 7.2 and Bj =B, =A4; CA C B;; thus, O is an organization with
cumulative knowledge.

We have that 7; = c(u(B;) — p((B; \ Ai) NU;Z1 A1) < ep(B;) = v; since (B; \ A;) N
UiZ1 A; is nonempty and belongs to Z. In addition, Ul<JBj = Ui;B; for all j € L.

It then follows from Ul<jl§j = Uj;B; and 121]- = A; for all j € L that &; = «; for
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each j € L and that UleLfll = UierA;. This, together with 7; < v; and a; > 0 for
all j € L (by Theorem 7.1) implies that § > y. Since L = L, this contradicts the
optimality of O. This shows that B; \ A; NU_{ 4; = (.

Define an organization O equal to O except that A = B;, flj =AU (B \4)
for all j € L such that i < j, and L = L\ {j € L : &; = 0}. Note that if j € L is
such that j < ¢, then A, = B; C B, =A; = flj; hence, O is an organization with
cumulative knowledge.

Then, foreach j € L, v; = 0, Ui; B; = UZ<JBl, Ui A1 C Ul<jfll, Uer A; C UleLfll
and A; \ Uj;A; = (A; \Uic; A\ (B; \ A;) for each j > i as above. Since A; = A; for
each j < i, we obtain that &; < «; for each j # ¢. Furthermore, since B; = A; for
all j <iand h =7, a; = h(F(A; \ Ui 4)) + F(AS \ Ui 4))) = h(1 — F(U;A)) =
h(F(A; \ Ui A)) + F(AS\ Ui A))) = é;. Hence, G; < a; for each j € L.

Suppose first that UF, A; € UE, A;. Since UF, Ay = (UF,A) U (B; \ A;), it follows
that (UE,A)°N(B;\ 4;) # 0. By (B;\ 4;) N (UZ1 A;) = () we obtain that (U~ 4;)¢N
(Bi\ Ai) = (UL A) N (B \ A) N (U5 AD)S = (UA) N (B \ A) # 0. Hence,
Uer 4; C UleLfll, and y > y as above. But this, together with L< L, contradicts the
optimality of O.

Thus, we may assume that UL, A, = UL, A;. Hence, B; \ A; C UX, A and, in fact,
Bi \ A; C Ujs;A; since (B; \ A;) N A; = 0 obviously. Thus, as above, there is j > i
such that &; < a; and § > y. Since L < L, this contradicts the optimality of O. This
contradiction shows that B; = A;.

The above shows that B; = A; for each [ € L; thus, (a) follows.

It follows from B; = A; for each | € L that C = {A;, A2 \ Ay,...,Ap \ A1}
Since cy, = CZJL:Z a; and o > 0 for all j € L by Theorem 7.1, it follows by part 2
of Theorem 7.2 that A; < Ay \ Ay < --- < Ap\ Ar_1. Thus, (b) follows.

By (a), we have that B, = A; and, hence, F(4;) > 0 for each [ € L by Lemma
7.10. Thus, for each 1 <7 < L,

=1 =1

o

i1
~

Moreover, [3; = % > = (41, proving (c).
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Since ag = h(1 — F(A;)), we have that ay < 1 if h < 1. Thus, 5, =
and (d) holds. m

7.9 Optimal organizations when ¢ is small

We establish Theorem 8 in this section using a series of lemmas. While some results
carry through from the proof of the analogous Theorem 5, there are many differences
which have already been noted regarding the statements of the theorems themselves.

Throughout this section, we assume that Assumptions (A1) and (A2) hold as well
as the assumptions made in Section 3. Let y; = maxo<,, <g(F(1t1) — cp1) and define

£ = 7Tf<@)y1.
T
then y; > 0 by (A2) and, thus, & > 0 by (Al). Define also

chn
14 hn

& = > 0.

Then define
g: min{fl, 52}

Suppose that O is an n-optimal organization with cumulative knowledge, that 0 <

¢ < & and that L > 2.
Lemma 7.11 B; U Ay = Q.

