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A Introduction

This paper contains supplementary material to our paper “The Folk Theorem for
the Prisoner’s Dilemma with Endogenous Private Monitoring”. It provides, for the
prisoner’s dilemma on the left-hand side of Figure 1, an alternative proof for the claim
that cooperation in each period is a sequential equilibrium outcome of the repeated
prisoner’s dilemma with endogenous private monitoring.

The interest of this alternative proof is that it uses a strategy which is both pure
and explicitly specified. Our approach is related to the one we use to proof our folk
theorem since, for each player i, the two strategies coincide at histories in H} U H;©.
It is also related to the approach in Sekiguchi (1997) and Bhaskar and Obara (2002),

who both use strategies such that the continuation strategy of each player at each
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of his private history is either the grim-trigger strategy or the strategy that always
plays D. Our strategy uses, in reduced form, three continuation strategies; this is
clearly seen in the exact automaton representation in Figure A.1 of the strategy we
use.! Briefly, our strategy o = (0, 03) is specified as follows: for each i € {1,2} and

history h; of length ¢,

(r7.C) it hy € B\ H® and p(h™hy) > g,

oi(hi) = (r, D)  if h; € H;\ H*® and 0 < u(h™'|h;) < p,

79

(1(c,d)7 D) if hz - Hl-*o,

\

where pf € (0,1). To emphasize the dependence of p* = (uf, us), we write this
strategy as 0*". As a function of y; € Y; only, o " has the following representation

as an automaton, whose initial state is not shown and depends on the history h; via

(b4 )2

c c,d

Figure A.1: Reduced strategy as an automaton

The strategy o* is such that (C,C) is played in each period. This happens for
the same reason as in the proof of Theorem 1, namely that u(h™!|h;") = 1 for each
i € {1,2} and t € Ny. Thus, if o#" is part of a sequential equilibrium, then cooperation
in each period is a feature of a sequential equilibrium outcome. The former condition
is established, under a stronger form of responsiveness of the aggregation function «,

in the following result.

IThe notion of a reduced strategy and an exact automaton can be found in e.g. Osborne and

Rubinstein (1994) and Kalai (1990) respectively.
2This follows from Claim A.2 in the proof of Theorem A.1 below.



Theorem A.1 If « is strongly responsive, then there exists 0* € (0,1) such that, for
each § > 6* and X € X, there exists u* € (0,1)? and a system of beliefs p such that

(0", ) is a sequential equilibrium when R; = X? for each i € {1,2}.

Besides focusing only on cooperation, Theorem A.1 requires a stronger form of
responsiveness. We say that « is strongly responsive if it responsive and satisfies:
3. L) € argmax, oy, (7, Lic,ay)[c]-

Qg (Tvl(c,d) ) [C,C]
7 1(e,a))ec+ai(rlca))ed

4. 10 € argmax, ol

In property 3, ay ,(r,7")[y-i] = >, a(r,7)[yi,y-i| for each y_; € Y_;; throughout
this supplementary material, we shall also use ay; (r,r")[y:] = >_, a(r,7")[yi, y-i] for
each y; € Y;.

Responsive aggregation functions reflect the choices of both players. Strong re-

sponsiveness make this dependence be more specific:

3. If a player proposes signal d for himself and ¢ for his opponent, then the proba-
bility of the player observing ¢ is maximized when his opponent chooses signal

(¢, ¢) with probability 1.

4. If a player proposes signal d for himself and ¢ for his opponent, then the proba-
bility of signal (¢, ¢) conditional on the opponent observing ¢ is maximized when

his opponent chooses signal (¢, ¢) with probability 1.

To understand properties 3 and 4, let player 1 be the opponent and player 2 the
original player; in addition, assume momentarily that player 1 is restricted to choosing
degenerate distributions on Y. Note that, by property 1, if player 1 chooses signal
(¢,d) with probability 1, then (c,d) occurs with probability 1 and player 2 observes
¢ with zero probability. The same conclusion holds if player 1 chooses (d,d). Thus,
player 2 can observe ¢ only if player 1 chooses (¢, ¢) or (d, ¢) and property 3 requires, in
particular, that the corresponding probability in the former case is no less than that
of the latter case. Since player 1 is restricted to choosing a degenerate distribution,

property 4 holds since, by property 1, the probability of (¢, ¢) is strictly positive only
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when player 1 chooses (¢, ¢) with probability 1 given that player 2 is choosing (¢, d)
with probability 1. Thus, the requirement of properties 3 and 4 is that its conclusion
holds for all distributions and not just for degenerate ones.

The aggregation function in the motivating example is strongly responsive. Fur-

thermore, if o is a mixed extension, then « is strongly responsive if

(a) a(ly,1,)[g] =0 for each y,y/ € Y and g & {y,y'}.

(b) a;(1,,1,)[y] > 0 for each y,y' € Y and i € {1,2}.

(¢) ai(lce L)l d > ai(liae, Lea)ld, c].?

A.1 Proof of Theorem A.1

A.1.1 Parametrization
For each i € {1,2}, let
fti = ai(Licey, Lieay)l(c, )]

Then fi; € (0,1) by property 2. Let u! solve:

p(3(1 = 0) + 0020 — (1 = u;)(1 = 0))) = 2p — (1 — p)(1 = 9), (A1)

i.e.
. 1—9
Ky = ~ .
51— ) (3 —0)

We have that p(3(1 —0) +6(2/; — (1 — ;) (1 —9))) <2 — (1 — p)(1 —0) if and only

if o > p;. Moreover, pf > 0 and pf — 0 as 0 — 1. Therefore,

Claim A.1 There exists 0, € (0,1) such that uf € (0,[;) for each 6 > & and
ie{1,2}.
Let u > 0 be such that

U
(1 — p) ming, o y; (r, 1(%6)) [d]

i

3See Section A.2 for a proof of this claim.



for each p1 < p. Such p exists since min, ayy,(r, 1(4,¢))[d] > 0 by property 2 and,

: © _
hence, limy,—o rmm o eaay@ = O

Let 6* € (0,1) be such that §* > §; and, for each § > §* and 7 € {1,2},
p; < pand (A.2)
—1+6(1+2p(1 = f1;)) > 0. (A.3)
It follows that 0* exists since, for each 7, lims_,; uf = 0 and limg_,; (— LT+0(142pu(1—

3)) = 2u(1 — i) > 0
Let § > 6*, X € X and R; = X? for each i € {1,2}.

