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A Introduction

This paper contains supplementary material to our paper “The Folk Theorem for

the Prisoner’s Dilemma with Endogenous Private Monitoring”. It provides, for the

prisoner’s dilemma on the left-hand side of Figure 1, an alternative proof for the claim

that cooperation in each period is a sequential equilibrium outcome of the repeated

prisoner’s dilemma with endogenous private monitoring.

The interest of this alternative proof is that it uses a strategy which is both pure

and explicitly specified. Our approach is related to the one we use to proof our folk

theorem since, for each player i, the two strategies coincide at histories in H∗i ∪H∗0i .

It is also related to the approach in Sekiguchi (1997) and Bhaskar and Obara (2002),

who both use strategies such that the continuation strategy of each player at each
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of his private history is either the grim-trigger strategy or the strategy that always

plays D. Our strategy uses, in reduced form, three continuation strategies; this is

clearly seen in the exact automaton representation in Figure A.1 of the strategy we

use.1 Briefly, our strategy σ = (σ1, σ2) is specified as follows: for each i ∈ {1, 2} and

history hi of length t,

σi(hi) =


(r∗i , C) if hi ∈ Hi \H∗0i and µ(h∗,t−i|hi) ≥ µ∗i ,

(r∗i , D) if hi ∈ Hi \H∗0i and 0 < µ(h∗,t−i|hi) < µ∗i ,

(1(c,d), D) if hi ∈ H∗0i ,

where µ∗i ∈ (0, 1). To emphasize the dependence of µ∗ = (µ∗1, µ
∗
2), we write this

strategy as σµ
∗
. As a function of yi ∈ Yi only, σ

µ∗i
i has the following representation

as an automaton, whose initial state is not shown and depends on the history hi via

µ(h∗,t−i|hi):2

(r∗i , C)

(r∗i , D)

(1(c,d), D)

c

d
dc

c, d

Figure A.1: Reduced strategy as an automaton

The strategy σµ
∗

is such that (C,C) is played in each period. This happens for

the same reason as in the proof of Theorem 1, namely that µ(h∗,t−i|h
∗,t
i ) = 1 for each

i ∈ {1, 2} and t ∈ N0. Thus, if σµ
∗

is part of a sequential equilibrium, then cooperation

in each period is a feature of a sequential equilibrium outcome. The former condition

is established, under a stronger form of responsiveness of the aggregation function α,

in the following result.

1The notion of a reduced strategy and an exact automaton can be found in e.g. Osborne and

Rubinstein (1994) and Kalai (1990) respectively.
2This follows from Claim A.2 in the proof of Theorem A.1 below.
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Theorem A.1 If α is strongly responsive, then there exists δ∗ ∈ (0, 1) such that, for

each δ ≥ δ∗ and X ∈ X , there exists µ∗ ∈ (0, 1)2 and a system of beliefs µ such that

(σµ
∗
, µ) is a sequential equilibrium when Ri = X2 for each i ∈ {1, 2}.

Besides focusing only on cooperation, Theorem A.1 requires a stronger form of

responsiveness. We say that α is strongly responsive if it responsive and satisfies:

3. 1(c,c) ∈ arg maxr αi,Y−i
(r, 1(c,d))[c].

4. 1(c,c) ∈ arg maxr
αi(r,1(c,d))[c,c]

αi(r,1(c,d))[c,c]+αi(r,1(c,d))[c,d]
.

In property 3, αY−i
(r, r′)[y−i] =

∑
yi
α(r, r′)[yi, y−i] for each y−i ∈ Y−i; throughout

this supplementary material, we shall also use αYi(r, r
′)[yi] =

∑
y−i

α(r, r′)[yi, y−i] for

each yi ∈ Yi.

Responsive aggregation functions reflect the choices of both players. Strong re-

sponsiveness make this dependence be more specific:

3. If a player proposes signal d for himself and c for his opponent, then the proba-

bility of the player observing c is maximized when his opponent chooses signal

(c, c) with probability 1.

4. If a player proposes signal d for himself and c for his opponent, then the proba-

bility of signal (c, c) conditional on the opponent observing c is maximized when

his opponent chooses signal (c, c) with probability 1.

To understand properties 3 and 4, let player 1 be the opponent and player 2 the

original player; in addition, assume momentarily that player 1 is restricted to choosing

degenerate distributions on Y . Note that, by property 1, if player 1 chooses signal

(c, d) with probability 1, then (c, d) occurs with probability 1 and player 2 observes

c with zero probability. The same conclusion holds if player 1 chooses (d, d). Thus,

player 2 can observe c only if player 1 chooses (c, c) or (d, c) and property 3 requires, in

particular, that the corresponding probability in the former case is no less than that

of the latter case. Since player 1 is restricted to choosing a degenerate distribution,

property 4 holds since, by property 1, the probability of (c, c) is strictly positive only
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when player 1 chooses (c, c) with probability 1 given that player 2 is choosing (c, d)

with probability 1. Thus, the requirement of properties 3 and 4 is that its conclusion

holds for all distributions and not just for degenerate ones.

The aggregation function in the motivating example is strongly responsive. Fur-

thermore, if α is a mixed extension, then α is strongly responsive if

(a) α(1y, 1y′)[ỹ] = 0 for each y, y′ ∈ Y and ỹ 6∈ {y, y′}.

(b) αi(1y, 1y′)[y] > 0 for each y, y′ ∈ Y and i ∈ {1, 2}.

(c) αi(1(c,c), 1(c,d))[c, c] ≥ αi(1(d,c), 1(c,d))[d, c].
3

A.1 Proof of Theorem A.1

A.1.1 Parametrization

For each i ∈ {1, 2}, let

µ̂i = αi(1(c,c), 1(c,d))[(c, c)].

Then µ̂i ∈ (0, 1) by property 2. Let µ∗i solve:

µ(3(1− δ) + δ(2µ̂i − (1− µ̂i)(1− δ))) = 2µ− (1− µ)(1− δ), (A.1)

i.e.

µ∗i =
1− δ

δ(1− µ̂i)(3− δ)
.

We have that µ(3(1− δ) + δ(2µ̂i− (1− µ̂i)(1− δ))) ≤ 2µ− (1− µ)(1− δ) if and only

if µ ≥ µ∗i . Moreover, µ∗i > 0 and µ∗i → 0 as δ → 1. Therefore,

Claim A.1 There exists δ1 ∈ (0, 1) such that µ∗i ∈ (0, µ̂i) for each δ ≥ δ1 and

i ∈ {1, 2}.

Let µ > 0 be such that

µ

(1− µ) mini,r αi,Yi(r, 1(d,c))[d]
< min

i
µ̂i

3See Section A.2 for a proof of this claim.
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for each µ < µ. Such µ exists since minr αi,Yi(r, 1(d,c))[d] > 0 by property 2 and,

hence, limµ→0
µ

(1−µ)mini,r αi,Yi
(r,1(d,c))[d]

= 0.

Let δ∗ ∈ (0, 1) be such that δ∗ ≥ δ1 and, for each δ ≥ δ∗ and i ∈ {1, 2},

µ∗i < µ and (A.2)

−1 + δ(1 + 2µ(1− µ̂i)) > 0. (A.3)

It follows that δ∗ exists since, for each i, limδ→1 µ
∗
i = 0 and limδ→1

(
−1+δ(1+2µ(1−

µ̂i))
)

= 2µ(1− µ̂i) > 0.

Let δ ≥ δ∗, X ∈ X and Ri = X2 for each i ∈ {1, 2}.

A.1.2 The assessment

Let

h∗,ti =
( t periods︷ ︸︸ ︷

(r∗i , C, c), . . . , (r
∗
i , C, c)

)
for each t ≥ 0.

HB
i = {hi ∈ Hi : hi = (h∗,ti · (r∗i , C, d) · h′i) for some t ≥ 0 and h′i ∈ Hi}.

