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Abstract

We study the repeated prisoner’s dilemma with private monitoring under the

assumption that the monitoring structure is endogenously chosen by the players

in each period. We allow the players to choose from all possible monitoring

structures. If the players disagree on the monitoring structure they would like,

the realized monitoring structure is determined by a function that aggregates

their choices. When one player can dictate the monitoring structure, then

the repetition of the stage Nash is the only sequential equilibrium outcome.

In contrast, when no player can dictate the monitoring structure, we provide

conditions on the aggregation function under which any strictly individually

rational and feasible payoff vector can be supported in sequential equilibrium.
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1 Introduction

The prisoner’s dilemma is a prototypical example of a game whose infinite repetition

can greatly expand the set of equilibrium outcomes. This conclusion has been es-

tablished by several folk theorems (see Section 2 for a literature review) for various

monitoring structures which are exogenously given and independent of the decisions

of the players. This feature can be critical for the construction of equilibria which

often rely on strategies (such as belief-free strategies) that depend on the exact details

of the fixed monitoring structure.

Thus, typical arguments that establish the folk theorem in the repeated prisoner’s

dilemma may not apply if players can manipulate the monitoring structure. Such

manipulations are a realistic feature of long term relationships, and in fact it seems

that the purpose of such manipulations is exactly to solve the coordination problems

that arise with private information. For example, people actively design monitoring

by asking for reports, having meetings, etc, and often this is done to help those

interacting repeatedly to coordinate their activities and obtain good outcomes. Hence,

we ask whether cooperation can be sustained — and more generally whether the folk

theorem holds — in the repeated prisoner’s dilemma when monitoring can be designed.

To take a concrete example that will motivate some of the features we wish to

capture in our model, consider a cartel with two members. In order to collude suc-

cessfully, secret price-cutting behavior must be deterred; this relies on some degree

of monitoring. It is natural that the choice of monitoring technology is made by the

firms themselves, i.e. monitoring should be endogenous. For example, as described

in Marshall and Marx (2012), cartels often hire consulting firms to assist with mon-

itoring.1 But the cartel members may have conflicting incentives over the choice of

monitoring technology; for example, each firm may wish to know the sales figures of

1One such consulting firm is Fides, later known as AC-Treuhand. According to the European

Court ruling in Organic Peroxides, AC-Treuhand, among other things, “collected data on [Organic

Peroxides] sales and provided the participants with the relevant statistics,” “acted as a moderator in

case of tensions between members of the agreement and encouraged the parties to find compromises,”

and “organised the auditing of the data submitted by the parties.”
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its competitor while not wishing to reveal its own. Moreover, even when a consulting

firm is facilitating the monitoring, cartel members can submit misleading data or oth-

erwise try to manipulate the information that the consulting firm will provide. Since

each cartel member does not directly observe their competitor’s interaction with the

consulting firm, it cannot always be sure whether the data provided by the consulting

firm is reliable. Thus, each firm may have an incentive to learn about the monitor-

ing choices and the information of its competitor, as well as whether there has been

a deviation in the stage game (i.e. secret price-cutting). Our model of endogenous

monitoring aims to capture, in a reduced form way, the above features.

We consider a model where the players can choose not only their stage game

actions, but also the monitoring structure in each period. Specifically, each player

observes a private signal that is possibly informative about the other player’s stage

game action (and signal). In the standard model, the distribution of the signals is

an exogenous function of the stage game actions. From the perspective of one player,

the joint distribution of the signals depends on the stage game action chosen by the

other player. One can imagine, as in the previous paragraph, that the players can

take several actions that influence this dependence; as a reduced form representation,

we simply allow each player to choose directly a distribution over the set of signal

profiles for each stage game action of his opponent. For example, letting each player’s

stage game action set be {C,D} and signal set be {c, d}, player 1’s chosen monitoring

structure could put probability 1 on signal profile (c, c) if player 2’s stage game action

is C and on signal profile (d, c) if player 2’s stage game action is D, in which case

player 2 always observes signal c (i.e. the second coordinate of the signal profile is

always c) and player 1 observes c if and only if player 2 chooses C.

To capture the idea that there may be several actions available to the players that

can affect the monitoring structure, and because we do not wish to rule out any such

action by assumption, we allow the players to choose any monitoring structure. Thus,

it is natural for players to disagree; indeed, as in the above example, each player may

want his own private signal to perfectly reveal his opponent’s stage game action but his

opponent’s signal not to reveal anything about his own stage game action. Due to this
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possibility of disagreement, we will need to specify how the monitoring structure that

actually determines the players’ signals is obtained from the monitoring structures

chosen by the players. It is important to emphasize that in our formalization, each

player observes only his own stage game action, choice of monitoring structure and

private signal; in particular, neither the monitoring structure chosen by his opponent

nor the realized monitoring structure that actually determines the players’ signals is

observed.2

How the monitoring structure that actually determines the players’ signals is ob-

tained from the monitoring structures chosen by the players is crucial for determining

the equilibrium outcomes of the game. Indeed, if the monitoring structure is always

the one chosen by a given player, then repetition of stage Nash is the only equilibrium

outcome. This happens because the stage game action of such player’s opponent does

not depend on his own stage game action, hence his stage game action must be the

strictly dominant D; given this, his opponent must play D as well.

It then follows that any degree of cooperation can be an equilibrium outcome

only if the monitoring structure reflects the monitoring structures chosen by all the

players. We allow for this by specifying that the monitoring structure is determined

by an aggregation function that depends on the monitoring structures chosen by the

players. In the context of the cartel example, one can interpret the data each cartel

member submits to the consulting firm plus any other covert interactions as its choice

of monitoring structure; the aggregation function then represents the audit and the

subsequent recommendation of the consulting firm (as well as the result of the covert

interactions).3

2Our formalization aims to capture some intuitive features of real-world designs. Indeed, the

meetings that people have or reports that they write correspond to the choice of monitoring structures

by the players. While some aspects of such choices may be known by everyone (e.g. that a meeting

has been arranged or a report commissioned), the exact monitoring choices of each player (e.g. how

much to reveal or conceal in a report, how much information to acquire before a meeting) and the

monitoring structure that results from these interactions is often not known by those involved in it.

As we have argued, all of these features are natural possibilities in cartels.
3According to the European Court decision in Low density polyethylene (as quoted in Marshall
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Our main result is that the folk theorem holds whenever the aggregation function

is responsive, which means, roughly, that whenever each player proposes for a signal

profile to occur with probability 1, any signal profile other than the two proposed

occurs with probability 0, and whenever a player proposes that a signal profile should

occur with probability 1, it occurs with strictly positive probability. In the context

of the cartel example, if conditional on firm 2 having deviated, firm 1 would like

the consulting firm to reveal this information while firm 2 requests that it does not,

property 1 requires that the consulting firm does not incorrectly announce that it was

in fact firm 1 who deviated and property 2 requires that the consulting firm does in

fact reveal firm 2’s deviation with strictly positive probability.

The intuition behind this result is as follows. We specify a sequence of stage

game actions to achieve the desired payoff and a monitoring strategy such that on

the equilibrium path, each player observes the signal c with probability 1. On the

other hand, if a player deviates from the specified stage game action, his opponent

will receive the signal d with strictly positive probability. Thus, having received a

d signal, a player is sure that his opponent has deviated. A responsive aggregation

function ensures that there exists a strategy with such properties.

According to our strategy, when a player is sure that his opponent is not on the

equilibrium path, he plays D forever. In general, this may not be optimal since, for

example, even when player 1 is sure that player 2 has deviated, if player 2 assigns low

probability to being caught, then player 2, and hence player 1, may prefer to continue

cooperating. On the other hand, we exploit the fact that there exist deviations where

the deviating player is sure that his deviation is detected. By making such deviations

and Marx (2012)): “Fides is an industry-wide statistical service run by a Zurich-based accounting

firm. Subscribing producers supply each month individual data on their production, sales and stock

movements to the central office which collates the information from the different producers and draws

up global anonymized statistics for the Western European market. From these each producer can

determine its own market share but not those of competitors. The system contains confidentiality

safeguards but there is nothing to prevent competitors exchanging detailed information themselves

in some other forum. The official Fides totals could then be used, as was envisaged, to check the

accuracy of the figures exchanged by the producers.”
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the most likely tremble, whenever a player assigns probability zero to his opponent

being on the equilibrium path, he also believes that his opponent assigns probability

zero to him being on the equilibrium path.

The above implies that it is optimal for each player to play D forever following any

history where there is zero probability that the other player is still on the equilibrium

path. In particular, it is optimal to play D forever after receiving a d signal, and this

is then sufficient to deter deviations from the equilibrium path. For histories other

than the ones on the equilibrium path and the ones where there is zero probability

of the other player being on the equilibrium path, we rely on a fixed point argument

to show that there exists optimal continuation play at all such histories.4

The paper is organized as follows. Section 2 reviews the literature. In Section

3 we present a two-period repeated game to illustrate our main result in a simpler

setting. The infinitely repeated prisoner’s dilemma that we consider, as well as our

results, are in Section 4. Section 5 contains some concluding remarks. The proof of

our results are in the Appendix (Section 6). Supplementary material to this paper

containing a stronger result for the case where cooperation is to be sustained in every

period is available online.

2 Literature review

Various folk theorems have been established under progressively weaker assumptions

on the monitoring structure, e.g. Fudenberg and Maskin (1986) with perfect mon-

itoring, Fudenberg, Levine, and Maskin (1994) with imperfect monitoring, Hörner

and Olszewski (2006) with private almost-perfect monitoring and Sugaya (2022) with

private monitoring; for the particular case of private monitoring in the prisoner’s

dilemma, see also Sekiguchi (1997), Bhaskar and Obara (2002), Piccione (2002) and

4We thank an anonymous referee for suggesting the use of a fixed point argument to us. For the

special case of (C,C) in every period and under additional assumptions on the aggregation function,

it is possible to dispense with such fixed point argument and obtain an explicitly specified strategy

in which players do not mix. Such strategy has some similarities to the ones used by Sekiguchi

(1997) and Bhaskar and Obara (2002); see the supplementary material to this paper for details.
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Ely and Valimaki (2002) for the case of almost-perfect monitoring, and Matsushima

(2004) and Yamamoto (2012) for the case of conditionally independent but not neces-

sarily almost-perfect monitoring. Unlike these papers, we do not take the monitoring

structure as given, but instead we allow the players to choose the monitoring structure

in each period.

Our model is a special case of a general repeated game with private monitoring.5

Thus, one could try to obtain our main result by applying Sugaya’s (2022) folk theo-

rem to such repeated game. However, the assumptions of the latter do not hold when

there are many stage game actions relative to signals. Such situations arise naturally

in our model, where the players can choose from a large set of monitoring structures.

Our paper is also related to an important paper by Miyagawa, Miyahara, and

Sekiguchi (2008) who prove a folk theorem for repeated games when players have to

option to pay for accurate information about their opponents’ actions. Thus, they

also endogenize the monitoring structure in a repeated game. Differently to us, they

assume that each player can decide whether to pay a cost in order to perfectly observe

the other players’ stage game actions, but observational decisions cannot be observed

at any cost. Thus, their model captures the idea that perfect information can be

obtained if enough resources are spent acquiring that information. The assumption

that observational decisions cannot be observed makes it difficult to motivate players

to pay for information; nevertheless, they show that a folk theorem holds generally

in their setting. However, it leaves open the question why players are not able to

learn about observational decisions. More generally, just as perfect information can

be acquired given sufficient effort, players may also exert effort to hide information

from their opponents, and the resulting monitoring structure will presumably depend

5A general repeated game with private monitoring consists of, for each player i ∈ {1, 2}, a stage-

game action set Ŝi, a set of private signals Ŷi, a distribution function γ̂ : Ŝ1 × Ŝ2 → ∆(Ŷ1 × Ŷ2)

and a utility function ûi : Ŝ1 × Ŝ2 → R. Our model can be embedded by letting Ŝi = Ri × Si,

where Ri and Si are the set of monitoring and stage game actions from our model, letting Ŷi = Yi

where Yi is our set of signals, letting the distribution γ̂ : (R1 × R2) × (S1 × S2) → ∆(Y1 × Y2) be

given by γ̂(r, s) = α(rs21 , r
s1
2 ), where α is our aggregation function, and by letting the utility function

ûi : (R1 ×R2)× (S1 × S2)→ R be given by ûi(r, s) = ui(s) where ui is our utility function.
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on the interaction between these decisions. Our model attempts to capture some

of these features omitted from Miyagawa, Miyahara, and Sekiguchi (2008) and thus

complements their work.