A.1.2 The assessment

Let

t periods
7\

ot = (Er;‘,C, ¢)y...,(rf,C, CS) for each t > 0.

2

HP = {h; € H;: hy = (h}* - (r;,C,d) - h}) for some t > 0 and h} € H,}.
£(hi)

H:O = {hz € H,: H Oéz'(rr?ca l(c,st))[<yfa C)] - O}

i
t=1

Note that H? C H°. Indeed, rt"C = 1(.,, st = C and ¢ = d imply that

i (r ™ 1 )W, O] = i(Lea) 1iew)[(d, €)] = 1 (d, ¢) = 0 by property 1.
The strategy is as follows. Let 7" = 1(5 , ) for each i € {1,2} and s_; €
{C, D}, and define, for each h; € H;,

(

(1(c,d)7D> if h; € H,L»*O,

oi(hi) = 4 (r*, D) if hy € H; \ H® and p(h™"

79

hl) < :U?’

79

hi) = 3.

\

We also write o;(r;, s;|h;) for the probability that o;(h;) assigns to (r;, s;).

The beliefs are as follows. Let
HE ={h; € H; : 1} = 1(.q) and st = D for all 1 <t < {(h;)},
HP ={h; € H? : hy = (h}* - (r},C,d) - h}) for some t > 0 and h; € HE'}.

For any h; € H;,



1. supp(u(-|hi)) € H*if h; € H}Y,
2. W) e supp(u(-|h;)) € {R1MY U HP

L(h; ,C
Ht(zl) ai(rt‘ ) 1(c st)>[<yfa C)]

) st - ts
M i L)W O+ o e TEYY (= 250 (9 o)

u(h ) =

if h; € H; \ H°, with u(h*?|h;) = 1 if h; = 0.

We also write p(h*;|h;) for u(h” |h ). In A.1.5, we show that there exists consistent

beliefs satisfying the above two properties.

A.1.3 Preliminary results
From the specification of beliefs, we obtain the following claim.
Claim A.2 For each i € {1,2}:

1p(htfhy) =1

2. If h; € H; \ H°, then

. . 1 Zf S; = C,
,U/(hfz|hl ’ (ri ) Si7c)> =

pi if si=1D
8. If hy € H; \ H{® and (r;, si,y:) is such that o;(r{, 1(c.s,)[(i, ©)] > 0, then

" NQZ(TzC7 1(0 sl))[(yia C)]
Mh_i hi - (15, 8,9:)) =
(Wilha - (ris s 00)) = e T il (1 — e, 0P Loa )0

where p = p(h*;|hi).

Proof. Part 1 follows since h; = h} implies that

hy)
C
Haz v s L(e,st yz? Haz 1(CC)> CC))[(C C)] 1

by property 1 and, for each h_; € HP, N He(ihi) with h_; = h*_f - (r*,,C.d) - B, w
Sk+1 shtt * *
have that a;(r; = T O [y = i (P9 (e, d)] = Lo (e, d)] = 0.
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For part 2, write 8(h_;) = ") Oéz'(?“?s

[yt )] for each h_s € H2,AH)

and analogously for h_; € HP?. N H f(ih %1 Tt then follows that

S O(h_s) = 00" "N i(1(eey, 1esn) (¢, d)]

h_;eHD, ﬂHz(h )+

+> > )il Lag)lley)] (A4

Y=i eHDmHZ(h)

= (") i (1eeys Lo (€, )]

since, for each h_; € (HD nHY +1>\{h*£ (r,, O d)Y, PO = = L(ca), sHAHL
D, T;’D = (g and o;(1ge), Liae)[(c,y—i)] = 0 for each y_; € {c, d} by property 1.

Hence,
B (5 ) = O(h2)ai(ee), Lesn)l(e 0]
P (509 = G o e e (€ 0] + 0 )i Ly, e (@ )
_ @i(Leo); Liesn)l(c: 0]
O‘i(l(C»C)? 1(0781'))[( c)] + az(l (e0)s L(e,s: ))[(C, d)]

For part 3, write 8(H, N Hg(h )) Do (B AH O(h_;). Then (A.4) becomes

Zh ZEHD ﬁH blhg)+1 9(h ) - e(h )al( T 71(052))[(y1,d)]
+O(HP, 0 H Yoy, (P La.0) i)

and

9<h*7lf(hi))

—1

o= "y + o(HE, N HYY)

/1, =
Hence,

_ O(h= ") (re 1) (i, ©)
O(h* " vy, (rE Ve i) + O(CHP 0 H )iy, (rP, L)) i)
i (1 L) (v, )]
,uai,Yi<TiC7 1(0,51-))[%] +(1— M)Oéz',Yi(TiD? 1(d,c))[yi]'

,u(h*—i‘hi : (7“1‘, Siayi))

For each h € H, let w(h) be the outcome path following history h: w(h) =
(wt(h),m2(h),...) with wt(h) = (7t (h),4(h)) for each t € N. The outcome 7 (h) is a
(measurable) function from Y to (R? x S?)> such that 7'(h) : Y*=! — R? x S? for
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each t € N. The space Y* is endowed with the probability measure v(h) defined from
the strategy. Specifically, set 7'(h) = o(h) and v*(h) = ~(:|7*(h)); assuming that
7l(h),..., 77 1(h) and v(h),...,~"(h) have been defined, set, for each (y!,...,y") €
Yt

Y

Z = ((ﬂ-zl<h)7yzl)7 o ,(Wf(h),yf)),

Then set

Y)Yy} x V) = Hv A

for each t > 1 and (y',...,y") € Y. In the followmg claims, we do not distinguish
between “for all y>° € Y*°” and “for v(h)-a.e. y> € Y7,

Claim A.3 For each i € {1,2}:
1. If hy € H°, then wl(hi,h_;) = (1(c.a), D) for each t € N and h_; € H_;.