H∗0i = {hi ∈ Hi :

`(hi)∏
t=1

αi(r
t,C
i , 1(c,sti)

)[(yti , c)] = 0}.

Note that HB
i ⊆ H∗0i . Indeed, rt+1,C

i = 1(c,c), s
t+1
i = C and yt+1

i = d imply that

αi(r
t+1,C
i , 1(c,st+1

i ))[(y
t+1
i , c)] = αi(1(c,c), 1(c,c))[(d, c)] = 1(c,c)(d, c) = 0 by property 1.

The strategy is as follows. Let r
∗,s−i

i = 1(s−i,c) for each i ∈ {1, 2} and s−i ∈

{C,D}, and define, for each hi ∈ Hi,

σi(hi) =


(1(c,d), D) if hi ∈ H∗0i ,

(r∗i , D) if hi ∈ Hi \H∗0i and µ(h
∗,`(hi)
−i |hi) < µ∗i ,

(r∗i , C) if hi ∈ Hi \H∗0i and µ(h
∗,`(hi)
−i |hi) ≥ µ∗i .

We also write σi(ri, si|hi) for the probability that σi(hi) assigns to (ri, si).

The beliefs are as follows. Let

HC
i = {hi ∈ Hi : rti = 1(c,d) and sti = D for all 1 ≤ t ≤ `(hi)},

HD
i = {hi ∈ HB

i : hi = (h∗,ti · (r∗i , C, d) · h′i) for some t ≥ 0 and h′i ∈ HC
i }.

For any hi ∈ Hi,
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1. supp(µ(·|hi)) ⊆ H∗0−i if hi ∈ H∗0i ,

2. h
∗,`(hi)
−i ∈ supp(µ(·|hi)) ⊆ {h∗,`(hi)−i } ∪HD

−i and

µ(h∗−i|hi) =

∏`(hi)
t=1 αi(r

t,C
i , 1(c,sti)

)[(yti , c)]∏`(hi)
t=1 αi(r

t,C
i , 1(c,sti)

)[(yti , c)] +
∑

h−i∈HD
−i∩H

`(hi)
−i

∏`(hi)
t=1 αi(r

t,st−i

i , r
t,sti
−i )[(yti , y

t
−i)]

if hi ∈ Hi \H∗0i , with µ(h∗,0−i |hi) = 1 if hi = ∅.

We also write µ(h∗−i|hi) for µ(h
∗,`(hi)
−i |hi). In A.1.5, we show that there exists consistent

beliefs satisfying the above two properties.

A.1.3 Preliminary results

From the specification of beliefs, we obtain the following claim.

Claim A.2 For each i ∈ {1, 2}:

1. µ(h∗−i|h∗i ) = 1.

2. If hi ∈ Hi \H∗0i , then

µ(h∗−i|hi · (r∗i , si, c)) =

1 if si = C,

µ̂i if si = D.

3. If hi ∈ Hi \H∗0i and (ri, si, yi) is such that αi(r
C
i , 1(c,si))[(yi, c)] > 0, then

µ(h∗−i|hi · (ri, si, yi)) =
µαi(r

C
i , 1(c,si))[(yi, c)]

µαi,Yi(r
C
i , 1(c,si))[yi] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi]

where µ = µ(h∗−i|hi).

Proof. Part 1 follows since hi = h∗i implies that

`(hi)∏
t=1

αi(r
t,C
i , 1(c,sti)

)[(yti , c)] =

`(h∗i )∏
t=1

αi(1(c,c), 1(c,c))[(c, c)] = 1

by property 1 and, for each h−i ∈ HD
−i ∩ H

`(hi)
−i with h−i = h∗,k−i · (r∗−i, C, d) · h′−i, we

have that αi(r
k+1,sk+1

−i

i , r
k+1,sk+1

i
−i )[(yk+1

i , yk+1
−i )] = αi(r

∗,C
i , r∗,C−i )[(c, d)] = 1(c,c)[(c, d)] = 0.
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For part 2, write θ(h−i) =
∏`(hi)

t=1 αi(r
t,st−i

i , r
t,sti
−i )[(yti , y

t
−i)] for each h−i ∈ HD

−i∩H
`(hi)
−i

and analogously for h−i ∈ HD
−i ∩H

`(hi)+1
−i . It then follows that∑

h−i∈HD
−i∩H

`(hi)+1
−i

θ(h−i) = θ(h
∗,`(hi)
−i )αi(1(c,c), 1(c,si))[(c, d)]

+
∑
y−i

∑
h−i∈HD

−i∩H
`(hi)
−i

θ(h−i)αi(1(d,c), 1(d,c))[(c, y−i)]

= θ(h
∗,`(hi)
−i )αi(1(c,c), 1(c,si))[(c, d)]

(A.4)

since, for each h−i ∈
(
HD
−i ∩H

`(hi)+1
−i

)
\{h∗,`(hi) ·(r∗−i, C, d)}, r`(hi)+1

−i = 1(c,d), s
`(hi)+1
−i =

D, r∗,Di = 1(d,c) and αi(1(d,c), 1(d,c))[(c, y−i)] = 0 for each y−i ∈ {c, d} by property 1.

Hence,

µ(h∗−i|hi · (r∗i , si, c)) =
θ(h∗−i)αi(1(c,c), 1(c,si))[(c, c)]

θ(h∗−i)αi(1(c,c), 1(c,si))[(c, c)] + θ(h∗−i)αi(1(c,c), 1(c,si))[(c, d)]

=
αi(1(c,c), 1(c,si))[(c, c)]

αi(1(c,c), 1(c,si))[(c, c)] + αi(1(c,c), 1(c,si))[(c, d)]
.

For part 3, write θ(HD
−i ∩H

`(hi)
−i ) =

∑
h−i∈HD

−i∩H
`(hi)
−i

θ(h−i). Then (A.4) becomes

∑
h−i∈HD

−i∩H
`(hi)+1
−i

θ(h−i) = θ(h
∗,`(hi)
−i )αi(r

C
i , 1(c,si))[(yi, d)]

+θ(HD
−i ∩H

`(hi)
−i )αi,Yi(r

D
i , 1(d,c))[yi]

and

µ =
θ(h

∗,`(hi)
−i )

θ(h
∗,`(hi)
−i ) + θ(HD

−i ∩H
`(hi)
−i )

.

Hence,

µ(h∗−i|hi · (ri, si, yi)) =
θ(h

∗,`(hi)
−i )αi(r

C
i , 1(c,si))[(yi, c)]

θ(h
∗,`(hi)
−i )αi,Yi(r

C
i , 1(c,si))[yi] + θ(HD

−i ∩H
`(hi)
−i )αi,Yi(r

D
i , 1(d,c))[yi]

=
µαi(r

C
i , 1(c,si))[(yi, c)]

µαi,Yi(r
C
i , 1(c,si))[yi] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi]

.

For each h ∈ H, let π(h) be the outcome path following history h: π(h) =

(π1(h), π2(h), . . .) with πt(h) = (πt1(h), πt2(h)) for each t ∈ N. The outcome π(h) is a

(measurable) function from Y ∞ to (R2 × S2)∞ such that πt(h) : Y t−1 → R2 × S2 for
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each t ∈ N. The space Y ∞ is endowed with the probability measure γ(h) defined from

the strategy. Specifically, set π1(h) = σ(h) and γ1(h) = γ(·|π1(h)); assuming that

π1(h), . . . , πt−1(h) and γ1(h), . . . , γt(h) have been defined, set, for each (y1, . . . , yt) ∈

Y t,

hti = ((π1
i (h), y1i ), · · · , (πti(h), yti)),

ht−i = ((π1
−i(h), y1−i), · · · , (πt−i(h), yt−i)),

πt+1(h)(y1, . . . , yt) = σ(h · ht) and

γt+1(h)(y1, . . . , yt) = γ(·|πt+1(h)).