In contrast to Miyagawa, Miyahara, and Sekiguchi (2008), in our model each player

can choose any joint distribution of the signal profile for each stage game action of

his opponent; thus, each private signal provides information about the stage game

action, the monitoring action and the private signal of the other player. We view this

as a reduced form model of unrestricted information acquisition, where players can

learn about and manipulate each other’s information as well as learning about the

stage game action. On the other hand, we assume that monitoring is costless ; indeed,

what distinguishes stage game actions from monitoring actions in our model is that

monitoring actions do not affect payoffs. Our justification is that in many situations

of interest, the costs associated with monitoring are small compared to the benefits

from successful cooperation in the stage game; thus, it makes sense to consider the

idealized situation where these costs are zero. In addition, if the monitoring costs are

large, then our view is that the monitoring actions should then be modelled as part

of the stage game.

More generally, for a given stage game, it is important to understand how the

freedom to choose different information structures affects the ability to provide long

run incentives. For example, we might hope to gain an insight into which information

structures are conducive to long run cooperation, abstracting away from any costs

associated with the information choices. Two features of the strategy that we use to

establish our folk theorem seem likely to play a role in more general constructions:

First, on the equilibrium path, each player wishes to receive a signal that is perfectly

informative about the stage game action of her opponent. Second, when in the

punishment phase, each player proposes that her opponent receives a signal that

perfectly reveals the information that she is in the punishment phase.
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3 Motivating example

We illustrate our setting and results in a two-period repeated game (based on a similar

example in Mailath and Samuelson (2006)) in which the first period is a prisoner’s

dilemma and the second period is a coordination game.

1\2 C D

C 2, 2 −1, 3

D 3,−1 0, 0

1\2 A B

A 3, 3 0, 0

B 0, 0 1, 1

Figure 1: Stage games

In period 1, each player chooses a monitoring action ri ∈ Ri and a stage game

action from the prisoner’s dilemma on the left of Figure 1. Then each player observes

a private signal yi ∈ Yi = {c, d}. The joint distribution of the private signals (y1, y2)

is given by γ : (R1×R2)×{C,D}2 → ∆(Y1×Y2) and depends on the monitoring and

stage game actions in period 1 in a way that we will specify in the next paragraph.

In period 2, the coordination game on the right of Figure 1 is played. The repeated

game payoff is the discounted sum of the payoffs from the two stage games, i.e. the

players’ payoff is u = (1− δ)u1 + δu2, where ut is the payoff at period t, t = 1, 2.

The monitoring action of each player corresponds to a pair of conditional distri-

butions ri = (rCi , r
D
i ), where rCi ∈ ∆(Y1 × Y2) is the distribution that player i wants

when s−i = C and rDi ∈ ∆(Y1 × Y2) is the distribution that player i wants when

s−i = D.6 Thus, Ri ⊆ ∆(Y1 × Y2) × ∆(Y1 × Y2).7 These choices are combined as

6The choice of the monitoring action ri can be interpreted as choosing a statistical test that

provides information to player i about the action of player −i through differences in the distributions

rCi and rDi , in the same way that the distribution of outcomes of a medical test depends on whether

or not the person being tested is healthy or not. Note, however, that player i’s signal also provides

information about player −i’s signal and vice versa.
7The reason we do not let Ri = ∆(Y1 × Y2)×∆(Y1 × Y2) is to avoid technical difficulties arising

when Ri is infinite. As Myerson and Reny (2020) show, defining sequential equilibrium in infinite

games is complicated and we get around this problem by focusing on any finite subset X ⊆ ∆(Y1×Y2)

containing the degenerate distributions and letting Ri = X2. This makes the games we consider finite
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follows:

γ(y1, y2|r1, r2, s1, s2) = βrs21 (y1, y2) + (1− β)rs12 (y1, y2)

for each yi ∈ Yi, ri ∈ Ri, si ∈ {C,D}, and i ∈ {1, 2}, where β represents who

controls the information. An interpretation of γ is as follows: Each player chooses a

monitoring structure and one of the two realizes, the one of player 1 with probability

β and that of player 2 with probability 1− β. If the monitoring structure of player i

realizes, then a signal profile y is drawn according to r
s−i
i .

If β = 1, then player 1 plays D with probability 1 in any sequential equilibrium

of the repeated game. Indeed, if player 1 plays C with a strictly positive probability,

then his continuation payoff after choosing C must be greater than his continuation

payoff after choosing D. But the two are actually the same and equal to∑
y1

∑
r2,s2,y2

σ2(r2, s2)rs21 (y1, y2)u1(a1(y1), a2(r2, s2, y2))

where σ2(r2, s2) is the probability that player 2 chooses (r2, s2) in period 1, a2(r2, s2, y2)

is player 2’s (mixed) strategy in period 2 at player 2’s private history h2 = (r2, s2, y2)

and a1(y1) solves

max
a1∈{A,B}

∑
r2,s2,y2

σ2(r2, s2)rs21 (y1, y2)∑
r′2,s
′
2,y
′
2
σ2(r′2, s

′
2)r

s′2
1 (y1, y′2)

u1(a1, a2(r2, s2, y2)).

In words, nothing in period 2 depends on the choice of s1, hence, s1 must be D since

it is strictly dominant in period 1’s stage game.

Similarly, if β = 0, then player 2 plays D with probability 1 in any sequential

equilibrium of the repeated game. In contrast, if β ∈ (0, 1), then cooperation in

the first period is an equilibrium outcome. Formally, for each β ∈ (0, 1), there exists

δ∗ ∈ (0, 1) such that, for each δ > δ∗ and each finite subset X of ∆(Y1×Y2) containing

1y for each y ∈ Y1 × Y2, there exists a sequential equilibrium where (C,C) is played

in the first period when Ri = X2 for each i ∈ {1, 2}.8

and we show in Section 4 that our main result holds uniformly, namely for any strictly individually

rational and feasible payoff v, if players are sufficiently patient, then for each such finite subset of

monitoring actions, there exists a sequential equilibrium with payoff v.
8For y ∈ Y1 × Y2, 1y denotes the probability measure degenerate on y.
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We establish the above claim in what follows. Let β ∈ (0, 1). For convenience, let

β1 = β and β2 = 1 − β. Define δ∗ = max
{

1
4(1−β)+1

, 1
4β+1

}
. Let δ > δ∗, let X be a

finite subset of ∆(Y1 × Y2) containing 1y for each y ∈ Y1 × Y2, and let Ri = X2 for

each i ∈ {1, 2}.

We use the following notation: for each ρ ∈ ∆(Y1 × Y2), let ρYi =
∑

y−i
ρ(·, y−i)

denote the marginal of ρ on Yi; in particular, r
s−i
i,Yi

is the marginal of r
s−i
i on Yi and

1(yi,y−i),Yi is the marginal of 1(yi,y−i) on Yi.

An assessment specifies an action and a belief for each (private) history of each

player. For each i ∈ {1, 2}, player i’s history hi is either empty (in period 1) or of

the form (ri, si, yi) (in period 2). Thus, we just need to specify beliefs at the latter

histories and these are of the form µ(r−i, s−i, y−i|hi).

An intuitive description of the strategy is as follows. Each player cooperates in

period 1 and chooses a monitoring structure r∗i that perfectly reveals the stage game

action of his opponent and yields signal c to the opponent. In period 2, each player

plays A if and only if he believes that the opponent is still on the equilibrium path

with sufficiently high probability.

Formally, the strategy σi is as follows: If hi is the empty history, then σi(hi) =

(r∗i , s
∗
i ) with s∗i = C and r∗,Ci = 1(c,c) and r∗,Di = 1(d,c). Otherwise, i.e. in period 2,

σi(hi) =



A if yi = c, si = C and 3βir
C
i (c, c) + 3(1− βi) ≥ βir

C
i (c, d),

A if yi = c, si = D and 3βir
C
i (c, c) ≥ βir

C
i (c, d) + 1− βi,

A if yi = d, rCi,Yi(d) > 0 and 3rCi (d, c) ≥ rCi (d, d),

B otherwise.

Given the beliefs (to be defined), each player will play A at exactly those histories

where µ(r∗−i, C, c|hi) ≥ 1/4.

For histories hi = (ri, si, yi) that are reached with strictly positive probability if

player i plays (ri, si) and player −i plays according to the strategy (i.e. r∗−i and C),

beliefs are determined via Bayes’ rule. This corresponds to (1) below. In contrast,

if player i chooses ri such that rCi,Yi(d) = 0 (e.g. r∗i ), then yi = d happens with zero

probability when player −i follows his strategy. In this case, if yi = d does happen, we
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specify that player i believes that player −i has deviated to s−i = D and r−i = 1(c,d),
9

i.e. player i believes that player −i has played D and chosen signal c for himself and d

for player i. The usefulness of this deviation is that if player −i plays (D, 1(c,d)), then

regardless of the signal he receives, he will assign zero probability to player i being

on the equilibrium path and will therefore play B in the second period according to

the strategy.

Formally, the beliefs are as follows. If either yi = c or yi = d and rCi,Yi(d) > 0,10

µ(r−i, s−i, y−i|hi) =



βir
C
i (yi,c)+(1−βi)1(c,si)(yi,c)

βirCi,Yi
(yi)+(1−βi)1(c,si),Yi (yi)

if r−i = r∗−i, s−i = C, y−i = c,

βir
C
i (yi,d)+(1−βi)1(c,si)(yi,d)

βirCi,Yi
(yi)+(1−βi)1(c,si),Yi (yi)

if r−i = r∗−i, s−i = C, y−i = d,

0 otherwise.

(1)

Otherwise:

µ(r−i, s−i, y−i|hi) =



βir
D
i (d,c)+1−βi

βirDi,Yi
(d)+1−βi

if r−i = 1(c,d), s−i = D, y−i = c,

βir
D
i (d,d)

βirDi,Yi
(d)+1−βi

if r−i = 1(c,d), s−i = D, y−i = d,

0 otherwise.

(2)

The beliefs satisfy supp(µ(·|hi)) ⊆ {(r∗−i, C, c), (r∗−i, C, d), (1(c,d), D, c), (1(c,d), D, d)}

and the strategy in period 2 specifiesA at exactly those histories where µ(r∗−i, C, c|hi) ≥

1/4. Moreover, σ−i(r
∗
−i, C, c) = A, σ−i(r

∗
−i, C, d) = B, σ−i(1(c,d), D, c) = B and

σ−i(1(c,d), D, d) = B, so in fact player i will play A if and only if he believes that

the player −i will play A with probability at least 1/4, as required by sequential

rationality in period 2. In period 1, any deviation where D is played results in the

opponent receiving a d signal — and thus playing B in period 2 — with strictly positive

probability. For sufficiently high δ such deviation is not profitable.

In the remainder of this section we show formally that the above assessment is a

sequential equilibrium.

9We write r−i = 1(y−i,yi) to mean that player −i chooses rC−i = rD−i = 1(y−i,yi), i.e. regardless of

the stage game action of player i, player −i would like the signal profile (y−i, yi) to be realized with

probability 1.
10With an abuse of notation, we write 1(c,si) to mean 1(c,c) when si = C and 1(c,d) when si = D.
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Consistency of beliefs : For each i ∈ {1, 2}, let {σki }k be a sequence of player i’s first

period strategy such that σki (r∗i , C)→ 1, σki (1(c,d), D) = 1/k, and σki (ri, si) = 1/k2 for

each (ri, si) 6∈ {(r∗i , C), (1(c,d), D)}.

Fix i ∈ {1, 2}. If yi = c, then
∑

y−i
γ(c, y−i|ri, r∗−i, si, C) ≥ 1−βi > 0; if yi = d and

rCi,Yi(d) > 0, then
∑

y−i
γ(d, y−i|ri, r∗−i, si, C) ≥ βir

C
i,Yi

(d) > 0. Thus, in these cases, i’s

beliefs are determined by Bayes’ rule and µ(r−i, s−i, y−i|hi) is given by (1).

If yi = d, si ∈ {C,D} and ri is such that rCi,Yi(d) = 0, then

γ(d, y−i|r, s) =


βir

C
i (d, y−i) = 0 if y−i ∈ {c, d}, s−i = C, r−i = r∗−i,

βir
D
i (d, c) + 1− βi if y−i = c, s−i = D, r−i = 1(c,d),

βir
D
i (d, d) if y−i = d, s−i = D, r−i = 1(c,d).

Hence, µ(r−i, s−i, y−i|hi) is given by (2).

Sequential rationality in period 2 : First, we show that

σi(hi) =



A if hi = (r∗i , C, c),

B if hi = (r∗i , C, d),

B if hi = (1(c,d), D, c),

B if hi = (1(c,d), D, d).