Proof. Suppose not; then there is a € Q such that [a,a +¢) C (B U Ay)°
for all € > 0 sufficiently small. Consider an organization O equal to O except that
By = ByUla,a+¢) and B; = B;U[a,a+¢) for each i > 1. Since [a,a+¢) C A5N B,
we have that AS\ By = (45 \ By) \ [a,a + ¢). Thus, ds(c) = ay — 7F([a,a + €)) and
a4 (0) = —nf(a). Since A\ U;;B; C AS\ Uj;B;, it follows that d;(e) < a; and,

thus, & (0) = lim._,o o"(g) < <0 for each ¢ > 2. Hence,

L L
0(c) =0 —&e— &> ai(u(Bile)) — ) =Y (dile) — )i,
=2

=2
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where, recall, v; = cu(A4;) + {u(B; \ A;) for each ¢ € L. The above equation uses
w(Bi(e)) — u(By) = p([a,a + €)) = &; in addition, we have that u(B;(e)) — u(B;) <
w(la,a+€)) = e and, hence, letting b;(e) = u(B;(€)) — u(B;),

db; (0)
de

< 1.
It follows that

L
0=-€-¢3 P 4 (s + YAl 0w+ w ey +y Y (-

> 7 f (@ )y—€7>7rf( )y—£(1+2h)

since f(a) > f(@) and v = 1+ AL, F(A \ Ai) + 7300, F(AS\ Biy) < 1+
hE(AL\ Ay) + nF(AS) < 1+ 2h. We then have that y > y; and 7f(@)y — € >
f(@)yr — & = &(1 +2h) — £(1 +2h) > 0 since € < &. It then follows that there is
e > 0 such that g(¢) > y, a contradiction to the optimality of O. This contradiction
shows that B{ U A = . =

Lemma 7.12 (Bl \Al) N A2 = @

Proof. Suppose not; then (By \ A1) N Ay # (). Consider an organization O equal
to O except that 31 = B; \ Ag; since 1 < i for each i € L, O is an organization
with cumulative knowledge. Then A§\ By = AN (B U Ay) = A5\ By and, hence
Q9 = . Moreover, for each 7 > 2, Ul<zBl = U;«;B; and, hence, &; = ;. Thus, 4 = v
and 6 > 6 since Uier A = Ujer Ay and 9y = vy — Eu((By\ A1) N As) < 1. Tt follows
that § > y, a contradiction to the optimality of O. This contradiction shows that
(Bi\A1)NAy=0. m

It follows from Lemmas 7.11 and 7.12 that

Bl\Alzg\(AlLJAQ):AS

Hence, for each [ > 1,
B; = .

Lemma 7.13 If O is an organization with cumulative knowledge such that <=< and

By \ Ay = AS, then oy = hF (A, \ A1) for each | > 2.
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Proof. Let I > 2. We have that A;\U;«A; = A\ Ai—; and that A7\ U;B; = 0.
Hence, ) = hF(Al \ Uj<lAj> + WF(AZC \ Uj<lBj) = hF(Al \ Al_l). |

Lemma 7.14 The output of the an optimal organization with cumulative knowledge
18 Y = % where

L

0 = Z F(AN\ Aicr) — p(A) (e = €1+ hz F(A; \ Ai-1))

—p(A2 \ A)((e = Oh 3 F(A\ Ai) =€)

= AN A (= ORD F(AN\ Ain) — €01+ h > F(A\ Ainy)) and

j=3 i=j 1=2
L

y=1+hY F(A\A).

1=2

Proof. The conclusion follows by Lemmas 7.11-7.13 and from p(4;) = 22:1 w(A;\

A;_q) for each | € L, where, recall, Ag =(. =

Lemma 7.15 The following holds: C = {A1,As \ Ay,..., AL \ A1, A%}, ca, =

CZJLZI Qj, Ca\A, = CZLQ Qj, CaNA, = ch:k a;+& Zle aj foreachk =3,...,L
and CAs = 52][‘/:105' ThUS, A1 < AQ\Al, A3\A2 < - < AL\AL—l < Ai and
Ay < A5

Proof. Recall that <=< by part 4 of Theorem 7.2 and, hence, i; = 1,...,i;, = L.
Thus, the partition C of UZ, B; = ) is

