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Abstract

We use the framework of large many-to-one matching markets with occu-

pational choice introduced in Carmona and Laohakunakorn (2024) to formally

compare the knowledge-based theories of Rosen (1982) and Garicano and Rossi-

Hansberg (2004). We show that these theories differ only in three elements:

the factor share of labor in the goods’ production function, the payment to

self-employed individuals and the number of workers each manager can hire.

These differences imply starkly different properties of the stable matchings of

the two theories. We decompose these differences by characterizing the stable

matchings of a sequence of markets that allows us to move from Rosen’s (1982)

market to Garicano and Rossi-Hansberg’s (2004) market by changing only one

element at each step. This shows that the difference in the number of workers

each manager can hire accounts for the qualitative difference in the properties

of the stable matchings of the two theories.
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1 Introduction

Understanding several important economic issues, such as the wage and firm size

distributions and their evolution, requires the study of the internal organization

of firms in a market setting. This has been convincingly argued in Lucas (1978),

Rosen (1982), Garicano and Rossi-Hansberg (2004) and Garicano and Rossi-Hansberg

(2006), among others, which provide different ways of incorporating organization in

competitive models.1

The relationship between these models can be better understood by placing them

in a unifying framework. In Carmona and Laohakunakorn (2024), we introduce

a framework of large many-to-one matching markets with occupational choice and

show that the above models are particular cases of our general framework. We use

this framework in this paper to show that Rosen’s (1982) and Garicano and Rossi-

Hansberg’s (2004) knowledge-based theories are remarkably similar, that they differ

essentially in one dimension – the limits they impose on firm size – and this is, there-

fore, the reason why their conclusions differ.

Rosen (1982) and Garicano and Rossi-Hansberg (2004) have a similar motivation

and purpose, namely to study the matching and occupational choice of individuals in

a competitive market in which organization shapes the relationship between workers

and managers. We focus on these two models because each is representative of a

class of models that have been widely used in economics.2 Their settings appear to

differ in several details but, by placing them in the unifying framework of Carmona

and Laohakunakorn (2024), we highlight the essential elements of each model which

are similar in many respects. Nevertheless, the remaining differences matter and

1See Garicano and Rossi-Hansberg (2015) for a survey and endorsement of this literature.
2Rosen (1982) features a neoclassical production function which has been widely used in macroe-

conomics to explain the firm size distribution, whereas variants of Garicano and Rossi-Hansberg

(2004) have been used to successfully explain the distributional effects of improvements in infor-

mation and communication technology (Garicano and Rossi-Hansberg (2006)), offshoring (Antràs,

Garicano, and Rossi-Hansberg (2006)) and optimal contracting arrangements in knowledge-intensive

industries (Fuchs, Garicano, and Rayo (2015)).
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this is clearly seen from the differences in their conclusions: in the specific setting

considered in this paper, Rosen (1982) implies a constant wage for the workers and

an indeterminate matching between managers and workers; in contrast, in Garicano

and Rossi-Hansberg (2004), the wage is strictly increasing and matching is positive

assortative. These properties make the latter a better fit to real-world data and a

better theory to explain e.g. the shadow that superstar managers cast on workers

discussed in Garicano and Rossi-Hansberg (2015).

Our contribution is a clear understanding of the economic mechanism that drives

the above differences and, thus, of which economic factors account for the empirical

plausibility of Garicano and Rossi-Hansberg’s (2004) model and its successors. In the

stripped-down description that is the starting point of our exercise, the latter is a

setting where the production function of goods is such that total factor productivity

is increasing in the manager’s skill, as in Rosen (1982), and the factor share of labor

is one. We extend the conclusions of Garicano and Rossi-Hansberg (2004) to the

case, allowed in Rosen (1982), where the factor share of labor is close to but less than

one; hence, the two settings are similar as far as the production function of goods

is concerned. The main difference, i.e. the one which is responsible for the distinct

conclusions, is that managers are unrestricted in the number of workers they can hire

in Rosen (1982), whereas they can only hire a bounded number which is increasing

in the workers’ skill in Garicano and Rossi-Hansberg (2004). These limits to firm

size are due to the time cost of communication between different members of a firm

and thus, more broadly, due to what Becker and Murphy (1992) term coordination

costs.3 Our results demonstrate that coordination costs not only shape the pattern

of specialization (as Becker and Murphy (1992) emphasized) but also, through their

effect on the limits to firm size, the matching of individuals skills and wages in a more

realistic way as compared to when they are absent.

3As they put it: “A variable of great importance is the cost of combining specialized workers.

Modern work on principal-agent conflicts, free-riding, and the difficulties of communication implies

that the cost of coordinating a group of complementary specialized workers grows as the number of

specialists increases.”
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Highlighting the importance of having a limit on firm size that is increasing in the

workers’ skill is important for further development and testing of knowledge-based

theories. Considering coordination costs broadly as determinants to such limit can

therefore widen the applicability of the main insights in Garicano and Rossi-Hansberg

(2004) by freeing them from the specific mechanism they emphasized and by allowing

for more flexible functional forms for the resulting bound.

Similar considerations apply more generally. As we show in this paper, the

knowledge-based theories of Rosen (1982) and Garicano and Rossi-Hansberg (2004)

differ in three aspects: The number of workers a manager can hire (which we argue

is the main one accounting for their distinct conclusions), the factor share of labor

in the production function of goods and the payment of self-employed individuals.

Thus, we obtain a unifying theory by considering general functional forms for all

these elements which may be useful to calibrate the resulting model and to use it to

match real-world data.4

Our main results are obtained by comparing the stable matchings of several mar-

kets. The sequence of markets we consider allows us to move from Rosen’s (1982)

setting to that of Garicano and Rossi-Hansberg (2004) by changing only one element

at each step. Thus, we also consider a market that differs from the former only in

the number of workers a manager can hire and a market that differs from the latter

only in the self-employed payment.5 These two additional markets then differ from

one another only by the factor share of labor in the production function and, as we

show, have qualitatively similar outcomes to Garicano and Rossi-Hansberg (2004).

Thus, this decomposition reveals that the difference in the number of workers each

manager can hire accounts for the qualitative difference in the properties of the sta-

ble matchings of the knowledge-based theories of Rosen (1982) and Garicano and

Rossi-Hansberg (2004).

To reach the above conclusion, we establish several technical results, stated at

a broad level of generality, that provide a toolkit for analyzing stable matchings in

4See Gabaix and Landier (2008) for the calibration of a related model.
5The second of these two markets is then the one in Antràs, Garicano, and Rossi-Hansberg (2006).
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general knowledge economies. Stable matchings are formalized as measures over skill

levels (describing the skill or knowledge of a manager or self-employed individual)

and workforces (describing the number of workers hired, their skill and wage). When

the pairs of skill levels and workforces lie on a compact metric space, then stable

matchings are measures on a compact metric space and, thus, lie on a space which

is convenient for establishing existence results. We established such an existence

result in Carmona and Laohakunakorn (2024); here we show the existence of stable

matchings in the knowledge economies we consider by building on it to deal with the

failure of some compactness assumptions.

To characterize stable matchings, we use the fact that wages are transfers from

managers to workers. This means that our setting is one of matching with transfer-

able utility but, unlike in e.g. Chiappori (2017), there is no a priori given sets of

individuals to match since each individual can choose his own occupation. Neverthe-

less, we show that every stable matching defines a stable assignment, in an analogous

way to Chiappori (2017, Section 2.1) but which, in our setting, is defined by a mea-

sure over pairs of skill levels (z, z′), indicating roughly how many managers with skill

z are matched with workers of skill z′, and a continuous function of skill levels, in-

dicating the payment of each individual with a given skill. This then allows us to

establish that the assignment solves an optimal transport problem which differs from

the one in Chiappori (2017, Theorem 1, p. 45) in its constraint; due to occupational

choice, the marginal distributions of the assignment are not fixed as in the optimal

transport problem of Chiappori (2017, Theorem 1, p. 45) but rather the requirement

that an assignment needs to satisfy in our setting is that the sum of the measures

of managers, self-employed and workers must equal the given measure describing the

distributions of skills in the population. We then build on a result by Beiglböck and

Griessler (2019) to establish a condition that the support of any solution to our opti-

mal transport problem must satisfy and which greatly facilitates the characterization

of such solutions.

We use the above tools to characterize the stable matchings in the settings of Gar-

icano and Rossi-Hansberg (2004) and Antràs, Garicano, and Rossi-Hansberg (2006).
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We show that stable matchings in these two settings, which are defined as measures

over skill levels and workforces, have a simpler description. Indeed, they are repre-

sented by two skill levels, z1 and z2 with z1 ≤ z2, and two functions c and ϕ such that

(i) workers are those with skills no greater than z1, (ii) managers are those with skill

no lower than z2, (iii) self-employed (if any) are those with skill between z1 and z2,

(iv) ϕ is a (strictly increasing and differentiable) assignment function with ϕ(z) being

the skill of workers hired by each manager of skill z and (v) c is a (strictly increas-

ing and differentiable) wage function with c(z′) being the wage of workers with skill

z′. These properties are the ones used by Garicano and Rossi-Hansberg (2004) and

Antràs, Garicano, and Rossi-Hansberg (2006) to define competitive equilibrium in

their settings and, therefore, these results provide a sense in which they are without

loss of generality, i.e. their equilibrium notion corresponds exactly to stable match-

ings and this provides a justification for using (i)–(v) as the defining properties of

the solution concept in their settings. Our approach and tools thus dispense with the

need to make such simplifying assumptions from the outset since these assumptions

can be derived from the definition of stable matching with rigorous and transparent

arguments.6

There is also a conceptual advantage of our approach, namely that a single parsi-

monious solution concept is applied broadly to a variety of models. Settings featuring

matching of a large number of individuals and occupational choice, such as those

6To illustrate this point, consider for example the argument in Antràs, Garicano, and Rossi-

Hansberg (2006) to show that ϕ is increasing. It relies on the implicit function theorem and on its

derivative being strictly positive, which then requires its domain to be an interval, i.e. it requires

assuming that the set of skill levels of managers is an interval. As another example, consider the

argument in Fuchs, Garicano, and Rayo (2015) to show that workers have lower skills than managers.

It considers an optimal transport problem and consists in showing that if an assignment γ does not

have this property, then there is another one γ′ which increases the objective function. But γ′ is not

defined and, in fact, it would be difficult to define; moreover, in the argument there is a transport

of equal mass of workers to managers and vice-versa, which would be appropriate in the optimal

transport in Chiappori (2017, Theorem 1, p. 45) but not in the one describing the allocation of people

in their setting since production requires more workers than managers. Both these difficulties can

be dealt with by our result on the support of the solutions to our optimal transport problem.
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in Garicano and Rossi-Hansberg (2004) and Antràs, Garicano, and Rossi-Hansberg

(2006), are technically challenging and the standard approach is to define an intu-

itive notion of competitive equilibrium that is tailor-made to each such setting.7 This

makes the comparison of different models difficult since some differences in their con-

clusions can come from unintended differences in the solution concept. This problem

can be avoided by showing how the setting fits into classical general equilibrium the-

ory (e.g. into the framework of Debreu’s (1959) Theory of Value or some more general

general equilibrium framework allowing for e.g. an infinite-dimensional commodity

space) and then apply the classical notion of competitive equilibrium. This exercise

has been carried out in settings unrelated to the knowledge economies we consider by

e.g. Prescott and Townsend (1984) and Cole and Prescott (1997) but is not a straight-

forward one. A simpler way, as we advocated in Carmona and Laohakunakorn (2024)

and carried out in this paper, is to represent knowledge economies in the general

framework of large many-to-one matching markets with occupational choice and then

systematically use stable matching as a solution concept. We view this approach and

the development of the above tools as important steps to use knowledge economies,

along the lines of those in Rosen (1982) and Garicano and Rossi-Hansberg (2004), to

address important economic problems, such as the evolution of the wage and firm size

distributions and others that require the study of the internal organization of firms

in a market setting.

The paper is organized as follows. In Section 2, we describe Garicano and Rossi-

Hansberg’s (2004) setting, represent it as a large many-to-one matching market with

occupational choice and recall the definition of stable matchings. In Section 3 we

develop our tools and use them to establish existence and to characterize the stable

matchings in the setting of Garicano and Rossi-Hansberg (2004).8 We also obtain

results for the analysis of the differential equations that are part of this characteriza-

7Ide and Talamàs (2025) provide a recent example of this approach. See also Amaral and Rivera-

Padilla (2024) and Ritto (2024) among others.
8As a by-product of this analysis, we show that there is no change to the stable matchings when

workers are allowed to be more knowledgeable than managers and when production is allowed, in

such case, to depend only on the workers’ knowledge.
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tion and use them to show that there is a unique stable matching. The comparison

between the stable matchings in the settings of Rosen (1982) and Garicano and Rossi-

Hansberg (2004) is done in Section 4. Some concluding remarks are in Section 5 and

the proofs of our results are in the (online) Appendix and in the supplementary ma-

terial to this paper.9

2 Model

In this section we describe the knowledge economy of Garicano and Rossi-Hansberg

(2004), represent it as a large many-to-one matching market with occupational choice

and recall the definition of stable matchings for such markets.

2.1 Knowledge economies

The setting we consider is that of Garicano and Rossi-Hansberg (2004) apart from

some slight change of notation. There is a large number of individuals characterized

by their knowledge, with Z = [0, z̄] denoting the set of knowledge levels and where

z̄ ∈ R++. The knowledge distribution is denoted by ν and is such that it has a

continuously differentiable and strictly positive density θ. Then ν is atomless and

supp(ν) = Z. Individuals can be workers, managers or self-employed.

A firm consists of one manager and several workers of the same type. Production

happens when a worker solves a problem with which he is faced. Problems are drawn

according to a cumulative distribution function F on R+ with a continuous and

decreasing density f . We allow for the case where F (z̄) < 1 as well as F (z̄) = 1. Each

worker is allowed to ask the manager for the solution of the problem he has drawn

if he cannot solve it himself. Knowledge is cumulative: If someone has knowledge

z ∈ Z, then he can solve all problems in [0, z]. Thus, a worker with knowledge z asks

for help with probability 1−F (z). Asking for help incurs a communication cost: The

manager incurs a cost of 0 < h < 1 units of time to attempt solving the problem

regardless of whether or not he succeeds. Individuals have one unit of time, which

9The latter is available at https://sites.google.com/site/gmbbcarmona/home/papers.
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will be entirely spent working in the case of workers and on helping workers in the

case of managers. Workers draw one problem per unit of time spent in production.

Thus, a firm with a manager with knowledge z and workers with knowledge z′ can

have a measure n of workers provided that

nh(1− F (z′)) = 1,

i.e. such that the manager exhausts his time helping the workers. Problems in

[0,max{z, z′}] get to be solved, either by the workers or by the manager, and out-

put is 1 if the problem is solved and 0 otherwise. Expected production is then

F (max{z, z′})n and the managers’ rent is (F (max{z, z′})− c)n, where c is the wage

paid to the workers.

A self-employed individual with knowledge z solves the problems that he can and,

thus, produces F (z). Let Uz(s) denote the production of a self-employed individual

and set Uz(s) = F (z) for each z ∈ Z.10

2.2 Matching with occupational choice

We represent this setting in the general framework of markets with occupational choice

of Carmona and Laohakunakorn (2024) and use its notion of a stable matching as our

solution concept. A matching market with occupational choice (a market, henceforth)

is E = (Z, ν, C,C, X, (≻z)z∈Z), where Z is the set of individual types, ν is the type

distribution, C is the set of contracts, C is the contract correspondence, X is the set

of possible matches of managers and ≻z describes the preferences of an individual of

type z, for each z ∈ Z.

The representation of Garicano and Rossi-Hansberg’s (2004) setting described

above as a market is as follows. First, let Z and ν be as in Section 2.1. Second, we

let contracts be wages and set C = R+. As already mentioned, an individual can

choose to be a manager, a worker or be self-employed, thus, the set of occupations is

A = {w, s,m}. A dummy type ∅ ̸∈ Z is used to represent self-employed individuals,

10This seemingly redundant notation will be helpful in Section 4 since there we will consider the

case where Uz(s) = 0 for each z ∈ Z.

9



and we let Z∅ = Z ∪ {∅}, with the assumption that ∅ is an isolated point in Z∅. The

contract correspondence C maps Z × Z∅ into C with C(z, z′) describing the set of

contracts that are feasible for a manager of type z and a worker of type z′.11 We

specify that C(z, z′) = C and C(z, ∅) = {0} for each z, z′ ∈ Z, i.e. any nonnegative

wage is feasible for a manager and a worker and we set a wage of zero for a self-

employed individual (as they receive a rent, not a wage).

We incorporate the time constraint of managers in the set X of feasible matches

for managers and let

X = {n1(z,c) : (z, c) ∈ Z × C and n ∈ R+ such that nh(1− F (z)) = 1}

since managers can hire several workers all of the same type such that his time

constraint is satisfied.12 Let

X∅ = X ∪ {1(∅,c) : c ∈ C}

be the set of possible matches of managers and self-employed individuals and, for

each z ∈ [0, z̄), let

n(z) =
1

h(1− F (z))
;

if F (z̄) < 1, then let also n(z̄) = 1
h(1−F (z̄))

.

Preferences are defined by specifying payoff functions as follows. A worker’s pref-

erences are over managers’ types and contracts, thus, over the set Xw = {1(z,c) :

(z, c) ∈ Z × C} and are represented by a utility function (z, 1(z′,c)) 7→ Uz(w, 1(z′,c)).

11When z′ = ∅ the manager is, in fact, self-employed and C(z, ∅) describes the feasible contracts

for a self-employed individual of type z.
12A manager’s workforce and their wages are described as in Carmona and Laohakunakorn (2024)

by measures over Z×C, i.e. as measures over knowledge levels and wages. The measure that assigns

measure one to (z, c) ∈ Z × C is denoted by 1(z,c) and, hence, n1(z,c) assigns measure n to (z, c).

Such measures are elements of M(Z×C). In general, given a metric space T , M(T ) denotes the set

of finite, Borel measures on T endowed with the weak (narrow) topology (see Varadarajan (1958)

for details). If T ′ is another metric space and δ ∈ M(T × T ′), δT denotes the marginal of δ on T

and δT ′ denotes the marginal of δ on T ′. If q : T → T ′ is Borel-measurable and π ∈ M(T ), then

π ◦ q−1 ∈ M(T ′) is defined by setting, for each Borel subset B of T ′, π ◦ q−1(B) = π(q−1(B)).
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We specify that

Uz(w, 1(z′,c)) = c for each 1(z′,c) ∈ Xw

so that each worker’s preferences are represented by his wage.

A self-employed’s preferences are, in general, over contracts, thus, over the set

Xs = {1(∅,c) : c ∈ C} and are represented by a utility function (z, 1(∅,c)) 7→ Uz(s, 1(∅,c)).

We specify that

Uz(s, 1(∅,c)) = Uz(s) for each 1(∅,c) ∈ Xs

so that each self-employed’s preferences are represented by his expected output.

Finally, a manager’s preferences are over measures describing whom to hire and

the contracts offered, thus, over the set X and are represented by a utility function

(z, n1(z′,c)) 7→ Uz(m,n1(z′,c)). We specify that

Uz(m,n1(z′,c)) = (F (max{z, z′})− c)n for each n1(z′,c) ∈ X

so that each manager’s preferences are represented by his rent.

Overall, then, for each z ∈ Z, an individual of type z’s preferences are represented

by the utility function Uz which depends both on his occupational choice and whom

he matches with.

Let Egrh denote the market just defined. Let E∗
grh be exactly as Egrh but for

Uz(m,n1(z′,c)) = (F (z) − c)n for each z ∈ Z and n1(z′,c) ∈ X. The formalization in

Garicano and Rossi-Hansberg (2004) is actually E∗
grh, which is simpler than that of

Egrh, but the latter has the advantage of corresponding more closely to the description

in Garicano (2000). As we will show, both markets have the same stable matchings

and are, therefore, equivalent as far as stable matchings are concerned.

2.3 Stable matchings

A matching in Egrh is a measure µ on Z ×X∅ that describes the occupational choices

of individuals and the way they are matched. Thus, matches are of the form (z, δ)

and the occupational choices are described by the place in the match each individual

occupies: if δ ∈ X, then the first coordinate refers to a manager and the second to
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workers (as part of a firm) and, when δ ∈ X∅ \ X, the first coordinate refers to a

self-employed individual and the second describes the individual’s contract. Then µ

roughly specifies how many matches described by (z, δ) there are.

Formally, a matching is a Borel measure µ on Z ×X∅ such that

1. δ = 1(∅,0) for each (z, δ) ∈ supp(µ) ∩ (Z × (X∅ \X)), and

2. νM + νS + νW = ν

where, for each Borel subset B of Z, νM(B) = µ(B×X), νS(B) = µ(B×(X∅\X)) and

νW (B) =
∫
Z×X

δ(B × C)dµ(z, δ). Condition 1 requires that the contract is feasible

according to the contract correspondence and condition 2 requires that everyone in

the market is accounted for.13

Given a matching µ and z ∈ Z, individuals of type z can target certain types and

contracts (z∗, c) in the sense that someone of type z∗ is better off with someone of

type z at contract c than in his current match. The set of such (z∗, c) also depends

on the occupational choice a of z in the prospective match, and is denoted by T a
z (µ).

The targets for the prospective self-employed are the contracts that are feasible

when someone is unmatched: For each z ∈ Z, let T s
z (µ) = {(∅, 0)}.

The targets of prospective managers are as follows. For each z ∈ Z, let Tm
z (µ) be

the set of (z∗, c) ∈ Z × C such that there exists

(a) (z′, c′, δ′) ∈ Z×C×X such that (z′, δ′) ∈ supp(µ), (z∗, c′) ∈ supp(δ′) and c > c′,

or

(b) δ′ ∈ X∅ \X such that (z∗, δ′) ∈ supp(µ) and c > Uz∗(s), or

(c) δ′ ∈ X such that (z∗, δ′) ∈ supp(µ) and c > Uz∗(m, δ
′).

Anyone of type z can be a manager if he finds workers, here of type z∗, who prefer

to work for him than to be in their current occupation. Each of these workers can be

13Indeed, νa(B) is the measure of people with occupation a and with a type in B, hence νM (B)+

νS(B) + νW (B) = ν(B) for each Borel subset B of Z means that the measure of people with a type

in B and some occupation equals to the measure of people with a type in B, i.e. everyone has an

occupation.
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someone who was already a worker in µ as described in condition (a), or self-employed

as described by condition (b), or a manager as described by condition (c).14

Stability of a matching µ requires that, for each matched pair (z, δ), neither the

manager or self-employed individual of type z, nor the workers that are part of the

workforce δ (when δ ∈ X) can gain by being managers and hiring a workforce from

their targets Tm
z (µ). Furthermore, when δ ∈ X, neither the manager nor the workers

can gain by becoming self-employed.15

The above requirements are formalized as follows. Let SM(µ) be the set of (z, δ) ∈

Z ×X∅ such that, if δ ∈ X, then

(i) there does not exist δ′ ∈ X such that supp(δ′) ⊆ Tm
z (µ) and Uz(m, δ

′) >

Uz(m, δ),
16

(ii) for each (z′, c) ∈ supp(δ), there does not exist δ′ ∈ X such that supp(δ′) ⊆

Tm
z′ (µ) and Uz′(m, δ

′) > c,

and, if δ ∈ X∅ \X, then

(iii) there does not exist δ′ ∈ X such that supp(δ′) ⊆ Tm
z (µ) and Uz(m, δ

′) > Uz(s).

The set SM(µ) describes matches (z, δ) such that no one in it would like to change

their occupation-match pair by becoming a manager or changing his match while

remaining a manager.

Let IR(µ) be the set of (z, δ) ∈ Z ×X∅ such that, if δ ∈ X, then

(i) Uz(m, δ) ≥ Uz(s) and

14It follows by Theorem 1 in Carmona and Laohakunakorn (2024) that the targets Tw
z (µ) of

prospective workers are not needed for the definition of a stable matching.
15Individuals are also allowed to change their occupation to become workers and to change the

manager who employs them when they are already workers in µ. It follows again by Theorem 1 in

Carmona and Laohakunakorn (2024) that these changes can be ignored in the definition of a stable

matching.
16This condition is equivalent to the one in Carmona and Laohakunakorn (2024) which has

supp(δ′) ⊆ Tm
z (µ) ∪ supp(δ) instead of supp(δ′) ⊆ Tm

z (µ). Indeed, if δ, δ′ ∈ X are such that

supp(δ′) ⊆ supp(δ), then δ = δ′ = n(z′)1(z′,c′) for some (z′, c′) ∈ Z × C and Uz(m, δ′) > Uz(m, δ)

cannot hold.
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(ii) c ≥ Uz′(s) for each (z′, c) ∈ supp(δ).

The set IR(µ) describes matches (z, δ) such that no one in it would like to change

their occupation to become self-employed. A matching µ is stable if supp(µ) ⊆

SM(µ) ∩ IR(µ).