Indeed, if hi = (r∗i , C, c), then 3βir
∗,C
i (c, c)+3(1−βi) = 3βi1(c,c)(c, c)+3(1−βi) = 3 >

0 = βi1(c,c)(c, d) = βir
∗,C
i (c, d) and, hence, σi(r

∗
i , C, c) = A. If hi = (r∗i , C, d), then

r∗,Ci,Yi(d) = 0 and, hence, σi(r
∗
i , C, d) = B. If hi = (1(c,d), D, c), then 3βi1(c,d)(c, c) = 0 <

1 = βi1(c,d)(c, d) + 1− βi and, hence, σi(1(c,d), D, c) = B. Finally, if hi = (1(c,d), D, d),

then 1(c,d),Yi(d) = 0 and, hence, σi(1(c,d), D, d) = B.

For each hi such that yi = c or yi = d and rCi,Yi(d) > 0, supp(µ(·|hi)) ⊆ {r∗−i} ×

{C} × Y−i. Given that when r−i = r∗−i and s−i = C, player −i will play A in

period 2 if and only if y−i = c, it follows that σi(hi) is optimal because player i

plays A if and only if 3µ(r∗−i, C, c|hi) ≥ µ(r∗−i, C, d|hi) and this condition is equivalent

to 3βir
C
i (c, c) + 3(1 − βi) ≥ βir

C
i (c, d) when yi = c and si = C, to 3βir

C
i (c, c) ≥

βir
C
i (c, d) + 1− βi when yi = c and si = D, and to 3rCi (d, c) ≥ rCi (d, d) when yi = d

and rCi,Yi(d) > 0.
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For each hi such that yi = d and rCi,Yi(d) = 0, supp(µ(·|hi)) ⊆ {1(c,d)}× {D}× Y−i
and, thus, player i believes that player −i will play B. Since σi(hi) = B, it follows

that σi(hi) is optimal.

Sequential rationality in period 1 : Following the strategy yields a payoff of 2(1−

δ) + 3δ since, in period 2, hi = (r∗i , C, c) for each i and, thus, both players play A.

Suppose that player i deviates to (ri, si) 6= (r∗i , s
∗
i ). If si = s∗i , then total payoff

is at most 2(1 − δ) + 3δ since the first period payoff is 2 and the second period

payoff cannot exceed 3. If si 6= s∗i , then si = D and either h−i = (r∗−i, C, c) or

h−i = (r∗−i, C, d). Thus, player −i plays A in the former case and B in the latter

case. The probability of the latter case is at least 1 − βi since, given si = D and

r∗−i, player −i will receive a d signal with probability at least 1 − βi. Thus, player

i’s second period payoff is at most 3βi + 1 − βi < 3 since βi < 1. The payoff from

the deviation is then at most 3(1− δ) + (3βi + 1− βi)δ. It follows from δ > δ∗ that

2(1− δ) + 3δ > 3(1− δ) + (3βi + 1− βi)δ and, hence, the assessment is sequentially

rational.

4 Repeated prisoner’s dilemma with endogenous

private monitoring

We extend the logic of the motivating example by providing conditions under which

the folk theorem holds for the repeated prisoner’s dilemma with endogenous private

monitoring.

In general, a repeated game with endogenous monitoring consists of a set of players

I, a stage game G = (Si, ui)i∈I , a set of private signals Yi for each player, a set of

monitoring actions Ri for each player, a monitoring technology γ : R × S → ∆Y ,

and a discount factor δ. We focus on the case where the stage game is the prisoner’s

dilemma in Figure 2, where g, l > 0, and Yi = {c, d} for each i ∈ I.11

In each period t = 1, 2 . . ., each player chooses ri,t ∈ Ri and si,t ∈ Si, and then

11Note that (C,C) is efficient only if g ≤ l, although we do not need to assume this.
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1\2 C D

C 1, 1 −l, 1 + g

D 1 + g,−l 0, 0

Figure 2: Prisoner’s dilemma

observes yi,t ∈ Yi. The joint distribution of yt ≡ ×i∈Iyi,t is given by γ(rt, st), where

rt ≡ ×i∈Iri,t and st ≡ ×i∈Isi,t. That is, the joint distribution of signals is determined

by the monitoring and stage game actions through the monitoring technology. Besides

his own stage game and monitoring actions, the private signal yi,t is the only variable

that player i observes in period t; in particular, payoffs are not observed. Thus, a

history for player i at the end of period t takes the form hti = (ri,τ , si,τ , yi,τ )
t
τ=1.

Let H t
i be the set of all histories for player i in period t, with H0

i being the

singleton set containing the empty history. Let Hi = ∪∞t=0H
t
i denote the set of player

i’s histories. A strategy for player i is σi : Hi → ∆(Ri × Si). Repeated game payoffs

are given by the discounted sum of stage game payoffs, i.e. the monitoring actions

have no direct impact on payoffs.

As in the motivating example, each player’s monitoring action is a pair of condi-

tional distributions ri = (rCi , r
D
i ) with r

s−i
i ∈ ∆Y for each i ∈ {1, 2} and s−i ∈ S−i.

Thus, Ri ⊆ (∆Y )2 for each i ∈ {1, 2}. Furthermore, the monitoring actions of the

players are aggregated to determine the joint distribution of private signals in the

sense that there is an aggregation function α : (∆Y )2 → ∆Y such that, for each

r ∈ R and s ∈ S,

γ(r, s) = α(rs21 , r
s1
2 ).

The above formalization allows, of course, for the possibility that a player controls

the monitoring structure, in the sense that either α(ρ, ρ′) = ρ for each (ρ, ρ′) ∈ (∆Y )2

or α(ρ, ρ′) = ρ′ for each (ρ, ρ′) ∈ (∆Y )2. This case is easy to analyze since then

the stage game Nash equilibrium must be played in every period. Indeed, as in the

motivating example, the stage game action of the player who controls the monitoring

structure has no impact (holding his monitoring action fixed) on the continuation
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play of his opponent; hence such player must choose D in every period. Thus, the

other player must choose D in every period as well.

Remark 1 If a player controls the monitoring structure, then, in every sequential

equilibrium, (D,D) is played in each period.

When no player controls the monitoring structure, the stage game action si of

each player may affect the distribution of signals since it determines the probability

distribution rsi−i of his opponent and the aggregation function α may depend on the

latter. In what follows we will focus on the case where this dependence of α on each

of its coordinates is strong enough in the sense of properties 1 and 2 below.

These properties require the following notation:

(i) For each (ρ, ρ′) ∈ (∆Y )2 and y ∈ Y , α(ρ, ρ′)[y] is the probability of signal profile

y according to α(ρ, ρ′).

(ii) Let αi refer to α when r
s−i
i is the first argument, i.e. αi(r

s−i
i , rsi−i)[(yi, y−i)] =

α(rs21 , r
s1
2 )[(y1, y2)].

(iii) If r
s−i
i = 1(yi,y−i) and rsi−i = 1(y′−i,y

′
i)

, we write αi(r
s−i
i , rsi−i) = αi(1(yi,y−i), 1(y′i,y

′
−i)

).

The reason for this notation is as follows. When player i chooses a degenerate

distribution 1y, we write (as we did in the motivating example) y by listing

player i’s signal first, i.e. y = (yi, y−i). Hence, for example, if player 1 chooses

1(d,c) (i.e. signal d for himself and c for player 2) and player 2 chooses 1(c,d)

(i.e. c for himself and d for player 1), then both players are choosing the

same distribution over Y . In the above notation, it is clear that both players

are choosing the same distribution because the resulting distribution over Y is

α1(1(d,c), 1(d,c)) (or, equivalently, α2(1(c,d), 1(c,d))).

We say that α is responsive if it satisfies:

1. α(1y, 1y′)[ỹ] = 0 for each y, y′ ∈ Y and ỹ 6∈ {y, y′}.

2. minρ∈∆Y αi(1y, ρ)[y] > 0 for each y ∈ Y and i ∈ {1, 2}.
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Note that property 2 implies that minρ∈∆Y αi(ρ, 1y)[y] > 0 for each y ∈ Y and

i ∈ {1, 2}.12 In words, these properties require the following:

1. If each player proposes that a signal should occur with probability 1, then all

signals other than the two proposed happen with probability 0; this property

requires in a weak form that α respects the choice of the players on what they

agree. In particular, when both players propose the same signal y, this property

implies that y happens with probability 1.

2. If one player proposes that a signal y should occur with probability 1, then

y happens with strictly positive probability no matter the choice of the other

player; this property requires that no player can fully control the monitoring

structure.

Properties 1 and 2 are natural and mild conditions to make sure that the aggregation

function reflects the choices of both players.

An example of an aggregation function satisfying the above properties is the one

considered in the motivating example: αβ(ρ, ρ′) = βρ + (1 − β)ρ′. The aggregation

function αβ also belongs to a class of aggregation functions that can be viewed as

mixed extensions of their restriction to pure monitoring strategies. In general, we can

obtain such aggregation function α as the mixed extension of its restriction to pairs

of degenerate signal distributions as follows. A pure monitoring strategy is simply

y ∈ Y which is identified with 1y. Thus, writing ρ(y) for the probability assigned to

1y for each ρ ∈ ∆Y and y ∈ Y , α is a mixed extension if, for each (ρ, ρ′) ∈ (∆Y )2,

α(ρ, ρ′) =
∑
y

∑
y′

ρ(y)ρ′(y′)α(1y, 1y′).
13

For aggregation functions belonging to the class of mixed extensions, α is responsive

if the following conditions hold:

12Indeed, αi(ρ, 1y)[y] = α−i(1(y−i,yi), ρ)[(y−i, yi)] ≥ minρ′∈∆Y α−i(1(y−i,yi), ρ
′)[(y−i, yi)] > 0.

13This equality holds in the case of αβ and, hence, αβ is the mixed extension of its restrition to

pure monitoring strategies. However, there are responsive aggregation functions that are not the

mixed extension of its restrition to pure monitoring strategies. An example is as follows: Let � be

the linear order on Y defined by (c, c) � (c, d) � (d, c) � (d, d) and define α(ρ, ρ′) = 1
21y1(ρ)+ 1

21y1(ρ′)

where for each ρ ∈ ∆Y , y1(ρ) ∈ Y is such that ρ(y1) = maxy ρ(y) and there is no ỹ ∈ Y such that
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(a) α(1y, 1y′)[ỹ] = 0 for each y, y′ ∈ Y and ỹ 6∈ {y, y′}.

(b) αi(1y, 1y′)[y] > 0 for each y, y′ ∈ Y and i ∈ {1, 2}.14

Whenever monitoring is responsive, we obtain a folk theorem for the repeated

prisoner’s dilemma with endogenous private monitoring. Let

V ∗ = {u ∈ co(u(S)) : ui > 0 for each i = 1, 2}

be the set of feasible and strictly individually rational payoffs and

X = {X : X ⊆ ∆Y,X is finite and 1y ∈ X for each y ∈ Y }

be the collection of the finite subsets X of ∆Y containing all the degenerate proba-

bility measures 1y on Y .

Theorem 1 If α is responsive, then, for each v ∈ V ∗, there exists δ∗ ∈ (0, 1) such

that, for each δ ≥ δ∗ and X ∈ X , when Ri = X2 for each i ∈ {1, 2}, there exists a

sequential equilibrium σ and a sequence of stage game actions profiles {s∗t}∞t=1 such

that (1 − δ)
∑∞

t=1 δ
t−1u(s∗t ) = v and, for each t ∈ N, s∗t is played in period t with

probability 1 according to σ.

The proof of Theorem 1 is constructive. Given a feasible and strictly individually

rational payoff v, we now describe a strategy profile σ and beliefs µ such that (σ, µ)

is a sequential equilibrium (for any X in the statement of theorem) whose payoff is

v.

By Fudenberg and Maskin (1991), there exists a sequence {s∗t}∞t=1 such that vi =∑∞
t=1 δ

t−1ui(s
∗
t ) for each i ∈ {1, 2} and the continuation payoff for each player from

any time onwards is bounded away from zero. Our strategy profile will specify that

each player i chooses the stage game action s∗i,t in period t and the monitoring action

ρ(ỹ) = maxy ρ(y) and ỹ � y1(ρ). Then α is responsive but it is not the mixed extension of its

restriction to pure monitoring strategies. Indeed, if ρ = 1
21(c,c) + 1

21(d,d), then α(ρ, ρ) = 1(c,c) and∑
y

∑
y′ ρ(y)ρ′(y′)α(1y, 1y′) = 1

21(c,c) + 1
21(d,d).