Then set

γ(h)({(y1, . . . , yt)} × Y ∞) =
t∏

k=1

γk(h)(y1, . . . , yk−1)[yk]

for each t ≥ 1 and (y1, . . . , yt) ∈ Y t. In the following claims, we do not distinguish

between “for all y∞ ∈ Y ∞” and “for γ(h)-a.e. y∞ ∈ Y ∞”.

Claim A.3 For each i ∈ {1, 2}:

1. If hi ∈ H∗0i , then πti(hi, h−i) = (1(c,d), D) for each t ∈ N and h−i ∈ H−i.

2. If hi ∈ Hi \ H∗0i and h−i ∈ H∗0−i, then πt(hi, h−i) = ((1(c,d), 1(c,d)), (D,D)) for

each t > 1 and

π1(hi, h−i) =

((r∗i , 1(c,d)), (C,D)) if µ(h∗−i|hi) ≥ µ∗i ,

((r∗i , 1(c,d)), (D,D)) if µ(h∗−i|hi) < µ∗i .

Proof. Let hi ∈ H∗0i ; then αi(r
t,C
i , 1(c,sti)

)[(yti , c)] = 0 for some 1 ≤ t ≤ `(hi).

Thus, for each h′i ∈ Hi, hi · h′i ∈ H∗0i and, hence, σi(hi · h′i) = (1(c,d), D). This

establishes part 1.

For part 2, let hi ∈ Hi \ H∗0i and h−i ∈ H∗0−i. Then πt−i(h) = (1(c,d), D) for

each t ∈ N by part 1, σ(hi) = (r∗i , C) if µ(h∗−i|hi) ≥ µ∗i and σ(hi) = (r∗i , D) if

µ(h∗−i|hi) < µ∗i . In either case, since r∗,Di = 1(d,c), γ(·|π1(h)) = αi(1(d,c), 1(d,c)) = 1(d,c)

by property 1. Thus, y1 = (d, c). Since αi(1(c,c), 1(c,si))[(d, c)] = 0 by property 1 for

each si ∈ Si, it follows that hi · (π1
i (h), y1i ) = hi · (r∗i , si, d) ∈ H∗0i for each si ∈ Si. The

conclusion now follows by part 1.
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Claim A.4 For each i ∈ {1, 2}: If hi ∈ Hi\H∗0i and µ(h∗−i|hi) ≥ µ∗i , then π
t(hi, h

∗
−i) =

(r∗, (C,C)) for each t ∈ N.

Proof. Let hi ∈ Hi \H∗0i be such that µ(h∗−i|hi) ≥ µ∗i . Then σi(hi) = (r∗i , C) and,

since µ(h∗i |h∗−i) = 1 by Claim A.2, σ−i(h
∗
−i) = (r∗−i, C); hence π1(hi, h

∗
−i) = (r∗, (C,C))

and y1 = (c, c) since γ1(hi, h
∗
−i) = αi(1(c,c), 1(c,c)) = 1(c,c) by property 1. Thus,

µ(h∗−i|hi · (π1
i (hi, h

∗
−i), y

1
i )) = 1 by Claim A.2.

Assume that π1(hi, h
∗
−i) = · · · = πk(hi, h

∗
−i) = (r∗, (C,C)), y1 = · · · = yk = (c, c)

and µ(h∗−i|hi · h1i ) = · · · = µ(h∗−i|hi · hki ) = 1. Then σi(hi · hki ) = (r∗i , C). Since

hk−i = h∗,k, µ(h∗i |h∗−i · hk−i) = 1 by Claim A.2 and, hence, σ−i(h
∗
−i) = (r∗−i, C). Thus

πk+1(hi, h
∗
−i) = (r∗, (C,C)) and yk+1 = (c, c) since γk+1(hi, h

∗
−i) = αi(1(c,c), 1(c,c)) =

1(c,c) by property 1. Thus, µ(h∗−i|hi · hk+1
i ) = 1 by Claim A.2.

The above inductive argument shows, in particular, that πt(hi, h
∗
−i) = (r∗, (C,C))

and establishes the claim.

Let Ui(h) be player i’s expected payoff following history h ∈ H:

Ui(h) = (1− δ)
∫
Y∞

∞∑
t=1

δt−1ui(π
t(h)(y∞))dγ(h)(y∞)

= (1− δ)
∞∑
t=1

δt−1
∑

(y1,...,yt−1)

ui(π
t(h)(y1, . . . , yt−1))γ(h)(y1, . . . , yt−1),

where γ(h)(y1, . . . , yt−1) = γ(h)({y1, . . . , yt−1} × Y ∞). Let Ui(hi) be player i’s ex-

pected payoff following history hi ∈ Hi:

Ui(hi) =
∑

h−i∈H−i

µ(h−i|hi)Ui(hi, h−i).

Claim A.5 For each δ ≥ δ1, i ∈ {1, 2} and hi ∈ Hi,

Ui(hi) =

2µ− (1− µ)(1− δ) if µ(h∗−i|hi) ≥ µ∗i ,

µ
(
3(1− δ) + δ(2µ̂i − (1− µ̂i)(1− δ))

)
if µ(h∗−i|hi) < µ∗i ,

where µ = µ(h∗−i|hi).

Proof. Let hi ∈ Hi. Consider first the case where hi ∈ Hi \H∗0i and recall that

supp(µ(·|hi)) ⊆ {h∗−i} ∪HD
−i. Suppose, in addition, that µ ≥ µ∗i . If h−i = h∗−i, then
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Claim A.4 implies that πt(hi, h
∗
−i) = (r∗, (C,C)) for each t ∈ N; if h−i ∈ HD

−i ⊆ HB
−i ⊆

H∗0−i, Claim A.3 implies that πt(hi, h−i) = ((1(c,d), 1(c,d)), (D,D)) for each t > 1 and

π1(hi, h−i) = ((r∗i , 1(c,d)), (C,D)). Thus,

Ui(hi) = 2µ− (1− δ)(1− µ).

Suppose next that µ < µ∗i . Then σi(hi) = (r∗i , D). If h−i ∈ HD
−i ⊆ H∗0−i, Claim

A.3 implies that πt(hi, h−i) = ((1(c,d), 1(c,d)), (D,D)) for each t > 1 and π1(hi, h−i) =

((r∗i , 1(c,d)), (D,D)).

If h−i = h∗−i, then π1(hi, h
∗
−i) = (r∗, (D,C)) and γ1(hi, h

∗
−i) = αi(1(c,c), 1(c,d)),

which is supported on {(c, c), (c, d)} by properties 1 and 2.

If y1 = (c, c), then the resulting histories for player i and −i are, respectively,

hi · (r∗i , D, c) and h∗−i · (r∗−i, C, c) = h
∗,`(hi)+1
−i . The history hi · (r∗i , D, c) belongs to

Hi\H∗0i since αi(1(c,c), 1(c,d))[(c, c)] > 0 and is such that µ(h∗−i|hi ·(r∗i , D, c)) = µ̂i > µ∗i

by Claim A.2. Thus, πt(hi · (r∗i , D, c), h
∗,`(hi)+1
−i ) = (r∗, (C,C)) for each t ≥ 1 by Claim

A.4.

If y1 = (c, d), then the resulting history for player i is hi · (r∗i , D, c) as before and

that of player −i is h∗−i · (r∗−i, C, d) ∈ HB
−i ⊆ H∗0−i. Since hi · (r∗i , D, c) ∈ Hi \H∗0i and

µ(h∗−i|hi · (r∗i , D, c)) = µ̂i > µ∗i , Claim A.3 implies that

πt(hi · (r∗i , D, c), h−i · (r∗−i, C, d)) = ((1(c,d), 1(c,d)), (D,D)) for each t > 1 and

π1(hi · (r∗i , D, c), h−i · (r∗−i, C, d)) = ((1(d,c), 1(c,d)), (C,D)).