3 Existence, characterization and uniqueness

In this section we describe the general properties of stable matchings in Garicano and

Rossi-Hansberg’s (2004) framework. To do so, we develop several tools that are useful

for the analysis of stable matchings of knowledge economies more generally and, in

fact, we will use them to analyse the setting of Antràs, Garicano, and Rossi-Hansberg

(2006) in Section 4.

3.1 Existence

Our first main result establishes the existence of a stable matching in Egrh and E∗
grh.

It builds on the existence result in Carmona and Laohakunakorn (2024) but requires

additional arguments because some of the assumptions of that result are not satisfied

in the setting of the current paper.

The main difficulty regarding the existence of stable matchings concerns the set

X of feasible matches for managers since the equality nh(1 − F (z)) = 1 cannot

hold when z = z̄ and F (z̄) = 1. Nevertheless, any sequence of markets truncated

by prohibiting individuals of type close to z̄ to be workers satisfies the conditions

of the existence result in Carmona and Laohakunakorn (2024) and this allows us

to show that stable matchings exist. Intuitively, individuals of type close to z̄ will

not be workers in any stable matching but rather managers, hence the truncation is

eventually innocuous. This also addresses other potential issues, namely, the number

of workers hired by a manager are bounded once worker types are bounded away from

z̄. Furthermore, wages are also bounded, in fact, by one since otherwise managers

would have a negative payoff.

14



Theorem 1 A stable matching exists in Egrh and in E∗
grh.

3.2 Characterization

Our second main result fully characterizes stable matchings. For each matching µ of

a market, let

M = {z ∈ Z : (z, δ) ∈ supp(µ) for some δ ∈ X}, (1)

S = {z ∈ Z : (z, δ) ∈ supp(µ) for some δ ∈ X∅ \X} and (2)

W = {z ∈ Z : z ∈ supp(δZ) for some (ẑ, δ) ∈ supp(µ)} (3)

denote the set of manager, self-employed and workers types, respectively. Theorem 2

shows that Egrh and E∗
grh have the same set of stable matchings. It also establishes

that each stable matching is characterized by four elements (z1, z2, ϕ, c), where z1 ∈ Z

is the highest worker type, z2 ∈ Z is the lowest manager type, ϕ : M → W assigns

manager types to worker types (i.e. describes what is the type of workers that each

type of managers hires) and c : W → [0, 1] is the wage function, and describes their

properties.

Theorem 2 The following conditions are equivalent:

(a) µ is a stable matching of Egrh.

(b) µ is a stable matching of E∗
grh.

(c) There exists (z1, z2, ϕ, c) such that

1. 0 < z1 ≤ z2 < z̄,

2. W = [0, z1], M = [z2, z̄],

3. S ̸= ∅ if and only if z1 < z2, in which case S = [z1, z2],

4. ϕ :M → W is strictly increasing, differentiable, ϕ(z2) = 0, ϕ(z̄) = z1 and,

for each z ∈M ,

ϕ′(z) =
θ(z)

h(1− F (ϕ(z)))θ(ϕ(z))
,
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5. c : W → [0, 1] is strictly increasing, differentiable and, for each z ∈ W ,

c′(z) = f(z)
F (ϕ−1(z))− c(z)

1− F (z)
,

6. µ = ν ◦ σ−1 where σ : [z1, z̄] → Z × X∅ is defined by setting, for each

z ∈ [z1, z̄],

σ(z) =

(z, n(ϕ(z))1(ϕ(z),c(ϕ(z)))) if z ∈ [z2, z̄],

(z, 1(∅,0)) if z ∈ [z1, z2),

7. c(z1) = F (z1) and F (z2) = (F (z2)− c(0))n(0) if S ̸= ∅, and

8. c(z2) = (F (z2)− c(0))n(0) ≥ F (z2) if S = ∅.

We say that µ is represented by (z1, z2, ϕ, c) when condition (c) of Theorem 2

holds.

Theorem 2 shows that there is a strictly positive measure of workers and managers,

the lowest types (those in [0, z1]) are workers and the highest types (those in [z2, z̄])

are managers. There may or may not be self-employed types; if there are, then they

are in the middle of worker and manager types (i.e. are those in [z1, z2]).

The assignment function ϕ is strictly increasing and assigns the lowest manager

type (z2) to the lowest worker type (0) and the highest manager type (z̄) to the

highest worker type (z1). Thus, the matching is positive assortative. The assignment

function is also differentiable and satisfies an initial value problem that is equivalent

to feasibility, i.e. to the requirement that, for each Borel subset B of types, the

measure of types in B equals the measure of types in B that are either managers or

self-employed or workers.

The wage function is strictly increasing, thus more knowledgable workers are paid

more. It is also differentiable and satisfies an ordinary differentiable equation con-

sisting of the first order condition of a maximization problem that managers of type

ϕ−1(z) solve, namely the problem

max
z′∈W

F (ϕ−1(z))− c(z′)

h(1− F (z′))
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of finding their preferred type of worker of which z is the solution.

Each stable matching µ is then fully described by (z1, z2, ϕ, c), which means that

µ is the inverse measure of the type distribution ν with respect to σ and that σ is

fully described by (z1, z2, ϕ, c).

The definitions of M , S and W imply that each of these sets are closed and their

union is Z. Thus, they intersect. More precisely, when S = ∅, z1 = z2 belongs to

M ∩W and, therefore, type z2 is indifferent between being a worker and a manager,

which he weakly prefers to being self-employed: c(z2) = (F (z2)− c(0))n(0) ≥ F (z2).

When S ̸= ∅, then z1 belongs to W ∩S and z2 belongs to S∩M . Thus, c(z1) = F (z1)

and F (z2) = (F (z2)− c(0))n(0).

The proof of Theorem 2 is quite involved as it has to deal with several difficulties.

The following outline describes its key steps and highlights the generality of the

argument, thus providing a toolkit to analyze stable matchings in general knowledge

economies. Section 3.2.5 concerns the sufficiency part of Theorem 2, whereas Sections

3.2.1–3.2.4 are for its necessity part. Due to the equivalence of the stable matchings

of Egrh and E∗
grh, we focus on E

∗
grh which is the simpler of the two and, thus, let µ be

a fixed stable matching of E∗
grh for the latter sections.

3.2.1 High types are managers

The possibility that F (z̄) = 1 causes some technical difficulties, namely, it implies

that the set X of feasible matches for managers is not closed. This complicates some

arguments, as it was already the case regarding existence of stable matchings, and, as

in there, it is convenient to show that all types close to z̄ cannot be workers. Lemma

1 shows a stronger conclusion, namely that all types close to z̄ must be managers.

Lemma 1 There exists ξ > 0 such that [z̄ − ξ, z̄] ∩ (W ∪ S) = ∅.

The conclusion of Lemma 1 is a particular case of parts 1 and 2 of condition (c)

in Theorem 2 and, accordingly, it will be strengthened. Lemma 1 is a preliminary

result which is only needed when F (z̄) = 1 to make the set of feasible matches that

are actually used by managers be compact.

17



3.2.2 Equal treatment

In a match (z, n(z′)1(z′,c)) between a manager and workers, the wage c is a transfer

from the former to the latter. This then implies an equal treatment property, namely,

individuals of the same type must be equally well off. The reason is that, e.g., a type

z manager with a lower rent than another type z manager matched with n(z′)1(z′,c)

can hire type z′ workers at a slightly higher wage c+ ε, with ε > 0, to obtain a rent

virtually equal to that of the latter and, thus, higher than his own. But this is a

contradiction to the stability of the matching.

Focusing on managers, the above argument shows that there exists a function

u : M → R such that u(z) is the rent of a manager of type z for each z ∈ M .

An analogous argument shows that this function is continuous since, e.g., a type z

manager with a rent lower and bounded away from the rent of some close by manager

z̃ could attract the workers of the latter by paying slightly more and obtain a rent

virtually equal to u(z̃) which is higher than u(z). This would again contradict the

stability of the matching.

Lemma 2 There exists a continuous function u : Z → R such that

1. u(z) = Uz(m, δ) for each z ∈M and δ ∈ X such that (z, δ) ∈ supp(µ),

2. u(z) = Uz(s) for each z ∈ S,

3. u(z) = Uz(w, 1(ẑ,c)) for each z ∈ W and (ẑ, c) ∈ Z×C such that (ẑ, n(z)1(z,c)) ∈

supp(µ).

3.2.3 Stable assignments

The equal treatment property is essentially a consequence of the observation that the

wage is a transfer from managers to workers. This also brings the model into the

realm of matching with transferable utility as we next show.

Let Y = [0, z̄ − ξ], Y∅ = Y ∪ {∅}, F (∅) = 0 and n(∅) = 1. Define the surplus

function s : Z × Y∅ → R by setting, for each (z, z′) ∈ Z × Y∅,

s(z, z′) = F (z)n(z′).
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Note that s is just total production, is continuous and satisfies s(z, ∅) = F (z) for each

z ∈ Z. Stability in the transferable utility setting is typically defined using a measure

on the set of types to match, here Z × Y∅, the surplus function s and a function like

u in Lemma 2. The latter is required to be defined on Z∅, hence we set u(∅) = 0.

An assignment is γ ∈M(Z × Y∅) such that, for each Borel subset B of Z,

γ(B × Y∅) +

∫
Z×(B∩Y )

n(z′)dγ(z, z′) = ν(B). (4)

Note that γ(B × Y∅) is the measure of those who are managers or self-employed and

have a type in B and that
∫
Z×(B∩Y )

n(z′)dγ(z, z′) is the measure of those who are

workers and have a type in B; thus (4) is equivalent to the feasibility requirement

(condition 2) in the definition of a matching.

Let γ be an assignment and v ∈ C(Z∅).
17 Then (γ, v) is stable if v(z)+n(z′)v(z′) =

s(z, z′) for each (z, z′) ∈ supp(γ) and v(z) + n(z′)v(z′) ≥ s(z, z′) for each (z, z′) ∈

Z × Y∅. Moreover, γ is stable if there exists v ∈ C(Z∅) such that (γ, v) is stable.

The following lemma shows that any stable matching yields a stable assignment

via a simple transformation and the function u. The transformation uses the fact that

a match is either between a manager and workers, hence of the form (z, n(z′)1(z′,c(z′))),

or between a self-employed individual and the null type, hence of the form (z, 1(∅,0));

in both cases, it is fully described by a pair (z, z′) ∈ Z × Y∅.

Formally, let c : W → R be the restriction of u to W , X∗ =
{
n(z)1(z,c(z)) : z ∈ Y

}
and X∗

∅ = X∗ ∪ {1(∅,0)}. It follows by Lemma 1 and by the definition of a matching

that supp(µ) ⊆ Z×X∗
∅ . Let, for convenience, c(∅) = 0 and recall that n(∅) = 1; thus,

1(∅,0) = n(∅)1(∅,c(∅)) and, for each δ ∈ X∗
∅ , there is z

′ ∈ Y∅ such that δ = n(z′)1(z′,c(z′)).

Let g : Z ×X∗
∅ → Z × Y∅ be defined by setting, for each (z, δ) ∈ Z ×X∗

∅ ,

g(z, δ) = (z, z′)

where z′ ∈ Y∅ is such that δ = n(z′)1(z′,c(z′)). Then g is a homeomorphism between

supp(µ) and g(supp(µ)) ⊆ Z×Y∅ (see Lemma 19 in the appendix). More importantly,

µ ◦ g−1 is a measure on Z × Y∅ and it turns out that (µ ◦ g−1, u) is stable.

17Given a metric space T , C(T ) denotes the space of bounded and continuous real-valued functions

on T .
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Lemma 3 γ = µ ◦ g−1 is a stable assignment.

3.2.4 Surplus maximization

The conclusion that stable matchings transform into stable assignments allows us

to use the techniques that are standard in the analysis of matching problems with

transferable utility, namely those of optimal transport.

For each γ ∈M(Z×Y∅), recall from Footnote 12 that γZ ∈M(Z) is the marginal

of γ on Z, and that γY∅ ∈ M(Y∅) is the marginal of γ on Y∅. Let γY,n ∈ M(Z) be

defined by setting, for each Borel subset B of Z, γY,n(B) =
∫
B∩Y n(z

′)dγY∅(z
′). Define

Γ = {γ ∈M(Z×Y∅) : γZ +γY,n = ν}; the set Γ is simply the set of assignments since

the equation γZ + γY,n = ν is just a succinct way of writing the feasibility condition

(4).

An assignment γ is surplus maximizing if it solves

max
τ∈Γ

∫
Z×Y∅

sdτ.18 (5)

Lemma 4 shows that any stable assignment solves the optimal transport problem (5).

Lemma 4 If γ is a stable assignment, then γ is surplus maximizing.

One way of deriving the properties of stable matchings is by directly applying

the definition of stability. Lemma 4 gives us a alternative way to characterize who

matches with whom. This alternative approach is useful when solving (5) is easier

than analysing stable matchings directly and the following lemma is helpful in this

regard by providing a necessary condition for its solutions.

A set C ⊆ Z × Y∅ is s-monotone if
∫
Z×Y∅

sdζ ≥
∫
Z×Y∅

sdτ for each finite measure

ζ concentrated on finitely many points of C and for each finitely-supported measure

τ on Z × Y∅ such that τZ + τY,n = ζZ + ζY,n. In words, no finitely-supported measure

on C can be improved, in the sense of yielding a higher surplus, by transporting

18In the appendix we often use s(τ) to denote
∫
Z×Y∅

sdτ .
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mass in a feasible way. Lemma 5 shows that the support of any solution to (5) is

s-monotone.19

Lemma 5 If γ is surplus maximizing, then supp(γ) is s-monotone.

3.2.5 Uniqueness of the conditions in Theorem 2

The previous lemmas are useful tools to establish necessary conditions that stable

matchings need to satisfy. The conditions 1–8 in Theorem 2 are parsimonious in

the sense that there is a considerable distance between them and the conditions that

express individual rationality and that no one can increase his payoff by changing

either his occupation to become a manager or his match while remaining a manager.

Lemma 6 forms the core of the argument showing that conditions 1–8 in Theorem

2 are sufficient for stable matchings. It shows that there can only be one (z1, z2, ϕ, c)

satisfying these conditions. This then implies that if µ is represented by (z1, z2, ϕ, c)

and µ̂ is a stable matching whose existence is guaranteed by Theorem 1, then µ

must equal µ̂ since the latter is also represented by (z1, z2, ϕ, c); hence, µ is a stable

matching.

Lemma 6 If (z1, z2, ϕ, c) and (ẑ1, ẑ2, ϕ̂, ĉ) satisfy conditions 1–8 in Theorem 2, then

(z1, z2, ϕ, c) = (ẑ1, ẑ2, ϕ̂, ĉ).

The proof of Lemma 6 relies considerably on properties of solutions to initial value

problems.20

19Lemma 5 is analogous to Beiglböck and Griessler (2019, Theorem 1.4) and its proof follows that of

the latter. Beiglböck and Griessler (2019) consider the weaker notion of finitely minimal/c-monotone

sets which adds the requirement that τ(Z × Y∅) = ζ(Z × Y∅); their Theorem 4.1 also requires γ and

all elements of Γ to be probability measures. Lemma 5 dispenses with both requirements.
20Specifically, it relies on the following result for which we found no reference and which may be

widely useful: Let G : [a, b]× [â, b̂] → R be continuous and such that (z, x) 7→ ∂G(z,x)
∂x is continuous,

where a < b and â < b̂. Then consider two solutions to the ordinary differential equation x′ = G(z, x)

that are allowed to differ at the end point a; namely, let g : [a, b] → [â, b̂] be a solution to the initial

value problem x′ = G(z, x) and x(a) = g(a), and ĝ : [a, b] → [â, b̂] be a solution to the initial value

problem x′ = G(z, x) and x(a) = ĝ(a). If one of them, g say, is strictly increasing and the two

coincide at some point z0 ∈ [a, b], i.e. g(z0) = ĝ(z0), then must coincide everywhere, i.e. g = ĝ.

21



3.3 Uniqueness

Our third main result shows that there is a unique stable matching.

Theorem 3 There is a unique stable matching in Egrh and in E∗
grh.

Theorem 3 follows easily from Theorem 2 and Lemma 6 since, given two stable

matchings, they are represented by the same (z1, z2, ϕ, c) and, hence, are equal. It is

possible to provide a shorter proof of the theorem using measure theoretical methods

(e.g. via Ahmad, Kim, and McCann (2011, Lemma 3.1)) instead of Lemma 6; using

the latter has the advantage of showing easily that conditions 1–8 in Theorem 2 are

sufficient for stable matchings.

3.4 An example

We illustrate our main results using the example in Proposition 1 of Garicano and

Rossi-Hansberg (2004). In this example, z̄ = 1 and f = θ ≡ 1 (in particular, we then

have that F (z) = z for each z ∈ Z). Then the unique stable matching is represented

by (z1, z2, ϕ, c) such that

ϕ(z) = 1−
√

1− 2(z − z2)

h
for each z ∈ [z2, 1],

c(z) = c(0) + (z2 − c(0))z +
hz2

2
for each z ∈ [0, z1],

with

z1 = z2,

z2 = 1 +
1

h
−
√

1 +
1

h2
,

c(0) =
z2
(
1− h2+h

2
z2
)

1 + h(1− z2)

if 0 < h ≤ 3/4 and

z1 = 1−
√

1− 2(1− z2)

h
,

z2 =
2− h

h
−
√

3− 4h+ h2

h2
,

c(0) = (1− h)z2
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if 3/4 < h < 1.

It follows by Theorems 1 and 3 that there is a unique stable matching. By The-

orem 2, it is represented by (z1, z2, ϕ, c). Hence, it remains to show that the above

(z1, z2, ϕ, c) satisfies the conditions that Theorem 2 imposes on them, namely condi-

tions 1, 4, 5 plus 7 if z1 < z2 and 8 if z1 = z2. This is relatively straightforward and

the details are in Appendix A.7.

3.5 Convexity of earnings

The convexity of individual payments — or income or earnings — means, as Rosen

(1981) noted, that “small differences in talent become magnified in larger earnings

differences” and serves as an explanation “for differential skew between the distribu-

tions of income and talent.” Earnings in our setting are described by the function

u : Z → R in Lemma 2. However, the elements in its domain Z have no economic

meaning; instead, for each z ∈ Z, it is the fraction of problems F (z) that an individ-

ual with knowledge z can solve that has economic meaning. This suggests that F (z)

should be used as a measure of talent and, thus, that it is u ◦F−1 rather than u that

can be expected to be convex. Corollary 1 shows that u ◦ F−1 is indeed convex.

Corollary 1 The function u ◦ F−1 is convex on F (Z) and strictly convex both on

F (W ) and on F (M).

Antràs, Garicano, and Rossi-Hansberg (2006) have established the conclusion of

Corollary 1 when F is the cumulative distribution function of the uniform distribution,

in which case u◦F−1 = u. We establish it simply by examining the second derivative

of u ◦ F−1 but note that focusing on the uniform distribution case suffices. Indeed,

if Eu is obtained from E∗
grh by setting the set of types to be F (Z) with distribution

ν ◦F−1 and the distribution of problems to be uniform, then the stable matchings of

Eu are in a one-to-one relationship with those of E∗
grh.

21

21This result provides a justification for the claim in footnote 4 of Fuchs, Garicano, and Rayo

(2015). See the supplementary material to this paper for details and also for a proof of Corollary 1.
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4 Rosen meets Garicano and Rossi-Hansberg

Our formal comparison between Rosen (1982) and Garicano and Rossi-Hansberg

(2004) will reveal that their differences fall in three categories. The first concerns

the factor share of workers: This equals 1 − α ∈ (0, 1) under a Cobb-Douglas spec-

ification of the production function in Rosen (1982) and equals 1 in Garicano and

Rossi-Hansberg (2004). A second difference concerns the payoff of self-employed in-

dividuals: This is zero in Rosen (1982) and F (z) for a self-employed individual of

type z in Garicano and Rossi-Hansberg (2004). The third difference comes from the

number of workers each manager can hire: This number is n(z) = 1/h(1− F (z)) for

workers of type z in Garicano and Rossi-Hansberg (2004) and unbounded in Rosen

(1982).

These differences have a significant impact on the conclusions derived from these

two settings. Indeed, matching is (strictly) positive assortative and wages are strictly

increasing in the worker’s knowledge in Garicano and Rossi-Hansberg (2004) whereas

the matching is indeterminate and wages are constant in Rosen (1982).

We will show that these differences in conclusions obtained from the settings of

Rosen (1982) and Garicano and Rossi-Hansberg (2004) are due to the differences in

the number of workers each manager can hire. We define, for each α ∈ (0, 1), a market

Er,α which belongs to Rosen’s (1982) setting and differs from E∗
grh in the above three

elements. We then decompose the differences between Er,α and E∗
grh as follows. First,

we consider a market Es,α which differs from Er,α only in the number of workers

each manager can hire to see the effects of changes in the latter. Then we consider

a market Es which differs from Es,α only because the factor share of workers is 1 in

the former. This also means that Es differs from E∗
grh only due to the self-employed’s

payoff.22 Our results can then be described as showing that

Er,α ̸= Es,α → Es ≃ E∗
grh = Egrh. (6)

In this section we will elaborate on (6), which is meant as a simply mnemonic device.

22To put it differently, Es is the market considered in Antràs, Garicano, and Rossi-Hansberg

(2006).
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Its meaning is that the predictions of Er,α are considerably different from those of

Es,α when α is close to zero; in this case, the predictions of Es,α are close to those

of Es, which in turn are similar to those of E∗
grh and of Egrh (the predictions of E∗

grh

and Egrh are the same by Theorem 2). Hence, differences in either the factor share of

workers or the self-employment payoffs cannot account for the differences between the

predictions of Er,α and Egrh and, in fact, these are due to the difference in the number

of workers a manager can hire. As we have argued in the introduction, this difference

follow from the presence of coordination costs in Garicano and Rossi-Hansberg (2004)

and their absence in Rosen (1982).

The reason why the number of workers a manager can hire plays such an important

role is as follows. The specification of the production function that unifies the two

settings is that output is F (z)zαn1−α when a manager with knowledge z hires n

workers, where α ∈ (0, 1) in Rosen (1982) and α = 0 in Garicano and Rossi-Hansberg

(2004). Thus, when α ∈ (0, 1), the marginal productivity of labor and, hence, its

demand when each manager can hire an unbounded number of workers does not

depend on the worker’s knowledge. Workers are therefore undifferentiated from the

managers’ viewpoint and a single wage suffices, its role being only to determine the

relative attractiveness of the two occupations to make the total number of workers

be equal to the demand by managers. Furthermore, the matching is indeterminate

since each manager is indifferent between all types of workers. In contrast, when each

manager can only hire n(z′) workers with knowledge z′ and α is equal (or very close

to) zero, then the constraint binds. If wages were constant, then each manager would

only demand the most knowledgeable worker since z′ 7→ n(z′) is strictly increasing;

this would require a measure zero of workers to fulfill the entire demand for workers

which is impossible. Thus, wages must be strictly increasing. Furthermore, better

managers benefit more than worse managers from hiring more workers, hence this

makes matching positive assortative. In fact, these two properties go hand in hand:

the best manager hires the best worker and the wage is such that the best worker

is optimal for the best manager and not optimal for all the remaining managers.

Changing the payoff of self-employed individuals may change the set of self-employed
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individuals and its measure but it won’t change the properties of the allocation of

workers to managers; these will also not change by changing α from zero to close to

zero since what matters is whether or not the constraint on the number of workers a

manager can hire is binding.

We represent all the above knowledge economies as markets which, recall, are

described by a list (Z, ν, C,C, X, (≻z)z∈Z). The following elements are common to

all the markets we consider in this section and are (roughly) as in Section 2.1: Z =

[0, z̄], with F (z̄) < 1 to avoid technical issues, ν is the type distribution and has

a continuously differentiable and strictly positive density θ, C = R+ is the set of

possible wages, C(z, z′) = C and C(z, ∅) = {0}, preferences ≻z are represented by

utility functions Uz and workers’ utility equals their wage: Uz(w, 1(z′,c)) = c for each

z, z′ ∈ Z and c ∈ C. In this section we assume that

h ≤ 1

2F (z̄)
− 1 +

√
1 +

1

4F (z̄)2
. (7)

For example, if the most knowledgeable worker can solve 80% of the problems, i.e.

F (z̄) = 0.8, then (7) is satisfied if h ≤ 0.8. Furthermore, (7) is satisfied independently

of F (z̄) if h ≤ (
√
5− 1)/2, hence if h ≤ 0.61.

We define Er,α for each α ∈ (0, 1) by setting

X = {n1(z,c) : (z, c) ∈ Z × C and n ∈ R+},

Uz(s) = 0 for each z ∈ Z, and

Uz(m,n1(z′,c)) = F (z)zαn1−α − cn for each (z, z′, c, n) ∈ Z2 × C × R+.