2. If hy € H;\ H® and h_; € H*, then n'(h;,h—;) = ((Lc,a)s L(cay), (D, D)) for

—1

each t > 1 and
((r} Yea), (C. D)) if p(h*;|hi) = gy,

((r7, Ley), (D, D)) if (b lha) < .

7T1<hi, h,Z) =

Proof. Let h; € HO; then oy(r! C,l(c,sg))[(yf,c)] = 0 for some 1 < t < {(hy).
Thus, for each hi € H;, h; - b € H;® and, hence, o;(h; - h}) = (1.4, D). This
establishes part 1.

For part 2, let h; € H; \ H® and h_; € H*}. Then 7' ,(h) = (1(a),D) for
each t € N by part 1, o(h;) = (r},C) if p(h*;|h;) > uf and o(h;) = (rf, D) if
(R ,|hi) < pi. In either case, since 7°° = L), Y(-|7'(h)) = @i(Liae), Lae) = Lo
by property 1. Thus, y* = (d,¢). Since a;(1(e), Lis))[(d, )] = 0 by property 1 for
each s; € S;, it follows that h; - (7} (h),y}) = h;- (v}, s;,d) € H;° for each s; € S;. The

conclusion now follows by part 1. =



Claim A.4 Foreachi € {1,2}: Ifh € HNH® and (0 | lu) > i, then ' (hi, b ;) =
(r*,(C,C)) for each t € N.

Proof. Let h; € H;\ H;° be such that u(h*,|h;) > p;. Then o;(h;) = (r},C) and,

since p(hf|h*;) = 1 by Claim A.2, o_;(h*;) = (r*;,C); hence ' (h;, h*;) = (r*, (C,C))
and y' = (¢, ¢) since v'(h;, h*;) = ai(lce), Liee) = l(ee by property 1. Thus,
w(h* ;| by - (i (hiy BE), yi)) = 1 by Claim A.2.

Assume that 7'(h;, h*,) = -+ = 7(h, h*,) = (r*,(C,0)), y' = -+ = y* = (¢, ¢)
and p(h*;|h; - hl) = -+ = p(h*,|h; - h¥) = 1. Then o;(h; - h¥) = (r},C). Since
hE. = h** u(hih*; - hE;) = 1 by Claim A.2 and, hence, o_;(h*;) = (r*;,C). Thus
ot (hy, e ) = (r*,(C,C)) and y**! = (¢, ¢) since v (hi, h*;) = (Lo Liee) =
L) by property 1. Thus, pu(h*;|h; - hi*') =1 by Claim A.2.

The above inductive argument shows, in particular, that 7*(h;, h*,) = (r*, (C, C))
and establishes the claim. m

Let U;(h) be player i’s expected payoff following history h € H:

o0

Uh) = (10 / S 6 Lus (1) () oy () ()

Yoo 4

=(1=6)>_ 6" > wE@ M@,y Iy,

¥ttt

where v(h)(yY, ..., y"™Y) = v(h){y', ..., ¥t} x Y°). Let U;(h;) be player i’s ex-
pected payoff following history h; € H;:

U(hi) = > p(heilha)Us(hi, hes).

h_,eH_;

Claim A.5 For each § > 61,1 € {1,2} and h; € H;,

20— (1= p)(1—9) if u(h*;|hs) > py,

p(3(1 = 68) + (21 — (1 — ) (1 = 8))) af p(h*,lha) < pif,

where (1 = p(h*,|h;).

Proof. Let h; € H;. Consider first the case where h; € H; \ H;° and recall that
supp(u(-|h;)) € {h*;} U HP. Suppose, in addition, that p > uf. If h_; = h*,, then
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Claim A.4 implies that 7*(h;, h*;) = (r*, (C,C)) foreach t € N;if h_; € H?, C HE, C
H*, Claim A.3 implies that 7' (h;, h_;) = ((1(ca), Lea)), (D, D)) for each t > 1 and
7 (his hi) = (71 1eay)s (C, D). Thus,

Ui(hi) =2p = (1 = 6)(1 — p).

Suppose next that p < uf. Then o;(h;) = (rf, D). If h_; € H?, C H*? Claim
A.3 implies that 7' (h;, h—;) = ((L(.a), Lic,a)), (D, D)) for each t > 1 and 7' (h;, h—;) =
((rf, 1ea), (D, D)).

If hoy = h*,, then 7'(h;, h*,) = (r*,(D,C)) and v (hi, %) = @(Lce)s Lica)),
which is supported on {(c, ¢), (¢,d)} by properties 1 and 2.