Thus, recalling that µ̂i = αi(1(c,c), 1(c,d))[(c, c)] and αi(1(c,c), 1(c,d))[(c, d)] = 1− µ̂i,

Ui(hi) = µ
(
3(1− δ) + δ(2µ̂i − (1− δ)(1− µ̂i))

)
.

Finally, consider hi ∈ H∗0i . Since supp(µ(·|hi)) ⊆ H∗0−i, it follows that µ = 0 and

πt(hi, h−i) = ((1(c,d), 1(c,d)), (D,D)) for each t ∈ N by Claim A.3. Thus, Ui(hi) = 0 =

µ
(
3(1− δ) + δ(2µ̂i − (1− µ̂i)(1− δ))

)
.

Define Vi : [0, 1]→ R by setting, for each µ ∈ [0, 1],

Vi(µ) =

2µ− (1− µ)(1− δ) if µ ≥ µ∗i ,

µ(3(1− δ) + δVi(µ̂i)) = µ
(
3(1− δ) + δ(2µ̂i − (1− µ̂i)(1− δ))

)
if µ < µ∗i .
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It follows by Claim A.5 that Ui(hi) = Vi(µ(h∗−i|hi)) for each δ ≥ δ1, i ∈ {1, 2} and

hi ∈ Hi.

Claim A.6 The function Vi is strictly increasing, piecewise linear, continuous, and

convex for each i ∈ {1, 2}.

Proof. It is clear that Vi is strictly increasing, affine on [0, µ∗i ) and on [µ∗i , 1]. The

continuity of Vi follows because Vi(µ
∗
i ) = 2µ∗i − (1−δ)(1−µ∗i ) = µ∗i

(
3(1−δ)+δ(2µ̂i−

(1− µ̂i)(1− δ))
)

= limµ→µ∗− Vi(µ) due to the definition of µ∗i .

The slope of Vi in the range [0, µ∗i ) is 3(1 − δ) + δ(2µ̂i − (1 − µ̂i)(1 − δ)) =

2 + 1− δ− 1−δ
µ∗i

< 2 + 1− δ, the latter being the slope of Vi in the range [µ∗i , 1]. Thus,

Vi is convex.

For each i ∈ {1, 2}, hi ∈ Hi and (ri, si) ∈ Ri × Si, let U ri,si
i (hi) be player i’s

expected payoff of an one-shot deviation from σi to (ri, si); formally, U ri,si
i (hi) is

defined in the same way as Ui(hi) by changing only π1(h) to ((ri, si), σ−i(h−i)) for

each h−i ∈ H−i.

Claim A.7 For each i ∈ {1, 2}, hi ∈ Hi and (ri, si) ∈ Ri × Si,

U ri,si
i (hi) = (1− δ)

(
µui(si, C) + (1− µ)ui(si, D)

)
+

δµ
∑
yi

αi,Yi(r
C
i , 1(c,si))[yi]Vi(µ(h∗−i|hi · (ri, si, yi))) +

δ(1− µ)
∑
yi

αi,Yi(r
D
i , 1(d,c))[yi]Vi(µ(h∗−i|hi · (ri, si, yi))),

where µ = µ(h∗−i|hi).

Proof. If h−i = h∗−i, then σ−i(h
∗
−i) = (r∗−i, C) and player −i’s next period history

is h∗−i · (r∗−i, C, y1−i), hence equal to h
∗,`(hi)+1
−i if y1−i = c and an element of HB

−i ⊆ H∗0−i if

y1−i = d. If h−i ∈ H∗0−i, then σ−i(h
∗
−i) = (1(c,d), D) and player −i’s next period history

is an element of H∗0−i.

It follows by Claim A.3 that Ui(hi · (ri, si, yi), ĥ−i) = Ui(hi · (ri, si, yi), h̄−i) for each

ĥ−i, h̄−i ∈ H∗0−i∩H
`(hi)+1
−i . Let then Ui(hi · (ri, si, yi), H∗0−i) denotes this common value.
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Since supp(µ(·|hi)) ⊆ {h∗−i} ∪H∗0−i, it follows that µ(H∗0−i|hi) = 1− µ and

U ri,si
i (hi) = (1− δ)

(
µui(si, C) + (1− µ)ui(si, D)

)
+

δ
∑
yi

(
µαi(r

C
i , 1(c,si))[(yi, c)]Ui(hi · (ri, si, yi), h

∗,`(hi)+1
−i ) +

(
µαi(r

C
i , 1(c,si))[(yi, d)] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi]

)
Ui(hi · (ri, si, yi), H∗0−i)

)
.

Furthermore, it follows by Claim A.2 that∑
yi

(
µαi(r

C
i , 1(c,si))[(yi, c)]Ui(hi · (ri, si, yi), h

∗,`(hi)+1
−i ) +

(
µαi(r

C
i , 1(c,si))[(yi, d)] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi]

)
Ui(hi · (ri, si, yi), H∗0−i)

)
=∑

yi

(
µαi,Yi(r

C
i , 1(c,si))[yi] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi]

)
×(

µ(h
∗,`(hi)+1
−i |hi · (ri, si, yi))Ui(hi · (ri, si, yi), h∗,`(hi)+1

−i ) +

(1− µ(h
∗,`(hi)+1
−i |hi · (ri, si, yi))Ui(hi · (ri, si, yi), H∗0−i)

)
=∑

yi

(
µαi,Yi(r

C
i , 1(c,si))[yi] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi]

)
Ui(hi · (ri, si, yi)) =

∑
yi

(
µαi,Yi(r

C
i , 1(c,si))[yi] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi]

)
Vi(µ(h∗−i|hi · (ri, si, yi))) =

µ
∑
yi

αi,Yi(r
C
i , 1(c,si))[yi]Vi(µ(h∗−i|hi · (ri, si, yi))) +

(1− µ)
∑
yi

αi,Yi(r
D
i , 1(d,c))[yi]Vi(µ(h∗−i|hi · (ri, si, yi))).

This completes the proof of the claim.

Claim A.8 Let i ∈ {1, 2}, hi ∈ Hi \H∗0i , µ = µ(h∗−i|hi) and (ri, si) ∈ Ri×Si. Then:∑
yi

(µαi,Yi(r
C
i , 1(c,si))[yi] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi])Vi(µ(h∗−i|hi · (ri, si, yi))) ≤µVi(1) + (1− µ)Vi(0) = 2µ if si = C,

µµ̂iVi(1) + (1− µµ̂i)Vi(0) = 2µµ̂i if si = D.

Proof. Let i ∈ {1, 2}, hi ∈ Hi \ H∗0i and (ri, si) ∈ Ri × Si be given. First, we

argue that when si = C:∑
yi

(µαi,Yi(r
C
i , 1(c,c))[yi] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi])µ(h∗−i|hi · (ri, C, yi)) ≤ µ.
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Indeed, for each yi, this is trivial if αi(r
C
i , 1(c,si))[(yi, c)] = 0 and follows by Claim A.2

otherwise.

The value of the problem:

sup
ri

∑
yi

(µαi,Yi(r
C
i , 1(c,c))[yi] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi])Vi(µ(h∗−i|hi · (ri, C, yi)))

(A.5)

is at most the value of the problem:

sup
(p0,p1,µ0,µ1)∈[0,1]4

1∑
j=0

pjVi(µj) subject to
1∑
j=0

pjµj ≤ µ and
1∑
j=0

pj = 1. (A.6)

This is because for any ri ∈ (∆Y )2:

1. p0 = µαi,Yi(r
C
i , 1(c,c))[d] + (1− µ)αi,Yi(r

D
i , 1(d,c))[d] ∈ [0, 1],

2. p1 = µαi,Yi(r
C
i , 1(c,c))[c] + (1− µ)αi,Yi(r

D
i , 1(d,c))[c] ∈ [0, 1],

3. µ0 = µ(h∗−i|hi · (ri, C, d)) ∈ [0, 1],

4. µ1 = µ(h∗−i|hi · (ri, C, c)) ∈ [0, 1],

5.
∑1

j=0 pjµj =
∑

yi
(µαi,Yi(r

C
i , 1(c,c))[yi]+(1−µ)αi,Yi(r

D
i , 1(d,c))[yi])µ(h∗−i|hi·(ri, C, yi)) ≤

µ, and

6.
∑1

j=0 pj =
∑

yi
(µαi,Yi(r

C
i , 1(c,c))[yi] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi]) = 1.