The market Er,α is a particular case of Rosen’s (1982) setting when represented as a

Rosen market, i.e. as a large many-to-one matching market with occupational choice,

as shown in Carmona and Laohakunakorn (2024, Section 6.2).23

23We set C(z, ∅) = C for each z ∈ Z in Carmona and Laohakunakorn (2024, Section 6.2), which

differs from Section 2.2 where C(z, ∅) = {0}. This difference has no importance since supp(µ) ⊆

Z ×X in any stable matching µ of a Rosen market (see Carmona and Laohakunakorn (2024, Claim

11). The only assumption of Carmona and Laohakunakorn (2024) which is not satisfied here is

r(0) > 0, but as we show in the supplementary material to this paper, the assumption that r(0) > 0

can be dropped when the production function takes the form specified by Er,α.
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In Rosen (1982), the number of workers that a manager can hire is unbounded

and the self-employed payoff is zero. Thus, the differences in X and Uz(s) between

Er,α and E∗
grh are unavoidable. The market Er,α is useful to compare the settings

of Rosen (1982) and Garicano and Rossi-Hansberg (2004) because it reduces further

differences to a single parameter, which is the factor share of workers 1− α. Indeed,

when α = 0,

F (z)zαn1−α − cn = (F (z)− c)n

for each (z, c, n) ∈ Z × C × R+ and, hence, Eα,r differs from E∗
grh only due to the

differences in α, X and Uz(s).

These differences have a significant impact on the stable matchings of these mar-

kets as can be seen by comparing Theorem 2 to the following result that builds on

Theorem 3 in Carmona and Laohakunakorn (2024) to characterize the stable match-

ings of Er,α.

Theorem 4 A matching µ is stable in Er,α if and only if there exists γ ∈ M(Z2),

z1 ∈ (0, z̄) and w > 0 such that

1. µ = γ ◦ g̃−1, where, for each (z, z′) ∈ Z2,

g̃(z, z′) = (z, n(z, w)1(z′,w)), and

n(z, w) =

(
(1− α)F (z)

w

) 1
α

z,

2. γ(B × Z) +
∫
Z×B

n(z, w)dγ(z, z′) = ν(B) for each Borel B ⊆ Z,

3. W = [0, z1], M = [z1, z̄], and

4. F (z1)z
α
1 n(z1, w)

1−α − wn(z1, w) = w.

5. Furthermore, z1 and w are unique.

Theorem 4 shows that, in any stable matching of Er,α, workers, who are those

with a knowledge level in [0, z1], receive a wage w > 0 and that every manager with

knowledge z ∈ [z1, z̄] hires the same number n(z, w) of workers. The actual matching
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between workers and managers is indeterminate and can be done in any way such

that the feasibility condition (i.e. 2 in its statement) holds. The marginal type is z1

and is, therefore, indifferent between being a worker or a manager.24

Thus, in contrast to the case of E∗
grh, the stable matchings of Er,α are not unique,

the matching of managers and workers is indeterminate and, thus, need not be positive

assortative, and wages are constant. We show in what follows that the differences

in α and Uz(s) are unimportant to explain these differences in the properties of

stable matchings of Er,α and E∗
grh (and Egrh) and, thus, we trace these differences to

differences in X.

We decompose the differences in Er,α and E∗
grh by introducing markets Es,α, α ∈

(0, 1), and Es as follows. Define Es by setting

X = {n(z)1(z,c) : (z, c) ∈ Z × C},

Uz(s) = 0 for each z ∈ Z, and

Uz(m,n1(z′,c)) = (F (z)− c)n for each (z, z′, c, n) ∈ Z2 × C × R+.

Thus Es differs from E∗
grh only by the self-employed’s payoff Uz(s).

25 This change im-

plies that, unlike in E∗
grh, there are no self-employed individuals in the stable match-

ings of Es regardless of the parameters f , θ, h and z̄ but otherwise the properties

of the stable matchings are the same. The latter is a consequence of the following

characterization of the stable matchings of Es.

Theorem 5 The market Es has a unique stable matching and µ is a stable matching

of Es if and only if there exists (z1, ϕ, c) such that

1. 0 < z1 < z̄,

2. W = [0, z1], M = [z1, z̄],

24See the supplementary material to this paper for the case where both θ = f ≡ 1, in which closed

forms for z1 and w can be obtained.
25The use of the subscript s in Es emphasizes this difference. Note that the definition of stable

matchings in Section 2.3 was provided for a general function Uz(s) and, hence, applies to Es too.
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3. ϕ : M → W is strictly increasing, differentiable, ϕ(z1) = 0, ϕ(z̄) = z1 and, for

each z ∈M ,

ϕ′(z) =
θ(z)

h(1− F (ϕ(z)))θ(ϕ(z))
,

4. c : W → [0, 1] is strictly increasing, differentiable and, for each z ∈ W ,

c′(z) = f(z)
F (ϕ−1(z))− c(z)

1− F (z)
,

5. µ = ν ◦ σ−1 where σ : [z1, z̄] → Z ×X is defined by setting, for each z ∈ [z1, z̄],

σ(z) =
(
z, n(ϕ(z))1(ϕ(z),c(ϕ(z)))

)
, and

6. c(z1) = (F (z1)− c(0))n(0) > 0.

Theorems 2 and 5 imply that the stable matchings of E∗
grh and Es have the same

properties. In fact, when (f, θ, h, z̄) are such that the stable matching of E∗
grh has no

self-employed individuals, then E∗
grh and Es have the same stable matching.26 When

(f, θ, h, z̄) are such that the stable matching of E∗
grh has self-employed individuals, then

the stable matchings of E∗
grh and Es are not the same but have the same properties:

occupations are ordered in the same way, managers and workers are matched in a

strictly increasing i.e. positive assortative way, wages are strictly increasing and,

although with different initial conditions, the wage and assignment functions c and ϕ

satisfy the same differential equations. In the sense of this paragraph, the difference

in the self-employed payoffs between E∗
grh and Er,α — which is the only difference

between E∗
grh and Es — cannot explain the differences in their stable matchings.

We next argue that the difference in α cannot explain the differences in the stable

matchings of E∗
grh and Er,α. To this end, define Es,α by setting

X = {n(z)1(z,c) : (z, c) ∈ Z × C},

Uz(s) = 0 for each z ∈ Z, and

Uz(m,n1(z′,c)) = F (z)zαn1−α − cn for each (z, z′, c, n) ∈ Z2 × C × R+.

26Indeed, if µ is the stable matching of E∗
grh and S = ∅, then µ is a stable matching of Es since

the incentive to become self-employed is not greater in Es than in E∗
grh. The conclusion then follows

because Es has a unique stable matching.
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Thus Es,α differs from Es only on α.27 Theorem 6 below shows that the stable

matchings of Es,α are close to the stable matching of Es when α is close to zero. Let

Es,0 = Es and, for each α ∈ [0, 1), let Φ(α) be the set of stable matchings of Es,α.

Theorem 6 The correspondence Φ has nonempty values for each α ∈ [0, 1) and is

continuous at α = 0.

In the sense of Theorem 6, the difference in the production function i.e. in α

between E∗
grh and Er,α — which is the only difference between Es,α and Es — cannot

explain the differences in their stable matchings. Since the difference in the self-

employed payoffs between E∗
grh and Er,α also cannot explain the differences in their

stable matchings, these must be caused by the differences in the number of workers

a manager can hire i.e. by the differences in X. This can also be seen by comparing

Er,α and Es,α since they differ only in X.

5 Concluding remarks

In this paper we used the framework of large matching markets with occupational

choice in Carmona and Laohakunakorn (2024) to compare Rosen (1982) and Garicano

and Rossi-Hansberg (2004) in a detailed way. They differ in three ways — factor share

of labor, self-employed payoff and number of workers managers can hire — with the

latter accounting for their distinct conclusions. The difference in the number of

workers managers can hire can be understood in light of Becker and Murphy (1992)

as differences in coordination costs, specifically as differences in communication costs

between members of a firm, since coordination costs lead to bounds on the number of

workers managers can hire, are present in Garicano and Rossi-Hansberg (2004) and

absent in Rosen (1982).

Beyond a formal understanding of the economic mechanisms in those knowledge-

based theories and the main driver of their distinct conclusions, the comparison readily

27Note that the definition of stable matchings in Section 2.3 was provided for a general function

Uz(m, δ) and, hence, applies to Es,α too.
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suggests a unified and flexible setting. Namely, one in which, in addition to the

common elements of the two settings, goods are produced according to a production

function ρ(r(z))ψ(r(z), nq(z′)), where z is the manager’s skill, z′ is the workers’ skills

and n is the number of workers, each manager can hire at most n(z, z′) workers and

self-employed individuals with skill z receive Uz(s).

In light of the above formalization, it is natural to ask: Under what conditions on

the functions ρ, r, q, ψ, n and z 7→ Uz(s) do we obtain the conclusions in Garicano

and Rossi-Hansberg (2004)? Are there choices for them different from the ones in

Garicano and Rossi-Hansberg (2004) that are useful to match real-world data?

We leave the above questions for further research. Answering them will likely

require advances in the techniques we used in this paper. Indeed, while some results —

such as Theorems 7 and 8 in the Appendix — are stated in general terms, others are,

at least apparently, specific to the settings of Rosen (1982) and Garicano and Rossi-

Hansberg (2004). Hence, their extension and unification will be useful to analyse

more general models such as the one above.

References

Ahmad, N., H. Kim, and R. McCann (2011): “Optimal Transportation, Topology

and Uniqueness,” Bulletin of Mathematical Sciences, 1, 13–32.

Aliprantis, C., and K. Border (2006): Infinite Dimensional Analysis. Springer,

Berlin, 3rd edn.

Amaral, P., and A. Rivera-Padilla (2024): “Cross-Country Income Dispersion,

Human Capital, and Technology Adoption,” California State University Fullerton.
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A Online Appendix

A.1 Proof of Theorems 1–3

In the section we describe how we will establish Theorems 1–3. An important sim-

plification arises from the following lemma showing that the set of stable matchings

of Egrh is contained in the set of stable matchings of E∗
grh.

Lemma 7 If µ is a stable matching of Egrh, then µ is a stable matching of E∗
grh.

Lemma 7 then implies that the conclusion of Theorem 1 follows once we show that

Egrh has a stable matching. Furthermore, to establish Theorems 2 and 3, it suffices

to show that E∗
grh has a unique stable matching and that conditions (b) and (c) in

Theorem 2 are equivalent.

In the remainder of this section, we establish Lemma 7. We start by a lemma

which will also be used in the proof of Theorem 1 and, since it uses a limit argument,

is applied also to the following sequence of markets. For each k ∈ N, let Ck = [0, 1],

Ck(z, z
′) = Ck and Ck(z, ∅) = {0} for each z, z′ ∈ Z, and Xk = {n1(z,c) : (z, c) ∈

[0, z̄ − 1/k] × Ck and n ∈ R+ such that nh(1 − F (z)) = 1} and Ek be equal to Egrh

except for this change to Xk.

Lemma 8 below shows that if (z, δ) ∈ Z×X is in the support of a stable matching

of either Egrh, E
∗
grh or Ek for some k, then (by the definition of X) δ = n(z′)1(z′,c) for

some (z′, c) ∈ Z × C and, more importantly, F (z′) ≤ c ≤ F (z). This just shows that

the manager is at least as knowledgable as the workers he employs (i.e. z′ ≤ z) and

that the wage is in between F (z′) and F (z) by individual rationality. Furthermore,

this shows that c ∈ [0, F (z̄)] ⊆ [0, 1].

Lemma 8 Let E be Egrh, E
∗
grh or Ek for some k ∈ N. If µ is a stable matching of E

and (z, n(z′)1(z′,c)) ∈ supp(µ) ∩ (Z ×X), then F (z′) ≤ c ≤ F (z).

Proof. We write Uz(m,n1(z′,c)) = (max{F (z), F (z′)} − c)n and U∗
z (m,n1(z′,c)) =

(F (z)− c)n for each z, z′ ∈ Z, c ∈ C and n ∈ R+.
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Individual rationality implies that Uz′(w, 1(z,c)) = c ≥ F (z′) = Uz′(s). Individual

rationality then implies that c ≤ F (z). Indeed, if c > F (z), then U∗
z (m,n1(z′,c)) =

(F (z)− c)n(z′) < 0 ≤ Uz(s) and, if F (z) > 0,

Uz(m,n(z
′)1(z′,c)) = (max{F (z), F (z′)} − c)n(z′) ≤ 0 < Uz(s).

Thus, the conclusion of the lemma holds when E = E∗
grh and also when E ∈ {Egrh, Ek}

if F (z) > 0.

Consider then the remaining case of F (z) = 0 and E ∈ {Egrh, Ek}. In this case

we have that c ≤ F (z′) by individual rationality of type z since Uz(m,n(z
′)1(z′,c)) =

(F (z′) − c)n(z′). Thus, c = F (z′) and Uz(m, δ) = 0. If F (z′) > 0, then type z′ can

hire workers of type z at wage ε > 0 such that ε < F (z′)(n(z) − 1)/n(z) to obtain

Uz′(m, 1(z,ε)) = (F (z′) − ε)n(z) > F (z′) = c = Uz′(w, 1(z,c)), a contradiction to the

stability of µ. Thus, it follows that F (z′) = 0 and, hence, that c = F (z′) = 0 = F (z).

It follows from Lemma 8 that, if µ is a stable matching of E and (z, n(z′)1(z′,c)) ∈

supp(µ) ∩ (Z ×X), then z′ ≤ z and that Uz(m,n(z
′)1(z′,c)) = (F (z)− c)n(z′).

We turn to the proof of Lemma 7

Proof of Lemma 7. Let µ be a stable matching of Egrh. To distinguish between

Egrh and E
∗
grh, we will write T

m
z (µ;E), SM(µ;E) and IR(µ;E) where E ∈ {Egrh, E

∗
grh}.

Furthermore, let, for each z ∈ Z and n1(z′,c) ∈ X, Uz(m,n1(z′,c)) = (F (max{z, z′})−

c)n and U∗
z (m,n1(z′,c)) = (F (z) − c)n. Note that there is no need to make T s

z (µ)

depend on E ∈ {Egrh, E
∗
grh} since T s

z (µ) = {(∅, 0)} in either case.

It follows by Lemma 8 that

Uz(m, δ) = U∗
z (m, δ) for each (z, δ) ∈ supp(µ) ∩ (Z ×X). (8)

This then implies that Tm
z (µ;Egrh) = Tm

z (µ;E∗
grh) for each z ∈ Z since condition (c)

in the definition of these sets becomes the same (and condition (a) and (b) are the

same too regardless of (8)).

It also follows that supp(µ)∩IR(µ;Egrh) = supp(µ)∩IR(µ;E∗
grh) since (8) implies

that condition (i) in the definition of these sets becomes the same (and condition (ii)

is the same too regardless of (8)).
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We next show that supp(µ) ∩ SM(µ;Egrh) ⊆ supp(µ) ∩ SM(µ;E∗
grh). Indeed, if

(z, δ) ∈ supp(µ)∩SM(µ;Egrh) and δ
′ is as in condition (i), (ii) or (iii), then Uz(m, δ) =

U∗
z (m, δ) by (8) and Uz(m, δ

′) ≥ U∗
z (m, δ

′) by definition. Thus, (z, δ) ∈ supp(µ) ∩

SM(µ;E∗
grh).

The stability of µ in Egrh then implies that

supp(µ) = supp(µ)∩SM(µ;Egrh)∩IR(µ;Egrh) ⊆ supp(µ)∩SM(µ;E∗
grh)∩IR(µ;E∗

grh).

Hence, µ is a stable matching of E∗
grh.

A.2 Proof of Theorem 1

It is enough to show that Egrh has a stable matching to establish Theorem 1. A

further simplification is obtained by the following lemma which shows that we may

assume that wages are bounded by one.

Write Egrh = (Z, ν, C,C, X, (≻z)z∈Z) and let Ê = (Z, ν, Ĉ, Ĉ, X̂, (≻z)z∈Z) where

Ĉ = [0, 1], Ĉ(z, z′) = Ĉ and Ĉ(z, ∅) = {0} for each z, z′ ∈ Z×Z, and X̂ = {n(z)1(z,c) :

(z, c) ∈ Z×Ĉ and n ∈ R+ such that nh(1−F (z)) = 1}, i.e. Ê is equal to Egrh except

for these changes to C, C and X.

Lemma 9 If µ is a stable matching of Ê, then µ is a stable matching of Egrh.

Proof. We write IR(µ;E) and SM(µ;E) for each E ∈ {Egrh, Ê}. Let µ be a stable

matching of Ê. Then supp(µ) ⊆ SM(µ; Ê)∩IR(µ; Ê). Since IR(µ; Ê) = IR(µ;Egrh),

it follows that supp(µ) ⊆ IR(µ;Egrh).

Thus, if µ is not a stable matching of Egrh, then there is (z, z′, c) ∈ Z×Z∅×C such

that (z, n(z′)1(z′,c)) ∈ supp(µ) \ SM(µ;Egrh) (with n(∅) = 0) and, hence, (ẑ, z̃, c̃) ∈

Z2 × C such that ẑ ∈ {z, z′} \ {∅}, c̃ > 1 and Uẑ(m,n(z̃)1(z̃,c̃)) > Uẑ(a, δ̂) with

a = m and δ̂ = n(z′)1(z′,c) if ẑ = z and a = w and δ̂ = 1(z,c) if ẑ = z′ and z′ ̸= ∅.

But c̃ > 1 implies that Uẑ(m,n(z̃)1(z̃,c̃)) = (max{F (ẑ), F (z̃)} − c̃)n(z̃) < 0. Hence,

Uẑ(a, δ̂) < 0 and, thus, either Uz(m,n(z
′)1(z′,c)) < 0 or z′ ̸= ∅ and Uz′(w, 1(z,c)) < 0,

contradicting (z, n(z′)1(z′,c)) ∈ IR(µ;Egrh). This contradiction then shows that µ is

a stable matching of Egrh.
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It follows by Lemma 9 that it suffices to shows that Ê has a stable matching.

For each k ∈ N, letXk = {n(z)1(z,c) : (z, c) ∈ [0, z̄−1/k]×Ĉ} and Ek be equal to Ê

except for this change toXk. It follows by Theorem 2 in Carmona and Laohakunakorn

(2024) that there exists a stable matching µk of Ek. Indeed, Ek is rational since

the preferences of each type z ∈ Z are represented by utility functions. It is also

continuous since (z, a, δ) 7→ Uz(a, δ) is continuous, Ĉ is continuous with nonempty

and compact values and Xk is closed; the latter follows because Xk is the image of

the continuous function (z, c) 7→ 1
h(1−F (z))

1(z,c) whose domain is compact.28 We have

that Ek is bounded since δ(Z× Ĉ) ≤ 1
h(1−F (z̄−1/k))

<∞ for each δ ∈ X. Finally, Ek is

rich since it satisfies conditions (α) and (β) in Carmona and Laohakunakorn (2024):

(β) is straightforward since each δ ∈ X has finite support and (α) follows from the

continuity of (z, c) 7→ 1
h(1−F (z))

1(z,c).

It follows from Lemma 8 that, if (z, n(z′)1(z′,c)) ∈ supp(µk)∩(Z×Xk), then z
′ ≤ z

and that Uz(m,n(z
′)1(z′,c)) = (F (z)− c)n(z′).

We will show that {µk}∞k=1 has a convergent subsequence and its limit point µ is

a stable matching of Ê. The key lemma in the convergence argument is that there is

M ∈ N such that δ((z̄− 1/M, z̄]× Ĉ) = 0 for each (z, δ) ∈ supp(µk)∩ (Z×Xk) and k

sufficiently large, i.e. no one with type in (z̄− 1/M, z̄] is a worker. This then bounds

the number of workers that a manager hires and allow us to conclude that {µk}∞k=1

has indeed a convergent subsequence.

Lemma 10 There exist K,M ∈ N such that, for each k ≥ K and (z, δ) ∈ supp(µk)∩

(Z ×Xk), δ((z̄ − 1/M, z̄]× Ĉ) = 0.

Proof. Suppose that the conclusion of the lemma fails. Then, for each j ∈ N,

there exists kj ≥ j and (zkj , δkj) ∈ supp(µkj)∩Z×Xk such that δkj((z̄−1/j, z̄]×Ĉ) > 0.

Thus, for each j ∈ N, there is (z′kj , ckj) ∈ (z̄−1/j, z̄]×Ĉ such that δkj = n(z′kj)1(z′kj ,ckj )
.

It follows by Lemma 8 that F (z′kj) ≤ ckj ≤ F (zkj) for each j.

28To see the continuity of (z, c) 7→ 1
h(1−F (z))1(z,c), let f : [0, z̄ − 1/k] × Ĉ → R be bounded and

continuous and let (z, c) ∈ [0, z̄−1/k]×Ĉ and {(zj , cj)}∞j=1 ⊆ [0, z̄−1/k]×Ĉ be such (zj , cj) → (z, c).

Then
∫
[0,z̄−1/k]×Ĉ

fd 1
h(1−F (zj))

1(zj ,cj) =
f(zj ,cj)

h(1−F (zj))
→ f(z,c)

h(1−F (z)) =
∫
[0,z̄−1/k]×Ĉ

fd 1
h(1−F (z))1(z,c).
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Claim 1 There exists ε > 0 and J ∈ N, such that supp(µkj)∩ ([0, ε]×Xkj ,∅) = ∅ for

each j ≥ J .

Proof. Let η > 0 be such that (F (z̄)− η)/h > F (z̄). Then let 0 < ε < z̄ be such

that F (z)
h(1−F (z))

< η for all z ∈ [0, ε].

If the claim fails, then, taking a subsequence if necessary, we may assume that

supp(µkj) ∩ ([0, ε]×Xkj ,∅) ̸= ∅ and z′kj > ε for each j. Consider first the case where

supp(µkj) ∩ ([0, ε] × (Xkj ,∅ \ Xkj)) ̸= ∅ for infinitely many js. In this case, taking

a subsequence if necessary, we may assume that there exists, for each j, z̃kj ∈ [0, ε]

such that (z̃kj , 1(∅,0)) ∈ supp(µkj). Since Uz̃kj
(s, 1(∅,0)) = F (z̃kj), then type z′kj can

hire workers of type z̃kj at wage η >
F (z̃kj )

h(1−F (z̃kj ))
> F (z̃kj) so that

Uz′kj
(m,n(z̃kj)1(z̃kj ,η)) =

F (z′kj)− η

h(1− F (z̃kj))
≥
F (z′kj)− η

h
→ F (z̄)− η

h

> F (z̄) ≥ ckj = Uz′kj
(w, 1(zkj ,ckj )).

This contradicts the stability of µkj whenever j is sufficiently large.

Consider next the remaining case where supp(µkj) ∩ ([0, ε] × Xkj) ̸= ∅ for all j

sufficiently large. In this case, there exists, for each j sufficiently large, z̃kj ∈ [0, ε]

and δ̃kj = n(ẑkj)1(ẑkj ,c̃kj ) such that (z̃kj , δ̃kj) ∈ supp(µkj). Since

Uz̃kj
(m, δ̃kj) =

F (z̃kj)− c̃kj
h(1− F (ẑkj))

≤
F (z̃kj)

h(1− F (z̃kj))
< η

due to F (ẑkj) ≤ c̃kj ≤ F (z̃kj) which follows by Lemma 8, then type z′kj can hire

workers of type z̃kj at wage η as in the previous paragraph, thus contradicting the

stability of µkj whenever j is sufficiently large.

Claim 2 For each j ∈ N, there is (z, c) ∈ Z × Ĉ such that (z, 1
h
1(0,c)) ∈ supp(µkj).

Proof. Let j ∈ N be fixed and suppose that, for each (z, δ) ∈ supp(µkj), 0 ̸∈

supp(δZ). Then, due to the compactness of Ĉ, Z and Xkj , and, thus, of supp(µkj),

there is 0 < η < ε such that 0 ̸∈ Bη(supp(δZ)) for each (z, δ) ∈ supp(µkj). This,

together with Claim 1, implies that

ν(Bη(0)) =

∫
Z×Xkj

δ(Bη(0)× Ĉ)dµkj(z, δ) = 0.
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But this is a contradiction since 0 ∈ supp(ν) and, hence, ν(Bη(0)) > 0.

For each j ∈ N, let zkj = min{z ∈ Z : (z, δ) ∈ supp(µkj) for some δ ∈ Xkj}; since

Z and Xkj are compact, zkj exists.

Claim 3 For each j ∈ N, (zkj ,
1
h
1(0,c)) ∈ supp(µkj) for some c ∈ Ĉ.

Proof. Let j ∈ N be fixed. It follows by Claim 2 that there is (z, c) ∈ Z× Ĉ such

that (z, 1
h
1(0,c)) ∈ supp(µkj). It follows by the definition of zkj that z ≥ zkj .