C ={Mja(Bj\A4;) N(A\ A1) :leL}
U{ﬂj<l<Bj \ Aj)c N (Bl \ Al) N (Ak \ Ak_1> : l, ke L and k > l}

U{ﬂj<l(Bj \ Aj)c N (Bl \ Al) N (BL \ AL) e L}

Consider each of the sets C' € C, first noting that By \ A; = A§ (hence, (B \ A4;)¢ =
Ay) and, for each | > 1, B\ A; = A{ (hence, (B; \ A))¢ = A;) and recalling that
BQ = AO = @
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The set Nj<;(B;\A4;)°N(A\ A1) equals Ay when [ = 1 and A2N(Ax\ A1) = Ax\ 44
when [ = 2. Thus, Ay, As \ A1 €C, ca, = CZ]LZI aj and ca,\a, = CZLQ aj.

The set Nj<(B;\ A;)°N (B \ A;) N (Ar \ Ak—1) equals A5N (A \ Ay—1) when [ =1
and k > 1; thus, it equals ) if &k = 2 and Ay \ Ay if & > 2. Thus, A\ Ay_; € C and
CANAL 1 = ch:k a; —1—525:1 a; for each k > 2. Moreover, when [ > 1 and k > [, it
equals AN NA_ 1T NAN (A \ Ag1) = Ax \ Ap_y = 0.

Finally, the set N;<;(B; \ 4;)°N (B \ A4) N (B \ Br—1) equals A5N (B \ AL) =
A5N QN A7 = A7 when [ =1 Thus, A7 € C and cac = 52;?:1 a;. Moreover, when
[>1,itequals ApN---NA_1NANQNAS = Ay \ AL = 0.

We have that «; > 0 for each j € L by Theorem 7.1 and, thus, A; < A\ A4y,
A3\ Ag < -+ < AL\ A1 < AS and Ay < A follows by part 2 of Theorem 7.2. =

Lemma 7.16 A;\ A;_1 # 0 for each | > 1.

Proof. This follows because a; = hF'(A4;\ A;—1) > 0 by Lemma 7.13 and Theorem
7.1 and, hence, FI(A;\ A;_1) >0 foreach[>1. m

Lemma 7.17 If L > 3, then Ay \ A; < A3\ As.

Proof. Suppose that Ay \ A; < A\ Ay does not hold; then, ca,a, > Cap\a,
by part 2 of Theorem 7.2 and, thus, we may assume, by part 3 of Theorem 7.2,
that A3 \ A2 < Ay \ Ay, Let a,a’ € Q and € > 0 be such that [a,a +¢) C A3\ As,
[a,a'+¢) C A\ Ay and a+¢ < o. Consider an organization O equal to O except that
A\ Ay = (A \AD\[d/,d/ +€))U[a,a+e), As\ Ay = ((A3\ A2)\[a, a+e))U[d, d +e)
(so that Ay = Ay U (Ay \ Ay) and Ay = Ay U (A3 )\ Ay)) and By \ A; = AS.

We clearly have that u(C) = u(C) for each C' € C, F(C) = F(C) for each
C & {Ay\ Ay, A5\ Ay}, F(Ay\ Ay) > F(Ay\ Ay) since F([a,a+¢)) > F([d',d +¢))
by Lemma A.12 and F(As\ Ay) + F(Ay \ Ay) = F(As \ Ay) + F(A; \ A4) since
(As\ Ay) U (Ay\ A1) = (A3 \ Ay) U (As \ Ay). Thus, F(As\ Ay) < F(As\ A,). By
choosing & > 0 sufficiently small, &5 = hF(As \ Ay) > 0 and O is an organization

with cumulative knowledge.
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It then follows that > - F(A \ Aiy) = Zf:j F(A;\ A;_) for each j # 3 and
SELF(A N\ A < SSELF(A\ AiLy). Lemma 7.14 then implies that § > y, a
contradiction to the optimality of O. This contradiction shows that A\ A1 < As\ As.

]
Lemma 7.18 If L =2, then Ay \ A; < AS.