14Property (a) is exactly the same as property 1. Property 2 holds since it follows from (b) that

αi(1y, ρ)[y] =
∑
y′ ρ(y′)αi(1y, 1y′)[y] ≥ miny′∈Y αi(1y, 1y′)[y] > 0; hence minρ∈∆Y αi(1y, ρ)[y] > 0.
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r∗i,t = (r∗,Ci,t , r
∗,D
i,t ) that gives, with probability one, signal c to i’s opponent and, for

player i, signal c if and only if s−i = s∗−i,t, i.e. r
∗,s−i
i,t = 1(c,c) if s−i = s∗−i,t and

r
∗,s−i
i,t = 1(d,c) if s−i 6= s∗−i,t; in this monitoring structure, a signal c for player i means

that his opponent has chosen the correct action. By property 1, this implies that the

signal profile will be (c, c) in every period on the equilibrium path. For each t ≥ 0,

let

h∗,ti =
(
(r∗i,1, s

∗
i,1, c), . . . , (r

∗
i,t, s

∗
i,t, c)

)
and

H∗i = {h∗,ti : t ∈ N0}.

Under our strategy, h∗,ti is a history where i has neither deviated nor detected a

deviation; in particular, h∗,0i is player i’s empty history. Thus, our strategy will

recommend r∗i,t+1 and s∗i,t+1 at such histories.

The usual difficulty in private monitoring games is coordination failure, namely,

in our context, that a player i may still assign strictly positive probability to h∗,t−i

despite having deviated from r∗i,k or s∗i,k for some 1 ≤ k ≤ t. Thus, even when player i

observes a deviation and assigns zero probability to h∗,t−i, he may be unsure about the

continuation play of his opponent who may still assign strictly positive probability to

h∗,ti . In our construction, such coordination failure can be avoided in the set H∗0i of

histories where there is zero probability that player −i’s history is in H∗−i as follows.

First, we specify that each player i plays D following any hi ∈ H∗0i . Second, we

specify consistent beliefs such that whenever player i’s history is in H∗0i , he believes

that player −i’s history is in H∗0−i. Thus, player i plays D and expects player −i to

play D at hi ∈ H∗0i . The set H∗0i is easily characterized in terms of primitive elements

of the game, namely

H∗0i =

hi ∈ Hi :

`(hi)∏
t=1

αi(r
s∗−i,t
i,t , r

∗,si,t
−i,t )[(yi,t, c)] = 0

 ,

where `(hi) is the length of history hi; this characterization makes it clear that H∗0i

is absorbing in the sense that if a history hi belongs to it, then so will any of its

continuation histories. Thus, once player i observes hi ∈ H∗0i , he will play D forever
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and expects player −i to play D forever too. Regarding his monitoring action, we

specify that player i plays 1(c,d) regardless of player −i’s stage game action.

The sequential equilibrium we use to establish Theorem 1 is belief-based and, in

fact, beliefs plays an important role in our argument. A key property is that player

i’s beliefs at any history are concentrated on H∗−i ∪H∗0−i. In particular, this allows us

to specify player i’s strategy σi only at histories H∗i ∪H∗0i , as we have done, and use a

fixed point argument to obtain the strategies at the remaining histories. Specifically,

for each specification of both players’ strategies ν at those remaining histories, we

obtain a fully specified strategy σν by combining ν with the specification of σi at

H∗i ∪H∗0i for each i. Moreover, we show that there is a belief system µν such that

(a) (σν , µν) is consistent,

(b) supp(µν(·|hi)) ⊆ H∗0−i for each i ∈ {1, 2} and hi ∈ H∗0i ,15

(c) h
∗,`(hi)
−i ∈ supp(µν(·|hi)) ⊆ {h∗,`(hi)−i } ∪H∗0−i for each i ∈ {1, 2} and hi ∈ Hi \H∗0i ,

and

(d) the function ν 7→ µν is continuous.

Property (d) then implies that the correspondence that consists of the mixed actions

that at histories hi maximize i’s payoff given beliefs µν(·|hi) and continuation strategy

determined by σν is continuous and, thus, has a fixed point ν∗.

The sequential equilibrium we use to establish Theorem 1 is then (σ, µ) = (σν
∗
, µν

∗
).

Sequential rationally follows by construction at histories hi ∈ Hi \ (H∗i ∪ H∗0i ). At

histories hi ∈ H∗0i , player i’s beliefs are concentrated on H∗0−i, which is absorbing and,

thus, implies that player −i will play D forever; thus sequential rationality also holds

at hi ∈ H∗0i . The argument is more involved for histories hi ∈ H∗i but sequential

rationality also holds essentially because deviations are caught with strictly positive

probability, in which case the continuation payoff will be equal to zero.

Properties (a)–(d) play an important role in our argument. The reason why they

hold is roughly as follows. If the strategy σi (or σνi more generally) is followed, then

15For any probability measure π, supp(π) denotes the support of π.
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the t-period histories of player i that are played with strictly positive probability are

{h∗,ti } ∪HD
i , where

HD
i = {hi ∈ Hi : hi = (h∗,ti · (r∗i,t+1, s

∗
i,t+1, d) · h′i) for some t ≥ 0 and h′i ∈ HC

i } and

HC
i = {hi ∈ Hi : ri,t = 1(c,d) and si,t = D for all 1 ≤ t ≤ `(hi)}.

If hi ∈ H t
i \H∗0i , then h∗,t−i occurs with strictly positive probability and, thus, µ(·|hi)

is determined by σ−i and h∗,t−i ∈ supp(µ(·|hi)). Furthermore, since the histories h−i

that are played with strictly positive probability are in {h∗,t−i} ∪HD
−i ⊆ {h

∗,t
−i} ∪H∗0−i,

it follows that supp(µ(·|hi)) ⊆ {h∗,t−i} ∪H∗0−i.

At histories hi ∈ H t
i ∩ H∗0i , h∗,t−i occurs with probability zero. Hence, the only

possibility for µ(·|hi) to be determined by σ−i is for some history h−i ∈ HD
−i to occur

with strictly positive probability. The set of player i’s histories where there is zero

probability that player −i’s history belongs to HD
−i is

HD0
i =

{
hi ∈ Hi : for all 1 ≤ n ≤ `(hi) and (y−i,n+1, . . . , y−i,`(hi)) ∈ Y

`(hi)−n
−i ,(

n−1∏
k=1

αi(r
s∗−i,k
i,k , r

∗,si,k
−i,k )[(yi,k, c)]

)
αi(r

s∗−i,n
i,n , r

∗,si,n
−i,n )[(yi,n, d)]

 `(hi)∏
k=n+1

αi(r
D
i,k, 1(d,c))[yk]


= 0
}
.

Hence, if hi ∈ H∗0i \ HD0
i , then supp(µ(·|hi)) ⊆ H∗0−i. Finally, for histories hi ∈

H∗0i ∩HD0
i , beliefs are not determined by σ. Thus, we choose a strategy σ̄ that players

use to form beliefs in the case hi ∈ H∗0i ∩HD0
i to obtain that supp(µ(·|hi)) ⊆ H∗0−i. In

particular, if player i observes an unexpected d signal in period t having been on the

equilibrium path, we specify that the most likely tremble is that his opponent has

chosen σ̄−i(h
∗,t−1
−i ) = (1(c,d), s̄−i), where s̄−i 6= s∗−i,t. The usefulness of this particular

deviation is that h∗,t−1
−i ·(1(c,d), s̄−i, y−i,t) ∈ H∗0−i for each y−i,t; thus supp(µ(·|hi)) ⊆ H∗0−i.

The proof in Section 6.1 establishes all these claims as well as the omitted elements

in detail. In the supplementary material to this paper we show that, under a stronger

notion of responsiveness for the aggregation function α, the outcome consisting of

(C,C) in every period, and thus the payoff (1, 1), can be sustained with a sequential

equilibrium (σ, µ) such that σ is pure and explicitly specified, i.e. we dispense with
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the “black box” aspect of the fixed point argument we used above. The strategy

is the same as above for histories hi ∈ H∗i ∪ H∗0i and specifies, for histories hi ∈

H t
i \ (H∗i ∪H∗0i ), (r∗i , D) if 0 < µ(h∗,t−i|hi) < µ∗i , and (r∗i , C) if µ(h∗,t−i|hi) ≥ µ∗i , where

µ∗i ∈ (0, 1).16

We conclude this outline of the proof of our main result with a discussion of the role

played by properties 1 and 2 in the definition of a responsive aggregation function. For

simplicity, consider the case where mutual cooperation is to be sustained. Property 1

implies that on the equilibrium path, where each player i chooses stage game action

C and monitoring action r∗i , the signal profile (c, c) happens with probability 1. This,

in turn, implies that player i assigns probability 1 to h∗,t−i when he observes h∗,ti . In

addition, property 1 also implies that if player 1 is in H∗01 (and, thus, plays D and

1(c,d)) and player 2 is in H2 \ H∗02 (and, thus, plays monitoring action r∗2), then the

signal profile (y1, y2) = (c, d) happens with probability 1 since α1(1(c,d), 1(c,d)) = 1(c,d).

The usefulness of property 2 can be seen by noting that deviations to D by some

player on the equilibrium path will be detected with strictly positive probability by

his opponent. Thus, if player 2 unilaterally deviates to stage game action D in period

1, with probability at least minρ∈∆Y α1(1(d,c), ρ)[(d, c)] > 0, player 1 will observe signal

d in period 1 and play D from period 2 onwards.

5 Concluding remarks

In this paper we have shown how the ability of players to design the monitoring

structure of the game affects its equilibrium outcomes. This was shown in the context

of the infinitely repeated prisoner’s dilemma by contrasting the cases where one player

controls the monitoring structure with the case where the monitoring structure is

responsive to both players’ monitoring choices. Indeed, in the former case, the stage

game Nash equilibrium is played in every period in every equilibrium whereas, in the

latter case, the folk theorem holds.

The extension of the above results to stage games other than the prisoner’s

16Note that when s∗−i,t = C for all t ∈ N, r∗i,t does not depend on t; hence we write r∗i in this case.
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dilemma is outside the scope of this paper. Nevertheless, the extension of our frame-

work is straightforward as we now illustrate.

As already noted, a repeated game with endogenous monitoring consists of a set

of players I, a stage game G = (Si, ui)i∈I , a set of private signals Yi for each player,

a set of monitoring actions Ri ⊆ (∆Y )|S−i| for each player, a monitoring technology

γ : R × S → ∆Y , and a discount factor δ. The interpretation is that each player

chooses a profile of conditional distributions ri = (r
s1−i
i , . . . , r

s
|S−i|
−i
i ), where r

s−i
i ∈ ∆Y

is the distribution over signals that player i wants when the stage game actions of his

opponents is s−i.

In each period t = 1, 2 . . ., each player chooses ri,t ∈ Ri and si,t ∈ Si, and then

observes yi,t ∈ Yi. The joint distribution of yt ≡ ×i∈Iyi,t is given by γ(rt, st), where

rt ≡ ×i∈Iri,t and st ≡ ×i∈Isi,t. The joint distribution of signals is determined by the

monitoring and stage game actions through an aggregation function α : (∆Y )I → ∆Y

that determines the joint distribution of signals from the choices of the players:

γ(rt, st) = α(r
s−1,t

1,t , . . . , r
s−|I|,t
|I|,t )

Each player observes his own previous monitoring and stage game actions and

private signals but nothing else. Thus, a history for player i at the end of period t

takes the form hti = (ri,τ , si,τ , yi,τ )
t
τ=1. Letting H t

i be the set of all histories for player

i in period t, a strategy for player i is σi : ∪∞t=0H
t
i → ∆(Ri × Si). Repeated game

payoffs are given by the discounted sum of stage game payoffs, i.e. the monitoring

actions have no direct impact on payoffs.

We can then ask whether our results extend to such general repeated games with

endogenous monitoring. The proof of Remark 1 easily extends to show that, for

any stage game G, the player who controls the monitoring structure plays a myopic

best-reply to his expectation of his opponents’ strategy in every period and every

equilibrium. When such player has a dominant strategy in a two-player game, such

as the prisoner’s dilemma, this implies that a stage game Nash equilibrium is played

in every period and in every equilibrium. In general, we can ask: Is there a sharp

characterization of equilibria in general repeated games with endogenous monitoring
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when one player controls the monitoring structure?

While the extension of Theorem 1 to a Nash-threat folk theorem for general games

seems feasible, obtaining a folk theorem in full generality seems more difficult but we

can ask: Is it the case that the folk theorem holds for any stage game and any

responsive monitoring structure? The difficulty in answering this question lies in

the extension of our method of proof of Theorem 1 to general repeated games with

endogenous monitoring.