Suppose, in order to reach a contradiction, that (zkj ,
1
h
1(0,ĉ)) ̸∈ supp(µkj) for

each ĉ ∈ Ĉ. Then, in particular, z > zkj (by considering ĉ = c) and, letting δ =

n(z′)1(z′,c′) ∈ Xkj be such that (zkj , δ) ∈ supp(µkj), z
′ > 0 (by considering ĉ = c′). It

follows that Uzkj
(m, δ) ≥ Uzkj

(m, 1
h
1(0,c+η)) for each η > 0 and, hence, Uzkj

(m, δ) −

Uzkj
(m, 1

h
1(0,c)) ≥ 0. For each z̃ ≥ zkj , we have that

Uz̃(m, δ)− Uz̃(m,
1

h
1(0,c)) =

1

h

(
F (z̃)

(
1

1− F (z′)
− 1

)
− c′

1− F (z′)
+ c

)
is strictly increasing in z̃ since z′ > 0 and, hence, F (z′) > 0. Thus, for each z̃ > zkj ,

there is η > 0 such that Uz̃(m,n(z
′)1(z′,c′+η)) > Uz̃(m,

1
h
1(0,c)), which implies that

(z̃, 1
h
1(0,c)) ̸∈ supp(µkj). But this is a contradiction to (z, 1

h
1(0,c)) ∈ supp(µ) and

z > zkj . Thus, (zkj ,
1
h
1(0,c)) ∈ supp(µkj).

We next claim that the sequence {zkj}
∞
j=1 is bounded away from z̄.

Claim 4 There is ξ > 0 and J ∈ N such that zkj ≤ z̄ − ξ for each j ≥ J .

Proof. Suppose not; then, taking a subsequence if necessary, we may assume that

zkj → z̄ and that {zkj}
∞
j=1 is increasing. Let ε > 0 be as in Claim 1. Then, for each

j, it follows by the definition of zkj and by Claim 1 that

ν([0, ε]) =

∫
[zkj

,z̄]×Xkj

δ([0, ε]× Ĉ)dµkj(z, δ) ≤
µkj([zkj , z̄]×Xkj)

h(1− F (ε))

≤
ν([zkj , z̄])

h(1− F (ε))
→ ν({z̄})

h(1− F (ε))
= 0.

But this contradicts 0 ∈ supp(ν).
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For each j ∈ N, let, by Claim 3, c′kj ∈ Ĉ be such that (zkj ,
1
h
1(0,c′kj )

) ∈ supp(µkj).

Individual rationality implies that (F (zkj)− c′kj)/h ≥ F (zkj) and, hence,

c′kj ≤ (1− h)F (zkj) ≤ (1− h)F (z̄ − ξ) < (1− h)F (z̄ − ξ′),

where 0 < ξ′ < ξ and ξ > 0 is as in Claim 4. Thus,

Uz′kj

(
m,

1

h
1(0,(1−h)F (z̄−ξ′))

)
=
F (z′kj)− (1− h)F (z̄ − ξ′)

h

→ F (z̄)− (1− h)F (z̄ − ξ′)

h
> F (z̄) ≥ ckj .

But this contradicts the stability of µkj whenever j is sufficiently large. This conclu-

sion the proof of the lemma.

It follows from Lemma 10 that µk ∈ M(Z × XM,∅) for each k ≥ K. Since

M(Z × XM,∅) is compact, we may assume, taking a subsequence if necessary, that

{µk}∞k=1 converges; let µ = limk µk.

We establish that µ is a stable matching of Ê in the following claims.

Claim 5 µ is a matching of Ê.

Proof. We first consider condition 2 of the definition of a matching. Let π :

Z × X̂∅ → Z be the projection of Z × X̂∅ onto Z and note that, for each Borel

subset B of Z, νM(B) + νS(B) = µ(B × X̂∅) = µ ◦ π−1(B) and νM,k(B) + νS,k(B) =

µk(B× X̂∅) = µk ◦ π−1(B) for each k ∈ N. Since π is continuous, µk ◦ π−1 → µ ◦ π−1.

Hence, νM + νS = µ ◦ π−1 = limk µk ◦ π−1 = limk(νM,k + νS,k).

Also, for each Borel subset B of Z, νW (B) =
∫
Z×X̂

δ(B×Ĉ)dµ(z, δ) and νW,k(B) =∫
Z×X̂

δ(B × Ĉ)dµk(z, δ) for each k ∈ N. We show that νW,k → νW . For each Borel

subset of Z, let gB : X̂ → R be defined by setting, for each δ ∈ X̂, gB(δ) = δ(B× Ĉ).

We have that gB is bounded (by n(z̄− 1/M)) for each Borel subset B of Z. Since gZ

is continuous, it follows that

lim
k
νW,k(Z) = lim

k

∫
Z×X̂

gZdµk(z, δ) =

∫
Z×X̂

gZdµ(z, δ) = νW (Z);

furthermore, if B is closed, then gB is upper semi-continuous and, by (a suitable

adaptation of) Aliprantis and Border (2006, Theorem 15.5),

lim sup
k

νW,k(B) = lim sup
k

∫
Z×X̂

gBdµk ≤
∫
Z×X̂

gBdµ = νW (B).
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This shows that νW,k → νW . Condition 2 of the definition of a matching then holds

since

νM + νS + νW = lim
k
(νM,k + νS,k) + lim

k
νW,k = lim

k
(νM,k + νS,k + νW,k) = ν.

Condition 1 holds because, for each (z, δ) ∈ supp(µ) ∩ (Z × (X̂∅ \ X̂)), there

exists a subsequence {µkj}∞j=1 of {µk}∞k=1 and corresponding {(zkj , δkj)}∞j=1 such that

(zkj , δkj) → (z, δ) and, for each j ∈ N, (zkj , δkj) ∈ supp(µkj). Hence, δkj = 1(∅,0) for

each j ∈ N and, hence, δ = 1(∅,0).

We claim that µ is stable. For convenience, let Y = [0, z̄ − 1/M ] and n(∅) = 1.

Let (z, δ) ∈ supp(µ), δ = n(z′)1(z′,c) for some (z′, c) ∈ Y∅ × [0, 1]. Let, by Lemma

12 in Carmona and Podczeck (2009), {(zkj , z′kj , ckj)}
∞
j=1 be such that (zkj , z

′
kj
, ckj) →

(z, z′, c) and (zkj , n(z
′
kj
)1(z′kj ,ckj )

) ∈ supp(µkj) for each j ∈ N. In particular, note that

z′kj ∈ Y∅ for each j. Note that, in case z′ ∈ Z, Lemma 8 implies that F (z′kj) ≤ ckj ≤

F (zkj), hence max{F (z), F (z′)} = F (z). Thus, for any (z, n(z′)1(z′,c)) ∈ supp(µ) ∩

(Z ×XM), max{F (z), F (z′)} = F (z).

Claim 6 (z, δ) ∈ IR(µ).

Proof. Suppose not; then (z, δ) ∈ Z×XM and either (i) F (z) > (F (z)−c)n(z′) or

(ii) F (z′) > c. It then follows that (i) F (zkj) > (F (zkj)−ckj)n(z′kj) or (ii) F (z
′
kj
) > ckj

for all j sufficiently large, a contradiction to the stability of µkj . Thus, (z, δ) ∈ IR(µ).

Claim 7 (z, δ) ∈ SM(µ).

Proof. Suppose not; then there is (ẑ, ĉ) ∈ Z × Ĉ and z∗ ∈ Z such that (ẑ, ĉ) ∈

Tm
z∗ (µ), n(ẑ)1(ẑ,ĉ) ∈ X̂ and (i) z∗ = z and (max{F (z), F (ẑ)} − ĉ)n(ẑ) > (F (z) −

c)n(z′), or (ii) z∗ = z′ and (max{F (z′), F (ẑ)} − ĉ)n(ẑ) > c, or (iii) z∗ = z and

(max{F (z), F (ẑ)} − ĉ)n(ẑ) > F (z).

It follows from (ẑ, ĉ) ∈ Tm
z∗ (µ) that we may assume, taking a subsequence if neces-

sary, that there exists {ẑkj}∞j=1 and J ∈ N such that ẑkj → ẑ and (ẑkj , ĉ) ∈ Tm
z∗kj

(µkj)
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for each j ≥ J , where, for each j ≥ J , z∗kj = zkj if z∗ = z and z∗kj = z′kj if z∗ = z′. In-

deed, suppose first that there exists (z̃, c̃) ∈ Z × Ĉ such that (z̃, n(ẑ)1(ẑ,c̃)) ∈ supp(µ)

and ĉ > c̃. Then, taking a subsequence if necessary, there exists {(z̃kj , c̃kj , ẑkj)}∞j=1

such that (z̃kj , c̃kj , ẑkj) → (z̃, c̃, ẑ) and (z̃kj , n(ẑkj)1(ẑkj ,c̃kj )) ∈ supp(µkj). Thus, ĉ > c̃kj

for each j sufficiently large and, thus, (ẑkj , ĉ) ∈ Tm
z∗kj

(µkj).

Suppose next that (ẑ, 1(∅,0)) ∈ supp(µ) and ĉ > F (ẑ). Then, taking a subsequence

if necessary, there exists {ẑkj}∞j=1 such that ẑkj → ẑ and (ẑkj , 1(∅,0)) ∈ supp(µkj).

Thus, ĉ > F (ẑkj) for each j sufficiently large and, thus, (ẑkj , ĉ) ∈ Tm
z∗kj

(µkj).

Finally, suppose that there exists (z̃, c̃) ∈ Z × Ĉ such that (ẑ, n(z̃)1(z̃,c̃)) ∈

supp(µ) and ĉ > (F (ẑ) − c̃)n(z̃). Then, taking a subsequence if necessary, there

exists {(z̃kj , c̃kj , ẑkj)}∞j=1 such that (z̃kj , c̃kj , ẑkj) → (z̃, c̃, ẑ) and (ẑkj , n(z̃kj)1(z̃kj ,c̃kj )) ∈

supp(µkj). We have that n(z̃kj) → n(z̃): this is clear if F (z̄) < 1 and, in the

case where F (z̄) = 1, this follows because z̃ < z̄ since n(z̃)1(z̃,c̃) ∈ X̂. Thus,

ĉ > (F (ẑkj)− c̃kj)n(z̃kj) for each j sufficiently large and, hence, (ẑkj , ĉ) ∈ Tm
z∗kj

(µkj).

We have that n(z′kj) → n(z′) since z′ = ∅ or z′ ≤ z̄ − 1/M . Since n(ẑ)1(ẑ,ĉ) ∈ X̂,

we have that ẑ < z̄ whenever F (z̄) = 1 and, hence, n(ẑkj) → n(ẑ). It then follows

from (ẑkj , ĉ) ∈ Tm
z∗kj

(µkj) for each j ≥ J together with (a) (max{F (zkj), F (ẑkj)} −

ĉ)n(ẑkj) > (F (zkj) − ckj)n(z
′
kj
) for each j sufficiently large in case (i), and (b)

(max{F (z′kj), F (ẑkj)} − ĉ)n(ẑkj) > ckj for each j sufficiently large in case (ii), and

(max{F (zkj), F (ẑkj)} − ĉ)n(ẑkj) > F (zkj) for each j sufficiently large in case (iii)

that (zkj , n(z
′
kj
)1(z′kj ,ckj )

) ∈ supp(µkj) \ SM(µkj) for each j sufficiently large. But this

contradicts the stability of µkj . Thus, it follows that (z, δ) ∈ SM(µ).

It follows from Claims 6 and 7 that (z, δ) ∈ SM(µ)∩IR(µ). Since (z, δ) ∈ supp(µ)

is arbitrary, it follows that that µ is stable.

A.3 Proof of Theorems 2 and 3

We establish Theorems 2 and 3 as follows. We start by showing that conditions (b)

and (c) in Theorem 2 are equivalent; we show in Section A.4 that (b) implies (c) and,

in Section A.5 that (c) implies (b). Then we prove that E∗
grh has a unique stable

matching µ in Section A.6. It then follows by Lemma 7 that µ is the unique stable
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matching of Egrh, thus establishing Theorem 3, the equivalence between conditions

(a) and (b) in Theorem 2 and, thus, completing the proof of Theorem 2.

A.4 Proof of Theorem 2: Necessity

A.4.1 Proof of Lemma 1

The proof of Lemma 1 uses two additional lemmas. The first of these shows that

there are managers; indeed, if not, then everyone would be self-employed, type 0

individuals would get F (0) = 0 and, hence, any type z̄ could become a manager and

hire type 0 workers to obtain virtually F (z̄)/h, thus more than F (z̄) which is what

he gets by being self-employed.

Lemma 11 µ(Z ×X) > 0.

Proof. Suppose not; then, for each Borel subset B of Z, νM(B) = νW (B) = 0

and, hence, νS(B) = νM(B) + νS(B) + νW (B). Thus, νS = ν. In particular, µ(Z ×

(X∅ \X)) = ν(Z) and, thus, supp(µ) ⊆ Z × {1(∅,0)} since {z} × supp(δ) ⊆ graph(C)

for each (z, δ) ∈ supp(µ). Conversely, if there is z ∈ Z such that (z, 1(∅,0)) ̸∈ supp(µ),

then µ(O × {1(∅,0)}) = 0 for some open neighborhood O of z. Hence,

ν(O) = µ((O × (X∅ \X)) ∩ supp(µ)) ≤ µ(O × {1(∅,0)}) = 0,

a contradiction to supp(ν) = Z. Thus, supp(µ) = Z × {1(∅,0)}.

We have that U0(s) = 0 and, hence, (0, ε) ∈ Tm
z̄ (µ) for each ε > 0. Thus, type

z̄ can get Uz̄(m,
1
h
1(0,ε)) =

F (z̄)−ε
h

> F (z̄) = Uz̄(s) by hiring type 0 workers at wage

0 < ε < (1− h)F (z̄). But this contradicts the stability of µ.

The following results is a simply consequence of the previous lemma and asserts

that managers of type less than z̄ exist.

Corollary 2 supp(µ) ∩ ((Z \ {z̄})×X) ̸= ∅.

Proof. Suppose not; then supp(µ) ∩ (Z ×X) ⊆ {z̄} ×X. Hence,

µ(Z ×X) = µ(supp(µ) ∩ (Z ×X)) ≤ µ({z̄} ×X) = µM({z̄}) ≤ ν({z̄}) = 0,
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a contradiction to Lemma 11.

We turn to the proof of Lemma 1. The idea is to take a manager of type z < z̄,

whose rent must be at least F (z). The difference between the rent and the self-

employed payoff is strictly increasing in z, hence type z̄ and those close by must make

strictly more that F (z̄). No worker or self-employed can make as much, hence all

those types must be managers.

Proof of Lemma 1. Let, by Corollary 2, z, z′ ∈ Z and c ∈ C be such that

(z, n(z′)1(z′,c)) ∈ supp(µ) and z < z̄. Then, (F (z) − c)n(z′) = Uz(m,n(z
′)1(z′,c)) ≥

Uz(s) = F (z). Since ẑ 7→ (F (ẑ)− c)n(z′)− F (ẑ) is strictly increasing,

Uz̄(m,n(z
′)1(z′,c)) > Uz̄(s) = F (z̄)

and, hence, there is ξ > 0 such that Uẑ(m,n(z
′)1(z′,c)) > F (z̄) for each ẑ ∈ [z̄ − ξ, z̄].

It then follows that [z̄− ξ, z̄]∩S = ∅. Indeed, if z ∈ [z̄− ξ, z̄]∩S, then (z′, c+ε) ∈

Tm
z (µ) for each ε > 0 and, hence, F (z) = Uz(s) ≥ Uz(m,n(z

′)1(z′,c+ε)). Thus, letting

ε→ 0, F (z̄) ≥ F (z) ≥ Uz(m,n(z
′)1(z′,c)) > F (z̄), a contradiction.

We also have that [z̄ − ξ, z̄] ∩ W = ∅. This is clear since Uẑ(m,n(z
′)1(z′,c)) >

F (z̄) for each ẑ ∈ [z̄ − ξ, z̄] and because Lemma 8 implies that c̃ ≤ F (z̄) whenever

(z, n(z̃)1(z̃,c̃)) ∈ supp(µ).

A.4.2 Proof of Lemma 2

We prove Lemma 2 in a series of lemmas, the first of which establishes the equal

treatment property for workers.

Lemma 12 If z, ẑ, z′ ∈ Z and c ∈ C are such that (z, n(z′)1(z′,c)), (ẑ, n(z
′)1(z′,ĉ)) ∈

supp(µ), then c = ĉ.

Proof. Indeed, if c > ĉ, then managers of type z can gain by hiring workers of

type z′ at wage c−ε for some ε > 0 such that c−ε > ĉ, a contradiction to the stability

of µ. Thus, c ≤ ĉ and an analogous argument shows that c ≥ ĉ; hence, c = ĉ.

Define c : W → [0, 1] by setting, for each z ∈ W , c(z) = c, where c ∈ [0, 1] is such

that (ẑ, n(z)1(z,c)) ∈ supp(µ) for some ẑ ∈ Z. Lemma 12 implies that the function

44



c is well-defined and Lemma 8 implies that c takes values in [0, 1]. For convenience,

let, for each z ∈ Z and z′ ∈ Z \ {z̄}, Uz(m, z
′) = Uz(m,n(z

′)1(z′,c(z′))).

Managers prefer workers with higher z since they can hire more of them, hence,

the wage function c is strictly increasing.

Lemma 13 c is strictly increasing.

Proof. Suppose not; then there is z, z′ ∈ W such that z′ > z and c(z′) ≤ c(z).

Let ẑ ∈ Z be such that (ẑ, n(z)1(z,c(z))) ∈ supp(µ). Then n(z′) > n(z) and ẑ ≥ z.

If ẑ > 0, then Uẑ(m, z) = (F (ẑ) − c(z))n(z) < (F (ẑ) − c(z′))n(z′) = Uẑ(m, z
′) since

Uẑ(m, z) ≥ F (ẑ) > 0. Thus, there is ε > 0 such that (z′, c(z′) + ε) ∈ Tm
ẑ (µ) and

Uẑ(m,n(z
′)1(z′,c(z′)+ε)) > Uẑ(m, z), contradicting the stability of µ.

If ẑ = 0, then z = 0 (since ẑ ≥ z) and c(z′) ≤ c(z) = 0 (since F (z) ≤ c ≤ F (ẑ) by

Lemma 8). Since F (z′) > 0, this contradicts the stability of µ.

The function c is continuous since, e.g., a type ẑ manager hiring workers of type

z with a wage higher and bounded away from the wage of some close by worker type

z′ can attract the latter by paying slightly more and in this way obtain a rent higher

than when hiring the former.

Lemma 14 c is continuous.

Proof. Suppose not; then there is z ∈ W such that c is discontinuous at z. Since

c is increasing by Lemma 13, there are only two possible cases.

Case 1: There exists ε > 0 and a sequence {zk}∞k=1 such that zk → z and, for each

k ∈ N, zk ∈ W , zk < z and c(z) > c(zk) + ε. In this case, let ẑ ∈ Z be such that

(ẑ, n(z)1(z,c(z))) ∈ supp(µ). Then

F (ẑ)− c(zk)− ε
2

h(1− F (zk))
>
F (ẑ)− c(z) + ε

2

h(1− F (zk))
→

F (ẑ)− c(z) + ε
2

h(1− F (z))
> Uẑ(m, z).

Thus, there is k sufficiently large such that (zk, c(zk) +
ε
2
) ∈ Tm

ẑ (µ) and Uẑ(m, z) <

Uẑ(m,n(zk)1(zk,c(zk)+ ε
2
)), contradicting the stability of µ.

Case 2: There exists ε > 0 and a sequence {zk}∞k=1 such that zk → z and, for each

k ∈ N, zk ∈ W , zk > z and c(z) < c(zk)−ε. In this case, for each k ∈ N, let ẑk ∈ Z be
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such that (ẑk, n(zk)1(zk,c(zk))) ∈ supp(µ). Since (ẑk, c(zk)) ∈ Z × [0, 1] for each k ∈ N

and Z × [0, 1] is compact, we may assume, taking a subsequence if necessary, that

{(ẑk, c(zk))}∞k=1 converges; let (ẑ, c) = limk(ẑk, c(zk)). Then c(z) +
ε
2
≤ c− ε

2
and

F (ẑk)− c(zk)

h(1− F (zk))
→ F (ẑ)− c

h(1− F (z))
<
F (ẑ)− c+ ε

2

h(1− F (z))

≤
F (ẑ)− c(z)− ε

2

h(1− F (z))
= lim

k

F (ẑk)− c(z)− ε
2

h(1− F (z))
.

Thus, there is k sufficiently large such that (z, c(z) + ε
2
) ∈ Tm

ẑk
(µ) and Uẑk(m, zk) <

Uẑk(m,n(z)1(z,c(z)+ ε
2
)), contradicting the stability of µ.

The following is the equal treatment property for managers.

Lemma 15 If z, z′, ẑ ∈ Z are such that (z, n(z′)1(z′,c(z′))), (z, n(ẑ)1(ẑ,c(ẑ))) ∈ supp(µ),

then Uz(m, z
′) = Uz(m, ẑ).

Proof. If Uz(m, z
′) > Uz(m, ẑ), then, letting ε > 0 be such that F (z)−c(z′)−ε

h(1−F (z′))
>

Uz(m, ẑ), it follows that (z
′, c(z′)+ε) ∈ Tm

z (µ) and Uz(m,n(z
′)1(z′,c(z′)+ε)) > Uz(m, ẑ),

a contradiction to the stability of µ. Thus, Uz(m, z
′) ≤ Uz(m, ẑ) and an analogous

argument shows that Uz(m, z
′) ≥ Uz(m, ẑ); hence, Uz(m, z

′) = Uz(m, ẑ).

Define u : M → R+ by setting, for each z ∈ M , u(z) = Uz(m, z
′), where z′ ∈ Z

is such that (z, n(z′)1(z′,c(z′))) ∈ supp(µ). Lemma 15 implies that the function u is

well-defined.

Managers with higher z are more productive, hence, the rent function u :M → R

is strictly increasing.

Lemma 16 u :M → R is strictly increasing.

Proof. Suppose not; then there is z, ẑ ∈M such that z > ẑ and u(z) ≤ u(ẑ). Let

z′ ∈ Z be such that (ẑ, n(z′)1(z′,c(z′))) ∈ supp(µ). Then F (ẑ) < F (z) and

u(z) ≤ u(ẑ) =
F (ẑ)− c(z′)

h(1− F (z′))
<
F (z)− c(z′)

h(1− F (z′))
.

Thus, there is ε > 0 such that (z′, c(z′) + ε) ∈ Tm
z (µ) and Uz(m,n(z

′)1(z′,c(z′)+ε)) >

u(z), contradicting the stability of µ.
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The function u :M → R is continuous since, as already noticed, a type z manager

with rent lower and bounded away from the rent of some close by manager z̃ can

attract the workers of the latter by paying slightly more and obtain a rent virtually

equal to u(z̃) which is higher than u(z).

Lemma 17 u :M → R is continuous.

Proof. Suppose not; then there is z ∈M such that u is discontinuous at z. Since

u is increasing by Lemma 16, there are only two possible cases.

Case 1: There exists ε > 0 and a sequence {zk}∞k=1 such that zk → z and, for each

k ∈ N, zk ∈ M , zk < z and u(z) > u(zk) + ε. In this case, let z′ ∈ Z be such that

(z, n(z′)1(z′,c(z′))) ∈ supp(µ). Then n(z′)(F (zk) − c(z′)) → u(z) > u(zk) − ε. Thus,

there is k sufficiently large and η > 0 such that n(z′)(F (zk) − c(z′) − η) > u(zk).

Then (z′, c(z′) + η) ∈ Tm
zk
(µ) and Uzk(m,n(z

′)1(z′,c(z′)+η)) > u(zk), contradicting the

stability of µ.

Case 2: There exists ε > 0 and a sequence {zk}∞k=1 such that zk → z and, for each

k ∈ N, zk ∈M , zk > z and u(z) < u(zk)− ε. In this case, for each k ∈ N, let z′k ∈ Z

be such that (zk, n(z
′
k)1(z′k,c(z′k))) ∈ supp(µ). Then, there is k sufficiently large such

that n(z′k)(F (z)− c(z′k)) > u(zk)− ε > u(z) since, using Lemma 1,

0 ≤ u(zk)−n(z′k)(F (z)−c(z′k)) = n(z′k)(F (zk)−F (z)) ≤ n(z̄−ξ)(F (zk)−F (z)) → 0.

Thus, there is η > 0 such that n(z′k)(F (z)− c(z′k)− η) > u(z). Then (z′k, c(z
′
k) + η) ∈

Tm
z (µ) and Uz(m,n(z

′
k)1(z′k,c(z′k)+η)) > u(z), contradicting the stability of µ.

Self-employed individuals of type z receive a payoff of F (z). The follows lemma

shows that, for some type z, there are type z individuals with different occupations,

then the payoffs from such occupations are the same at z.

Lemma 18 The following holds: (i) u(z) = c(z) if z ∈ M ∩W , (ii) u(z) = F (z) if

z ∈M ∩ S and (iii) c(z) = F (z) if z ∈ W ∩ S.

Proof. Let z ∈ M ∩ W . Suppose that u(z) > c(z) and let z′ ∈ Z be such

that (z, n(z′)1(z′,c(z′))) ∈ supp(µ) and ε > 0 be such that n(z′)(F (z) − c(z′) − ε) >
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c(z). Then (z′, c(z′) + ε) ∈ Tm
z (µ) and Uz(m,n(z

′)1(z′,c(z′))) > c(z), contradicting the

stability of µ.