If y' = (c,c), then the resulting histories for player i and —i are, respectively,
hi - (rf,D,c) and h*, - (r*,,C,c) = h*e 1 The history h; - (rf, D, c) belongs to
H;\ H;° since o (1(c0), L)) (¢, ¢)] > 0 and is such that pu(h*;|h;- (1}, D, c)) = fi; >
by Claim A.2. Thus, 7*(h;- (rf, D, ¢c), h*_’f(h")ﬂ) = (r*, (C,C)) for each t > 1 by Claim
A4

If y' = (c,d), then the resulting history for player i is h; - (r, D, c) as before and
that of player —i is h*, - (r*,,C,d) € HB, C H*®. Since h; - (r;, D, c) € H; \ H;° and
wu(h*|hi - (r¥, D,c)) = ji; > uf, Claim A.3 implies that

' (hi - (r;,D,c),h_;- (r*;, C,d)) = ((L(cay: Lica)), (D, D)) for each t > 1 and
Wl(hi ’ (T;'ka?C% hi- (Tjiv C, d)) = ((1((1’0) (c.d) ) (C D))

Thus, recalling that fi; = o;(1(ce), Lc,a))[(c, ¢)] and a;(1(c,e), Lca))l(c, d)] =1 — fi;,

Ui(hi) = p(3(1 = 8) + 021 — (1 = 0)(1 — f1;))).

Finally, consider h; € H;°. Since supp(u(-|h;)) € H*Y

—1

7 (hi, hi) = ((Le.a)s Lcay), (D, D)) for each t € N by Claim A.3. Thus, U;(h;) =0 =

W3 )+ 627 — (1L— )(1 - 6))). m
Define V; : [0,1] — R by setting, for each u € [0, 1],

it follows that p = 0 and

2p— (1= p)(1—9) if > pf,

p(3(1—=6)+ Vi) = pu(3(1 = 8) + (20 — (1 — )1 —0))) if p<p.

Vi(p) =
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It follows by Claim A.5 that U;(h;) = Vi(u(h*,|h;)) for each 6 > §1, i € {1,2} and
h; € H;.

Claim A.6 The function V; is strictly increasing, piecewise linear, continuous, and

convez for each i € {1,2}.

Proof. It is clear that V; is strictly increasing, affine on [0, 1) and on [p], 1]. The
continuity of V; follows because V;(pf) = 2p; — (1= 06)(1— ) = i (3(1—6) + (242, —
(1= f1;)(1 = 6))) = lim,,,~— V;(n) due to the definition of ;.

The slope of V; in the range [0,uf) is 3(1 — 0) + 0(2 — (1 — f1;)(1 — 9)) =

241—0— 1;5 < 2+ 1—90, the latter being the slope of V; in the range [p}, 1]. Thus,

V; is convex. m

For each i € {1,2}, h; € H; and (r,s;) € R; x S;, let U;"*(h;) be player i’s
expected payoff of an one-shot deviation from o; to (r,s;); formally, U*(h;) is
defined in the same way as U;(h;) by changing only 7'(h) to ((r,s;),0_i(h_;)) for
each h_, € H_,.

Claim A.7 For eachi € {1,2}, h; € H; and (r;,s;) € R; X S;,

U (hi) = (1= 6)(pui(si, C) + (1 — p)ui(ss, D)) +

0y iy, (rd s L) il Vi(u(h™ i - (s, 56, 9:))) +

Yi
01 =) Y iy, (P, Lao) Wil V(i - (i, i, 1)),
Yi
where p = p(h* ;|h;).

Proof. If h_; = h*

_i;

then o_;(h*;) = (r*,,C) and player —i’s next period history
*,Z(hi)+1

is h*, - (r*,,C,y%,), hence equal to h"; if y, = c and an element of HZ, C H*? if

yl.o=d. It h_; € H

—1

then o_;(h*;) = (1(c,a), D) and player —i’s next period history

is an element of H*C.

~ —

It follows by Claim A.3 that U;(h;- (i, si,y:), h—;) = U;(h;i - (i, Si,yi), h—;) for each
h_i h_; € H ﬂHf(ih")H. Let then U;(h; - (14, 8, v:), H™9) denotes this common value.
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Since supp(u(-|h;)) € {h*,} U H*Y it follows that u(H*%h;) =1 — p and

U (hi) = (1= 6)(pui(ss, C) + (1 — p)ui(ss, D)) +

62(uaxr?,1<c,si>>[<yi,c>wi<h (riv 1,0, B2 +

(i (ry, Leso) (i )] + (1 = )y, (P, Lae) Wil Ui (hi - (i, 53, 93), Hi?‘))-

Furthermore, it follows by Claim A.2 that

Z(/vboéi(mc>1(c,si))[(yi,c)]Ui(h (i, 86, 4i),s h*e( O+

Yi
(o (r Leso) (Wi, d)] + (1 — waiy (1P, Lae) i) ) Ui(ha - (i, si,3), Hig)) =
> <#sz‘,n(7”zca Ve [wil + (1 = ey, (r7 1(d,c))[y¢]> X

Yi
(M(hi’f(hl)—i_l ’hl ’ (Tiv Si, yz))UZ(h (Tza Siy yl) h*’lf(hi)—i_l
(1 - M(htf(hz)‘i’l‘hl . (7"7;, S’L)yl>>Uz(h (/r-“ Sz,%) H*O)

> (uai,w?, eyl £ (1= ey (r, 1)y

Yi

MZ%Y s L) Wl V(B2 B - (i, si,90)) +
19 3 o e VGO - (1.9
This completes the proof of the claim. m
Claim A.8 Leti € {1,2}, hy € H;\ H°, u= u(h*,;|h;) and (r;,8;) € Ry x S;. Then:

D (i (rF L)yl + (1 = )iy, (P, Lao ) D) Vi (B2l B - (i, si,9)) <

Yi
1Vi(1) + (1 = p)Vi(0) = 2p if si = C,
i Vi(L) + (1 = pis)Vi(0) = 2pft; - if si =D
Proof. Let i € {1,2}, h; € H; \ H° and (r;,s;) € R; x S; be given. First, we

argue that when s; = C"

> (i, (1 o) il + (1 = wasy, (rP, Lao) il u(h i - (i, Coi)) < .