6 Appendix

6.1 Proof of Theorem 1

6.1.1 Parametrization

Let v ∈ V ∗ and 0 < ε < mini vi
2

. By Fudenberg and Maskin (1991), there exists

δ̄ ∈ (0, 1) such that, for each δ ≥ δ̄, there exists a sequence {s∗t}∞t=1 = {(s∗1,t, s∗2,t)}∞t=1

such that (1 − δ)
∑∞

t=1 δ
t−1u(s∗t ) = v and for each i ∈ {1, 2} and t ∈ N, |(1 −

δ)
∑∞

j=1 δ
j−1ui(s

∗
t+j)− vi| < ε.

For each i ∈ {1, 2}, let αi = minρ∈∆Y,y∈Y αi(ρ, 1y)[y] > 0. Then set

δ∗ = max

{
δ̄,max

i

max{g, l}
max{g, l}+ (vi − ε)αi

}
.

Let δ ≥ δ∗, X ∈ X and Ri = X2 for each i ∈ {1, 2} be fixed for the remainder of

this proof.

6.1.2 The assessment

We specify only part of the assessment, the remaining part being obtained via a fixed

point argument as detailed below.

For each t ∈ N, i ∈ {1, 2} and s−i ∈ {C,D}, let r
∗,s−i
i,t = 1(c,c) if s−i = s∗−i,t and
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r
∗,s−i
i,t = 1(d,c) if s−i 6= s∗−i,t. Define

h∗,ti =
(
(r∗i,1, s

∗
i,1, c), . . . , (r

∗
i,t, s

∗
i,t, c)

)
for each t ≥ 0,

H∗i = {h∗,ti : t ∈ N0} and

H∗0i = {hi ∈ Hi :

`(hi)∏
t=1

αi(r
s∗−i,t
i,t , r

∗,si,t
−i,t )[(yi,t, c)] = 0}.

Note that h∗,0i is player i’s empty history.

The strategy is partly specified as follows. Define, for each hi ∈ Hi,

σi(hi) =

(1(c,d), D) if hi ∈ H∗0i

(r∗i,`(hi)+1, s
∗
i,`(hi)+1) if hi = h

∗,`(hi)
i ,

where `(hi) is the length of history hi. We also write σi(ri, si|hi) for the probability

that σi(hi) assigns to (ri, si).

Let

Θ = {(i, hi) : i ∈ {1, 2} and hi ∈ Hi \ (H∗i ∪H∗0i ),

Σi,hi = ∆(X2 × {C,D}) for each (i, hi) ∈ Θ,

Σ =
∏

(i,hi)∈Θ

Σi,hi

and, for each ν ∈ Σ, σν be the strategy defined by setting, for each i ∈ {1, 2} and

hi ∈ Hi,

σνi (hi) =

νi(hi) if hi ∈ Hi \ (H∗i ∪H∗0i ),

σi(hi) otherwise.

We will specify beliefs µν for each ν ∈ Σ as follows.

Lemma 1 For each ν ∈ Σ, there exists a beliefs system µν such that

(a) (σν , µν) is consistent,

(b) supp(µν(·|hi)) ⊆ H∗0−i for each i ∈ {1, 2} and hi ∈ H∗0i ,

(c) h
∗,`(hi)
−i ∈ supp(µν(·|hi)) ⊆ {h∗,`(hi)−i }∪H∗0−i for each i ∈ {1, 2} and hi ∈ Hi \H∗0i ,

and

(d) the function ν 7→ µν is continuous.
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6.1.3 Proof of Lemma 1

Define a strategy σ̄ by setting, for each i ∈ {1, 2} and hi ∈ Hi,

σ̄i(hi) =


(1(c,d), D) if hi ∈ Hi \H∗0i and s∗i,`(hi)+1 = C,

(1(c,d), C) if hi ∈ Hi \H∗0i and s∗i,`(hi)+1 = D,

(1(d,c), D) if hi ∈ H∗0i .

Let σ̂ be such that, for each i ∈ {1, 2} and hi ∈ Hi, σ̂i(hi) is totally mixed. For each

j ∈ N, let σj be defined by setting, for each i ∈ {1, 2} and hi ∈ Hi,

σji (hi) =

(
1− 1

j
− 1

jj

)
σνi (hi) +

1

j
σ̄i(hi) +

1

jj
σ̂i(hi).

Then {σj}∞j=1 is a sequence of totally mixed strategies converging to σν .

Let i ∈ {1, 2}, t ∈ N and hi = (ri,k, si,k, yi,k)
t
k=1 ∈ H t

i . Then, for each h−i =

(r−i,k, s−i,k, y−i,k)
t
k=1 ∈ H t

−i and j ∈ N,

µj(h−i|hi) =

∏t
k=1 αi(r

s−i,k
i,k , r

si,k
−i,k)[yk]σ

j
−i(r−i,k, s−i,k|hk−1

−i )∑
(r̂−i,k,ŝ−i,k,ŷ−i,k)tk=1∈H

t
−i

∏t
k=1 αi(r

ŝ−i,k
i,k , r̂

si,k
−i,k)[(yi,k, ŷ−i,k)]σ

j
−i(r̂−i,k, ŝ−i,k|ĥk−1

−i )

where hk−i = (r−i,n, s−i,n, y−i,n)kn=1 and ĥk−i = (r̂−i,n, ŝ−i,n, ŷ−i,n)kn=1 for each k ≥ 0. In

Claims 2 – 4 below we show that {µj(h−i|hi)}∞j=1 converges. Thus, the beliefs µν are

defined by setting, for each i ∈ {1, 2}, hi ∈ Hi and h−i ∈ H`(hi)
−i ,

µν(h−i|hi) = lim
j
µj(h−i|hi).

It then follows that (σν , µν) is consistent. Thus, part (a) of Lemma 1 follows.

The following notation is useful to describe the expression for µν(h−i|hi). For each

strategy σ′, i ∈ {1, 2}, hi ∈ Hi and h−i ∈ H`(hi)
−i , let

πki (hi, h−i, σ
′) = αi(r

s−i,k
i,k , r

si,k
−i,k)[yk]σ

′
−i(r−i,k, s−i,k|hk−1

−i ) for each 1 ≤ k ≤ `(hi), and

πi(hi, h−i, σ
′) =

`(hi)∏
k=1

πki (hi, h−i, σ
′).

Then, with this notation, µj(h−i|hi) = πi(hi,h−i,σj)∑
ĥ−i∈Ht−i

πi(hi,ĥ−i,σj)
with t = `(hi). Further-

more, for each hi ∈ H t
i , h−i ∈ H t

−i and j ∈ N,

µj(h−i|hi) =
µj(ht−1

−i |ht−1
i )πti(hi, h−i, σ

j)∑
ĥ−i∈Ht−1

−i

∑
(r̂−i,t,ŝ−i,t,ŷ−i,t)∈H1

−i
µj(ĥ−i|ht−1

i )πti(hi, ĥ−i · (r̂−i,t, ŝ−i,t, ŷ−i,t), σj)
.
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Let

HC
i = {hi ∈ Hi : ri,t = 1(c,d) and si,t = D for all 1 ≤ t ≤ `(hi)},

HD
i = {hi ∈ Hi : hi = (h∗,ti · (r∗i,t+1, s

∗
i,t+1, d) · h′i) for some t ≥ 0 and h′i ∈ HC

i }.

The set HD
i contains player i’s histories that can occur with strictly positive proba-

bility under σνi other than those in H∗i . Note that HD
i ⊆ H∗0i . Indeed, r

s∗−i,t+1

i,t+1 = 1(c,c),

si,t+1 = s∗i,t+1 and yi,t+1 = d imply that

αi(r
s∗−i,t+1

i,t+1 , r
∗,si,t+1

−i,t+1 )[(yi,t+1, c)] = αi(1(c,c), 1(c,c))[(d, c)] = 1(c,c)(d, c) = 0

by property 1.

Claim 1 For each ν ∈ Σ, i ∈ {1, 2} and t ∈ N,{
hi ∈ H t

i :
t∏

k=1

σνi (ri,k, si,k|hk−1
i ) > 0

}
⊆ {h∗,ti } ∪HD

i .

Proof. Let hi be such that
∏t

k=1 σ
ν
i (ri,k, si,k|hk−1

i ) > 0 and consider first the

case where yi,k = c for each 1 ≤ k ≤ t. Since σνi (h∗,ki ) = (r∗i,k+1, s
∗
i,k+1) for each

0 ≤ k ≤ t− 1, it follows that hi = h∗,ti .

Hence, consider next the case where yi,k 6= c for some 1 ≤ k ≤ t and let t̂ =

min{1 ≤ k ≤ t : yi,k = d}. Since σνi (h∗,ki ) = (r∗i,k+1, s
∗
i,k+1) for each 0 ≤ k ≤ t̂ − 1, it

follows that (ri,k, si,k, yi,k) = (r∗i,k, s
∗
i,k, c) for each 1 ≤ k ≤ t̂ − 1 and (ri,t̂, si,t̂, yi,t̂) =

(r∗
i,t̂
, s∗
i,t̂
, d). Then, for each t̂ + 1 ≤ k ≤ t, hk−1

i ∈ H∗0i and (ri,k, si,k) = σνi (hk−1
i ) =

(1(c,d), D). Thus, hi ∈ HD
i .

Claim 2 For each i ∈ {1, 2}, t ∈ N and hi ∈ H t
i \H∗0i :

1. limj µ
j(h−i|hi) = πi(hi,h−i,σν)∑

ĥ−i∈Ht−i
πi(hi,ĥ−i,σν)

for each h−i ∈ H t
−i,

2. h∗−i ∈ supp(µν(·|hi)),

3. supp(µν(·|hi)) ⊆ {h∗−i} ∪H∗0−i and

4. limj(j
j−1−tµj(h−i|hi)) = 0 for each h−i ∈ H t

−i \ (H∗0−i ∪ {h
∗,t
−i}).
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Proof. We have that πi(hi, h
∗,t
−i, σ

ν) > 0 since hi ∈ H t
i \H∗0i . This implies parts

1 and 2. For part 3, note that if h−i ∈ H t
−i \ {h

∗,t
−i} is such that µν(h−i|hi) > 0, then∏t

k=1 σ
ν
−i(r−i,k, s−i,k|hk−1

−i ) > 0. Thus, by Claim 1, h−i ∈ HD
−i ⊆ H∗0−i.

We establish part 4 by induction on t. Let t = 1 and consider hi = (ri, si, yi) ∈

H1
i \H∗0i . Since hi 6∈ H∗0i , we have that αi(r

s∗−i,1
i , r∗,si−i,1)[(yi, c)] > 0. In addition,∑

ĥ−i∈H1
−i

πi(hi, ĥ−i, σ
j)→

∑
y−i

αi(r
s∗−i,1
i , r∗,si−i,1)[yi, y−i].

Thus, (r∗−i,1, s
∗
−i,1, c) ∈ supp(µν(·|hi)) ⊆ {(r∗−i,1, s∗−i,1, c), (r∗−i,1, s∗−i,1, d)} and note that

(r∗−i,1, s
∗
−i,1, d) ∈ H∗0−i. Letting s̄−i 6= s∗−i,1, we have that {(1(c,d), s̄−i, c), (1(c,d), s̄−i, d)} ⊆

H∗0−i since α−i(1(c,d), 1(c,d))[(y−i, c)] = 0 by property 1. Hence, for each h−i = (r−i, s−i, y−i) ∈

H1
−i \ (H∗0−i ∪ {h

∗,1
−i }) and σ′−i ∈ {σν−i, σ̄−i}, σ′−i(r−i, s−i|h

∗,0
−i ) = 0 and

lim
j

(jj−2µj(h−i|hi)) = lim
j

jj−2πi(hi, h−i, σ̂)j−j∑
ĥ−i∈H1

−i
πi(hi, ĥ−i, σj)

= 0.