If u(z) < c(z), then let ẑ ∈ Z be such that (ẑ, n(z)1(z,c(z))) ∈ supp(µ) and ε > 0 be

such that n(z)(F (ẑ)−u(z)− ε) > n(z)(F (ẑ)− c(z)). Then (z, u(z)+ ε) ∈ Tm
ẑ (µ) and

Uẑ(m,n(z)1(z,u(z)+ε)) > Uẑ(m, z), contradicting the stability of µ. Thus, (i) follows.

Let z ∈ M ∩ S. The stability of µ implies that u(z) ≥ F (z). If u(z) > F (z),

then let z′ ∈ Z be such that (z, n(z′)1(z′,c(z′))) ∈ supp(µ) and ε > 0 be such that

n(z′)(F (z) − c(z′) − ε) > F (z). It then follows that (z′, c(z′) + ε) ∈ Tm
z (µ) and

Uz(m,n(z
′)1(z′,c(z′)+ε)) > F (z), contradicting the stability of µ. Thus, (ii) follows.

Let z ∈ W ∩ S. The stability of µ implies that c(z) ≥ F (z). If c(z) > F (z), then

ẑ ∈ Z be such that (ẑ, n(z)1(z,c(z))) ∈ supp(µ) and ε > 0 be such that n(z)(F (ẑ) −

F (z)−ε) > n(z)(F (ẑ)−c(z)). Then (z, F (z)+ε) ∈ Tm
ẑ (µ) and Uẑ(m,n(z)1(z,F (z)+ε)) >

Uẑ(m, z), contradicting the stability of µ. Thus, (iii) follows.

The next step is to combine c : W → [0, 1], u : M → R and z 7→ F (z). Before

that, we establish some results on the sets M , S and W that are needed for the

argument.

Recall that Y = [0, z̄ − ξ], Y∅ = Y ∪ {∅}, X∗ =
{
n(z)1(z,c(z)) : z ∈ Y

}
and

X∗
∅ = X∗ ∪ {1(∅,0)}. It follows by Lemma 1 and by the definition of a matching

that supp(µ) ⊆ Z ×X∗
∅ . Recall that g : supp(µ) → Z × Y∅ is defined by setting, for

each (z, δ) ∈ supp(µ), g(z, δ) = (z, z′) where z′ ∈ Y∅ is such that δ = n(z′)1(z′,c(z′)).

Let π2(supp(µ)) = {δ ∈ X∗ : (z, δ) ∈ supp(µ)} be the projection of supp(µ) onto X∗

and let g2 : π2(supp(µ)) → Y∅ be defined by setting, for each δ ∈ π2(supp(µ)),

g2(δ) = z′

where z′ ∈ Y∅ is such that δ = n(z′)1(z′,c(z′)).

The following lemma shows that a match (z, n(z′)1(z′,c(z′))) can be represented in

an equivalent way simply by the pair (z, z′).

Lemma 19 g is a homeomorphism between supp(µ) and g(supp(µ)) and g2 is an

homeomorphism between π2(supp(µ)) and g2(π2(supp(µ))).
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Proof. Let id : Z → Z be the identity. Then g = (id, g2)|supp(µ). Since id is an

homeomorphism, it suffices to show that g2 is an homeomorphism.

It is clear that g−1
2 : z′ 7→ n(z′)1(z′,c(z′)) is 1-1 and continuous, the latter since

c is continuous and ∅ is an isolated point of Y∅. If 1(∅,0) ∈ π2(supp(µ)), then g2 is

continuous at 1(∅,0) since this is an isolated point of π2(supp(µ)). Thus, consider δ =

n(z)1(z,c(z)) for some z ∈ Y and {δk}∞k=1 such that, for each k ∈ N, δk = n(zk)1(zk,c(zk))

for some zk ∈ Y and δk → δ. Let κ : Z × C → R be defined by setting, for each

(ẑ, ĉ) ∈ Z ×C, κ(ẑ, ĉ) = |ẑ − z|/n(ẑ). Then κ is bounded and continuous, and hence

|g2(δk)− g2(δ)| = |zk − z| =
∫
κdδk →

∫
κdδ = |z − z| = 0.

Thus, g2 is continuous.

The following lemmas assert that M , W and S are closed, which follows mostly

from their definitions, and perfect. Recall that a set is perfect if it has no isolated

points and this holds for M , S and W roughly because if some of these sets were to

have an isolated point, then there would be an open subset of the support of µ with

zero measure. But this is impossible by the definition of support.

Lemma 20 M is nonempty, closed and perfect.

Proof. The nonemptyness of M follows by Corollary 2 and the closedness of M

follows because X∗ is compact and supp(µ) ∩ (Z ×X) ⊆ Z ×X∗.

Suppose that M has an isolated point z. Then supp(µ)∩ ({z}×X) ̸= ∅ and there

is ε > 0 such that Bε(z) ∩M = {z}. But this is a contradiction to the definition of

supp(µ) since

µ(Bε(z)×X) = µ(supp(µ) ∩ (Bε(z)×X)) ≤

µ((M ∩Bε(z))×X) = µ({z} ×X) ≤ ν({z}) = 0,

and supp(µ) \ (Bε(z)×X) is closed and strictly contained in supp(µ). Thus, M has

no isolated points and is, therefore, perfect.

Lemma 21 W is a nonempty, closed and perfect subset of [0, z̄ − ξ].
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Proof. It follows from Lemma 1 thatW ⊆ [0, z̄−ξ]. Furthermore,W is nonempty

since M is nonempty.

The set W is closed since if z ∈ Z and {zk}∞k=1 are such that zk → z and zk ∈

W ⊆ [0, z̄ − ξ] for each k ∈ N, then there is, for each k ∈ N, ẑk ∈ Z such that

(ẑk, n(zk)1(zk,c(zk))) ∈ supp(µ). Since Z is compact, we may assume that {ẑk}∞k=1

converges; let ẑ = limk ẑk. Then (ẑk, n(zk)1(zk,c(zk))) → (ẑ, n(z)1(z,c(z))), implying that

(ẑ, n(z)1(z,c(z))) ∈ supp(µ) and, hence, z ∈ W .

Suppose that W has an isolated point z. Thus, there is η > 0 such that Bη(z) ∩

W = {z}. Then supp(µ) ∩ (Z × {g−1
2 (z)}) ̸= ∅ and there exists ε > 0 such that

supp(µ)∩ (Z× g−1
2 (Bε(z)∩W )) = supp(µ)∩ (Z×{g−1

2 (z)}). It follows by Lemma 19

that g−1
2 (Bε(z) ∩W ) is open in π2(supp(µ)), hence supp(µ) ∩ (Z × g−1

2 (Bε(z) ∩W ))

is open in supp(µ). Furthermore,

0 = ν({z}) ≥
∫
Z×X

δ({z} × C)dµ(z′, δ)

implies that µ({(z′, δ) ∈ Z × X : δ({z} × C) > 0}) = 0. Since {(z′, δ) ∈ Z × X :

δ({z} × C) > 0} = Z × {g−1
2 (z)}, it follows that

0 = µ(Z × {g−1
2 (z)}) = µ(supp(µ) ∩ (Z × {g−1

2 (z)}))

= µ(supp(µ) ∩ (Z ×Bε(g
−1
2 (z) ∩W ))).

Hence, supp(µ) \ (Z × g−1
2 (Bε(z) ∩W )) is closed, strictly contained in supp(µ) and

such that µ(supp(µ) \ (Z × g−1
2 (Bε(z)∩W ))) = µ(supp(µ)). But this contradicts the

definition of supp(µ). Thus, W has no isolated points and is, therefore, perfect.

Lemma 22 S is closed and perfect.

Proof. The closedness of S follows because supp(µ) is closed and supp(µ)∩ (Z ×

(X∅ \X)) ⊆ Z × {1(∅,0)}.

Suppose that S has an isolated point z. Then supp(µ)∩ ({z}× (X∅ \X)) ̸= ∅ and

there is ε > 0 such that Bε(z)∩S = {z}. But this is a contradiction to the definition

of supp(µ) since

µ(Bε(z)× (X∅ \X)) = µ(supp(µ) ∩ (Bε(z)× (X∅ \X))) ≤

µ((S ∩Bε(z))× (X∅ \X)) = µ({z} × (X∅ \X)) ≤ ν({z}) = 0,
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and supp(µ) \ (Bε(z)× (X∅ \X)) is closed and strictly contained in supp(µ). Thus,

S has no isolated points and is, therefore, perfect.

The following lemma shows that M , S and W cover Z, i.e. any type has an

occupation. The idea is that µ((M ∪ S ∪W ) × X∅) = µ(Z × X∅) and δ((M ∪ S ∪

W ) × C) = δ(Z × C) mostly by the definition of M , S and W , and then feasibility

implies that ν(M ∪ S ∪W ) = ν(Z). Thus, Z = supp(ν) =M ∪ S ∪W .

Lemma 23 Z =M ∪ S ∪W .

Proof. Let K =M ∪ S ∪W and note that we have that K ⊆ Z by definition.

Conversely, note first that K is closed by Lemmas 20, 21 and 22. Further-

more, letting π(supp(µ)) be the projection of supp(µ) in Z, we have that supp(µ) ⊆

π(supp(µ))×X∅ = (M ∪ S)×X∅ ⊆ K ×X∅ and, hence,

µ(K ×X∅) ≥ µ(supp(µ)) = µ(supp(µ) ∩ (Z ×X∅)) = µ(Z ×X∅).

Furthermore, for each (z, δ) ∈ supp(µ)∩ (Z×X), there is z′ ∈ Z such that δ = g2(z
′)

and, hence, z′ ∈ W . Thus, δ((Z \ W ) × C) = 0, δ(W × C) = δ(Z × C) and

δ(K × C) = δ(Z × C). Hence,

ν(K) = µ(K ×X) + µ(K × (X∅ \X)) +

∫
Z×X

δ(K × C)dµ(z, δ)

= µ(K ×X∅) +

∫
(Z×X)∩supp(µ)

δ(K × C)dµ(z, δ)

≥ µ(Z ×X∅) +

∫
(Z×X)∩supp(µ)

δ(Z × C)dµ(z, δ) = ν(Z).

It then follows by the definition of supp(ν) that Z = supp(ν) ⊆ K.

To complete the proof of Lemma 2, define u : Z → R by setting, for each z ∈ Z,

u(z) =


u(z) if z ∈M,

c(z) if z ∈ W,

F (z) if z ∈ S.

It follows by Lemma 18 that u is well-defined. It follows by Uz(s, 1(∅,c)) = F (z) for

each (z, c) ∈ Z × C and by Lemmas 12 and 15 that conditions 1–3 in the statement
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of the lemma hold. We have that u is continuous since M , W and S are closed (by

Lemmas 20, 21, 22), Z = M ∪ W ∪ S (by Lemma 23) and u|M , u|W and u|S are

continuous.

A.4.3 Proof of Lemma 3

Recall that u is extended to Z∅ by setting u(∅) = 0. Since ∅ is isolated, u : Z∅ → R

is continuous.

We first show that γ is an assignment. Let B be a Borel subset of Z; then

γ(B × Y∅) +

∫
Z×(B∩Y )

n(z′)dγ(z, z′) =

γ(B × Y∅) +

∫
Z×Y

1B(z
′)n(z′)dγ(z, z′) =

µ(g−1(B × Y∅)) +

∫
Z×X∗

1B(g(z, δ))n(g(z, δ))dµ(z, δ) =

µ(B ×X∗
∅ ) +

∫
Z×X∗

δ(B × C)dµ(z, δ) =

µ(B ×X∅) +

∫
Z×X

δ(B × C)dµ(z, δ) = ν(B),

where the penultimate equality follows because supp(µ) ⊆ Z×X∗
∅ and the last equality

follows because µ is a matching.

We next show that (γ, u) is stable. Note first that supp(γ) = g(supp(µ)) by

Carmona and Laohakunakorn (2024, Lemma 1) since g is an homeomorphism between

two compact spaces by Lemma 19.

Let (z, z′) ∈ supp(γ). Since supp(γ) ⊆ g(supp(µ)), (z, n(z′)1(z′,c(z′))) ∈ supp(µ).

If z′ ∈ Z, then z ∈M and z′ ∈ W . Thus,

u(z) + n(z′)u(z′) = (F (z)− c(z′))n(z′) + c(z′)n(z′) = s(z, z′).

If z′ = ∅, then z ∈ S and u(z) + n(z′)u(z′) = F (z) = s(z, ∅).

Let (z, z′) ∈ Z × Y∅. If z′ = ∅, then u(z) + n(z′)u(z′) = u(z) ≥ F (z) = s(z, ∅),

where the inequality holds since µ is stable. If z′ ̸= ∅, then s(z, z′) = F (z)n(z′).

If u(z) + n(z′)u(z′) < s(z, z′), then (F (z) − u(z′))n(z′) > u(z). Letting ε > 0 be

such that (F (z) − u(z′) − ε)n(z′) > u(z), it follows that (z′, u(z′) + ε) ∈ Tm
z (µ) and
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Uz(m,n(z
′)1(z′,u(z′)+ε)) > u(z), a contradiction to the stability of µ. Thus, u(z) +

n(z′)u(z′) ≥ s(z, z′).

A.4.4 Proof of Lemma 4

We state a general result which implies Lemma 4. Note that the definitions of a

stable and of a surplus maximizing assignment extend without change to a general

case where Z is any Polish space, Y is any closed subset of Z and s is an arbitrary

bounded and continuous real-valued function on Z × Y∅.

In the case of Lemma 4, Z is a compact metric case, Y is closed and s is continuous,

hence the lemma follows from the following result.

Theorem 7 If Z is a Polish space, Y a closed subset of Z, s : Z × Y∅ → R is

bounded and continuous and γ ∈M(Z × Y∅) is a stable assignment, then γ is surplus

maximizing.

Proof. Let U = {u ∈ C(Z∅) : u(z)+n(z
′)u(z′) ≥ s(z, z′) for each (z, z′) ∈ Z×Y∅}

and γ ∈ Γ be stable. Then there is u ∈ U such that u(z) + n(z′)u(z′) = s(z, z′) for

each (z, z′) ∈ supp(γ) and, hence,∫
Z×Y∅

s(z, z′)dγ(z, z′) =

∫
Z×Y∅

u(z)dγ(z, z′) +

∫
Z×Y∅

n(z′)u(z′)dγ(z, z′)

=

∫
Z

udγZ +

∫
Y

udγY,n =

∫
Z

udν.

(9)

Suppose that there is γ′ ∈ Γ such that
∫
Z×Y∅

sdγ′ >
∫
Z×Y∅

sdγ. Since u ∈ U , we

have that u(z) + n(z′)u(z′) ≥ s(z, z′) for each (z, z) ∈ Z × Y∅ and it follows as in (9)

that
∫
Z×Y∅

sdγ′ ≤
∫
Z
udν. Thus,∫

Z×Y∅

sdγ′ ≤
∫
Z

udν =

∫
Z×Y∅

sdγ <

∫
Z×Yes

sdγ′,

a contradiction. Hence, for each γ′ ∈ Γ,
∫
Z×Y∅

sdγ′ ≤
∫
Z×Y∅

sdγ.

A.4.5 Proof of Lemma 5

We state a general result which implies Lemma 5. Note that the definitions of a

surplus maximizing assignment and of a s-monotone set extend without change to a
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general case where Z is any Polish space, Y is any closed subset of Z and s is an

arbitrary bounded and continuous real-valued function on Z × Y∅.

In the case of Lemma 5, Z is a compact metric case, Y is closed and s is continuous,

hence the lemma follows from the following result.

Theorem 8 If Z is a Polish space, Y a closed subset of Z, s : Z × Y∅ → R is

bounded and continuous and γ ∈ M(Z × Y∅) is surplus maximizing, then supp(γ) is

s-monotone.

Proof. We start by establishing two preliminary claims. The first is a straight-

forward variation of Lemma 4.1 in Beiglböck and Griessler (2019). For each l ∈ N,

1 ≤ i ≤ l and Polish space D, πi : Dl → D is the projection of Dl onto the ith

coordinate.

Claim 8 If (D,m) is a Polish measure space, 0 < m(D) < ∞, l ∈ N and K is an

analytic subset of Dl, then one of the following conditions holds:

(i) There exist m-null sets K1, . . . , Kl ⊆ E such that K ⊆ ∪l
i=1π

−1
i (Ki).

(ii) There is a measure η on El such that η(K) > 0 and η ◦ π−1
i ≤ m for each

i = 1, . . . , l.

Proof. Apply Beiglböck and Griessler (2019, Lemma 4.1) to (D,m′) where m′ =

m/m(D). If condition (i) of the lemma holds, then there exist m′-null sets, hence

m-null sets, K1, . . . , Kl ⊆ E such that K ⊆ ∪l
i=1π

−1
i (Mi). If condition (ii) of the

lemma holds, there is a measure η′ on El such that η′(M) > 0 and η′ ◦ π−1
i ≤ m′

for each i = 1, . . . , l. Letting η = m(D)η′, it follows that condition (ii) of this claim

holds.

For convenience, let D = Z × Y∅ and s(τ) =
∫
Z×Y∅

sdτ for each τ ∈ M(Z × Y∅).

For each g ∈ C(Z), let g(∅) = 0 and fg : D → R be defined by setting, for each

(z, z′) ∈ D, fg(z, z
′) = g(z)+n(z′)g(z′). Then let F = {fg : g ∈ C(Z)} and note that

F ⊆ C(D), i.e. each element of F is continuous and bounded.
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Claim 9 For each ζ, τ ∈M(D), τ1 + τ2,n = ζ1 + ζ2,n if and only if
∫
D
fdτ =

∫
D
fdζ

for each f ∈ F .

Proof. Let ζ, τ ∈ M(D). If τ1 + τ2,n = ζ1 + ζ2,n then, for each f ∈ F , it follows

that, letting g ∈ C(Z) be such that f = fg,∫
D

fdτ =

∫
Z

gdτ1 +

∫
Z

gdτ2,n =

∫
Z

gdζ1 +

∫
Z

gdζ2,n =

∫
D

fdζ.

Conversely, if
∫
D
fdτ =

∫
D
fdζ for each f ∈ F , then

∫
Z
gd(τ1 + τ2,n) =

∫
Z
gd(ζ1 +

ζ2,n) for each g ∈ C(Z); hence, by e.g. Parthasarathy (1967, Theorem 5.9, p. 39),

τ1 + τ2,n = ζ1 + ζ2,n.

Let γ be a surplus maximizing assignment. The following claim is the core of the

argument.

Claim 10 For each l ∈ N, there is a subset Sl of D such that γ(Sc
l ) = 0 and the

following holds:

for each ζ ∈M(D) with supp(ζ) ⊆ Sl, |supp(ζ)| ≤ l and ζ(D) ≤ 1, (10)

and each τ ∈M(D) with |supp(τ)| ≤ l, τ(D) ≤ l and τ1 + τ2,n = ζ1 + ζ2,n, (11)

s(ζ) ≥ s(τ). (12)

Proof. Let l ∈ N and define

K ={(d1, . . . , dl) ∈ Dl : there exist ζ, τ ∈M(D) such that

ζ(D) ≤ 1, supp(ζ) ⊆ {d1, . . . , dl},

|supp(τ)| ≤ l, τ(D) ≤ l, τ1 + τ2,n = ζ1 + ζ2,n and s(τ) > s(ζ)}.

Note that K is the projection of the set

K̂ ={(d1, . . . , dl, ζ1, . . . , ζl, d′1, . . . , d′l, τ1, . . . , τl) ∈ Dl × Rl
+ ×Dl × Rl

+ :

l∑
i=1

ζi ≤ 1,
l∑

i=1

τi ≤ l,

l∑
i=1

ζif(di) =
l∑

i=1

τif(d
′
i) for each f ∈ F and

l∑
i=1

ζis(di) <
l∑

i=1

τif(d
′
i)}.
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onto the first l coordinates by Claim 9. Since the set K̂ is Borel, it follows that K is

analytic.

We apply Claim 8 to the space (D, γ) and the set K: if (i) holds, then define

Sl = ∩l
i=1K

c
i . Then γ(Sc

l ) = γ(∪l
i=1Ki) ≤

∑l
i=1 γ(Mi) = 0. Furthermore, let ζ, τ

be such that (10) and (11) hold and assume, to get a contradiction, that (12) fails.

Then letting d1, . . . , dl be such that {d1, . . . , dl} = supp(ζ), d′1, . . . , d
′
l be such that

{d′1, . . . , d′l} = supp(τ) and, for each i = 1, . . . , l, ζi = ζ(di) and τi = τ(d′i), it follows

that (d1, . . . , dl, ζ1, . . . , ζl, d
′
1, . . . , d

′
l, τ1, . . . , τl) ∈ K̂. Thus, (d1, . . . , dl) ∈ K and there

is 1 ≤ i ≤ l such that (d1, . . . , dl) ∈ π−1
i (Mi), i.e. di ∈Mi. But this is a contradiction

since di ∈ supp(ζ) ⊆ Sl ⊆ M c
i . This contradiction shows that (12) holds and this

completes the proof of the claim when condition (i) in Claim 8 holds.

It remains to show that condition (ii) in Claim 8 cannot hold. Suppose that there

is a measure η on El as in condition (ii) in Claim 8. We may assume that η is

concentrated on K and satisfies η ◦ π−1
i ≤ γ/l for each i = 1, . . . , l; indeed, if not, use

η′ defined by setting η′(B) = η(B ∩K)/l for each Borel B ⊆ Dl.

We apply the Jankow–von Neumann selection theorem (e.g. Bogachev (2007,

Theorem 6.9.2, p. 35) to the set K̂ to define a mapping ϕ : K → Rl
+ ×Dl ×Rl

+ such

that, letting

ϕ(d) = (ζ1(d), . . . , ζl(d), d
′
1(d), . . . , d

′
l(d), τ1(d), . . . , τl(d)),

(d, ϕ(d)) ∈ K̂ for each d ∈ K, and ϕ is measurable with respect to the σ-field generated

by the analytic subsets of Dl. Setting

ζd =
l∑

i=1

ζi(d)1di and τd =
l∑

i=1

τi(d)1d′i(d),

we thus obtain kernels d 7→ ζd and d 7→ τd from Dl with the σ-field generated by its

analytic subsets to D with its Borel sets. We use these kernels to define measures ω

and ω′ on the Borel subsets of D by setting, for each Borel subset B ⊆ D,

ω(B) =

∫
ζd(B)dη(d) and ω′(B) =

∫
τd(B)dη(d).

We have that ω ≤ γ since, for each Borel B ⊆ D, letting r(e) = 1B(e) for each e ∈ D
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and noting that ζi(d) ≤ 1 for each d ∈ K and 1 ≤ i ≤ l,

ω(B) =

∫ l∑
i=1

ζi(d)1di(B)dη(d) =
l∑

i=1

∫
ζi(d)1di(B)dη(d)

≤
l∑

i=1

∫
1di(B)dη(d) =

l∑
i=1

∫
r ◦ πi(d)dη(d) =

l∑
i=1

∫
r(e)dη ◦ π−1

i (e)

=
l∑

i=1

∫
1Bdη ◦ π−1

i =
l∑

i=1

η ◦ π−1
i (B) ≤

l∑
i=1

γ(B)

l
= γ(B).

Moreover, for each f ∈ F , we have that
∫
fdτd =

∫
fdτd for each d ∈ K and, hence,∫

fdω′ =

∫ (∫
fdτd

)
dη(d) =

∫ (∫
fdζd

)
dη(d) =

∫
fdω,

where the first and last equality are justified since f is bounded, ζd(D) ≤ 1 and

τd(D) ≤ l for each d ∈ K. Similarly, since
∫
sdτd = s(τd) > s(ζd) =

∫
sdζd for each

d ∈ K and s is continuous and bounded, we obtain that

s(ω′) =

∫
sdω′ =

∫ (∫
sdτd

)
dη(d) >

∫ (∫
sdζd

)
dη(d) =

∫
sdω = s(ω).

In conclusion, γ′ = γ − ω + ω′ belongs to Γ because ω ≤ γ,
∫
fdω′ =

∫
fdω for each

f ∈ F and Claim 9, and is such that s(γ′) = s(γ)− s(ω) + s(ω′) > s(γ). But this is

a contradiction since γ is a surplus maximizing assignment.

Let S = ∩∞
l=1Sl. Then γ(Sc) = 0 and S is s-monotone. Indeed, γ(Sc) ≤∑∞

l=1 γ(S
c
l ) = 0 and let ζ ∈ M(D) be supported on finitely many points of S and

τ ∈ M(D) be finitely-supported and such that τ1 + τ2,n = ζ1 + ζ2,n. Let ζ ′ =

ζ/max{1, ζ(D)}, τ ′ = τ/max{1, ζ(D)} and l = max{|supp(ζ)|, |supp(τ)|, ⌈τ ′(D)⌉};

then |supp(ζ ′)| ≤ l, |supp(τ ′)| ≤ l, supp(ζ ′) ⊆ S ⊆ Sl, τ
′(D) ≤ l and τ ′1 + τ ′2,n =

ζ ′1 + ζ ′2,n. It then follows by the properties of Sl, i.e. (10)–(12) that s(ζ
′) ≥ s(τ ′) and,

hence, s(ζ) ≥ s(τ). Thus, S is s-monotone.