Yi
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Indeed, for each y;, this is trivial if o, (r{, 1es,))[(4s, ¢)] = 0 and follows by Claim A.2
otherwise.
The value of the problem:

sup ) (e, (s Leo) il + (1= w)ay, (7 Lae) i) Vilu(h i hi - (i, G, 2)

k3

Yi
(A.5)
is at most the value of the problem:
1 1 1
sup ijVi(uj) subject to ij,uj < p and ij =1. (A.6)
(Po.p1,p0,11)€[0,1]* ;=0 3=0 J=0

This is because for any r; € (AY)%:
L po = pey, (rf, Lieo)ld] + (1 — pw)aiy, (rP, Lae)ld] € [0, 1],
2. p1 = pouy (rf 1eo)ld + (1 = paiy, (r?, 1ao)ld € [0,1],
3. o = p(h*|h; - (ri, C,d)) € [0, 1],
4. g = p(hlh - (ri, Co ) € [0, 1],

5. Yo pitty = 3y, (10 y, (rE Lo ) il + (1= ) iy, (P Lo Wil i (h* s b+ (ri, C i) <
1, and

1
6. Yol = 2y, (euy, (r{ o)yl + (1 = ey, (P, 1ao)lwil) = 1.

Thus, po, p1, po, and py satisfy the constraints of (A.6) and

1

D piViluy) =D (06, (rY Ve i+ (1= iy, (7 L) i) Vi(u(h* i i (ri, C i)

J=0 Yi
Any solution to (A.6) must satisfy the constraint with equality since V; is strictly
increasing. Then, for any (p;, 1;);=0,1 such that Z;:O pjt; = W, the convexity of V;

13



implies that:

Indeed, the first line is because p1; = (1) 4+ (1 —p;)(0), the second line is by Jensen’s
inequality, the third line is because V;(0) = 0, and the last line is by the constraint
Z;:opjﬂj = p. Thus, the value of (A.6) is at most pV;(1) = 2u.

Now we argue that when s; = D:

S (0 (1 L] + (1= W)y (P Lao)) ) alh ol - (13, D, ) < pa.

Yi

Note that, by Claim A.2:

D iy, (rf L)yl + (1= iy, (s Lae) ) p(h i hi - (ri, D, i)
Yi

< p(ai(ry, Lea)le: d + ai(rf, 1ea)[d, )

< N(ai(l(c,c)a 1(c,d))[cv C] + ai(l(c,c)a ]-(c,d))[du C]) - /'Lﬂu

where the second inequality is by property 3 and the last equality follows because
@i(L(c,e), Lica))[d, c]) = 0 by property 1.

Thus, the value of the problem:
sup (e (s Lea) il + (1 = iy, (r, Lae) ) Vi (b2l bs - (ri D, y))

" Yi
is at most the value of the problem:

1 1 1
sup ijVi(,uj) subject to ij,ui < pji; and ij =1. (A.7)
(P07P17M07M1)E[0,1]4 ]:0 j=0 ]20

The solution to (A.7) is iy = 1, po = 0, p1 = pfi;, and po = 1 — pj; (by the same

argument as in the previous case), and the value is pi;V (1) = 2uf;. =

14



Claim A.9 For each i € {1,2}, r; € R;, y; € Y; and h; € H; \ H;° such that
:U/(h*—z|hz> < 2%
Proof. Let >0 be such that

ol
(1 — p) ming , o y; (7, 1(d,c)) [d]

i

for each i < p. Such p exists since min, ay,(r, 1(4,¢))[d] > 0 by property 2 and,

; p _
hence, limy 0 mie o oao@ — O

Let i € {1,2}, r; € R;, y; € Y; and h; € H; \ H° be such that u(h*;|h;) < p.
When y; = ¢, we have that w(h*;|h; - (r;, D, c)) < ji; since, by Claim A.2:

40a(r, 1 e)es
h*_z hia TZ‘,D,C < : .
plil (s, (e Do) < e T A+ (= wawni (P Tam) A

,u'a’i(rvl c, )[C,C] R _
WM’ since a;y; (1(a,e), L(a,e))[c] = 0,

this implies that r} € arg max,, u(h*,;|(hs, (ri, D, c))), and u(h*,;|h; - (rF, D, c)) = fi;.

Property 4 implies that 1. € arg max,

Consider next y; = d. We also have that u(h*,|h; - (r;, D,d)) < fi; since, by Claim
A2:
- poi(ry’, 1ea)ld, ]
~ oy (rE Lea)ld] + (1= )y, (P, Lao)ld]
< H
(1 — p) min, , azy, (1, Lig,e)) [d]

pu(h*;|(hi - (ri, D, d))

n
Claim A.10 Leti € {1,2}, h; € H;\ H;°, p = pu(h*;|h;) and r; € R;. If p < p, then

D (i Lea) il + (1= ey, (rf Lao) [yl V(s - (i, D, i)

Yi

< pVi(iu).

Proof. Let i € {1,2}, h; € H; \ H}”,

each y; € Yy, u(h*;|h; - (14, D,y;)) < f1; by Claim A.9.
As in the proof of Claim A.8:

r; € Ry and p = p(h*;lh;) < p. Then for

D (i (rd Ve [vi] + (1= iy, (2, Lao) i)l hi - (ri, D, yi)) < pufa.

Yi

15



Thus, the value of the problem:

sup > (e, (' Lea) il + (1= maiy, (rC, o) i) Vi(u(h | hi - (ri, D, i)

Yi

is at most the value of the problem:
1 1 1
sup ZPJW(M) subject to ijuj < pfi; and ij =1. (A.8)
(po,Pl)6[071}27(/10,#1)6[0@1‘]2 j=0 §=0 =0

This is because for any r; € (AY)%:
1. po = payy,(r, Leayld) + (1 — p)asy, (1P, Lae)[d] € [0,1],
2. pr = poiy () Lew)lel + (1= maiy, (r?, Lae)ld € [0,1],
3. o = p(hi|hy - (rs, D, d)) € [0, fu],
4. py = p(h*,|h; - (15, D, c)) € [0, ],

5. Yo it = 3oy, (10, (rE L) il + (1= )iy, (rP, Liae) [yl )b i hi- (5, D, i) <
:u/liu and

6. > o =2, (houy, (r¢ )i + (1 = wevy, (rP, Lge)lyi]) = 1.