Thus, p0, p1, µ0, and µ1 satisfy the constraints of (A.6) and

1∑
j=0

pjVi(µj) =
∑
yi

(µαi,Yi(r
C
i , 1(c,c))[yi]+(1−µ)αi,Yi(r

D
i , 1(d,c))[yi])Vi(µ(h∗−i|hi·(ri, C, yi))).

Any solution to (A.6) must satisfy the constraint with equality since Vi is strictly

increasing. Then, for any (pj, µj)j=0,1 such that
∑1

j=0 pjµj = µ, the convexity of Vi
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implies that:

1∑
j=0

pjVi(µj) =
1∑
j=0

pjVi(µj(1) + (1− µj)(0))

≤
1∑
j=0

pj(µjVi(1) + (1− µj)Vi(0))

≤
1∑
j=0

pjµjVi(1)

= µVi(1).

Indeed, the first line is because µj = µj(1)+(1−µj)(0), the second line is by Jensen’s

inequality, the third line is because Vi(0) = 0, and the last line is by the constraint∑1
j=0 pjµj = µ. Thus, the value of (A.6) is at most µVi(1) = 2µ.

Now we argue that when si = D:∑
yi

(µαi,Yi(r
C
i , 1(c,d))[yi] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi])µ(h∗−i|hi · (ri, D, yi)) ≤ µµ̂i.

Note that, by Claim A.2:∑
yi

(µαi,Yi(r
C
i , 1(c,d))[yi] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi])µ(h∗−i|hi · (ri, D, yi))

≤ µ(αi(r
C
i , 1(c,d))[c, c] + αi(r

C
i , 1(c,d))[d, c])

≤ µ(αi(1(c,c), 1(c,d))[c, c] + αi(1(c,c), 1(c,d))[d, c]) = µµ̂i,

where the second inequality is by property 3 and the last equality follows because

αi(1(c,c), 1(c,d))[d, c]) = 0 by property 1.

Thus, the value of the problem:

sup
ri

∑
yi

(µαi,Yi(r
C
i , 1(c,d))[yi] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi])Vi(µ(h∗−i|hi · (ri, D, yi)))

is at most the value of the problem:

sup
(p0,p1,µ0,µ1)∈[0,1]4

1∑
j=0

pjVi(µj) subject to
1∑
j=0

pjµi ≤ µµ̂i and
1∑
j=0

pj = 1. (A.7)

The solution to (A.7) is µ1 = 1, µ0 = 0, p1 = µµ̂i, and p0 = 1 − µµ̂i (by the same

argument as in the previous case), and the value is µµ̂iV (1) = 2µµ̂i.
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Claim A.9 For each i ∈ {1, 2}, ri ∈ Ri, yi ∈ Yi and hi ∈ Hi \ H∗0i such that

µ(h∗−i|hi) < µ,

µ(h∗−i|hi · (ri, D, yi)) ≤ µ̂i.

Proof. Let µ > 0 be such that

µ

(1− µ) mini,r αi,Yi(r, 1(d,c))[d]
< min

i
µ̂i

for each µ < µ. Such µ exists since minr αi,Yi(r, 1(d,c))[d] > 0 by property 2 and,

hence, limµ→0
µ

(1−µ)mini,r αi,Yi
(r,1(d,c))[d]

= 0.

Let i ∈ {1, 2}, ri ∈ Ri, yi ∈ Yi and hi ∈ Hi \ H∗0i be such that µ(h∗−i|hi) < µ.

When yi = c, we have that µ(h∗−i|hi · (ri, D, c)) ≤ µ̂i since, by Claim A.2:

µ(h∗−i|(hi, (ri, D, c))) ≤
µαi(r

C
i , 1(c,d))[c, c]

µαi,Yi(r
C
i , 1(c,d))[c] + (1− µ)αi,Yi(r

D
i , 1(d,c))[c]

.

Property 4 implies that 1(c,c) ∈ arg maxr
µαi(r,1(c,d))[c,c]

µαi,Yi
(r,1(c,d))[c]

; since αi,Yi(1(d,c), 1(d,c))[c] = 0,

this implies that r∗i ∈ arg maxri µ(h∗−i|(hi, (ri, D, c))), and µ(h∗−i|hi · (r∗i , D, c)) = µ̂i.

Consider next yi = d. We also have that µ(h∗−i|hi · (ri, D, d)) ≤ µ̂i since, by Claim

A.2:

µ(h∗−i|(hi · (ri, D, d)) ≤
µαi(r

C
i , 1(c,d))[d, c]

µαi,Yi(r
C
i , 1(c,d))[d] + (1− µ)αi,Yi(r

D
i , 1(d,c))[d]

≤ µ

(1− µ) mini,r αi,Yi(r, 1(d,c))[d]
< µ̂i.

Claim A.10 Let i ∈ {1, 2}, hi ∈ Hi \H∗0i , µ = µ(h∗−i|hi) and ri ∈ Ri. If µ < µ, then∑
yi

(µαi,Yi(r
C
i , 1(c,d))[yi] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi])Vi(µ(h∗−i|hi · (ri, D, yi)))

≤ µVi(µ̂i).

Proof. Let i ∈ {1, 2}, hi ∈ Hi \ H∗0i , ri ∈ Ri and µ = µ(h∗−i|hi) < µ. Then for

each yi ∈ Yi, µ(h∗−i|hi · (ri, D, yi)) ≤ µ̂i by Claim A.9.

As in the proof of Claim A.8:∑
yi

(µαi,Yi(r
C
i , 1(c,d))[yi] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi])µ(h∗−i|hi · (ri, D, yi)) ≤ µµ̂i.
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Thus, the value of the problem:

sup
ri

∑
yi

(µαi,Yi(r
C
i , 1(c,d))[yi] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi])Vi(µ(h∗−i|hi · (ri, D, yi)))

is at most the value of the problem:

sup
(p0,p1)∈[0,1]2,(µ0,µ1)∈[0,µ̂i]2

1∑
j=0

pjVi(µj) subject to
1∑
j=0

pjµj ≤ µµ̂i and
1∑
j=0

pj = 1. (A.8)

This is because for any ri ∈ (∆Y )2:

1. p0 = µαi,Yi(r
C
i , 1(c,d))[d] + (1− µ)αi,Yi(r

D
i , 1(d,c))[d] ∈ [0, 1],

2. p1 = µαi,Yi(r
C
i , 1(c,d))[c] + (1− µ)αi,Yi(r

D
i , 1(d,c))[c] ∈ [0, 1],

3. µ0 = µ(h∗−i|hi · (ri, D, d)) ∈ [0, µ̂i],

4. µ1 = µ(h∗−i|hi · (ri, D, c)) ∈ [0, µ̂i],

5.
∑1

j=0 pjµj =
∑

yi
(µαi,Yi(r

C
i , 1(c,d))[yi]+(1−µ)αi,Yi(r

D
i , 1(d,c))[yi])µ(h∗−i|hi·(ri, D, yi)) ≤

µµ̂i, and

6.
∑1

j=0 pj =
∑

yi
(µαi,Yi(r

C
i , 1(c,d))[yi] + (1− µ)αi,Yi(r

D
i , 1(d,c))[yi]) = 1.