Note that any subset of an s-monotone set is s-monotone and that the closure of

an s-monotone set is also s-monotone since s is continuous; thus, any subset of S̄ is

s-monotone. Since supp(γ) ⊆ S̄, it follows that supp(γ) is s-monotone.
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A.4.6 Completing the proof of the necessity part of Theorem 2

We have that

M = {z ∈ Z : (z, z′) ∈ supp(γ) for some z′ ∈ Y },

S = {z ∈ Z : (z, ∅) ∈ supp(γ)} and

W = {z ∈ Z : (ẑ, z) ∈ supp(γ) for some ẑ ∈ Z}

since supp(γ) = g(supp(µ)) by Carmona and Laohakunakorn (2024, Lemma 1).

The following lemma shows that matching is positive assortative in the sense the

better managers have at least as good workers than worse managers.

Lemma 24 If (z, z′), (ẑ, ẑ′) ∈ Z2, (z, z′), (ẑ, ẑ′) ∈ supp(γ) and z > ẑ, then z′ ≥ ẑ′.

Proof. Suppose that z > ẑ but ẑ′ > z′. Let ζ = 1(z,z′) + 1(ẑ,ẑ′) and τ =

1(z,ẑ′)+1(ẑ,z′). Then ζ and τ are finitely-supported, supp(ζ) ⊆ supp(γ) and τZ+τY,n =

ζZ+ζY,n. Since s(τ)−s(ζ) =
(
n(ẑ′)−n(z′)

)(
F (z)−F (ẑ)

)
> 0, this contradicts Lemma

5.

Define z2 = minM .

Lemma 25 z2 exists and z2 < z̄.

Proof. It follows by Lemma 20 that z2 exists and by Corollary 2 that z2 < z̄.

The following lemma carries out the computations needed in Lemma 27 below,

which is a key part of the argument showing that M , S and W are intervals. It

consider a match (z, z′) where the manager is of type z and the workers of type z′

and a sequence of matches (ẑk, zk) such that zk → z.

Lemma 26 Let z′ ∈ Z∅, z, ẑ ∈ Z, {zk}∞k=1 ⊆ Z and {ẑk}∞k=1 ⊆ Z be such that

z′ ≤ z < zk ≤ ẑk for each k ∈ N, zk → z and ẑk → ẑ. If, for each k ∈ N,

ζk = 1(z,z′) + 1(ẑk,zk) and

τk = 1(zk,z′) +
1

n(z)
1(ẑk,z) +

(
1− 1

n(z)

)
1(ẑk,zk) +

(
n(zk)

n(z)
− 1

)
1(zk,∅),

then

lim
k

s(τk)− s(ζk)

zk − z
= f(z)

(
n(z′)− F (ẑ)− F (z)

1− F (z)

)
.
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Proof. We have that

s(ζ) = F (z)n(z′) + F (ẑk)n(zk), and

s(τ) = F (zk)n(z
′) + F (ẑk) +

(
1− 1

n(z)

)
F (ẑk)n(zk) +

(
n(zk)

n(z)
− 1

)
F (zk).

Furthermore, n′(z) = hf(z)n(z)2 and, hence,

n′(z)

n(z)
= hf(z)n(z) =

f(z)

1− F (z)
.

Then,

s(τk)− s(ζk)

zk − z
=
F (zk)− F (z)

zk − z
n(z′)− F (ẑk)

n(z)

n(zk)− n(z)

zk − z
+
n(zk)− n(z)

zk − z

F (zk)

n(z)

→ f(z)n(z′)− (F (ẑ)− F (z))
n′(z)

n(z)

= f(z)

(
n(z′)− F (ẑ)− F (z)

1− F (z)

)
.

Lemma 27 shows that if there are managers of type z, then all individuals slightly

more knowledgeable than z must be managers.

Lemma 27 For each z ∈M\{z̄}, there exists ε > 0 such that (z, z+ε) ⊆M\(S∪W ).

Proof. Suppose not; then there exists a sequence {zk}∞k=1 such that, for each

k ∈ N, zk > z, zk ∈ (M \ (S ∪W ))c = M c ∪ (S ∪W ) and zk → z; thus, zk ∈ S ∪W

by Lemma 23. Let z′ ∈ Z be such that (z, z′) ∈ supp(γ).

Suppose that zk ∈ S for some k ∈ N and let ζ = 1(z,z′) + 1(zk,∅) and τ = 1(zk,z′) +

1(z,∅). Then ζ and τ are finitely-supported, supp(ζ) ⊆ supp(γ) and τZ + τY,n =

ζZ + ζY,n. Since s(τ)− s(ζ) =
(
n(z′)− 1

)(
F (zk)−F (z)

)
> 0, this contradicts Lemma

5.

Thus, zk ̸∈ S for each k ∈ N and, hence, zk ∈ W for each k ∈ N by Lemma 23. For

each k ∈ N, let ẑk ∈ Z be such that (ẑk, zk) ∈ supp(γ). Since Z is compact, we may

assume that {ẑk}∞k=1 converges; let ẑ = limk ẑk. For each k ∈ N, let ζk = 1(z,z′)+1(ẑk,zk)

and

τk = 1(zk,z′) +
1

n(z)
1(ẑk,z) +

(
1− 1

n(z)

)
1(ẑk,zk) +

(
n(zk)

n(z)
− 1

)
1(zk,∅).
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Then ζk and τk are finitely-supported, supp(ζk) ⊆ supp(γ), τk,Z+τk,Y,n = ζk,Z+ζk,Y,n,

and, by Lemma 26,

lim
k

s(τk)− s(ζk)

zk − z
= f(z)

(
1

h(1− F (z′))
− F (ẑ)− F (z)

1− F (z)

)
≥ f(z)

(
1

h
− 1

)
> 0.

Thus, s(τk)− s(ζk) > 0 for each k sufficiently large, contradicting Lemma 5.

The following lemma shows that M and S ∪W are intervals and that, except for

z2, any workers and self-employed are less knowledgeable than managers. It proof

simply extends globally the local conclusion of Lemma 27.

Lemma 28 M = [z2, z̄] and S ∪W = [0, z2].

Proof. Let ε̄ = sup{ε > 0 : (z2, z2 + ε) ⊆ M \ (S ∪W )}. Such ε̄ exists because

{ε > 0 : (z2, z2 + ε) ⊆ M \ (S ∪ W )} is nonempty by Lemma 27 and is bounded

above by z̄ − z2. We then have that (z2, z2 + ε̄) ⊆ M \ (S ∪W ) by the definition of

ε̄. Indeed, each z ∈ (z2, z2 + ε̄) belongs to M \ (S ∪W ) since, letting ε > 0 be such

that z < z2 + ε and ε < ε̄, it follows that z ∈ (z2, z2 + ε) ⊆M \ (S ∪W ).

Furthermore, z2 + ε̄ ∈ M \ (S ∪W ). We have that z2 + ε̄ ∈ M since M is closed

by Lemma 20 and every z < z2 + ε belongs to M ; then the claim clearly holds by

Lemma 1 if ε̄ = z̄ − z2. Thus, consider ε̄ < z̄ − z2 and suppose that z2 + ε̄ ∈ S ∪W .

Then, letting η > 0 be such that (z2 + ε̄, z2 + ε̄+ η) ⊆M \ (S ∪W ), which exists by

Lemma 27, it follows that z2 + ε̄ is an isolated point of S or W . But this contradicts

Lemmas 21 and 22.

It follows that (z2, z2+ ε̄] ⊆M \ (S ∪W ). If ε̄ < z̄− z2, then (z2+ ε̄, z2+ ε̄+ η) ⊆

M \ (S ∪W ) for some η > 0 by Lemma 27 and, hence, (z2, z2+ ε̄+ η) ⊆M \ (S ∪W ),

contradicting the definition of ε̄. Thus, it follows that ε̄ = z̄−z2 and thatM\(S∪W ) =

(z2, z̄]. It follows that S∪W ⊆ [0, z2] and, in fact, that S∪W = [0, z2] andM = [z2, z̄]

since M ∪ S ∪W = Z by Lemma 23, M is closed by Lemma 20 and S ∪W is closed

by Lemmas 21 and 22.

Let z1 = minS when S is nonempty and z1 = z2 otherwise.

Lemma 29 z1 ≤ z2 and S ̸= ∅ if and only if z1 < z2.
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Proof. It follows by Lemma 28 that z1 ≤ z2.

The definition of z1 implies that S ̸= ∅ if z1 < z2. For the converse, suppose that

S ̸= ∅ and z1 = z2. Then S = {z2} and (z2, ∅) ∈ supp(γ) by the definition of S.

Since γ({(z2, ∅)}) ≤ ν({z2}) = 0, it follows that supp(γ) ∩ (Z × Y ) is closed and a

strict subset of supp(γ) with γ(supp(γ) ∩ (Z × Y )) = γ(supp(γ)). This contradicts

the definition of supp(γ) and shows that z1 < z2.

Lemma 27 shows that if all individuals of type z are self-employed, then all indi-

viduals slightly more knowledgeable than z must be self-employed.

Lemma 30 If S ̸= ∅, then, for each z ∈ S \ {z2}, there exists 0 < ε < z2 − z such

that (z, z + ε) ⊆ S \W .

Proof. Consider first the case where z ∈ W and (z̄, z) ∈ supp(γ). In this case, let

0 < ε < z2−z. If there is z′ ∈ (z, z+ε)∩Sc, then there is an open neighborhood V of

z′ such that γ(V × {∅}) = 0. We may assume that V ⊆ (z, z2). Then V ∩M = ∅ by

Lemma 28 and, hence, γ(V ×Y ) = 0. Furthermore, for each z̃ > z, if (ẑ, z̃) ∈ supp(µ),

then ẑ = z̄ by Lemma 24. Thus,

0 < ν(V ) = γ(V × Y ) + µ(V × {∅}) +
∫
Z×V

n(z′)dγ(z, z′)

=

∫
(Z\{z̄})×V

n(z′)dγ(z, z′) = 0,

a contradiction. Thus, (z, z + ε) ⊆ S.

Furthermore, (z, z + ε) ⊆ W c. Indeed, if (z, z + ε) ∩W ̸= ∅, then supp(γ) ∩ (Z ×

(z, z + ε)) ̸= ∅. Lemma 24 implies that supp(γ) ∩ (Z × (z, z + ε)) ⊆ {z̄} × X and,

hence,

γ(Z × (z, z + ε)) = γ(supp(γ) ∩ (Z × (z, z + ε))) ≤ γ({z̄} × Y ) = 0.

Since Z × (z, z + ε) is open, it follows that supp(γ) \ (Z × (z, z + ε)) is closed,

strictly contained in supp(γ) and γ(supp(γ)) = γ(supp(γ)\ (Z× (z, z+ε))). But this

contradicts the definition of supp(γ). Thus, (z, z + ε) ⊆ W c and this, together what

has been shown above, implies that (z, z + ε) ⊆ S \W .
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Hence, we may consider the case where z ̸∈ W or (z̄, z) ̸∈ supp(γ). Suppose that

there is no 0 < ε < z2 − z such that (z, z + ε) ⊆ S \W . Then there exists a sequence

{zk}∞k=1 such that, for each k ∈ N, z < zk < z2, zk ∈ Sc ∪W and zk → z. Thus,

zk ∈ W for each k ∈ N since M = [z2, z̄] and Z =M ∪ S ∪W by Lemmas 23 and 28.

Hence, z ∈ W since W is closed by Lemma 21 and it follows that (z̄, z) ̸∈ supp(γ).

Let z′ = ∅ and, for each k ∈ N, let ẑk ∈ Z be such that (ẑk, zk) ∈ supp(γ). Since

Z is compact, we may assume that {ẑk}∞k=1 converges; let ẑ = limk ẑk. Then ẑ < z̄

since (ẑ, z) ∈ supp(γ) and (z̄, z) ̸∈ supp(γ).

For each k ∈ N, let ζk = 1(z,z′) + 1(ẑk,zk) and

τk = 1(zk,z′) +
1

n(z)
1(ẑk,z) +

(
1− 1

n(z)

)
1(ẑk,zk) +

(
n(zk)

n(z)
− 1

)
1(zk,∅).

Then ζk and τk are finitely-supported, supp(ζk) ⊆ supp(γ), τk,Z+τk,Y,n = ζk,Z+ζk,Y,n,

and, by Lemma 26,

lim
k

s(τk)− s(ζk)

zk − z
= f(z)

(
1− F (ẑ)− F (z)

1− F (z)

)
> f(z)(1− 1) = 0.

Thus, s(τk) − s(ζk) > 0 for each k sufficiently large, contradicting Lemma 5. This

contradiction shows that there exists 0 < ε < z2 − z such that (z, z + ε) ⊆ S \W .

The local conclusion of Lemma 30 extends globally and this shows that, when

S is nonempty and with the exception of z1, workers are less knowledgeable than

managers.

Lemma 31 W = [0, z1] and, if S ̸= ∅, then S = [z1, z2].

Proof. We can assume that S is nonempty since otherwise the conclusion follows

from Lemma 28. Then z1 < z2 by Lemma 29.

Let ε̄ = sup{ε > 0 : (z1, z1 + ε) ⊆ S \ W}. Such ε̄ exists because {ε > 0 :

(z1, z1+ε) ⊆ S \W} is nonempty by Lemma 30 and is bounded above by z2− z1. We

then have that (z1, z1+ ε̄) ⊆ S \W by the definition of ε̄. Indeed, each z ∈ (z1, z1+ ε̄)

belongs to S \W since, letting ε > 0 be such that z < z1 + ε and ε < ε̄, it follows

that z ∈ (z1, z1 + ε) ⊆ S \W .

We next claim that ε̄ = z2 − z1. Suppose not; then ε̄ < z2 − z1. We have that

z1 + ε̄ ∈ S since S is closed. If z1 + ε̄ ∈ W , then, letting η > 0 be such that
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(z1 + ε̄, z1 + ε̄+ η) ⊆ S \W , it follows that z1 + ε̄ is an isolated point of W . But this

contradicts Lemma 21. Thus, (z1, z1+ ε̄] ⊆ S\W . But then (z1+ ε̄, z1+ ε̄+η) ⊆ S\W

for some η > 0 and, hence, (z1, z1 + ε̄+ η) ⊆ S \W , contradicting the definition of ε̄.

Thus, it follows that ε̄ = z2 − z1.

It follows from ε̄ = z2 − z1 that (z1, z2) ⊆ S \W . We have that z1, z2 ∈ S since S

is closed, hence S = [z1, z2]. Then [0, z1) ⊆ W by Lemma 28 and that z1 ∈ W since

W is closed. Since (z1, z2) ⊆ W c and W is perfect, it follows that z2 ̸∈ W . Thus,

W = [0, z1] and S = [z1, z2].

The following lemma asserts that z1 > 0; this happens because there is a positive

measure of managers (since z2 < z̄) and, hence, there must be a positive measure of

workers.

Lemma 32 z1 > 0.

Proof. Suppose that z1 = 0. Then W = {0} and supp(γ) ∩ (Z × Y ) ⊆ Z × {0}.

Thus,

ν(Z) = ν(Z \ {0}) = γ((Z \ {0})× Y∅) +

∫
Z×(Y \{0})

n(z′)dγ(z, z′)

= γ((Z \ {0})× Y∅).

Furthermore,

γ((Z \ {0})× Y∅) ≤ γ(Z × Y∅) ≤ γ(Z × Y∅) +

∫
Z×Y

n(z′)dγ(z, z′) = ν(Z).

Hence, γ(Z × Y∅) = ν(Z). This then implies that
∫
Z×Y

n(z′)dγ(z, z′) = 0. But this

contradicts∫
Z×Y

n(z′)dγ(z, z′) =

∫
supp(γ)∩(Z×Y )

n(z′)dγ(z, z′) = n(0)γ(supp(γ) ∩ (Z × Y ))

=
γ(Z × Y )

h
=
µ(Z ×X)

h
> 0,

where the last inequality follows by Lemma 11.

Define ϕ :M ⇒ W by setting, for each z ∈M ,

ϕ(z) = {z′ ∈ Z : (z, z′) ∈ supp(γ)}.
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Then ϕ is nonempty-valued by the definition of M , ϕ(M) = W by the definition of

W and ϕ has a closed graph since supp(γ) is closed.

Let Q = {z ∈ M : ϕ(z) is not a singleton}. The correspondence ϕ is increasing

due to positive assortativeness and, hence, the set Q of (lower hemi) discontinuities

of ϕ is countable.

Lemma 33 Q is countable.

Proof. For each z ∈ Q, let r(z) ∈ Q be such that minϕ(z) < r(z) < maxϕ(z).

This defines a function r : Q → Q which, as we now claim, is strictly increasing.

Indeed, if z, ẑ ∈ Q are such that z < ẑ, then (z,maxϕ(z)) ∈ supp(γ), (ẑ,minϕ(ẑ)) ∈

supp(γ) and, hence, maxϕ(z) ≤ minϕ(ẑ) by Lemma 24. Thus, r(z) < maxϕ(z) ≤

minϕ(ẑ) < r(ẑ). Thus, r maps Q in a one-to-one way to a subset of Q, implying that

Q is countable.

We next show that each worker type is matched with a unique manager type. The

reason is roughly that if worker type z′ were matched with manager types z∗ and z̃,

then positive assortativeness implies that type z′ is matched with all types in [z∗, z̃];

furthermore, those types in [z∗, z̃] \Q are only matched with z′, which means that a

zero measure of workers (those with type z′) is matched with a positive measure of

managers (those with type in [z∗, z̃] \Q).

Lemma 34 For each z ∈ W , there exists z∗ ∈ Z such that {ẑ ∈ Z : (ẑ, z) ∈

supp(γ)} = {z∗}.

Proof. The definition of W implies that {ẑ ∈ Z : (ẑ, z) ∈ supp(γ)} is nonempty.

Suppose that the conclusion of the lemma fails; then let z′ ∈ W and z∗, z̃ ∈ Z be

such that z∗, z̃ ∈ {ẑ ∈ Z : (ẑ, z′) ∈ supp(γ)} and z∗ < z̃. Since z∗, z̃ ∈ M by the

definition of M and M is an interval by Lemma 28, [z∗, z̃] ⊆ M . Let z ∈ (z∗, z̃) and

z̃′ ∈ Z be such that (z, z̃′) ∈ supp(γ). Lemma 24 implies that z′ ≤ z̃′ ≤ z′, hence

z̃′ = z′. Thus, z ∈ {ẑ ∈ Z : (ẑ, z′) ∈ supp(γ)}; since z is arbitrary, it follows that

[z∗, z̃] ⊆ {ẑ ∈ Z : (ẑ, z′) ∈ supp(γ)}.
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We have that (z∗, z̃) \ Q ⊆ M \ (W ∪ S) by Lemma 28 and ϕ(z) = {z′} for each

z ∈ (z∗, z̃) \Q. Thus,

ν([z∗, z̃] \Q) = ν((z∗, z̃) \Q) = γ(((z∗, z̃) \Q)× Y∅) = γ(((z∗, z̃) \Q)× {z′}).

Since 0 = ν({z′}) ≥
∫
Z×{z′} n(ẑ)dγ(z, ẑ), it follows that

∫
Z×{z′} n(ẑ)dγ(z, ẑ) = 0.

Thus,

0 =

∫
Z×{z′}

n(ẑ)dγ(z, ẑ) = n(z′)γ(Z × {z′}) ≥

n(z′)γ(((z∗, z̃) \Q)× {z′}) = n(z′)ν([z∗, z̃] \Q) = n(z′)ν([z∗, z̃]) > 0,

a contradiction.

It then follows that matching is strictly positive assortative in the sense the better

managers have better workers.

Lemma 35 If (z, z′), (ẑ, ẑ′) ∈ Z2, (z, z′), (ẑ, ẑ′) ∈ supp(γ) and z > ẑ, then z′ > ẑ′.

Proof. We have that z′ ≥ ẑ′ by Lemma 24 and that z′ ̸= ẑ′ by Lemma 34. Thus,

z′ > ẑ′.

Strict positive assortativeness then implies that ϕ is a function, i.e. Q = ∅. This

happens because if manager type z were matched with worker types z∗ and z̃, then

strict positive assortativeness implies that type z is matched with all types in [z∗, z̃]

and that these types are not matched with any other manager type. But then a

zero measure of managers (those with type z) is matched with a positive measure of

workers (those with type in [z∗, z̃]).

Lemma 36 ϕ is a continuous and strictly increasing function. Furthermore, ϕ(z2) =

0 and ϕ(z̄) = z1.

Proof. We first show that ϕ(z) is a singleton for each z ∈M , i.e. Q = ∅. Suppose

not; then let z ∈ M and z∗, z̃ ∈ ϕ(z) be such that z∗ < z̃. Since W is an interval by

Lemma 31, [z∗, z̃] ⊆ W . Let z′ ∈ (z∗, z̃) and ẑ ∈ M be such that z′ ∈ ϕ(ẑ). Lemma

35 then implies that z′ > z̃ if ẑ > z and that z′ < z∗ if ẑ < z. Thus, ẑ = z and

z′ ∈ ϕ(z); since z′ is arbitrary, it follows that [z∗, z̃] ⊆ ϕ(z).
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We have that [z∗, z̃] ∩ ϕ(x) = ∅ for each x ∈ M \ {z}. Indeed, Lemma 35 implies

that minϕ(x) > z̃ for each x > z and that maxϕ(x) < z∗ for each x < z. Since

(z∗, z̃) ⊆ W \ (M ∪ S), it follows that

ν([z∗, z̃]) = γ([z∗, z̃]×Y∅)+
∫
Z×[z∗,z̃]

n(z′)dγ(z, z′) = 0+

∫
(Z\{z})×[z∗,z̃]

n(z′)dγ(z, z′) = 0,

a contradiction to ν([z∗, z̃]) > 0. This contradiction shows that ϕ(z) is a singleton for

each z ∈M .

It then follows that ϕ is a function. Since the graph of ϕ is closed, it follows that

ϕ is continuous. Lemma 35 implies that ϕ is strictly increasing.

It follows from ϕ(M) = W that ϕ is onto. This then implies that ϕ(z2) = 0 and

ϕ(z̄) = z1 since ϕ is strictly increasing.

The properties of ϕ above are then used to show that the wage function c is

differentiable.

Lemma 37 c is differentiable and, for each z ∈ W , c′(z) = f(z)F (ϕ−1(z))−c(z)
1−F (z)

.

Proof. Let z ∈ W = [0, z1] and {zk}∞k=1 be such that, for each k ∈ N, zk ∈ W ,

zk ̸= z and zk → z. Let {ẑk}∞k=1 be such that ẑk = ϕ−1(zk) for each k ∈ N. We

have that ϕ−1 exists and is continuous by Lemma 36 and since M is compact. Thus,

ẑk → ϕ−1(z).

The stability of µ implies that, for each k ∈ N, F (ϕ−1(z))−c(z)
h(1−F (z))

≥ F (ϕ−1(z))−c(zk)
h(1−F (zk))

.

Thus, a simple manipulation of this expression implies that

c(zk)− c(z)

zk − z
≥ F (zk)− F (z)

zk − z

F (ϕ−1(z))− c(zk)

1− F (zk)
;

hence, lim infk
c(zk)−c(z)

zk−z
≥ f(z)F (ϕ−1(z))−c(z)

1−F (z)
since c is continuous by Lemma 14.

Analogously, the stability of µ implies that, for each k ∈ N, F (ẑk)−c(zk)
h(1−F (zk))

≥ F (ẑk)−c(z)
h(1−F (z))

.

Thus,
c(zk)− c(z)

zk − z
≤ F (zk)− F (z)

zk − z

F (ẑk)− c(zk)

1− F (zk)
;

hence, lim supk
c(zk)−c(z)

zk−z
≤ f(z)F (ϕ−1(z))−c(z)

1−F (z)
. It thus follows that

lim
k

c(zk)− c(z)

zk − z
= f(z)

F (ϕ−1(z))− c(z)

1− F (z)
.

66



Hence, c is differentiable and, for each z ∈ W , c′(z) = f(z)F (ϕ−1(z))−c(z)
1−F (z)

.

We have shown so far that types in [z1, z2] are self-employed and, thus, matched

with 1(∅,0) and types in [z2, z̄] are managers and matched with workers of type ϕ(z),

thus, with n(ϕ(z))1(ϕ(z),c(ϕ(z))). Hence, the matching µ is fully described by the dis-

tribution ν of types and the function σ.

Lemma 38 µ = ν ◦ σ−1.

Proof. Let B be a Borel subset of Z ×X∅. Then

ν ◦ σ−1(B) = ν({z ∈ Z : σ(z) ∈ B})

= ν({z ∈ [z1, z2) : σ(z) ∈ B}) + ν({z ∈ [z2, z̄] : σ(z) ∈ B}).