Thus, po, p1, po, and p; satisfy the constraints of (A.8) and

1

Y piVili) = Y (nay, (rE Lea) il H (1= )y, (rP s L) ) Vi (W (s, D, ).

J=0 Yi

Any solution to (A.8) must satisfy the constraint with equality since V; is strictly
increasing. Then, for any p; and p; < fi; such that Z;:O pjlt; = [k, the convexity
of V; implies that:

1

> piVilyy) = Zi;pﬂ/i (lf—]:(ﬂi) + (1 - &) (0))

— fui fui
: 11 1

<o (v + (1-2) vio)
=0 i 2%

1
< v via)
— M
J
= uVi(ft).
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Indeed, the first line is because p; = %([Ll) +(1— %)(0), the second line is by Jensen’s

inequality, the third line is because V;(0) = 0, and the last line is by the constraint
Z;:o p;tt; = pit;. Thus, the value of (A.8) is at most pV;(f;). m

A.1.4 Sequential rationality
Let i € {1,2}. We consider three cases: (i) h; € H; \ H;° and u(h*;|h;) > i, (ii)
h; € H; \ H" and p(h*,;|h;) < pf, and (iii) h; € H;°.

Case h; € H; \ H® and pu(h*,|h;) > u:

Let p = p(h*;|h;). Then U;(h;) = Vi(n) = 2 — (1 — p)(1 — 0). Consider a one
shot deviation to (r;,s;). If s; = C, then by Claims A.7 and A.8:

U7 (hi) < 2p(1 = 6) = (1= p)(1 = 6) + 625 = 25 — (1 — p)(1 = 6) = Ui(hy).

7

If s; = D and p > p (note that pj < p by (A.2)), then by Claims A.7 and A.8:
U7 (h) < 3u(1 = 6) + 62ufis = 1 (3(1 = 6) + 2/1:6)
Hence,
Ui(hy) = UP (i) = =1+ 6(1 4+ 2u(1 — 1)) > =1+ 0(1 + 2u(1 — f1;)) > 0

by (A.3) since § > 0*.
If s; = D and p < p, then by Claims A.7 and A.10:

U (hy) < p(3(1=8) + 6Vi(ju)) < 20— (1= p)(1 —8) = Us(hy)

1

where the second inequality follows because, when p > i, 1 (3(1—0) + dVi(ji;)) <
2 — (1 = p)(1=9).

Case h; € H; \ H® and u(h*,;|h;) < pi:

Let p = p(h*;|h;). Then U;(h;) = Vi(n) = u(3(1 — &) + 6V;(f1;)). Consider a one
shot deviation to (7, s;). If s; = D, then by Claims A.7 and A.10 (which applies since
po< py < )

U7P (h) < p(3(1 = 6) + dVi(ju)) = Ui(hy).

17



If s; = C, then by Claims A.7 and A.8:
U (hi) < 2p = (1= ) (1= 8) < p(3(1 = 6) + 6Vi(ju)) = Ui(ha),

where the strict inequality follows because, when p < uf, 2pu — (1 — p)(1 —9) <
H(3(1 = 6) + V(i)

Case h; € H;*:

We have that U;(h;) = V;(0) = 0. Consider a one shot deviation to (r;,s;). Since
hi - (i, 85, y;) € HY for each y;, it follows by Claim A.7 that

UP(hy) = 0 = Uy(hy)

and

U (h;) = —(1 = 0) < 0 = Us(hy).

A.1.5 Consistency

We show that there exists consistent beliefs satisfying the specification in A.1.2.

Let {07 }321 be a sequence of totally mixed strategies converging to o and such

that, for each i € {1, 2},
1. o} (Leay, D|hi) = % for each h; € H; \ H}*,
2. Ug(ri, silh;) = ]i] for each (r;,s;) & {(1(c.0), D), 0(h;)} and h; € H; \ H;®,
3. 01 (1(ae, DIh;) = 7 for each h; € H;°, and
4. ol (ry, silhi) = ]l] for each (r,s;) & {(L(ae), D), o(h;)} and h; € H;.

Let i € {1,2}, t € N and h; = (rf, sk, yF)i_, € H!. Then, for each h_; =

(rk, 8% y%)iey € HY,; and j € N,

—

ksk,  ksk : _
HZ:1 O‘i(ri ’ Z7T—:Z)[yk]0j—i(rlji7 Sliz‘|hliz‘1>
kgk . k.sk . N b 15 ke
Z(M gk gk )t eH!, HZ:l ai(ry " P (Y, 9F o (7, 85 WS

—4

1 (h—i|h;) =

where h¥, = (", 5™, y")E_ and h¥, = (7", 57, 4",)E_, for each k > 0.

—179
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Note that the set of histories h_; such that []_, o_i(r®,, s",|h¥7") > 0 equals
{h*.} U HP.. Define

HPO = {hi € H;: forall 1 <n </{(h;) and (y”fl,...,y_(Z ) € Yg(h) :

£(hi)

(H al kc? cs [(yz ) )]) az(,rﬂC7 1(0,5?))[(:1/;17 d)] H al ]-(dc )[yk] = 0}

k=n+1

Let h; € H;. We consider three cases.

Case h; € H;\H:: In this case, it follows that p(h* ;|h;) > Osince o7, (r*,, C|R*F 1) —
1 for each 1 < k < t. In addition, if h_; € H,\ {h*,} is such that u(h_;|h;) > 0, then
[They o—i(r",, 8%,|A"51) > 0. Thus, h_; € HP,. In conclusion, h*; € supp(u(-|h;)) C
{h*,} U HP, whenever h; € H; \ H;°.