Thus, p0, p1, µ0, and µ1 satisfy the constraints of (A.8) and

1∑
j=0

pjVi(µj) =
∑
yi

(µαi,Yi(r
C
i , 1(c,d))[yi]+(1−µ)αi,Yi(r

D
i , 1(d,c))[yi])Vi(µ(h∗−i|hi·(ri, D, yi))).

Any solution to (A.8) must satisfy the constraint with equality since Vi is strictly

increasing. Then, for any pj and µj ≤ µ̂i such that
∑1

j=0 pjµj = µµ̂i, the convexity

of Vi implies that:

1∑
j=0

pjVi(µj) =
1∑
j=0

pjVi

(
µj
µ̂i

(µ̂i) +

(
1− µj

µ̂i

)
(0)

)

≤
1∑
j=0

pj

(
µj
µ̂i
Vi(µ̂i) +

(
1− µj

µ̂i

)
Vi(0)

)

≤
1∑
j=0

pj
µj
µ̂i
Vi(µ̂i)

= µVi(µ̂i).
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Indeed, the first line is because µj =
µj
µ̂i

(µ̂i)+(1− µj
µ̂i

)(0), the second line is by Jensen’s

inequality, the third line is because Vi(0) = 0, and the last line is by the constraint∑1
j=0 pjµj = µµ̂i. Thus, the value of (A.8) is at most µVi(µ̂i).

A.1.4 Sequential rationality

Let i ∈ {1, 2}. We consider three cases: (i) hi ∈ Hi \ H∗0i and µ(h∗−i|hi) ≥ µ∗i , (ii)

hi ∈ Hi \H∗0i and µ(h∗−i|hi) < µ∗i , and (iii) hi ∈ H∗0i .

Case hi ∈ Hi \H∗0i and µ(h∗−i|hi) ≥ µ∗i :

Let µ = µ(h∗−i|hi). Then Ui(hi) = Vi(µ) = 2µ − (1 − µ)(1 − δ). Consider a one

shot deviation to (ri, si). If si = C, then by Claims A.7 and A.8:

U ri,C
i (hi) ≤ 2µ(1− δ)− (1− µ)(1− δ) + δ2µ = 2µ− (1− µ)(1− δ) = Ui(hi).

If si = D and µ ≥ µ (note that µ∗i < µ by (A.2)), then by Claims A.7 and A.8:

U ri,D
i (hi) ≤ 3µ(1− δ) + δ2µµ̂i = µ (3(1− δ) + 2µ̂iδ) .

Hence,

Ui(hi)− U ri,D
i (hi) = −1 + δ(1 + 2µ(1− µ̂i)) ≥ −1 + δ(1 + 2µ(1− µ̂i)) > 0

by (A.3) since δ ≥ δ∗.

If si = D and µ < µ, then by Claims A.7 and A.10:

U ri,D
i (hi) ≤ µ

(
3(1− δ) + δVi(µ̂i)

)
≤ 2µ− (1− µ)(1− δ) = Ui(hi)

where the second inequality follows because, when µ ≥ µ∗i , µ (3(1− δ) + δVi(µ̂i)) ≤

2µ− (1− µ)(1− δ).

Case hi ∈ Hi \H∗0i and µ(h∗−i|hi) < µ∗i :

Let µ = µ(h∗−i|hi). Then Ui(hi) = Vi(µ) = µ(3(1 − δ) + δVi(µ̂i)). Consider a one

shot deviation to (ri, si). If si = D, then by Claims A.7 and A.10 (which applies since

µ < µ∗i < µ):

U ri,D
i (hi) ≤ µ(3(1− δ) + δVi(µ̂i)) = Ui(hi).
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If si = C, then by Claims A.7 and A.8:

U ri,C
i (hi) ≤ 2µ− (1− µ)(1− δ) < µ(3(1− δ) + δVi(µ̂i)) = Ui(hi),

where the strict inequality follows because, when µ < µ∗i , 2µ − (1 − µ)(1 − δ) <

µ(3(1− δ) + δVi(µ̂i)).

Case hi ∈ H∗0i :

We have that Ui(hi) = Vi(0) = 0. Consider a one shot deviation to (ri, si). Since

hi · (ri, si, yi) ∈ H∗0i for each yi, it follows by Claim A.7 that

U ri,D
i (hi) = 0 = Ui(hi)

and

U ri,C
i (hi) = −(1− δ) < 0 = Ui(hi).

A.1.5 Consistency

We show that there exists consistent beliefs satisfying the specification in A.1.2.

Let {σj}∞j=1 be a sequence of totally mixed strategies converging to σ and such

that, for each i ∈ {1, 2},

1. σji (1(c,d), D|hi) = 1
j

for each hi ∈ Hi \H∗0i ,

2. σji (ri, si|hi) = 1
jj

for each (ri, si) 6∈ {(1(c,d), D), σ(hi)} and hi ∈ Hi \H∗0i ,

3. σji (1(d,c), D|hi) = 1
j

for each hi ∈ H∗0i , and

4. σji (ri, si|hi) = 1
jj

for each (ri, si) 6∈ {(1(d,c), D), σ(hi)} and hi ∈ H∗0i .

Let i ∈ {1, 2}, t ∈ N and hi = (rki , s
k
i , y

k
i )tk=1 ∈ H t

i . Then, for each h−i =

(rk−i, s
k
−i, y

k
−i)

t
k=1 ∈ H t

−i and j ∈ N,

µj(h−i|hi) =

∏t
k=1 αi(r

k,sk−i

i , r
k,ski
−i )[yk]σj−i(r

k
−i, s

k
−i|hk−1−i )∑

(r̂k−i,ŝ
k
−i,ŷ

k
−i)

t
k=1∈H

t
−i

∏t
k=1 αi(r

k,ŝk−i

i , r̂
k,ski
−i )[(yki , ŷ

k
−i)]σ

j
−i(r̂

k
−i, ŝ

k
−i|ĥk−1−i )

where hk−i = (rn−i, s
n
−i, y

n
−i)

k
n=1 and ĥk−i = (r̂n−i, ŝ

n
−i, ŷ

n
−i)

k
n=1 for each k ≥ 0.
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Note that the set of histories h−i such that
∏t

k=1 σ−i(r
k
−i, s

k
−i|hk−1−i ) > 0 equals

{h∗−i} ∪HD
−i. Define

HD0
i =

{
hi ∈ Hi : for all 1 ≤ n ≤ `(hi) and (yn+1

−i , . . . , y
`(hi)
−i ) ∈ Y `(hi)−n

−i ,(
n−1∏
k=1

αi(r
k,C
i , 1(c,ski )

)[(yki , c)]

)
αi(r

n,C
i , 1(c,sni )

)[(yni , d)]

 `(hi)∏
k=n+1

αi(r
k,D
i , 1(d,c))[y

k]

 = 0
}
.

Let hi ∈ Hi. We consider three cases.

Case hi ∈ Hi\H∗0i : In this case, it follows that µ(h∗−i|hi) > 0 since σj−i(r
∗
−i, C|h

∗,k−1
−i )→

1 for each 1 ≤ k ≤ t. In addition, if h−i ∈ H t
−i \{h∗−i} is such that µ(h−i|hi) > 0, then∏t

k=1 σ−i(r
k
−i, s

k
−i|hk−1−i ) > 0. Thus, h−i ∈ HD

−i. In conclusion, h∗−i ∈ supp(µ(·|hi)) ⊆

{h∗−i} ∪HD
−i whenever hi ∈ Hi \H∗0i .

For later use, we will show by induction on `(hi) that limj(j
j−1−`(hi)µj(h−i|hi)) = 0

for each h−i ∈ H−i \ (H∗0−i ∪ {h∗−i}). Consider first hi with `(hi) = 1. Then

µj(h−i|hi) =
αi(r

s−i

i , rsi−i)[y]σj−i(r−i, s−i)∑
(r̂−i,ŝ−i,ŷ−i)∈H1

−i
αi(r

ŝ−i

i , r̂si−i)[(yi, ŷ−i)]σ
j
−i(r̂−i, ŝ−i)

.