Let t > 1 and assume that we have established that, for each k = 1, . . . , t− 1 and

hi ∈ Hk
i \ H∗0i , limj(j

j−1−kµj(h−i|hi)) = 0 for each h−i ∈ Hk
−i \ (H∗0−i ∪ {h

∗,k
−i }). Let

hi ∈ H t
i \H∗0i and h−i ∈ H t

−i \ (H∗0−i ∪ {h
∗,t
−i}). We have that

lim
j

∑
ĥ−i∈Ht−1

−i

∑
(r̂−i,t,ŝ−i,t,ŷ−i,t)∈H1

−i

µj(ĥ−i|ht−1
i )πti(hi, ĥ−i · (r̂−i,t, ŝ−i,t, ŷ−i,t), σj) > 0

because hi ∈ H t
i \H∗0i and, thus, µν(h∗,t−1

−i |ht−1
i ) > 0 and πti(hi, h

∗,t
i , σ

ν) > 0. Hence, if

ht−1
−i 6= h∗,t−1

−i , then ht−1
−i 6∈ H∗0−i (since, otherwise, h−i ∈ H∗0−i) and limj(j

j−1−(t−1)µj(ht−1
−i |ht−1

i )) =

0. Thus, limj(j
j−1−tµj(h−i|hi)) = 0.

If, instead, ht−1
−i = h∗,t−1

−i , note that h∗,t−1
−i ·(r∗−i,t, s∗−i,t, c) = h∗,t−i, h

∗,t−1
−i ·(r∗−i,t, s∗−i,t, d) ∈

H∗0−i and that for s̄−i 6= s∗−i,t, h
∗,t−1
−i · (1(c,d), s̄−i, y−i) ∈ H∗0−i for each y−i ∈ Y−i. Thus,

in this case,

(r−i,t, s−i,t, y−i,t) 6∈ {(r∗−i,t, s∗−i,t, c), (r∗−i,t, s∗−i,t, d), (1(c,d), s̄−i, c), (1(c,d), s̄−i, d)}

and σ′−i(r−i,t, s−i,t|h
∗,t−1
−i ) = 0 for each σ′−i ∈ {σν−i, σ̄−i}. Hence, the numerator of

(jj−1−tµj(h−i|hi)) is

jj−1−tµj(h∗,t−1
−i |ht−1

i )πti(hi, h
∗,t−1
−i · (r−i,t, s−i,t, y−i,t), σ̂)j−j
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and, hence, limj(j
j−1−tµj(h−i|hi)) = 0.

Define

HD0
i =

{
hi ∈ Hi : for all 1 ≤ n ≤ `(hi) and (y−1,n+1, . . . , y−i,`(hi)) ∈ Y

`(hi)−n
−i ,(

n−1∏
k=1

αi(r
s∗−i,k
i,k , r

∗,si,k
−i,k )[(yi,k, c)]

)
αi(r

s∗−i,n
i,n , r

∗,si,n
−i,n )[(yi,n, d)]

 `(hi)∏
k=n+1

αi(r
D
i,k, 1(d,c))[yk]

 = 0
}
.

This is the set of player i’s histories that happen with probability zero when h−i ∈ HD
−i,

i.e. player −i follows σ−i and, for some 1 ≤ n ≤ `(hi), h
k
−i ∈ H∗−i for all k < n and

hk−i ∈ H∗0−i for all k ≥ n.

Claim 3 For each i ∈ {1, 2}, t ∈ N and hi ∈ H t
i ∩ (H∗0i \HD0

i ):

1. limj µ
j(h−i|hi) = πi(hi,h−i,σν)∑

ĥ−i∈Ht−i
πi(hi,ĥ−i,σν)

for each h−i ∈ H t
−i,

2. supp(µν(·|hi)) ⊆ H∗0−i, and

3. limj(j
j−1−tµj(h−i|hi)) = 0 for each h−i ∈ H t

−i \H∗0−i.

Proof. We have that πi(hi, h
∗,t
−i, σ

ν) = 0 since hi ∈ H∗0i . Since hi 6∈ HD0
i , there

exist 1 ≤ n ≤ t and (y−1,n+1, . . . , y−i,t) ∈ Y t−n
−i such that(

n−1∏
k=1

αi(r
s∗−i,k
i,k , r

∗,si,k
−i,k )[(yi,k, c)]

)
αi(r

s∗−i,n
i,n , r

∗,si,n
−i,n )[(yi,n, d)]

(
t∏

k=n+1

αi(r
D
i,k, 1(d,c))[yk]

)
> 0.

Hence, letting for each 1 ≤ k ≤ t,

(r−i,k, s−i,k, y−i,k) =


(r∗−i,k, s

∗
−i,k, c) if k ≤ n− 1,

(r∗−i,k, s
∗
−i,k, d) if k = n,

(1(c,d), D, y−i,k) if k ≥ n+ 1,

(3)

it follows that πi(hi, h−i, σ
ν) > 0. This then implies part 1 and that µν(h∗,t−i|hi) = 0.

For part 2, note that if h−i ∈ H t
−i is such that µν(h−i|hi) > 0, then h−i 6= h∗,t−i and∏t

k=1 σ
ν
−i(r−i,k, s−i,k|hk−1

−i ) > 0. Thus, by Claim 1, h−i ∈ HD
−i ⊆ H∗0−i.

We establish part 3 by induction on t. Let t = 1 and consider hi = (ri, si, yi) ∈

H1
i ∩ (H∗0i \ HD0

i ). Then αi(r
s∗−i,1
i , r∗,si−i,1)[(yi, d)] > 0 and αi(r

s∗−i,1
i , r∗,si−i,1)[(yi, c)] = 0
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since, respectively, hi ∈ H1
i \ HD0

i and hi ∈ H1
i ∩ H∗0i . In addition, for each j,

µj(h∗,1−i |hi) = 0 and ∑
ĥ−i∈H1

−i

πi(hi, ĥ−i, σ
j)→ αi(r

s∗−i,1
i , r∗,si−i,1)[(yi, d)].

Thus, supp(µν(·|hi)) = {(r∗−i,1, s∗−i,1, d)} ⊆ H∗0−i. We have that {(1(c,d), s̄−i, c), (1(c,d), s̄−i, d)} ⊆

H∗0−i for s̄−i 6= s∗−i,1 since α−i(1(c,d), 1(c,d))[(y−i, c)] = 0 by property 1. Hence, for each

h−i ∈ H−i \H∗0−i,

lim
j

(jj−2µj(h−i|hi)) = lim
j

jj−2πi(hi, h−i, σ̂)j−j∑
ĥ−i∈H1

−i
πi(hi, ĥ−i, σj)

= 0.

Let t > 1 and assume that we have established that, for each k = 1, . . . , t− 1 and

hi ∈ Hk
i ∩ (H∗0i \ HD0

i ), limj(j
j−1−kµj(h−i|hi)) = 0 for each h−i ∈ Hk

−i \ H∗0−i. Let

hi ∈ H t
i ∩ (H∗0i \HD0

i ). We have that

lim
j

∑
ĥ−i∈Ht−1

−i

∑
(r̂−i,t,ŝ−i,t,ŷ−i,t)∈H1

−i

µj(ĥ−i|ht−1
i )πti(hi, ĥ−i · (r̂−i,t, ŝ−i,t, ŷ−i,t), σj) > 0

because hi 6∈ HD0
i ; thus, letting h̃−i be defined by (3), it follows that µν(h̃t−1|ht−1

i ) > 0

and πti(hi, h̃−i, σ
ν) > 0. Hence, for each h−i ∈ H t

−i \H∗0−i, limj(j
j−1−tµj(h−i|hi)) = 0

since limj(j
j−1−(t−1)µj(ht−1

−i |ht−1
i )) = 0.

For each i ∈ {1, 2}, let

H̄i =
{
hi ∈ Hi : πi(hi, h−i, σ̄) > 0 for some h−i ∈ H`(hi)

−i

}
.

Claim 4 For each i ∈ {1, 2}, t ∈ N and hi ∈ H t
i ∩H∗0i ∩HD0

i :

1. for each h−i ∈ H t
−i,

lim
j
µj(h−i|hi) =


πi(hi,h−i,σ̄)∑

ĥ−i∈Ht−i
πi(hi,ĥ−i,σ̄)

if hi ∈ H̄i

πi(hi,h−i,σ̂)∑
ĥ−i∈Ht−i

πi(hi,ĥ−i,σ̂)
otherwise,

and

2. supp(µν(·|hi)) ⊆ H∗0−i.
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Proof. Part 1 follows because πi(hi, h−i, σ
ν) = 0 for each h−i ∈ H t

−i since hi ∈

H∗0i ∩ HD0
i . Indeed, if hi ∈ H̄i, let h−i ∈ H t

−i be such that πi(hi, h−i, σ̄) > 0; then∑
ĥ−i∈Ht

−i
πi(hi, ĥ−i, σ̄) > 0 and

lim
j
µj(h−i|hi) = lim

j

j−1πi(hi, h−i, σ̄) + j−jπi(hi, h−i, σ̂)∑
ĥ−i∈Ht

−i

(
j−1πi(hi, ĥ−i, σ̄) + j−jπi(hi, ĥ−i, σ̂)

)
= lim

j

πi(hi, h−i, σ̄) + j−j+1πi(hi, h−i, σ̂)∑
ĥ−i∈Ht

−i

(
πi(hi, ĥ−i, σ̄) + j−j+1πi(hi, ĥ−i, σ̂)

)
=

πi(hi, h−i, σ̄)∑
ĥ−i∈Ht

−i
πi(hi, ĥ−i, σ̄)

.

If instead hi 6∈ H̄i, then πi(hi, h−i, σ̄) = 0 for each h−i ∈ H t
−i. Since σ̂ is to-

tally mixed, let h−i ∈ H t
−i be such that πi(hi, h−i, σ̂) > 0; for instance, let h−i =

(r−i,k, s−i,k, y−i,k)
t
k=1 with (r−i,k, s−i,k, y−i,k) = (1(c,yi,k), C, c) for each 1 ≤ k ≤ t and

note that πi(hi, h−i, σ̂) > 0 since αi(r
C
i,k, 1(yi,k,c))[(yi,k, c)]σ̂−i(1(c,yi,k), C|hk−1

−i ) > 0 for

each 1 ≤ k ≤ t by property 2 and because σ̂ is totally mixed. Then
∑

ĥ−i∈Ht
−i
πi(hi, ĥ−i, σ̂) >

0 and

lim
j
µj(h−i|hi) =

πi(hi, h−i, σ̂)∑
ĥ−i∈Ht

−i
πi(hi, ĥ−i, σ̂)

.

We establish part 2 by induction on t. Let t = 1 and consider hi = (ri, si, yi) ∈

H1
i ∩ H∗0i ∩ HD0

i . Since hi ∈ H∗0i ∩ HD0
i , we have that αi(r

s∗−i,1
i , r∗,si−i,1)[(yi, d)] =

αi(r
s∗−i,1
i , r∗,si−i,1)[(yi, c)] = 0, which implies that yi = d since

∑
y−i

r∗,si−i,1[(c, y−i)] = 1. In

addition, for each j, µj(h∗,1−i |hi) = 0 and, for each h−i 6= h∗,1−i , letting s̄−i 6= s∗−i,1,

µj(h−i|hi) =
αi(r

s̄−i
i , 1(d,c))[(d, y−i)] + πi(hi, h−i, σ̂)j−(j−1)∑

ŷ−i
αi(r

s̄−i
i , 1(d,c))[(d, ŷ−i)] + j−(j−1)

∑
ĥ−i:(r̂−i,ŝ−i)6=(1(c,d),s̄−i)

πi(hi, ĥ−i, σ̂)

if (r−i, s−i) = (1(c,d), s̄−i) and

µj(h−i|hi) =
πi(hi, h−i, σ̂)j−(j−1)∑

ŷ−i
αi(r

s̄−i
i , 1(d,c))[(d, ŷ−i)] + j−(j−1)

∑
ĥ−i:(r̂−i,ŝ−i)6=(1(c,d),s̄−i)

πi(hi, ĥ−i, σ̂)

otherwise. It then follows that (1(c,d), s̄−i, c) ∈ supp(µν(·|hi)) by property 2 and that

supp(µν(·|hi)) ⊆ {(1(c,d), s̄−i, c), (1(c,d), s̄−i, d)}. For each h−i ∈ {(1(c,d), s̄−i, c), (1(c,d), s̄−i, d)},

we have that h−i ∈ H∗0−i since α−i(1(c,d), 1(c,d))[(y−i, c)] = 0 by property 1. Hence,
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supp(µν(·|hi)) ⊆ H∗0−i. Furthermore, for each h−i ∈ H1
−i\supp(µν(·|hi)), limj(j

j−2µj(h−i|hi)) =

0; since H1
−i \H∗0−i ⊆ H1

−i \ supp(µν(·|hi)), then

lim
j

(jj−2µj(h−i|hi)) = 0 for each h−i ∈ H−i \H∗0−i.

Let t > 1 and assume that we have established that, for each k = 1, . . . , t− 1 and

hi ∈ Hk
i ∩H∗0i ∩HD0

i , supp(µν(·|hi)) ⊆ H∗0−i and limj(j
j−1−kµj(h−i|hi)) = 0 for each

h−i ∈ Hk
−i \H∗0−i.

Let hi ∈ H t
i ∩H∗0i ∩HD0

i and h−i ∈ H t
−i \H∗0−i. Note that ht−1

−i ∈ H t−1
−i \H∗0−i. We

will show that limj(j
j−1−tµj(h−i|hi)) = 0 for each h−i ∈ H t

−i \H∗0−i.

Consider first the case where h−i = h∗,t−i. In this case, jj−1−tµj(h−i|hi) = 0 for each

j ∈ N since hi ∈ H∗0i and the result follows. Thus, we may assume that h−i 6= h∗,t−i.