Furthermore,

µ(B) = µ(supp(µ) ∩B)

= µ(supp(µ) ∩B ∩ (Z × {1(∅,0)})) + µ(supp(µ) ∩B ∩ (Z ×X))

= µ({z ∈ [z1, z2] : σ(z) ∈ B} × {1(∅,0)}) + µ({z ∈ [z2, z̄] : σ(z) ∈ B} ×X).

Let D̂ = {z ∈ (z1, z2) : σ(z) ∈ B} and note that

ν({z ∈ [z1, z2) : σ(z) ∈ B}) = ν(D̂)

= µ(D̂ ×X) + µ({z ∈ (z1, z2) : σ(z) ∈ B} × (X∅ \X)) +

∫
Z×X

δ(D̂ × C)dµ(z, δ)

= 0 + µ({z ∈ (z1, z2) : σ(z) ∈ B} × {1(∅,0)}) + 0

= µ({z ∈ [z1, z2] : σ(z) ∈ B} × {1(∅,0)}).

Let D = {z ∈ (z2, z̄] : σ(z) ∈ B} and note that

ν({z ∈ [z2, z̄] : σ(z) ∈ B}) = ν(D)

= µ(D ×X) + µ(D × (X∅ \X)) +

∫
Z×X

δ(D × C)dµ(z, δ)

= µ(D ×X) + 0 + 0 = µ({z ∈ [z2, z̄] : σ(z) ∈ B} ×X).

Thus ν ◦ σ−1(B) = µ(B). Since B is arbitrary, ν ◦ σ−1 = µ.
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Let ν(z′) = ν([0, z′]) for each z′ ∈ Z. For each z ≥ z2, individuals of knowledge

up to ϕ(z) are workers and are matched with managers of knowledge in [z2, z], hence

their measure ν(ϕ(z)) equals the measure of workers hired by managers of knowledge

between z2 and z, which is
∫
[z2,z]

1
h(1−F (ϕ(x)))

dν(x) =
∫ z

z2

θ(x)
h(1−F (ϕ(x)))

dx.

Lemma 39 For each z ∈ [z2, z̄], ν(ϕ(z)) =
∫ z

z2

θ(x)
h(1−F (ϕ(x)))

dx.

Proof. Let z ∈ [z2, z̄] and let τ : Z × X → R be defined by setting, for each

(z, δ) ∈ Z ×X, τ(z, δ) = δ([0, ϕ(z)]× C). It follows by Lemma 38 that∫
Z×X

δ([0, ϕ(z)]× C)dµ(x, δ) =

∫
[z2,z̄]

τ(σ(x))dν(x) =

∫
[z2,z]

1

h(1− F (ϕ(x)))
dν(x).

Thus,

ν([0, ϕ(z)]) =

∫
[z2,z]

1

h(1− F (ϕ(x)))
dν(x)

since ν([0, ϕ(z)]) = ν([0, ϕ(z))) and [0, ϕ(z)) ⊆ W \ (S∪M). Since ν has a continuous

density θ, it follows that ν(ϕ(z)) = ν([0, ϕ(z)]) =
∫ z

z2

θ(x)
h(1−F (ϕ(x)))

dx for each z ∈ [z2, z̄].

The feasibility of the matching µ is fully captured by the equality ν(ϕ(z)) =∫ z

z2

θ(x)
h(1−F (ϕ(x)))

dx for each z ∈ [z2, z̄] as stated in the previous lemma. It can be

equivalently stated in terms of the derivative of ϕ as the following lemma shows.

Lemma 40 ϕ is differentiable and, for each z ∈ [z2, z̄],

ϕ′(z) =
θ(z)

h(1− F (ϕ(z)))θ(ϕ(z))
.

Proof. The function z′ 7→ ν(z′) is strictly increasing; let λ : [0, ν(z̄)] → Z be its

inverse. It then follows by Lemma 39 that, for each z ∈ [z2, z̄],

ϕ(z) = λ

(∫ z

z2

θ(x)

h(1− F (ϕ(x)))
dx

)
.

We have that z 7→ ν(z) is differentiable and that its derivative at z ∈ Z is θ(z).

Then λ is differentiable and λ′(x) = 1
θ(λ(x))

for each x ∈ [0, ν(z̄)]. Let ζ : [z2, z̄] →

R be defined by setting, for each z ∈ [z2, z̄], ζ(z) =
∫ z

z2

θ(x)
h(1−F (ϕ(x)))

dx. Then ζ is

differentiable with ζ ′(z) = θ(z)
h(1−F (ϕ(z)))

for each z ∈ [z2, z̄]. Since ϕ = λ ◦ ζ, it follows
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that ϕ is differentiable and that, for each z ∈ [z2, z̄], ϕ
′(z) = θ(z)

h(1−F (ϕ(z)))θ(λ(ζ(z)))
.

Since ζ(z) = ν(ϕ(z)) by Lemma 39, we obtain that λ(ζ(z)) = ϕ(z) and, hence,

ϕ′(z) = θ(z)
h(1−F (ϕ(z)))θ(ϕ(z))

.

The following two results show that individuals who belong to two of the sets

M , S and W must be indifferent between the corresponding occupations. Lemma 41

considers the case where there are self-employed individuals, in which case z1 < z2,

z1 ∈ W ∩ S and z2 ∈ S ∩M . Consequently, those with knowledge z1 are indifferent

between being a worker or self-employed and those with knowledge z2 are indifferent

between being a manager or self-employed.

Lemma 41 If S ̸= ∅, then c(z1) = F (z1) and c(0) = (1− h)F (z2).

Proof. It follows from (∅, 0) ∈ T s
z1
(µ), ϕ(z̄) = z1 and z1 ∈ W that c(z1) =

Uz1(w, 1(z̄,c(z1))) ≥ Uz1(s, 1(∅,0)) = F (z1). Similarly, (∅, 0) ∈ T s
z2
(µ), z2 ∈ M and

ϕ(z2) = 0 that F (z2)−c(0)
h

= Uz2(m, 0) ≥ Uz2(s, 1(∅,0)) = F (z2).

Suppose that c(z1) > F (z1) and let ε > 0 be such that c(z1) − ε > F (z1). Then

(z1, c(z1) − ε) ∈ Tm
z̄ (µ) (since z1 ∈ S) and Uz̄(m,n(z1)1(z1,c(z1)−ε)) = F (z̄)−c(z1)+ε

h(1−F (z1))
>

F (z̄)−c(z1)
h(1−F (z1))

= Uz̄(m, z1). But this contradicts the stability of µ since z̄ ∈ M . Hence

c(z1) ≤ F (z1) and, thus, c(z1) = F (z1).

Suppose that F (z2)−c(0)
h

> F (z2) and let ε > 0 be such that F (z2)−c(0)−ε
h

> F (z2).

Then (0, c(0) + ε) ∈ Tm
z2
(µ) (since 0 ∈ W ) and Uz2(m,n(0)1(0,c(0)+ε)) > Uz2(s, 1(∅,0)).

But this contradicts the stability of µ since z2 ∈ S. Hence F (z2)−c(0)
h

≤ F (z2) and,

thus, c(0) = (1− h)F (z2).

The following lemma considers the case where there are no self-employed individ-

uals, in which case z1 = z2 and z2 ∈ W ∩M . Consequently, those with knowledge z2

are indifferent between being a worker or a manager.

Lemma 42 If S = ∅, then c(z2) = F (z2)−c(0)
h

≥ F (z2).

Proof. We have that ϕ(z̄) = z2 and z2 ∈ W ∩M since S = ∅. It follows from

(∅, 0) ∈ T s
z2
(µ), z2 ∈ M and ϕ(z2) = 0 that F (z2)−c(0)

h
= Uz2(m, 0) ≥ Uz2(s, 1(∅,0)) =

F (z2).
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Suppose that c(z2) >
F (z2)−c(0)

h
and let ε > 0 be such that c(z2) − ε > F (z2)−c(0)

h
.

Then (z2, c(z2)− ε) ∈ Tm
z̄ (µ) (since z2 ∈M) and Uz̄(m,n(z2)1(z2,c(z2)−ε)) > Uz̄(m, z2).

But this contradicts the stability of µ since z̄ ∈M . Hence c(z2) ≤ F (z2)−c(0)
h

.

Suppose that F (z2)−c(0)
h

> c(z2) and let ε > 0 be such that F (z2)−c(0)−ε
h

> c(z2).

Then (0, c(0)+ε) ∈ Tm
z2
(µ) (since 0 ∈ W ) and Uz2(m,n(0)1(0,c(0)+ε)) > Uz2(w, 1(z̄,c(z2))).

But this contradicts the stability of µ since z2 ∈ W . Hence F (z2)−c(0)
h

≤ c(z2) and,

thus, F (z2)−c(0)
h

= c(z2).

The necessity part of Theorem 2 then follows by Lemmas 13, 25, 28, 29, 31, 32,

37 and 36–42.

A.5 Proof of Theorem 2: Sufficiency

A.5.1 Proof of Lemma 6

Let (z1, z2, ϕ, c) and (ẑ1, ẑ2, ϕ̂, ĉ) satisfy the conditions 1–8 in Theorem 2.

Recall that ν(z) = ν([0, z]) =
∫ z

0
θ(x)dx for each z ∈ Z. Thus, ν ′(z) = θ(z) for

each z ∈ Z. The following lemma applies the fundamental theorem of calculus to the

function ν ◦ ϕ.

Lemma 43 For each z ∈ [z2, z̄], ν(ϕ(z)) =
∫ z

z2

θ(x)
h(1−F (ϕ(x)))

dx.

Proof. For each z ∈ [z2, z̄], ν ◦ ϕ′(z) = θ(ϕ(z))ϕ′(z) = θ(z)
h(1−F (ϕ(z)))

. Since

ν(ϕ(z2)) = ν(0) = 0, it follows that ν(ϕ(z)) =
∫ z

z2
ν ◦ ϕ′(x)dx =

∫ z

z2

θ(x)
h(1−F (ϕ(x)))

dx

for each z ∈ [z2, z̄].

The following is the key technical lemma in the proof of Lemma 6. It considers

two solutions of initial value problems that differ (at most) on the initial conditions,

and shows that if they coincide at some point and one of them is strictly increasing,

then they must coincide everywhere.

Lemma 44 Let a, b, â, b̂ ∈ R be such that a < b and â < b̂, G : [a, b]× [â, b̂] → R be

continuous and such that (z, x) 7→ ∂G(z,x)
∂x

is continuous, g : [a, b] → [â, b̂] be a solution

to the initial value problem x′ = G(z, x) and x(a) = g(a) and ĝ : [a, b] → [â, b̂] be
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a solution to the initial value problem x′ = G(z, x) and x(a) = ĝ(a). If g is strictly

increasing and there exists z0 ∈ [a, b] such that g(z0) = ĝ(z0), then g = ĝ.

Proof. Let g be strictly increasing and z0 ∈ [a, b] be such that g(z0) = ĝ(z0). We

first show that g(z) = ĝ(z) for each z ≥ z0. If z0 = b, then this conclusion holds;

hence, we may assume that z0 < b.

Suppose that {z ∈ [z0, b] : g(z) ̸= ĝ(z)} ≠ ∅ and let z∗ = inf{z ∈ [z0, b] :

g(z) ̸= ĝ(z)}. Then g(z∗) = ĝ(z∗): this is clear if z∗ = z0 and, if z∗ > z0, then

z∗ ∈ {z ∈ [a, b] : g(z) = ĝ(z)} since this set is closed (due to the continuity of g and

ĝ, which follows from the fact that they are solutions to an initial value problem) and

g(z) = ĝ(z) for each z0 ≤ z < z∗. Furthermore, z∗ < b since otherwise the definition

of z∗ implies that {z ∈ [z0, b] : g(z) ̸= ĝ(z)} = ∅.

We have that g(z∗) < g(b) ≤ b̂ since g is strictly increasing. Let η > 0 be

such that g(z∗) + η ≤ b̂ and let, by the continuity of g and ĝ, ε > 0 be such that

max{g(z), ĝ(z)} ≤ g(z∗)+η for each z ∈ [z∗, z∗+ε]. Thus, both g and ĝ are solutions

of the initial value problem x′ = G̃(z, x) and x(z∗) = g(z∗) = ĝ(z∗), where G̃ is

the restriction of G to [z∗, z∗ + ε] × [g(z∗), g(z∗) + η]. The definition of z∗ implies

that g(z) ̸= ĝ(z) for some z ∈ (z∗, z∗ + ε). But this contradicts the Picard-Lindelöf

Theorem.29 This contradiction shows that {z ∈ [z0, b] : g(z) ̸= ĝ(z)} = ∅, i.e.

g(z) = ĝ(z) for each z ≥ z0.

We next show that g(z) = ĝ(z) for each z ≤ z0. If z0 = a, then this conclusion

holds; hence, we may assume that z0 > a.

29See Tesch (2012, Theorem 2.2, p. 38) for a statement of this result. Since this statement differs

slightly from the version we are using, here is a sketch of the proof of this result, based on DePree

and Swartz (1989, Example 3, p. 285): Let Γ = [z∗, z∗ + ε]× [g(z∗), g(z∗) + η] for convenience and

M,L > 0 be such that |G(z, x)| ≤ M and |G(z, x)−G(z, x′)| ≤ L|x− x′| for each (z, x), (z, x′) ∈ Γ;

since Γ is compact, M exists because G is continuous and L exists because ∂G
∂x is continuous. Let

δ > 0 be such that [z∗, z∗ + δ]× [g(z∗), g(z∗)+Mδ] ⊆ Γ and δL < 1, i.e. δ < min{ε, η/M, 1/L}. Let

C be the space of continuous functions on [z∗, z∗+δ] whose range is contained in [g(z∗), g(z∗)+Mδ];

then C, endowed with the sup norm, is a complete metric space. Finally, define Λ : C → C by setting,

for each λ ∈ C and z ∈ [z∗, z∗ + δ], Λ(λ)(z) = g(z∗) +
∫ z

z∗ G(y, λ(y))dy. Then, indeed Λ(λ) ∈ C and

Λ is a contraction. Thus, Λ has a unique fixed point.
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Suppose that {z ∈ [a, z0] : g(z) ̸= ĝ(z)} ̸= ∅ and let z∗ = sup{z ∈ [a, z0] :

g(z) ̸= ĝ(z)}. Then g(z∗) = ĝ(z∗): this is clear if z∗ = z0 and, if z∗ < z0, then

z∗ ∈ {z ∈ [a, b] : g(z) = ĝ(z)} since this set is closed and g(z) = ĝ(z) for each

z∗ < z ≤ z0. Furthermore, z∗ > a since otherwise the definition of z∗ implies that

{z ∈ [a, z0] : g(z) ̸= ĝ(z)} = ∅.

We have that g(z∗) > g(a) ≥ â since g is strictly increasing. Let η > 0 be

such that g(z∗) − η ≥ â and let, by the continuity of g and ĝ, ε > 0 be such

that min{g(z), ĝ(z)} ≥ g(z∗) − η for each z ∈ [z∗ − ε, z∗]. Thus, both g and ĝ

are solutions of the initial value problem x′ = G̃(z, x) and x(z∗) = g(z∗) = ĝ(z∗),

where G̃ is the restriction of G to [z∗, z∗ − ε]× [g(z∗)− η, g(z∗)]. The definition of z∗

implies that g(z) ̸= ĝ(z) for some z ∈ (z∗ − ε, z∗). But this contradicts the Picard-

Lindelöf Theorem. This contradiction shows that {z ∈ [a, z0] : g(z) ̸= ĝ(z)} = ∅, i.e.

g(z) = ĝ(z) for each z ≤ z0.

The following lemma applies Lemma 44 to conclude that it suffices to show that

z2 = ẑ2.

Lemma 45 If z2 = ẑ2, then ϕ = ϕ̂, z1 = ẑ1 and c = ĉ.

Proof. We divide the proof of this lemma in four parts.

Part 1: If z2 = ẑ2, then ϕ = ϕ̂ and z1 = ẑ1.

Let z̃1 = max{z1, ẑ1} and G : [z2, z̄] × [0, z̃1] → R be such that G(z, x) =

θ(z)
h(1−F (x))θ(x)

for each (z, x) ∈ [z2, z̄] × [0, z̃1]. Then the conditions of Lemma 44 hold

with ϕ and ϕ̂ being solutions to the initial value problems and z0 = z2, the latter

since ϕ(z2) = ϕ̂(z2) = 0. Then ϕ = ϕ̂ and z1 = ϕ(z̄) = ϕ̂(z̄) = ẑ1.

Part 2: If z2 = ẑ2 and z1 < z2, then c = ĉ.

By part 1, ϕ = ϕ̂ and z1 = ẑ1. Let G : [0, z1]× [0, 1] → R be such that G(z, x) =

f(z)F (ϕ−1(z))−x
1−F (z)

for each (z, x) ∈ [0, z1]× [0, 1]. Then the conditions of Lemma 44 hold

with c and ĉ being solutions to the initial value problems and z0 = z1, the latter since

c(z1) = ĉ(z1) = F (z1). Hence, c = ĉ.

Part 3: If z2 = ẑ2 and z1 = z2, then c = ĉ.

72



The argument for part 2 applies provided that {z ∈ [0, z2] : c(z) = ĉ(z)} ̸= ∅,

which we establish in what follows. Suppose that {z ∈ [0, z2] : c(z) = ĉ(z)} = ∅.

Then c(0) ̸= ĉ(0) and, since c and ĉ are arbitrary, we may assume that c(0) > ĉ(0).

Then c(z2) > ĉ(z2) by the intermediate value theorem since c and ĉ are continuous.

But then

c(z2) > ĉ(z2) =
F (z2)− ĉ(0)

h
>
F (z2)− c(0)

h
= c(z2),

a contradiction. This contradiction then shows that {z ∈ [0, z2] : c(z) = ĉ(z)} ≠ ∅.

Part 4: If z2 = ẑ2, then ϕ = ϕ̂, z1 = ẑ1 and c = ĉ.

Part 4 follows by parts 1, 2 and 3.

The function ϕ : [z2, z̄] → [0, z1] is strictly increasing (condition 4). Hence, let

φ : [0, z1] → [z2, z̄] be the inverse of ϕ. Then φ is strictly increasing and differentiable

and, for each z ∈ [0, z1],

φ′(z) =
h(1− F (z))θ(z)

θ(φ(z))
.

As noted, Lemma 45 implies that it remains to establish that z2 = ẑ2. Lemma

46 derives some consequences of the assumption that z2 > ẑ2. Namely it shows that

if there are less managers in [z2, z̄] than in [ẑ2, z̄] (i.e. [z2, z̄] ⊂ [ẑ2, z̄]), then it must

be less workers in [0, z1] than in [0, ẑ1] (i.e. [0, z1] ⊂ [0, ẑ1]) and that every worker in

[0, z1] is assigned to a more knowledgeable manager by φ as compared to φ̂.

Lemma 46 If z2 > ẑ2, then z1 < ẑ1 and φ(z) > φ̂(z) for each z ∈ [0, z1].

Proof. We have that φ(0) = z2 > ẑ2 = φ̂(0). Let z̃1 = min{z1, ẑ1} and assume

that {z ∈ [0, z̃1] : φ(z) = φ̂(z)} ̸= ∅. Let z0 = inf{z ∈ [0, z̃1] : φ(z) = φ̂(z)}. Then

φ(z0) = φ̂(z0) since φ and φ̂ are continuous. Thus, z0 > 0.

The definition of z0, the continuity of both φ and φ̂ and the intermediate value

theorem imply that φ(z) > φ̂(z) for each z ∈ [0, z0). This then implies that ϕ(z) <

ϕ̂(z) for each z ∈ [z2, φ(z0)). Indeed, ϕ(z2) = 0 < ϕ̂(z2) since otherwise φ̂(0) = z2 and,

hence, ẑ2 = φ̂(0) = z2. Let z ∈ (z2, φ(z0)) and let x, x′ be such that z = φ(x) = φ̂(x′).

Since φ(x) > φ̂(x), it follows that φ̂(x′) > φ̂(x). Then x′ > x since φ̂ is strictly

increasing and, thus, ϕ̂(z) = x′ > x = ϕ(z).
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It then follows by the above that, for each z ∈ [z2, φ(z0)),

θ(z)

h(1− F (ϕ(z)))
<

θ(z)

h(1− F (ϕ̂(z)))
.

Thus, by Lemma 43,

ν(z0) = ν(ϕ(φ(z0))) =

∫ φ(z0)

z2

θ(x)

h(1− F (ϕ(x)))
dx

<

∫ z2

ẑ2

θ(x)

h(1− F (ϕ̂(x)))
dx+

∫ φ(z0)

z2

θ(x)

h(1− F (ϕ̂(x)))
dx

=

∫ φ̂(z0)

ẑ2

θ(x)

h(1− F (ϕ̂(x)))
dx

= ν(ϕ̂(φ̂(z0))) = ν(z0),

a contradiction. This contradiction shows that {z ∈ [0, z̃1] : φ(z) = φ̂(z)} = ∅.

It then follows from {z ∈ [0, z̃1] : φ(z) = φ̂(z)} = ∅, together with the continuity

of φ and φ̂ and φ(0) > φ̂(0), that φ(z) > φ̂(z) for each z ∈ [0, z̃1] by the intermediate

value theorem. Hence, φ(z̃1) > φ̂(z̃1). If z̃1 = ẑ1, then φ(ẑ1) > φ̂(ẑ1) = z̄, a

contradiction. Thus, z̃1 < ẑ1. It then follows that z1 = z̃1 < ẑ1 and φ(z) > φ̂(z) for

each z ∈ [0, z1].

To conclude the argument, we consider three cases: (i) z1 = z2 and ẑ1 = ẑ2, (ii)

z1 < z2 and ẑ1 < ẑ2, and (iii) z1 < z2 and ẑ1 = ẑ2. The case z1 = z2 and ẑ1 < ẑ2 is

covered by case (iii) since (z1, z2) and (ẑ1, ẑ2) are arbitrary, case (i) is considered in

part 1 of 47, case (ii) in Lemma 49 and case (iii) in Lemma 50.

Lemma 47 If z1 = z2 and ẑ1 = ẑ2, then z2 = ẑ2.

Proof. Suppose not and assume that z2 > ẑ2. Then Lemma 46 implies that

z2 = z1 < ẑ1 = ẑ2 < z2, a contradiction.

The following is a technical lemma that will be used in cases (ii) and (iii).

Lemma 48 If z1 < z2 and z2 > ẑ2, then c(z1) > ĉ(z1).

Proof. It follows from z2 > ẑ2 that z1 < ẑ1 by Lemma 46. Since z1 < z2,

c(0) = (1− h)F (z2) > (1− h)F (ẑ2) ≥ ĉ(0).
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We claim that {z ∈ [0, z1] : c(z) = ĉ(z)} = ∅. Suppose not and let z0 = inf{z ∈

[0, z1] : c(z) = ĉ(z)}. Then z0 > 0 since c(0) > ĉ(0), c(z0) = ĉ(z0) by the continuity of

c and ĉ, and c(z) ̸= ĉ(z) for each z ∈ [0, z0) by the definition of z0. Then c(z) > ĉ(z)

for each z ∈ [0, z0) by the intermediate value theorem since c(0) > ĉ(0).

Lemma 46 implies that φ(z0) > φ̂(z0). Thus,

c′(z0) = f(z0)
F (φ(z0))− c(z0)

1− F (z0)
> f(z0)

F (φ̂(z0))− c(z0)

1− F (z0)
= ĉ′(z0)

and, hence, there is 0 < ε < z0 such that c′(z) > ĉ′(z) for each z ∈ (z0 − ε, z0). Thus,

by the mean value theorem, there is z ∈ (z0 − ε, z0) such that

0 = c(z0)− ĉ(z0) = c(z0 − ε)− ĉ(z0 − ε) + (c′(z)− ĉ′(z))ε > 0,

a contradiction. This contradiction shows that {z ∈ [0, z1] : c(z) = ĉ(z)} = ∅.

It then follows that c(z) > ĉ(z) for each z ∈ [0, z1] by the intermediate value

theorem since c(0) > ĉ(0). Thus, c(z1) > ĉ(z1).

Lemma 49 considers case (ii) above, i.e. shows that z2 = ẑ2 whenever z1 < z2 and

ẑ1 < ẑ2. The idea is that z2 > ẑ2 would imply that F (z1) = c(z1) > ĉ(z1); this will

then imply that F (ẑ1) > ĉ(ẑ1) since z2 > ẑ2 implies ẑ1 > z1 and z 7→ ĉ(z) − F (z) is

strictly decreasing, thus violating condition 7 in Theorem 2.

Lemma 49 If z1 < z2 and ẑ1 < ẑ2, then z2 = ẑ2.

Proof. Suppose that z2 > ẑ2. Then z1 < ẑ1 by Lemma 46 and c(z1) > ĉ(z1) by

Lemma 48.