Proof. We first show that F(As \ A1) > 7. Since L = 2, it follows that y = £ >

4
5
y1 +mn,i.e. 0> (y1 +n)y. Thus, > y; + n since v =1+ ay > 1. We have that
0 =F(A UAy)— Zaz cpu(Ai) + Eu(Bi \ Ay)
= (A1) + F(A \ Al) — cp(Ar) — By \ A1) — canp(Az) — Saop(Bs \ Az)
S F(Al) — C,LL(A1> + F<A2 \ A1>

<y + F(Ax )\ Ay).

Hence, y1 + F/(A> \ A1) > 6 > y1 + 1 and, thus, F(As\ 4;) > n.
Since € < € < & = P < ¢ it follows that £ < (¢ — &)hn < (¢ — &)hF(Ay \ Ay),

1+hn

ie. &(14+hF(As\ A1) < chF(Ay\ A;). Hence,

cag = (o + a2) = (1 + hF (A2 \ A1) < chF (A2 \ A1) = caz = ca\a,-

Therefore, it follows by part 2 of Theorem 7.2 that A; \ A; < AS. m
It follows from Lemmas 7.15, 7.17 and 7.18 that A; < Ay \ A3 < A3\ 4y <
< Ap\ Ap—1 < AS. Let p; = u(A; \ A1) (with pg = u(Ay)); we then have that

Ay = [0,p1), Ay = [p1, 1 + p2) and, in general, A; \ A;—; = [Z] 1%’2;:1 ;) for
each 5 € L.

Lemma 7.19 F(A;\ A;) = ﬁ + f(p + p2)ps.

Proof. Let ¢ > 0 and let O be an organization with cumulative knowledge equal

to O except that Ay \ Ay = [ju1, p1 + pa +¢), Az \ Ay = [t1 + pio + &, pu1 + po + p13) and
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B\ A} = AS. Then, letting a = py + jio, it follows by Lemma 7.14 that 4(¢) = 4 and

f(e) =0-

(u2+€)((0—5)hZF(Ai\Ai—1)—5) pa((c = hZF i\ Ai1) f)]

[(ug—g ZF N\ A1) — F(la,a+¢€))) — ps(c— € hZF S\ A1)
—0—te—e(c— 5)hF(A2 \ Ay) + ps(c — OhF([a,a+¢)) —e(c — f)hF([a,a +e)).
Hence,
75 (0) = £ = (¢ = OhF (A \ A1) + f(a)ps(c — Eh.

Since O is optimal, it follows that v7'(0) < 0 and, hence, using a = py + pa,

&
(c—&)h

Considering next an organization O with cumulative knowledge equal to O except

F(A\ Ay) 2 + f + p2)ps.

that A\ Ay = [p1, jua +po =€), Ag\ Ay = [p1 + 1o — £, 1 + pio + ) and By \ Ay = Ag
and arguing as above yields

§
(c=&)h

F(Ay\ Ay) < + f(p + p2) s

The result then follows. m

Using an argument analogous to the above, we obtain:
Lemma 7.20 F(A;\ A;1) = f(Z;:l ) pip1 for each i > 2.
Lemma 7.21 ag > a3 > -+ > «y,.

Proof. We have that oy = hF'(A; \ A;—1) for each [ > 2, hence, the statement of
the lemma is equivalent to F'(As \ A1) > F(A3\ Ay) > -+ > F(ApL \ Ar—1).

For each i > 1, F(A; \ 4;_1) fZ] A < f(Zﬁ;ll ) since f is strictly
decreasing. Thus, by Lemma 7.19,

P43\ 42) < [ + alps = P\ A1) = 7o < P\ Ay),

Moreover, by Lemma 7.20,

FAia \ 4) < f(z )i = F(A;\ Aiy)

=1

for each 7+ = 3,..., L — 1. Hence, the lemma follows. =
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Lemma 7.22 If h <1, then 3, > ZIL:2 By

Proof. We have that g, = % for each [ € L, hence 5; > ZZLZQ B is equivalent
to a; > Zlez ay. This inequality holds because Zf:z a = hZszz FA\ A, =
]’LF(AL\Al) §h< 1:@1. |
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