For convenience, let

Bj =
∑

ĥ−i∈Ht−1
−i

∑
(r̂−i,t,ŝ−i,t,ŷ−i,t)∈H1

−i

µj(ĥ−i|ht−1
i )πti(hi, ĥ−i · (r̂−i,t, ŝ−i,t, ŷ−i,t), σj).

We consider two cases.

Case (i): ht−1
i ∈ H∗0i .

Let h̃t−1
−i ∈ supp(µν(·|ht−1

i )) ⊆ H∗0−i; since σ−i(1(c,d), D|h̃t−1
−i ) = 1, it follows that

limj Bj > 0 when αi(r
D
i,t, 1(d,c))[(yi,t, ỹ−i)] > 0 for some ỹ−i ∈ Y−i; in particular,

limj Bj > 0 when yi,t = d by property 2. In this case, limj(j
j−1−tµj(h−i|hi)) = 0 since

limj(j
j−1−(t−1)µj(ht−1

−i |ht−1
i )) = 0 by Claim 3 and the inductive step.

If yi,t = c and αi(r
D
i,t, 1(d,c))[(c, ỹ−i)] = 0 for all ỹ−i ∈ Y−i, then, since σ̄−i(h̃

t−1
−i ) =

(1(d,c), D),

lim
j

(jBj) = lim
j

∑
ĥ−i∈Ht−1

−i ∩H∗0−i

µj(ĥ−i|ht−1
i )×

×

 1

jj−1

∑
(r̂−i,t,ŝ−i,t,ŷ−i,t):(r̂−i,t,ŝ−i,t)6=(1(d,c),D)

πti(hi, ĥ−i · (r̂−i,t, ŝ−i,t, ŷ−i,t), σ̂)

+
∑
ŷ−i,t

αi(r
D
i,t, 1(c,d))[(c, ŷ−i,t)]


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which is strictly positive since αi(r
D
i,t, 1(c,d))[(c, d)] > 0 by property 2. Since, by Claim

3 and the inductive step,

lim
j

(
jj−1−(t−1)µj(ht−1

−i |ht−1
i )πti(hi, h−i, σ

j)
)

= 0,

it follows that limj(j
j−1−tµj(h−i|hi)) = 0 for each h−i ∈ H−i \H∗0−i.

Case (ii): ht−1
i ∈ Hi \H∗0i .

In this case, we have αi(r
s∗−i,t
i,t , r

∗,si,t
−i,t )[(yi,t, c)] = αi(r

s∗−i,t
i,t , r

∗,si,t
−i,t )[(yi,t, d)] = 0 since,

respectively, hi ∈ H∗0i and hi ∈ HD0
i . Thus, yi,t = d and the argument in case

(i) can be applied to conclude that limj Bj > 0 provided that there is h̃t−1
−i ∈

supp(µν(·|ht−1
i )) ∩ H∗0−i. Claim 2 then implies that limj(j

j−1−(t−1)µj(ht−1
−i |ht−1

i )) = 0

and, hence, limj(j
j−1−tµj(h−i|hi)) = 0 if ht−1

−i 6= h∗,t−1
−i .

If ht−1
−i = h∗,t−1

−i , then, letting s̄−i 6= s∗−i,t, it cannot be that (r−i,t, s−i,t) = (1(c,d), s̄−i) =

σ̄−i(h
∗,t−1
−i ); indeed, h−i 6∈ H∗0−i and, for each y−i,t ∈ Y , h∗,t−1

−i ·(r−i,t, s−i,t, y−i,t) ∈ H∗0−i as

r
∗,s̄−i
i,t = 1(d,c) and α−i(1(c,d), 1(c,d))[(y−i,t, c)] = 0 by property 1. Thus, πti(hi, h−i, σ̄) =

0. In addition, πti(hi, h−i, σ
ν) = 0 since σν−i(h

t−1
−i ) = (r∗−i,t, s

∗
−i,t) and αi(r

s∗−i,t
i,t , r

∗,si,t
−i,t )[(yi,t, c)] =

αi(r
s∗−i,t
i,t , r

∗,si,t
−i,t )[(yi,t, d)] = 0. Thus, πti(hi, h−i, σ

j) < j−j. Thus, limj(j
j−1−tµj(h−i|hi)) =

0.

Hence, we are left with the case where supp(µν(·|ht−1
i )) = {h∗,t−1

−i }. In this case,

since σ̄−i(h
∗,t−1
−i ) = (1(c,d), s̄−i), where s̄−i 6= s∗−i,t,

lim
j

(jBj) = lim
j
µj(h∗,t−1

−i |ht−1
i )×

×

 1

jj−1

∑
(r̂−i,t,ŝ−i,t,ŷ−i,t):(r̂−i,t,ŝ−i,t)6=(1(c,d),s̄−i)

πti(hi, h
∗,t−1
−i · (r̂−i,t, ŝ−i,t, ŷ−i,t), σ̂)

+
∑
ŷ−i,t

αi(r
s̄−i
i,t , 1(d,c))[(d, ŷ−i,t)]


which is strictly positive since αi(r

s̄−i
i,t , 1(d,c))[(d, c)] > 0 by property 2. Since, by Claim

2 when ht−1
−i 6= h∗,t−1

−i and because πti(hi, h−i, σ
j) < j−j when ht−1

−i = h∗,t−1
−i as argued

above,

lim
j

(
jj−1−(t−1)µj(ht−1

−i |ht−1
i )πti(hi, h−i, σ

j)
)

= 0,

it follows that limj(j
j−1−tµj(h−i|hi)) = 0 for each h−i ∈ H−i \H∗0−i.
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It follows by Claims 3 and 4 that part (b) of Lemma 1 holds. Part (c) of Lemma

1 follows from Claim 2. Finally, part (d) of Lemma 1, i.e. the continuity of ν 7→ µν ,

follows by part 1 of Claims 2 – 4 since the definition of H∗0i , HD0
i and H̄i do not

depend on ν.

6.1.4 The fixed point argument

Let ν ∈ Σ be given. For each h ∈ H and t ∈ N, let ξt(h) be the probability measure on

H t induced by σν and h. Specifically, set ξ1(h)[r, s, y] = σν(r, s|h)γ(y|r, s); assuming

that ξ1(h), . . . , ξt−1(h) have been defined, set, for each h̄ ∈ H t,

ξt(h)[h̄] = ξt−1(h)[h̄t−1]σν(r̄t, s̄t|h · h̄t−1)γ(ȳt|r̄t, s̄t).

Let Uν
i (h) be player i’s expected payoff following history h ∈ H:

Uν
i (h) = (1− δ)

∞∑
t=1

δt−1
∑

h̄∈Ht−1

ui(σ
ν
S(h · h̄))ξt−1(h)[h̄],

where ξ0(h)[h∗,0] = 1 and for each h ∈ H, σνS(h) denotes the marginal of σν(h) on S.

Let Uν
i (hi) be player i’s expected payoff following history hi ∈ Hi:

Uν
i (hi) =

∑
h−i∈H−i

µν(h−i|hi)Uν
i (hi, h−i).

For each i ∈ {1, 2}, hi ∈ Hi and (ri, si) ∈ X2 × {C,D}, let Uν,ri,si
i (hi) be player

i’s expected payoff of an one-shot deviation from σνi to (ri, si); formally, Uν,ri,si
i (hi)

is defined in the same way as Uν
i (hi) by changing, for each h−i ∈ H−i, ξ

1(h) to

((ri, si), σ
ν
−i(h−i)), i.e.

Uν,ri,si
i (hi) =

∑
h−i∈H−i

µν(h−i|hi)
(

(1− δ)ui(si, σν−i,S−i(h−i))

+ δ
∑

y,r̄−i,s̄−i

σν−i(r̄−i, s̄−i|h−i)γ(y|ri, si, r̄−i, s̄−i)Uν
i (h · ((ri, si, yi), (r̄−i, s̄−i, y−i)))

)
,

where σν−i,S−i(h−i) denotes the marginal of σν−i(h−i) on S−i.

Define Φ : Σ ⇒ Σ by setting, for each ν ∈ Σ,

Φi,hi(ν) = {λi ∈ ∆(X2 × {C,D}) : (ri, si) solves max
(r′i,s

′
i)∈X2×{C,D}

Uν,ri,si
i (hi)

for each (ri, si) ∈ supp(λi)}
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for each (i, hi) ∈ Θ and

Φ(ν) =
∏

(i,hi)∈Θ

Φi,hi(ν).

Let RX2×{C,D}×Θ be endowed with the product topology. The following claim

establishes some properties of this topological space and of its subset Σ.

Claim 5 The set Σ is a nonempty, convex and compact subset of RX2×{C,D}×Θ, which

itself is a locally convex Hausdorff topological vector space.

Proof. Note that X2 × {C,D} × Θ is countable and, thus, RX2×{C,D}×Θ is first

countable by Kelley (1955, Theorem 6, p. 92). This implies that addition and scalar

multiplication in RX2×{C,D}×Θ are continuous since a sequence in a product space

converges to a point c if and only if its projection in each coordinate space converges

to the projection of c by Kelley (1955, Theorem 4, p. 91) and both addition and scalar

multiplication are continuous in each coordinate space.17,18 We have that RX2×{C,D}×Θ

is Hausdorff by Kelley (1955, Theorem 5, p. 92) since each coordinate space is

Hausdorff. It is also locally convex since, writing Br for the open ball of radius r > 0

around zero in R, the collection of sets UF,{rk}k∈F = {c : ck ∈ Brk for each k ∈ F}

where F is a finite subset of X2 × {C,D} × Θ and rk > 0 for each k ∈ F is a local

base whose members are convex; this follows by Kelley (1955, p.90) and the fact

that {Br : r > 0} is a local base of R. Finally, Σ is nonempty and convex because

the product of nonempty (resp. convex) sets is nonempty (resp. convex) and it is

compact by Tychonoff Theorem e.g. Kelley (1955, Theorem 13, p. 143).

It is clear that Φ is convex-valued and, since ν 7→ µν and (ν, ri, si) 7→ Uν,ri,si
i (hi)

are continuous, it follows that Φ is closed. It then follows by the Fan-Glicksberg Fixed

Point Theorem that there is ν∗ ∈ Σ such that ν∗ ∈ Φ(ν∗).

17Addition and scalar multiplication are defined coordinate-wise as usual i.e. the kth coordinate

of a+ b and λa are, respectively, ak + bk and λak for each a, b ∈ RX2×{C,D}×Θ, k ∈ X2×{C,D}×Θ

and λ ∈ R.
18That RX2×{C,D}×Θ is first countable allows us to use sequences to show that addition and scalar

multiplication are continuous but it is not needed since the same argument applies to nets.
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6.1.5 Sequential rationality

Let σ = σν
∗
, µ = µν

∗
, Ui(h) = Uν∗

i (h), Ui(hi) = Uν∗
i (hi) and U ri,si

i (hi) = Uν∗,ri,si
i (hi)

for each i ∈ {1, 2}, h ∈ H, hi ∈ Hi and (ri, si) ∈ X2 × {C,D}. We show that

Ui(hi) ≥ U ri,si
i (hi) for each i ∈ {1, 2}, hi ∈ Hi and (ri, si) ∈ X2 × {C,D} (4)

from which the sequential rationality of (σ, µ) follows.

Let i ∈ {1, 2}, hi ∈ Hi and (ri, si) ∈ X2×{C,D}. If hi ∈ Hi\(H∗0i ∪{h
∗,t
i : t ∈ N0},

then (4) holds since ν∗ ∈ Φ(ν∗). If hi ∈ H∗0i , then supp(µ(·|hi)) ⊆ H∗0−i and, hence,

Ui(hi) = 0 ≥ U ri,si
i (hi) since player i plays D in every history following hi and so does

player −i in every history following h−i ∈ H∗0−i. Thus, it remains to show that σ is

sequentially rational following h∗,ti for each t ≥ 0, i.e. to consider hi = h∗,ti .

We have that µ(h∗,t−i|h
∗,t
i ) = 1 and that Ui(h

∗,t) = (1− δ)
∑∞

k=t+1 δ
k−1ui(s

∗
k) since,

for each k ∈ N, ξk(h∗,t) assigns probability one to h∗,k.

For each τ ∈ N0, let V ∗i,τ = suphi∈Hτ
i
Ui(hi, h

∗,τ
−i ).

Claim 6 For each τ ∈ N0, V ∗i,τ = (1− δ)
∑∞

k=τ+1 δ
k−1ui(s

∗
k).