For later use, we will show by induction on £(h;) that lim; (571" 7 (h_4|h;)) = 0
for each h_; € H_; \ (H*% U {h*,}). Consider first h; with £(h;) = 1. Then

—i .S J

) ylo? iy s i)

Z(f_i,§_i,g§_i)eHli ai(r; 75 (v, y—i)]o-{i(f—% $-4)

Since h; € H; \ H;Y, we have that o;(r{, 1(.s,))[(vi, ¢)] > 0. In addition,

7 )

sz'(Tf

w (heilh;) =

Yool ) G-0loL (i ) = iy (] L) vl
(P—i5-i,9—i)EHL,;
Thus, (r*;,C,c) € supp(pu(-|hi)) C {(r*,,C,¢c), (r*,;,C,d)} and note that (r*,;,C,d) €
H*?. We have that {(1(ca), D, ¢), (1,a), D,d)} € H* since a_;(1(a), L) [(y—i ¢)] =
0 by property 1. Hence, for each h_; € H_; \ (H* U {h*,}),
lim(7727 (h_i|hs)) = F 2o ) [yl

‘ — - o — 0.
J Z(f_i,§_i,g}_i)eHii O‘i(ﬁ TN Wi -i)]o” i (F iy 8-4)

Let t > 1 and assume that we have established that, for each £k =1,...,t — 1 and
hi € HF\ HO, lim; (57 *u (h_;|h;)) = 0 for each h_; € H*,\ (H* U {h*,}).
For each h; € H!, h_; € H", and j € N,
. T L T O 1 o A [y
 (h—i|hi) = 5

J
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Bj = Z Z (ht llht 1) ( T 717 At—j )[(ywy z)]o-jz(q:i?étfi’ilt—iil)'

fAL_l'GHt__il (fiiﬁ’:i,gt Z)GHEZ

Let h; € HI\H;° and h_; € H',\ (H*YU{h*,}). We have that lim; B; > 0 because
hi € H;\ H;. Hence, if h'5' # h°7", then 51 ¢ H*O and lim; (57t (h_4|hs)) = 0
since lim; (771D I (B RY)) = 0.

If, instead, h'5' = h*,, note that K" - (r*,,C,c) = h*,, K™ (7%, C,d) € H*
and that A" - (1ea), D,y_i) € H*) for each y_; € Y_;. Thus, in this case,

(Tt—hst—i’yt—i) Z{(r’;,C o), (r;,C.d), ( ), D ,€), (1(C7d)7D’d)}
and the numerator of (j771=tu/ (h_;|h;)) is

ey bsly tster i
T (R R o (L ) [

2 rt =

and, hence, lim; (57t ud (h_;|h;)) =

Case h; € H°\ HP: In this case, pu(h*;|h;) = 0since h; € H;° and supp(u(-|h;)) C
HP. C H* exactly as above.

For later use, we will show by induction on ¢(h;) that lim; (91~ (h_;|h;)) =
for each h_; € H_;\ H*Y. Consider first h; with £(h;) = 1. Then oy(r{, 1(cs,))[(vi, d)] >
0 and a;(r, 1(e,s))[(yi, ¢)] = 0 since, respectively, h; ¢ HP? and h; € H;°. In addition,
for each j, p?(h*;|h;) = 0 and

Yool e -0lo i (P 8o) =y L) (i, ).

(F_isd—ifi—s)EHL

Thus, supp(u(|h)) = {(r*,, C,d)} € . We have that {(1(os, D, ), (Lieay Dy d)} C
H*Y since a_;(1(c,a), Lic,a))[(y—i, ¢)] = 0 by property 1. Hence, for each h_; € H_;\ H*),

- N
lim(57 2 (h_i|hy)) = J o L)l )

; S et 0ar P (i Gl (i, )

Let t > 1 and assume that we have established that, for each £k =1,...,t — 1 and
hi € HF N (HO\ HP?), lim; (5% (h_;|h;)) = 0 for each h_; € H*, \ H*.
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Let h; € HIN(H;°\HP?). We have that lim; B; > 0 because h; € H;\ H”°. Hence,

for each h_; € H' \H*%, lim; (57~ ~1/ (h_;|h;)) = 0 since lim; (57 =1~V 7 (B RIT) =

0.

Case h; € H° N HP?: We will show by induction on £(h;) that u(h_;|h;) = 0 for
each h_; € H_; \ H*. Consider first the case where h; € H; has ¢(h;) = 1. Since
hi € H° N HP?, we have that a;(r, Lies) (v d)] = ai(rE, L) [(yis )] = 0, which
implies that y; = d. In addition, for each j, pu?(h*,;|h;) = 0 and, for each h_; # h*,

Hj(h—i|hi) _ O‘z’("’z'Da 1(d,6))[(d7 y-i)]

3. -

ZQ,Z' Oéi(ril)’ 1(d,c))[(d, g_l)] + ji(jil) Z(TA,Z',§,¢,Q,i):(f,iﬁ,i);ﬁ(l(c‘d),D) ai(ri 77,.7

lf (T,i, S,i) = (1(c,d)7 D) and

: a;(r; " ) (d,y )]~V
' (h—i|h;) = P

Si
i

)(d, i)

]

Zg_,- o (rp, 1(d7c))[(da g—i)] + 50D Z(f_z-,é_i,Q_i):(f_,-,é_i)yé(l(c,d),D) ai(r; ", 7
otherwise. It then follows that (1.4, D,c) € supp(u(-|h;)) by property 2 and that
supp(u(-1hi)) € {(L,a), D, ¢), (L(c,a), D, d)}. Foreach h_; € {(1(c,a), D, ¢), (1(ca), D,d)},
we have that h_; € H*? since a_;(1(ca), Lca))[(y—i»¢)] = 0 by property 1. Hence, if
¢(h;) = 1, then supp(u(-|h;)) € H*?. Furthermore, for each h_; & supp(u(-|h;)),
lim; (57 2p? (h—;|h;)) = 0; since H_; \ H* C H_; \ supp(u(:|h;)), then

1i]II1(jj_2[Lj(h_i|hi)) =0 for each h_; € H_; \ H*.