Since hi ∈ Hi \H∗0i , we have that αi(r
C
i , 1(c,si))[(yi, c)] > 0. In addition,∑

(r̂−i,ŝ−i,ŷ−i)∈H1
−i

αi(r
ŝ−i

i , r̂si−i)[(yi, ŷ−i)]σ
j
−i(r̂−i, ŝ−i)→ αi,Yi(r

C
i , 1(c,si))[yi].

Thus, (r∗−i, C, c) ∈ supp(µ(·|hi)) ⊆ {(r∗−i, C, c), (r∗−i, C, d)} and note that (r∗−i, C, d) ∈

H∗0−i. We have that {(1(c,d), D, c), (1(c,d), D, d)} ⊆ H∗0−i since α−i(1(c,d), 1(c,d))[(y−i, c)] =

0 by property 1. Hence, for each h−i ∈ H−i \ (H∗0−i ∪ {h∗−i}),

lim
j

(jj−2µj(h−i|hi)) =
jj−2αi(r

s−i

i , rsi−i)[y]j−j∑
(r̂−i,ŝ−i,ŷ−i)∈H1

−i
αi(r

ŝ−i

i , r̂si−i)[(yi, ŷ−i)]σ
j
−i(r̂−i, ŝ−i)

→ 0.

Let t > 1 and assume that we have established that, for each k = 1, . . . , t− 1 and

hi ∈ Hk
i \H∗0i , limj(j

j−1−kµj(h−i|hi)) = 0 for each h−i ∈ Hk
−i \ (H∗0−i ∪ {h∗−i}).

For each hi ∈ H t
i , h−i ∈ H t

−i and j ∈ N,

µj(h−i|hi) =
µj(ht−1−i |ht−1i )αi(r

t,st−i

i , r
t,sti
−i )[yt]σj−i(r

t
−i, s

t
−i|ht−1−i )

Bj
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where

Bj =
∑

ĥ−i∈Ht−1
−i

∑
(r̂t−i,ŝ

t
−i,ŷ

t
−i)∈H1

−i

µj(ĥt−1−i |ht−1i )αi(r
t,ŝt−i

i , r̂
t,sti
−i )[(yti , ŷ

t
−i)]σ

j
−i(r̂

t
−i, ŝ

t
−i|ĥt−1−i ).

Let hi ∈ H t
i \H∗0i and h−i ∈ H t

−i\(H∗0−i∪{h∗−i}). We have that limj Bj > 0 because

hi ∈ Hi\H∗0i . Hence, if ht−1−i 6= h∗,t−1−i , then ht−1−i 6∈ H∗0−i and limj(j
j−1−tµj(h−i|hi)) = 0

since limj(j
j−1−(t−1)µj(ht−1−i |ht−1i )) = 0.

If, instead, ht−1−i = h∗−i, note that h∗,t−1−i · (r∗−i, C, c) = h∗−i, h
∗,t−1
−i · (r∗−i, C, d) ∈ H∗0−i

and that h∗,t−1−i · (1(c,d), D, y−i) ∈ H∗0−i for each y−i ∈ Y−i. Thus, in this case,

(rt−i, s
t
−i, y

t
−i) 6∈ {(r∗−i, C, c), (r∗−i, C, d), (1(c,d), D, c), (1(c,d), D, d)}

and the numerator of (jj−1−tµj(h−i|hi)) is

jj−1−tµj(h∗,t−1−i |ht−1i )αi(r
t,st−i

i , r
t,sti
−i )[yt]j−j

and, hence, limj(j
j−1−tµj(h−i|hi)) = 0.

Case hi ∈ H∗0i \HD0
i : In this case, µ(h∗−i|hi) = 0 since hi ∈ H∗0i and supp(µ(·|hi)) ⊆

HD
−i ⊆ H∗0−i exactly as above.

For later use, we will show by induction on `(hi) that limj(j
j−1−`(hi)µj(h−i|hi)) = 0

for each h−i ∈ H−i\H∗0−i. Consider first hi with `(hi) = 1. Then αi(r
C
i , 1(c,si))[(yi, d)] >

0 and αi(r
C
i , 1(c,si))[(yi, c)] = 0 since, respectively, hi 6∈ HD0

i and hi ∈ H∗0i . In addition,

for each j, µj(h∗−i|hi) = 0 and∑
(r̂−i,ŝ−i,ŷ−i)∈H1

−i

αi(r
ŝ−i

i , r̂si−i)[(yi, ŷ−i)]σ
j
−i(r̂−i, ŝ−i)→ αi(r

C
i , 1(c,si))[(yi, d)].

Thus, supp(µ(·|hi)) = {(r∗−i, C, d)} ⊆ H∗0−i. We have that {(1(c,d), D, c), (1(c,d), D, d)} ⊆

H∗0−i since α−i(1(c,d), 1(c,d))[(y−i, c)] = 0 by property 1. Hence, for each h−i ∈ H−i\H∗0−i,

lim
j

(jj−2µj(h−i|hi)) =
jj−2αi(r

s−i

i , rsi−i)[y]j−j∑
(r̂−i,ŝ−i,ŷ−i)∈H1

−i
αi(r

ŝ−i

i , r̂si−i)[(yi, ŷ−i)]σ
j
−i(r̂−i, ŝ−i)

→ 0.

Let t > 1 and assume that we have established that, for each k = 1, . . . , t− 1 and

hi ∈ Hk
i ∩ (H∗0i \HD0

i ), limj(j
j−1−kµj(h−i|hi)) = 0 for each h−i ∈ Hk

−i \H∗0−i.
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Let hi ∈ H t
i∩(H∗0i \HD0

i ). We have that limj Bj > 0 because hi ∈ Hi\HD0
i . Hence,

for each h−i ∈ H t
−i\H∗0−i, limj(j

j−1−tµj(h−i|hi)) = 0 since limj(j
j−1−(t−1)µj(ht−1−i |ht−1i )) =

0.

Case hi ∈ H∗0i ∩HD0
i : We will show by induction on `(hi) that µ(h−i|hi) = 0 for

each h−i ∈ H−i \ H∗0−i. Consider first the case where hi ∈ Hi has `(hi) = 1. Since

hi ∈ H∗0i ∩HD0
i , we have that αi(r

C
i , 1(c,si))[(yi, d)] = αi(r

C
i , 1(c,si))[(yi, c)] = 0, which

implies that yi = d. In addition, for each j, µj(h∗−i|hi) = 0 and, for each h−i 6= h∗−i,

µj(h−i|hi) =
αi(r

D
i , 1(d,c))[(d, y−i)]∑

ŷ−i
αi(rDi , 1(d,c))[(d, ŷ−i)] + j−(j−1)

∑
(r̂−i,ŝ−i,ŷ−i):(r̂−i,ŝ−i)6=(1(c,d),D) αi(r

ŝ−i

i , r̂si−i)[(d, ŷ−i)]

if (r−i, s−i) = (1(c,d), D) and

µj(h−i|hi) =
αi(r

s−i

i , rsi−i)[(d, y−i)]j
−(j−1)∑

ŷ−i
αi(rDi , 1(d,c))[(d, ŷ−i)] + j−(j−1)

∑
(r̂−i,ŝ−i,ŷ−i):(r̂−i,ŝ−i)6=(1(c,d),D) αi(r

ŝ−i

i , r̂si−i)[(d, ŷ−i)]

otherwise. It then follows that (1(c,d), D, c) ∈ supp(µ(·|hi)) by property 2 and that

supp(µ(·|hi)) ⊆ {(1(c,d), D, c), (1(c,d), D, d)}. For each h−i ∈ {(1(c,d), D, c), (1(c,d), D, d)},

we have that h−i ∈ H∗0−i since α−i(1(c,d), 1(c,d))[(y−i, c)] = 0 by property 1. Hence, if

`(hi) = 1, then supp(µ(·|hi)) ⊆ H∗0−i. Furthermore, for each h−i 6∈ supp(µ(·|hi)),

limj(j
j−2µj(h−i|hi)) = 0; since H−i \H∗0−i ⊆ H−i \ supp(µ(·|hi)), then

lim
j

(jj−2µj(h−i|hi)) = 0 for each h−i ∈ H−i \H∗0−i.