Proof. Note that

(1− δ)
∞∑

k=τ+1

δk−1ui(s
∗
k) ≤ V ∗i,τ ≤ 1 + g (5)

since Ui(h
∗,τ
i , h∗,τ−i ) = (1− δ)

∑∞
k=τ+1 δ

k−1ui(s
∗
k) as shown above. We now show that

V ∗i,τ ≤ max{(1− δ)ui(s∗τ+1) + δV ∗i,τ+1, (1− δ)ui(s̄i, s∗−i,τ+1) + δ(1− αi)V ∗i,τ+1},

where s̄i 6= s∗i,τ+1 and, recall, αi = minρ∈∆Y,y∈Y αi(ρ, 1y)[y]. Indeed, for each hi ∈ Hτ
i

and some (r̂i, ŝi) ∈ X2 × {C,D}, letting

y(ŝi) =

c if ŝi = s∗i,τ+1,

d otherwise
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and αi,Y−i(ρ, ρ
′)[y−i] =

∑
yi
αi(ρ, ρ

′)[yi, y−i] for each (ρ, ρ′) ∈ (∆Y )2 and y−i ∈ {c, d},

we have that

Ui(hi, h
∗,τ
−i ) = (1− δ)ui(ŝi, s∗−i,τ+1)

+ δ
∑
yi

(
αi(r̂

s∗−i,τ+1

i , 1(c,y(ŝi)))[(yi, c)]Ui(hi · (r̂i, ŝi, yi), h
∗,τ+1
−i )

+ αi(r̂
s∗−i,τ+1

i , 1(c,y(ŝi)))[(yi, d)]Ui(hi · (r̂i, ŝi, yi), h∗,τ−i · (r∗−i,τ+1, s
∗
−i,τ+1, d))

)
≤ (1− δ)ui(ŝi, s∗−i,τ+1) + δ(1−min

ρ
αi,Y−i(ρ, 1(c,y(ŝi)))[d])V ∗i,τ+1

≤ max{(1− δ)ui(s∗τ+1) + δV ∗i,τ+1, (1− δ)ui(s̄i, s∗−i,τ+1) + δ(1− αi)V ∗i,τ+1},

(6)

which holds because Ui(hi·(r̂i, ŝi, yi), h∗,τ−i ·(r∗−i,τ+1, s
∗
−i,τ+1, d)) ≤ 0 as h∗,τ−i ·(r∗−i,τ+1, s

∗
−i,τ+1, d) ∈

H∗0−i, minρ αi,Y−i(ρ, 1(c,y(ŝi)))[d] = 0 when ŝi = s∗i,τ+1 with ρ = 1(c,c) and, when ŝi = s̄i,

for some ρ′,

min
ρ
αi,Y−i(ρ, 1(c,d))[d] = αi(ρ

′, 1(c,d))[(c, d)] + αi(ρ
′, 1(c,d))[(d, d)]

≥ αi(ρ
′, 1(c,d))[(c, d)] ≥ min

ρ,y
αi(ρ, 1y)[y] = αi.

Note that (1− δ)ui(s∗τ+1) + δV ∗i,τ+1 ≥ (1− δ)ui(s̄i, s∗−i,τ+1) + δ(1−αi)V ∗i,τ+1 if and only

if δαiV
∗
i,τ+1 ≥ (1− δ)

(
ui(s̄i, s

∗
−i,τ+1)− ui(s∗τ+1)

)
. The latter condition holds since

δαiV
∗
i,τ+1 ≥ δαi(1− δ)

∞∑
k=τ+1

δk−1ui(s
∗
k) ≥ δαi(vi − ε) ≥ (1− δ)

(
ui(s̄i, s

∗
−i,τ+1)− ui(s∗τ+1)

)
since

δ ≥ δ∗ ≥ max{g, l}
max{g, l}+ (vi − ε)αi

≥
ui(s̄i, s

∗
−i,τ+1)− ui(s∗τ+1)

ui(s̄i, s∗−i,τ+1)− ui(s∗τ+1) + (vi − ε)αi
.

Thus,

(1− δ)ui(s∗τ+1) + δV ∗i,τ+1 ≥ (1− δ)ui(s̄i, s∗−i,τ+1) + δ(1− αi)V ∗i,τ+1

and, therefore,

V ∗i,τ ≤ (1− δ)ui(s∗τ+1) + δV ∗i,τ+1. (7)
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Since (7) holds for each τ ∈ N, it follows that V ∗i,τ ≤ (1− δ)
∑T

k=τ+1 δ
k−1ui(s

∗
k) +

δTV ∗i,τ+T ≤ (1− δ)
∑T

k=τ+1 δ
k−1ui(s

∗
k)+ δT (1+g) for each T ∈ N using (5) and, hence,

V ∗i,τ ≤ (1− δ)
∞∑

k=τ+1

δk−1ui(s
∗
k).

This, together with (5), then implies that V ∗i,τ = (1− δ)
∑∞

k=τ+1 δ
k−1ui(s

∗
k).

Let s̄i 6= s∗i,t+1, y(si) = c if si = s∗i,t+1 and y(si) = d if si 6= s∗i,t+1. Thus, as in (6),

U ri,si
i (h∗,ti ) = (1− δ)ui(si, s∗−i,t+1)

+ δ
∑
yi

(
αi(r

s∗−i,t+1

i , 1(c,y(si)))[(yi, c)]Ui(h
∗,t
i · (ri, si, yi), h

∗,t+1
−i )

+ αi(r
s∗−i,t+1

i , 1(c,y(si)))[(yi, d)]Ui(h
∗,t
i · (ri, si, yi), h

∗,t
−i · (r∗−i,t+1, s

∗
−i,t+1, d))

)
≤ max{(1− δ)ui(s∗t+1) + δV ∗i,t+1, (1− δ)ui(s̄i, s∗−i,t+1) + δ(1− αi)V ∗i,t+1}

= (1− δ)ui(s∗t+1) + δV ∗i,t+1

= (1− δ)
∞∑

k=t+1

δk−1ui(s
∗
k) = Ui(h

∗,t
i ).

6.2 Proof of Remark 1

Let i be the player who controls the monitoring structure, j 6= i and (σ, µ) be a

sequential equilibrium. Since player i controls the monitoring structure, γ(y|r, s) =

r
sj
i (y) for each (r, s, y) ∈ R× S × Y .

We first show that σi,Si(hi) = 1D for each hi ∈ Hi such that
∏t

k=1 σ(rk, sk|hk−1)r
sj,k
i,k (yk) >

0 for some hj ∈ H t
j where t = `(hi) and σi,Si(hi) denotes the marginal of σi(hi) on Si;

in words, player i plays D with probability 1 at every on-path history hi given σ.

Let hi ∈ Hi be such that
∏t

k=1 σ(rk, sk|hk−1)r
sj,k
i,k (yk) > 0 for some hj ∈ H t

j where

t = `(hi) and suppose that σi,Si(D|hi) < 1.

We have that

Ui(hi) = (1− δ)ui
(
σi,Si(hi),

∑
hj

µ(hj|hi)σj,Sj(hj)
)

+ δ
∑
hj

µ(hj|hi)
∑
r,s,y

ξ1(h)[r, s, y]Ui(h · (r, s, y))
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where the definitions of Ui(hi), Ui(h) and {ξt(h)}∞t=1 are as in Section 6.1.4 and

σj,Sj(hj) denotes the marginal of σj(hj) on Sj. For each (ri, yi) ∈ Ri × Yi, let

θ(ri, yi) =

∑
hj∈Ht

j

∑
(r̂j ,ŝj ,ŷj)∈H1

j

∏t
k=1 σj(rj,k, sj,k|h

k−1
j )r

sj,k
i,k (yk)σj(r̂j, ŝj|hj)r

ŝj
i (yi, ŷj)∑

hj∈Ht
j

∏t
k=1 σj(rj,k, sj,k|h

k−1
j )r

sj,k
i,k (yk)

be the probability of player i receiving signal yi in period t + 1 given that he has

observed hi and chosen ri in period t+ 1. Then∑
hj

µ(hj|hi)
∑
r,s,y

ξ1(h)[r, s, y]Ui(h · (r, s, y)) =

∑
ri,si,yi

∑
hj

∑
rj ,sj ,yj

θ(ri, yi)σi(ri, si|hi)µ(hj · (rj, sj, yj)|hi · (ri, si, yi))Ui(h · (r, s, y)).

Claim 7 For each yi ∈ Yi and ri ∈ Ri such that θ(ri, yi) > 0, Ui(hi · (ri, C, yi)) =

Ui(hi · (ri, D, yi)).

Proof. Let yi ∈ Yi and ri ∈ Ri be such that θ(ri, yi) > 0 and suppose that Ui(hi ·

(ri, C, yi)) > Ui(hi · (ri, D, yi)) (the case where Ui(hi · (ri, C, yi)) < Ui(hi · (ri, D, yi)) is

analogous). Let h̃i = hi · (ri, C, yi) and h̄i = hi · (ri, D, yi). Consider a deviation at h̄i

to σi|h̃i and let {ξ̄k}∞k=1 and Ūi(h̄i) =
∑

hj∈Ht+1
j

µ(hj|h̄i)Ūi(h̄i, hj) be the corresponding

sequence of probability measures and payoff. We have that ξ̄k(h̄i, hj)[ĥ] = ξk(h̃i, hj)[ĥ]

for each k ∈ N, hj ∈ H t+1
j and ĥ ∈ Hk. Thus, Ūi(h̄i, hj) = Ui(h̃i, hj) for each

hj ∈ H t+1
j . Moreover,

µ(hj|h̃i) = µ(hj|h̄i) =

∏t+1
k=1 σj(rj,k, sj,k|h

k−1
j )r

sj,k
i,k (yi,k, y−i,k)∑

ĥj∈Ht+1
j

∏t+1
k=1 σj(r̂j,k, ŝj,k|ĥ

k−1
j )r

ŝj,k
i,k (yi,k, ŷ−i,k)

for each hj ∈ H t+1
j . Hence,

Ūi(h̄i) =
∑

hj∈Ht+1
j

µ(hj|h̄i)Ūi(h̄i, hj) =
∑

hj∈Ht+1
j

µ(hj|h̃i)Ui(h̃i, hj) = Ui(h̃i) > Ui(h̄i).

But this is a contradiction since (σ, µ) is a sequential equilibrium.

For each yi ∈ Yi and ri ∈ Ri such that θ(ri, yi) > 0, let Ui(ri, yi) denote the

common value of Ui(hi · (ri, C, yi)) and Ui(hi · (ri, D, yi)) given by Claim 7. It then

follows that

Ui(hi) = (1− δ)ui(σi,Si(hi), σ̄j,Sj) + δ
∑
ri,yi

(
σi(ri, C|hi) + σi(ri, D|hi)

)
θ(ri, yi)Ui(ri, yi),
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where σ̄j,Sj =
∑

hj
µ(hj|hi)σj,Sj(hj).

Consider an one-shot deviation at hi to σ̄i ∈ ∆(X2 × {C,D}), where σ̄i(ri, D) =

σi(ri, D|hi) + σi(ri, C|hi) for each ri ∈ Ri, and corresponding payoff Ūi(hi). Then

Ūi(hi) = (1− δ)ui(D, σ̄j,Sj) + δ
∑
ri,yi

σ̄i(ri, D)θ(ri, yi)Ui(ri, yi)

= (1− δ)ui(D, σ̄j,Sj) + δ
∑
ri,yi

(
σi(ri, C|hi) + σi(ri, D|hi)

)
θ(ri, yi)Ui(ri, yi)

> (1− δ)ui(σi,Si(h), σ̄j,Sj) + δ
∑
ri,yi

(
σi(ri, C|hi) + σi(ri, D|hi)

)
θ(ri, yi)Ui(ri, yi)

= Ui(hi).

But this is a contradiction since (σ, µ) is a sequential equilibrium. This contradiction

shows that σi,Si(hi) = 1D.

It then follows that σj,Sj(hj) = 1D for each hj ∈ Hj such that, for some hi ∈ H t
i ,∏t

k=1 σ(rk, sk|hk−1)r
sj,k
i,k (yk) > 0. Indeed, if σj,Sj(D|hj) < 1 for some hj ∈ Hj, then

player j can profitably deviate at hj and each history after hj, i.e. to σ̄j such that

σ̄j(ri, D|hj · h′j) = σj(ri, C|hj · h′j) + σj(ri, D|hj · h′j) for each h′j ∈ Hj.

In conclusion, σS(h) = 1(D,D) for each h ∈ H such that
∏t

k=1 σ(rk, sk|hk−1)r
sj,k
i,k (yk) >

0. Hence, for each t ∈ N, the marginal ξtSt(h
∗,0) of ξt(h∗,0) on St assigns probability

one to

t periods︷ ︸︸ ︷
(D,D), . . . , (D,D).
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