Let t > 1 and assume that we have established that, for each k =1,...,t—1 and
h; € HF N H° N HP, supp(p(-|h;)) € H*Y and lim; (591 "*u/ (h_;|h;)) = 0 for each
h_; € H*,\ H*.

Let hy € HE N H N HP® and h_; € H ;\ H*). Then h';' € H_; \ H*) as well.
We will show that lim; (57~ **u? (h_;|h;)) = 0 for each h_;, € H_; \ H*.

Consider first the case where h_; = h*,. In this case, 77~ *tu/(h_;|h;) = 0 for
each j € N since h; € H;° and the result follows.

Due to the above, we may assume that h_; # h*,. We consider two cases.

Case (i): W' e HN HP or i~ € HO N (H; \ HPY).

Let A'5' € supp(p(-|ht™)) € H*Y; since O',i(l(ad),D‘]tLt_;l) = 1, it follows that

lim; B; > 0 when a;(r?”, 1(4.0)[(y},9-s)] > 0 for some §_; € Y_; in particular,

21
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lim; B; > 0 when y! = d by property 2. In this case, lim; (57 *u?(h_;|h;)) = 0 since
limy (5710 (W51 RH)) = 0.
If y¢ = c and (11", 1(a0)[(c,9-i)] = 0 for all §_; € Y_,, then

lim(jB;) = li PR X
im(jB;) = lim > WS

h_;€H"'nH*

1 tS i Ats ~
_ Z O[i(Tl- C y_z +Zaz ) cd) [(Cayt—z)]

(rAt_,’aét_iﬂ’}t_i):(rAt_iaét_i)i(l(d,c)7D)

which is strictly positive since a;(r""”, Lica)[(c,d)] > 0 by property 2. Since

lim (7710 (WA sy )y o (L s RS ) = 0,

J

it follows that lim; (59 "/ (h_;|h;)) = 0 for each h_; € H_; \ H*.

Case (ii): hi™t € H; \ H°.

In this case, we have o (1} 1(c )[(yf, )] = Osince h; € H;? and o (rh l(c o)y, d)] =
0 since h; € HPY. Thus, y! = d and the argument in case (i) can be applied to conclude
that lim; B; > 0 provided that there is A5 € supp(u(-|ht™)) N H*Y. Then if h'5! #
R we have limy (571D 7 (B A1) = 0 and, hence, lim; (59147 (h_;|h;)) =
0. If A5t = ™' then since h_; ¢ H*9 U {h™'}, the numerator of i/ (h_;|h;) is less
than j77. Thus, lim; (597" (h_;|h;)) = 0

Hence, we are left with the case where supp(u(-|hi™")) = {h*,}. In this case,

lim(jB;) = hmu (R REY) x
J
1 ts_i ,\ts ~
o1 E Oéi(’f‘l- T C y—z + E :al dC) [(d yt—z)]
(f’ii7§,i,ﬁ,i)i(fii7§ii)¢(1(c,d)7D)

which is strictly positive since oy (17, 1(4))[(d, ¢)] > 0 by property 2. Since
tim (7770 (B R s e (s IR ) = 0,
J

it follows that lim;(j9~*~*u? (h_;|h;)) = 0 for each h_; € H_; \ H*.
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A.2 When the aggregation function is a mixed extension

We show that if « is a mixed extension satisfying (a)—(c), then « is strongly responsive.
As noted already, if « satisfies (a) and (b), then « is responsive. Thus, it suffices to
establish properties 3 and 4.

Regarding property 3: Note that

(

0 if y =(c,d),
0 if y = (d,d),
iy, (1y, Lea)lc] =
Oéi(l(c,c), 1(Cyd))[c7 C] lf Yy = <Cv C)y

| @i (Lia.o)s Lea)ld; ] ify = (d;c)

by property (a). Hence, it follows from property (c) that
Lice) € arg m;mx gy, (1y, Leay)lc]-

Thus,

aiy-i(r, Lea)ld = Y ry)(ailly, Lea)l(e, O] + ai(ly, Lea)l(d, o))

Y

< Z @i(Lee), Lea) (¢ )] + i(Lice), Liea)[(d, 0)]) = aiy—i(1(cep Lieay)lc]-

Regarding property 4: Note that a;(1y,1a))l(c,c)] = 0 for each y # (c,¢c)

g (Tvl(c,d) (0]
Qg (Tvl(c,d) ) [(Cvc)]""ai (Tvl(c,d) ) [(Cvd)]

r(c, )ai(lice Leay)l(e, o)) + 32, r(y)ai(ly, Lea)[(c, d)], which is strictly positive by

18

by property (a) and that, then, the denominator of

property (b). Let r € A(Y) and note that the conclusion is then obvious when
r(c,c) = 0. If r(c,c) > 0, then

ai(r, Lea)l(c, ¢)]
ai(r, Lea))[(c, c )} ¥ az(’r, 1(

a)l(c, d)]
() Lea)l(c, )]
(@ )oi(lion), Cd>[< O+ 32, rW)aily 1w ) (e d)]
r(c,0)ai(Lice), Lea) (e, ¢)]
r(c, C)az‘(l(cc) Lica) )[(c,0)] + (e, )O‘1(1 (e,0)s cd))[(cv d)]
@i(L(ee)s Lieay)l(c; 0)]
(Lo Tem)l(e, ) + il L) ]
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