Let t > 1 and assume that we have established that, for each k = 1, . . . , t− 1 and

hi ∈ Hk
i ∩ H∗0i ∩ HD0

i , supp(µ(·|hi)) ⊆ H∗0−i and limj(j
j−1−kµj(h−i|hi)) = 0 for each

h−i ∈ Hk
−i \H∗0−i.

Let hi ∈ H t
i ∩ H∗0i ∩ HD0

i and h−i ∈ H−i \ H∗0−i. Then ht−1−i ∈ H−i \ H∗0−i as well.

We will show that limj(j
j−1−tµj(h−i|hi)) = 0 for each h−i ∈ H−i \H∗0−i.

Consider first the case where h−i = h∗−i. In this case, jj−1−tµj(h−i|hi) = 0 for

each j ∈ N since hi ∈ H∗0i and the result follows.

Due to the above, we may assume that h−i 6= h∗−i. We consider two cases.

Case (i): ht−1i ∈ H∗0i ∩HD0
i or ht−1i ∈ H∗0i ∩ (Hi \HD0

i ).

Let ĥt−1−i ∈ supp(µ(·|ht−1i )) ⊆ H∗0−i; since σ−i(1(c,d), D|ĥt−1−i ) = 1, it follows that

limj Bj > 0 when αi(r
t,D
i , 1(d,c))[(y

t
i , ŷ−i)] > 0 for some ŷ−i ∈ Y−i; in particular,
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limj Bj > 0 when yti = d by property 2. In this case, limj(j
j−1−tµj(h−i|hi)) = 0 since

limj(j
j−1−(t−1)µj(ht−1−i |ht−1i )) = 0.

If yti = c and αi(r
t,D
i , 1(d,c))[(c, ŷ−i)] = 0 for all ŷ−i ∈ Y−i, then

lim
j

(jBj) = lim
j

∑
ĥ−i∈Ht−1

−i ∩H∗0−i

µj(ĥt−1−i |ht−1i )×

×

 1

jj−1

∑
(r̂t−i,ŝ

t
−i,ŷ

t
−i):(r̂

t
−i,ŝ

t
−i)6=(1(d,c),D)

αi(r
t,ŝt−i

i , r̂
t,sti
−i )[(c, ŷt−i)] +

∑
ŷt−i

αi(r
t,D
i , 1(c,d))[(c, ŷ

t
−i)]


which is strictly positive since αi(r

t,D
i , 1(c,d))[(c, d)] > 0 by property 2. Since

lim
j

(
jj−1−(t−1)µj(ht−1−i |ht−1i )αi(r

t,st−i

i , r
t,sti
−i )[yt]σj−i(r

t
−i, s

t
−i|ht−1−i )

)
= 0,

it follows that limj(j
j−1−tµj(h−i|hi)) = 0 for each h−i ∈ H−i \H∗0−i.

Case (ii): ht−1i ∈ Hi \H∗0i .

In this case, we have αi(r
t,C
i , 1(c,sti)

)[(yti , c)] = 0 since hi ∈ H∗0i and αi(r
t,C
i , 1(c,sti)

)[(yti , d)] =

0 since hi ∈ HD0
i . Thus, yti = d and the argument in case (i) can be applied to conclude

that limj Bj > 0 provided that there is ĥt−1−i ∈ supp(µ(·|ht−1i )) ∩H∗0−i. Then if ht−1−i 6=

h∗,t−1−i , we have limj(j
j−1−(t−1)µj(ht−1−i |ht−1i )) = 0 and, hence, limj(j

j−1−tµj(h−i|hi)) =

0. If ht−1−i = h∗,t−1−i , then since h−i 6∈ H∗0−i ∪ {h
∗,t
−i}, the numerator of µj(h−i|hi) is less

than j−j. Thus, limj(j
j−1−tµj(h−i|hi)) = 0.

Hence, we are left with the case where supp(µ(·|ht−1i )) = {h∗−i}. In this case,

lim
j

(jBj) = lim
j
µj(h∗,t−1−i |ht−1i )×

×

 1

jj−1

∑
(r̂t−i,ŝ

t
−i,ŷ

t
−i):(r̂

t
−i,ŝ

t
−i)6=(1(c,d),D)

αi(r
t,ŝt−i

i , r̂
t,sti
−i )[(c, ŷt−i)] +

∑
ŷt−i

αi(r
t,D
i , 1(d,c))[(d, ŷ

t
−i)]


which is strictly positive since αi(r

t,D
i , 1(d,c))[(d, c)] > 0 by property 2. Since

lim
j

(
jj−1−(t−1)µj(ht−1−i |ht−1i )αi(r

t,st−i

i , r
t,sti
−i )[yt]σj−i(r

t
−i, s

t
−i|ht−1−i )

)
= 0,

it follows that limj(j
j−1−tµj(h−i|hi)) = 0 for each h−i ∈ H−i \H∗0−i.
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A.2 When the aggregation function is a mixed extension

We show that if α is a mixed extension satisfying (a)–(c), then α is strongly responsive.

As noted already, if α satisfies (a) and (b), then α is responsive. Thus, it suffices to

establish properties 3 and 4.

Regarding property 3: Note that

αi,Y−i
(1y, 1(c,d))[c] =



0 if y = (c, d),

0 if y = (d, d),

αi(1(c,c), 1(c,d))[c, c] if y = (c, c),

αi(1(d,c), 1(c,d))[d, c] if y = (d, c)

by property (a). Hence, it follows from property (c) that

1(c,c) ∈ arg max
y
αi,Y−i

(1y, 1(c,d))[c].

Thus,

αi,Y−i(r, 1(c,d))[c] =
∑
y

r(y)
(
αi(1y, 1(c,d))[(c, c)] + αi(1y, 1(c,d))[(d, c)]

)
≤
∑
y

r(y)
(
αi(1(c,c), 1(c,d))[(c, c)] + αi(1(c,c), 1(c,d))[(d, c)]

)
= αi,Y−i(1(c,c), 1(c,d))[c].

Regarding property 4: Note that αi(1y, 1(c,d))[(c, c)] = 0 for each y 6= (c, c)

by property (a) and that, then, the denominator of
αi(r,1(c,d))[(c,c)]

αi(r,1(c,d))[(c,c)]+αi(r,1(c,d))[(c,d)]
is

r(c, c)αi(1(c,c), 1(c,d))[(c, c)] +
∑

y r(y)αi(1y, 1(c,d))[(c, d)], which is strictly positive by

property (b). Let r ∈ ∆(Y ) and note that the conclusion is then obvious when

r(c, c) = 0. If r(c, c) > 0, then

αi(r, 1(c,d))[(c, c)]

αi(r, 1(c,d))[(c, c)] + αi(r, 1(c,d))[(c, d)]

=
r(c, c)αi(1(c,c), 1(c,d))[(c, c)]

r(c, c)αi(1(c,c), 1(c,d))[(c, c)] +
∑

y r(y)αi(1y, 1(c,d))[(c, d)]

≤
r(c, c)αi(1(c,c), 1(c,d))[(c, c)]

r(c, c)αi(1(c,c), 1(c,d))[(c, c)] + r(c, c)αi(1(c,c), 1(c,d))[(c, d)]

=
αi(1(c,c), 1(c,d))[(c, c)]

αi(1(c,c), 1(c,d))[(c, c)] + αi(1(c,c), 1(c,d))[(c, d)]
.
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