Define λ : [0, z1] → R by setting, for each z ∈ [0, z1], λ(z) = c(z)−F (z). Likewise,

define λ̂ : [0, ẑ1] → R by setting, for each z ∈ [0, ẑ1], λ̂(z) = ĉ(z) − F (z). Then, for

each z ∈ (0, ẑ1),

λ̂′(z) = ĉ′(z)− f(z) = f(z)

(
F (φ̂(z))− ĉ(z)

1− F (z)
− 1

)
=

f(z)

1− F (z)
(F (φ̂(z))− 1− (ĉ(z)− F (z))) < 0

since z < ẑ1 implies that ĉ(z) ≥ F (z) and that φ̂(z) < z̄ and, hence, F (φ̂(z)) < 1.

Thus,

λ̂(ẑ1) < λ̂(z1) = ĉ(z1)− F (z1) < c(z1)− F (z1) = 0.
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But this contradicts λ̂(ẑ1) = 0.

Lemma 50 considers the final case (iii).

Lemma 50 If z1 < z2 and ẑ1 = ẑ2, then z2 = ẑ2.

Proof. Suppose that z2 > ẑ2. Then z1 < ẑ1 by Lemma 46 and c(z1) > ĉ(z1) by

Lemma 48.

Note that we have that

F (z2)− c(0)

h
− F (z2) = c(z1)− F (z1), and (13)

F (ẑ2)− ĉ(0)

h
− F (ẑ2) = ĉ(ẑ1)− F (ẑ1). (14)

Letting λ and λ̂ be as in the proof of Lemma 49, it follows from that proof that

λ̂(z1) > λ̂(ẑ1) and, since c(z1) > ĉ(z1), that λ(z1) > λ̂(z1). This two properties

together with ĉ(0) ≤ (1− h)F (ẑ2) and (13) imply that

F (ẑ2)− ĉ(0)

h
− F (ẑ2) ≥ 0 =

F (z2)− c(0)

h
− F (z2) = c(z1)− F (z1)

= λ(z1) > λ̂(z1) > λ̂(ẑ1) = ĉ(ẑ1)− F (ẑ1),

a contradiction to (14). This contradiction shows that z2 = ẑ2.

Since (z1, z2) and (ẑ1, ẑ2) are arbitrary in Lemma 50, this lemma also shows that

if z1 = z2 and ẑ1 < ẑ2, then z2 = ẑ2. It then follows from Lemmas 47–50 that z2 = ẑ2

and by Lemma 45 that z1 = ẑ1, ϕ = ϕ̂ and c = ĉ. Hence, Lemma 6 follows.

A.5.2 Completing the proof of the sufficiency part of Theorem 2

Suppose that there exists (z1, z2, ϕ, c) such that the conditions 1–8 in the theorem

hold and let µ = ν ◦ σ−1. Let, by Theorem 1, µ̂ be a stable matching and, by the

necessity part of Theorem 2 just established, (ẑ1, ẑ2, ϕ̂, ĉ) be such that the conditions

1–8 in the theorem hold and such that µ̂ = ν ◦ σ̂−1, where σ̂ : [ẑ1, z̄] → Z × X∅ is

defined as σ is but with (ẑ1, ẑ2, ϕ̂, ĉ) in place of (z1, z2, ϕ, c). It then follows by Lemma

6 that (z1, z2, ϕ, c) = (ẑ1, ẑ2, ϕ̂, ĉ) and, hence, σ = σ̂. Thus µ = ν ◦ σ−1 = µ̂ and µ is

a stable matching.
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A.6 Proof of Theorem 3

Let µ and µ̂ be stable matchings and, by Theorem 2, let µ be represented by

(z1, z2, ϕ, c) and µ̂ by (ẑ1, ẑ2, ϕ̂, ĉ); in particular, µ = ν ◦ σ−1 and µ̂ = ν ◦ σ̂−1, where

σ̂ is defined as σ is but with (ẑ1, ẑ2, ϕ̂, ĉ) in place of (z1, z2, ϕ, c). It then follows by

Lemma 6 that (z1, z2, ϕ, c) = (ẑ1, ẑ2, ϕ̂, ĉ) and, hence, σ = σ̂. Thus µ = ν ◦ σ−1 = µ̂.

A.7 Details for Section 3.4

We show that conditions 1, 4, 5 plus 7 if z1 < z2 and 8 if z1 = z2 in Theorem 2 hold.

Consider condition 4 first. Note that ϕ is well defined since, for each z ∈ [z2, 1],

1− 2(z−z2)
h

≥ 1− 2(1−z2)
h

> 0. The latter inequality is equivalent to 1− z2 <
h
2
. In the

case 0 < h ≤ 3/4, we have that 1− z2 =
1
h

(
−1 +

√
1 + h2

)
and, thus,

1− z2 <
h

2
⇔ 1

h

(
−1 +

√
1 + h2

)
<
h

2
⇔

√
1 + h2 < 1 +

h2

2

⇔ 1 + h2 < 1 + h2 +
h4

4
,

which holds; in the case 3/4 < h < 1, 1− z2 = 1− 2−h
h

+
√

3−4h+h2

h2 and, thus,

1− z2 <
h

2
⇔ 2h(1− z1) < h2 ⇔ h2 − 4h+ 4− 2

√
h2 − 4h+ 3 > 0

⇔ (2− h)2 − 2
√

(2− h)2 − 1 > 0 ⇔ 1 +
(
(2− h)2 − 1

)
− 2
√

(2− h)2 − 1 > 0,

which holds since 1 + x− 2
√
x > 0 ⇔ (1 + x)2 > 4x⇔ x2 − 2x+ 1 > 0 ⇔ (x− 1)2 >

0 ⇔ x ̸= 1 and (2− h)2 − 1 = 1 only if h = 2−
√
2 < 3/4.

Furthermore, for each z ∈ [z2, 1],

ϕ′(z) =
1

h
√
1− 2(z−z2)

h

> 0

showing that ϕ is strictly increasing and

θ(z)

h(1− F (ϕ(z)))θ(ϕ(z))
=

1

h(1− ϕ(z))
=

1

h
√
1− 2(z−z2)

h

= ϕ′(z).

Finally, ϕ(z2) = 0 and we have that ϕ(1) = z1 holds. This is clear in the case where

h ∈ (3/4, 1) and also holds in the case where h ∈ (0, 3/4] since then, due to z1 = z2,
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ϕ(1) = z1 is equivalent to

1−
√
1− 2(1− z2)

h
= z2 ⇔ (1− z2)

2 = 1− 2(1− z2)

h
⇔ 0 = 1− (1 + h)z2 +

h

2
z22 ,

which holds.

Consider next condition 5. We have that c is strictly increasing since z2 > c(0).

This is clear when h ∈ (3/4, 1) since then c(0) = (1−h)z2; in the case of h ∈ (0, 3/4],

z2 > c(0) ⇔ 1 + h(1− z2) > 1− h
2 + h

2
z2 ⇔ 1− z2 > −2 + h

2
z2,

which holds. Let φ : [0, z1] → [z2, 1] be the inverse of ϕ. Then φ(x) = z2 + hx− hx2

2

for each x ∈ [0, z1] since, for each z ∈ [z2, 1], letting α = 1− 2(z−z2)
h

,

φ(ϕ(z)) = z2 + h(1−
√
α)− h

2

(
1− 2

√
α + 1− 2(z − z2)

h

)
= z.

It then follows that, for each z ∈ [0, z1],

c′(z) = z2 − c(0) + hz,

f(z)
F (ϕ−1(z))− c(z)

1− F (z)
=

(1− z)(z2 − c(0) + hz)

1− z
= c′(z).

Condition 1 is satisfied when h ∈ (0, 3/4] since then z2 ∈ (0, 1). Indeed,

z2 =
1

h
(1 + h−

√
1 + h2), thus

z2 >
1

h
(1 + h−

√
1 + 2h+ h2) =

1

h
(1 + h−

√
(1 + h)2) = 0, and

z2 <
1

h
(1 + h−

√
1) =

1

h
(1 + h− 1) = 1.

In the case where h ∈ (3/4, 1), we have that z1 = ϕ(1) > ϕ(z2) = 0. We next show

that z1 < z2 < 1 for each h ∈ (3/4, 1). Let z2(h) = 2−h
h

−
√

3−4h+h2

h2 , z1(h, z2) =

1 −
√

1− 2(1−z2)
h

and z1(h) = z1(h, z2(h)) for each h ∈ [3/4, 1). Then z2(3/4) =

z1(3/4) = 2/3, limh→1 z2(h) = 1 and h 7→ z2(h) is strictly increasing (as we next

show), from which it follows that h 7→ z1(h) is strictly decreasing. Thus, it follows

that z1 < z2 < 1 for each h ∈ (3/4, 1).
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To see that h 7→ z2(h) is strictly increasing, note that

z2(h) =
2

h
− 1−

√
1− 4

h
+

3

h2
and

z′2(h) =
2

h2

−1 +
1√

1− 4
h
+ 3

h2

(
3

2h
− 1

) .

Thus,

z′2(h) > 0 ⇔ 1√
1− 4

h
+ 3

h2

3− 2h

2h
> 1 ⇔

(
3− 2h

2h

)2

> 1− 4

h
+

3

h2

⇔ 9− 12h+ 4h2

4h2
>
h2 − 4h+ 3

h2
⇔ h >

3

4
.

Consider next condition 7 when h ∈ (3/4, 1). Then c(0) = (1−h)z2 = (1−h)F (z2)

and, as we next show, c(z1) = z1, which then implies that c(z1) = F (z1). We have

that c(z1) = (1− h)z2 + hz1z2 +
hz21
2
. Thus, c(z1) = z1 is equivalent to

0 = (1− h)z2 − (1− hz2)z1 +
hz21
2

which, letting α = 1− 2(1−z2)
h

and using z1 = 1−
√

1− 2(1−z2)
h

= 1−
√
α, is equivalent

to

0 = (1− h)z2 − (1− hz2)(1−
√
α) +

h

2
(1−

√
α)2.

Simplifying this equation yields

0 = 2(z2 − 1) + h+
√
α(1− hz2 − h) ⇔ 0 = 1− 2(1− z2)

h
+
√
α

(
1

h
− z2 − 1

)
⇔ 0 = α +

√
α

(
1

h
− z2 − 1

)
.

In turn, this equation is equivalent to

√
α = 1 + z2 −

1

h
⇔ α =

(
1 + z2 −

1

h

)2

.

Simplifying this equation yields

0 =
1

2h2
+
h− 2

h
z2 +

z22
2
,

which holds.
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Finally consider condition 8 when h ∈ (0, 3/4]. We have that F (z2)−c(0)
h

= z2−c(0)
h

and c(z2) = c(0) + (z2 − c(0))z2 +
hz22
2
. Hence, c(z2) = F (z2)−c(0)

h
holds since c(0) =

z2(1−h 2+h
2

z2)
1+h(1−z2)

. Thus, it remains to show that F (z2)−c(0)
h

≥ F (z2), which is equivalent to

c(0) ≤ (1− h)z2. We have that

c(0) ≤ (1− h)z2 ⇔
1− h

(
1 + h

2

)
z2

1 + h(1− z2)
≤ 1− h

⇔ 1− hz2 −
h2

2
z2 ≤ 1 + h− hz2 − h− h2 + h2z2

⇔ h2 ≤ 3

2
h2z2

⇔ z2 ≥
2

3
.

Letting z2(h) = 1 + 1
h
−
√

1 + 1
h2 , we have that

dz2(h)

dh
= − 1

h2
+

h√
1 + 1

h2

=
h3 −

√
1 + 1

h2

h2
√

1 + 1
h2

< 0

since h3 < 1 <
√

1 + 1
h2 ; thus h 7→ z2(h) is strictly decreasing. Furthermore,

z2(3/4) =
1 + 3

4
−
√

1 + 9
16

3
4

=
4

3

(
7

4
−
√

25

16

)
=

4

3

2

4
=

2

3
.

Hence, it follows that z2 ≥ 2
3
for each h ≤ 3

4
and, thus, that c(0) ≤ (1− h)z2 holds.

A.8 Proof of Theorem 4

Theorem 4 follows in part from Theorem 3 in Carmona and Laohakunakorn (2024).

The latter result applies to a general production function g(r(z))ψ(r(z), nq(z′)) and

thus set, for each z ∈ Z, r ∈ R+ and (x, y) ∈ R2
+, r(z) = z, q(z) = 1, g(r) = F (r) and

ψ(x, y) = xαy1−α to obtain F (z)zαn1−α as in Er,α. In this case and with a constant

wage w > 0, the optimal number n(z, w) of workers for a manager of ability z, and

the manager’s rent R(z, w) = F (z)zαn(z, w)1−α − wn(z, w) equal

n(z, w) =

(
(1− α)F (z)

w

) 1
α

z,

R(z, w) = αF (z)
1
α z

(
1− α

w

) 1−α
α

.
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It follows by Carmona and Laohakunakorn (2024, Theorem 3) that µ is a stable

matching of Er,α if and only if there exists γ ∈M(Z2) and w > 0 such that

γ(B × Z) +

∫
Z×B

n(z, w)dγ(z, z′) = ν(B) for each Borel B ⊆ Z, (15)

supp(γ) ⊆ {z ∈ Z : R(z, w) ≥ w} × {z ∈ Z : w ≥ R(z, w)}, and (16)

µ = γ ◦ g̃−1, (17)

where g̃ : Z2 → Z ×X is defined by setting, for each (z, z′) ∈ Z2,

g̃(z, z′) = (z, n(z, w)1(z′,w)).

Thus, it remains to show that (16) is equivalent to conditions 3 and 4 in the

statement of Theorem 4, and that w and z1 are unique.

Note that g̃ is continuous. Furthermore the restriction of g̃ to supp(γ) is 1-1 both

under (16) and under condition 3: in both cases, (z, z′) ∈ supp(γ) implies z > 0

(since R(0, w) = 0 and z1 > 0) and n(z, w) > 0 if z > 0. Thus, g̃ is a homeomorphism

between supp(γ) and g̃(supp(γ)). ThenM = {z ∈ Z : (z, z′) ∈ supp(γ) for some z′ ∈

Z} and W = {z ∈ Z : (ẑ, z) ∈ supp(γ) for some ẑ ∈ Z} since supp(µ) = g̃(supp(γ))

by Carmona and Laohakunakorn (2024, Lemma 1). We have that supp(γ) is compact

since it is a closed subset of Z2 and, hence,M andW are compact. ThenM ∪W = Z

since

ν(M ∪W ) =γ((M ∪W )× Z) +

∫
Z×(M∪W )

n(z, w)dγ(z, z′)

= γ(Z × Z) +

∫
Z×Z

n(z, w)dγ(z, z′) = ν(Z)

and, hence, Z = supp(µ) ⊆M ∪W ⊆ Z.

It follows by (16) that M ⊆ {z ∈ Z : R(z, w) ≥ w} and W ⊆ {z ∈ Z : w ≥

R(z, w)}. Let λ : Z → R be defined by setting, for each z ∈ Z, λ(z) = R(z, w)− w.

Then λ is continuous, strictly increasing and λ(0) < 0. Furthermore, λ(z̄) > 0 since

otherwise {z ∈ Z : R(z, w) ≥ w} ⊆ {z̄} and hence

γ(Z × Z) = γ({z ∈ Z : R(z, w) ≥ w} × Z)

≤ γ({z̄} × Z) +

∫
Z×{z̄}

n(z, w)dγ(z, z′) = ν({z̄}) = 0.
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But this is a contradiction since γ(Z × Z) = 0 implies that
∫
Z×Z

n(z, w)dγ(z, z′) = 0

and, hence, 0 = γ(Z × Z) +
∫
Z×Z

n(z, w)dγ(z, z′) = ν(Z) > 0. It then follows

that there is a unique z1 ∈ (0, z̄) such that λ(z1) = 0. Thus, M ⊆ {z ∈ Z :

R(z, w) ≥ w} = [z1, z̄] and W ⊆ {z ∈ Z : w ≥ R(z, w)} = [z1, z̄], which, together

with M ∪W = Z, implies that W = [0, z1] and M = [z1, z̄]. The definition of z1

implies that R(z1, w) = w and, hence F (z1)z
α
1 n(z1, w)

1−α − wn(z1, w) = w, since

R(z1, w) = F (z1)z
α
1 n(z1, w)

1−α − wn(z1, w).

Conversely, suppose that conditions 3 and 4 in the statement of the Theorem hold.

Thus, λ(z1) = 0 and, since λ is strictly increasing, {z ∈ Z : R(z, w) ≥ w} = [z1, z̄] =

M and {z ∈ Z : R(z, w) ≤ w} = [0, z1] = W . Hence, for each (z, z′) ∈ supp(γ),

it follows that (z, z′) ∈ M ×W and, thus, R(z, w) ≥ w and R(z′, w) ≤ w, i.e. (16)

holds.

We conclude the proof of Theorem 4 by establishing the uniqueness of z1 and w.

Let (γ, z1, w) and (γ̂, ẑ1, ŵ) be such that conditions 1–4 hold. Let λ be as above and

define λ̂(z) = R(z, ŵ)− ŵ. Note that w = ŵ implies that z1 = ẑ1 since then λ = λ̂.

Suppose that w > ŵ. Then R(z, w) < R(z, ŵ) for each z > 0 and, hence,

λ(z) < λ̂(z) for each z ∈ Z. Thus, z1 > ẑ1 since z1 (resp. ẑ1) is the unique z ∈ (0, z̄)

such that λ(z1) = 0 (resp. λ̂(ẑ1) = 0).

Let γ1 denote the marginal of γ on the first coordinate. For each Borel B ⊆ [z1, z̄],

condition 2 implies that γ1(B) = γ(B × Z) = ν(B) since
∫
Z×B

n(z, w)dγ(z, z′) = 0

due to W = [0, z1]. Thus, γ1 is the restriction of ν to M = [z1, z̄]. Analogously, γ̂1 is

the restriction of ν to [ẑ1, z̄].

It then follows that∫
Z×Z

n(z, w)dγ(z, z′) =

∫
Z

n(z, w)dγ1(z) =

∫
[z1,z̄]

n(z, w)dν(z).

Analogously,
∫
Z×Z

n(z, ŵ)dγ̂(z, z′) =
∫
[ẑ1,z̄]

n(z, ŵ)dν(z).

Since W = [0, z1], condition 2 implies that∫
Z×Z

n(z, w)dγ(z, z′) = γ([0, z1]× Z) +

∫
Z×[0,z1]

n(z, w)dγ(z, z′) = ν([0, z1])

and, analogously,
∫
Z×Z

n(z, ŵ)dγ̂(z, z′) = ν([0, ẑ1]). Thus, z1 > ẑ1 implies that
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ν([0, z1]) > ν([0, ẑ1]) and, hence,∫
Z×Z

n(z, w)dγ(z, z′) >

∫
Z×Z

n(z, ŵ)dγ̂(z, z′). (18)

Since n(z, w) < n(z, ŵ) for each z > 0, it follows that∫
Z×Z

n(z, w)dγ(z, z′) =

∫
[z1,z̄]

n(z, w)dν(z) <

∫
[z1,z̄]

n(z, ŵ)dν(z)

<

∫
[ẑ1,z̄]

n(z, ŵ)dν(z) =

∫
Z×Z

n(z, ŵ)dγ̂(z, z′),

a contradiction to (18). This contradiction shows that w = ŵ and, hence, z1 = ẑ1.

A.9 Proof of Theorem 5

The proof of Theorem 5 is analogous to the proofs of Theorems 1–3 and is available

in the supplementary material to this paper.

A.10 Proof of Theorem 6

For each α ∈ [0, 1), write Es,α = (Z, ν, C,C, X, (≻z)z∈Z) and let Ês,α = (Z, ν, Ĉ, Ĉ, X̂,

(≻z)z∈Z) where Ĉ = [0,max{1, z̄h}], Ĉ(z, z′) = Ĉ and Ĉ(z, ∅) = {0} for each z, z′ ∈

Z × Z, and X̂ = {n(z)1(z,c) : (z, c) ∈ Z × Ĉ}, i.e. Ês,α is equal to Es,α except for

these changes to C, C and X.

Lemma 51 If α ∈ [0, 1) and µ is a stable matching of Ês,α, then supp(µ) ⊆ Z × X̂.

Proof. Note that it is enough to show that supp(µ)∩ ((Z \ {0})× X̂∅) ⊆ Z × X̂.

Indeed, this implies that

supp(µ) =
(
supp(µ) ∩ ((Z \ {0})× X̂∅)

)
∪
(
supp(µ) ∩ ({0} × X̂)

)
∪

∪
(
supp(µ) ∩ ({0} × (X̂∅ \ X̂))

)
=
(
supp(µ) ∩ (Z × X̂)

)
∪
(
supp(µ) ∩ ({0} × (X̂∅ \ X̂))

)
.

Since supp(µ) ∩ (Z × X̂) is closed and µ({0} × (X̂∅ \ X̂)) ≤ ν({0}) = 0, it follows

that supp(µ) = supp(µ) ∩ (Z × X̂), i.e. supp(µ) ⊆ Z × X̂.
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Hence, it remains to show that supp(µ)∩ ((Z \{0})× X̂∅) ⊆ Z× X̂. Suppose not;

then let (z, δ) ∈ supp(µ) ∩ ((Z \ {0}) × (X̂∅ \ X̂)). Let ε > 0 be such that (zh(1 −

F (z)))αF (z)−ε > 0, which exists since z > 0 and F (z̄) < 1. Then (z, ε) ∈ Tm
z (µ) since

(z, δ) ∈ supp(µ) and Uz(w, 1(z,ε)) = ε > 0 = Uz(s, δ). Thus, letting δ′ = n(z)1(z,ε), it

follows that supp(δ′) ⊆ Tm
z (µ) and Uz(m, δ

′) =
(
(zh(1−F (z)))αF (z)− ε

)
n(z) > 0 =

Uz(s, δ). Hence, (z, δ) ̸∈ S(µ), a contradiction to the stability of µ.

Lemma 52 For each α ∈ [0, 1), Ês,α has a stable matching.

Proof. We argue that Ês,α satisfies the conditions of Carmona and Laohaku-

nakorn (2024, Theorem 2), which follows the proof of Theorem 1. Indeed, Ês,α is

rational since the preferences of each type z ∈ Z are represented by utility functions,

is bounded since δ(Z × C) ≤ 1
h(1−F (z̄))

< ∞ for each δ ∈ X̂ (since F (z̄) < 1) and is

rich by the same argument as in the proof of Theorem 1; this argument also shows

that X̂ is closed. It then follows that Ês,α is continuous since (z, a, δ) 7→ Uz(a, δ) is

continuous and C is continuous with nonempty and compact values.

It then follows that Ês,α has a stable matching µ.

Lemma 53 For each α ∈ [0, 1), µ is a stable matching of Ês,α if and only if µ is a

stable matching of Es,α.

Proof. Let µ be a stable matching of Ês,α. Note that, for each (z, δ) ∈ supp(µ),

δ ∈ X̂ and thus δ = n(z′)1(z′,c) for some (z′, c) ∈ Z × Z by Lemma 51. Furthermore,

Uz(m,n(z
′)1(z′,c)) ≥ 0 and Uz′(w, 1(z,c)) ≥ 0 since µ is individually rational in Ês,α.

We claim that µ is a stable matching of Es,α. Indeed, if µ is not a stable matching of

Es,α, then there is (z, z′, c) ∈ Z2×C such that (z, n(z′)1(z′,c)) ∈ supp(µ) and (ẑ, z̃, c̃) ∈

Z2×C such that ẑ ∈ {z, z′}, c̃ > max{1, z̄h} ≥ (z̄h)α and Uẑ(m,n(z̃)1(z̃,c̃)) > Uẑ(a, δ̂)

with a = m and δ̂ = n(z′)1(z′,c) if ẑ = z and a = w and δ̂ = 1(z,c) if ẑ = z′. But

c̃ > (z̄h)α implies that 0 > Uẑ(m,n(z̃)1(z̃,c̃)) since Uẑ(m,n(z̃)1(z̃,c̃)) ≥ 0 is equivalent

to c̃ ≤ (ẑh(1 − F (z̃)))αF (ẑ) and, thus, implies that c̃ ≤ (z̄h)α; hence, 0 > Uẑ(a, δ̂).

But this contradicts Uz(m,n(z
′)1(z′,c)) ≥ 0 and Uz′(w, 1(z,c)) ≥ 0. Thus, it follows

that µ is a stable matching of Es,α.
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Let µ be a stable matching of Es,α. Then for each (z, δ) ∈ supp(µ) and (z′, c) ∈

supp(δ), individual rationality implies that c ∈ [0,max{1, z̄h}]; hence µ is a stable

matching of Ês,α.

Lemmas 52 and 53 imply that Φ is nonempty valued.

To prove continuity, we first show that Φ is upper hemi-continuous at α = 0. By

Lemma 53, Φ(α) equals the set of stable matching of Ês,α. Let {αk}∞k=1 be such that

αk ∈ (0, 1) for each k ∈ N and αk → 0 and let {µk}∞k=1 be such that µk ∈ Φ(αk) for

each k ∈ N. Since µk is a stable matching of Ês,αk
, µk ∈ M(Z × X̂) for each k ∈ N

by Lemma 51. Since X̂ is compact due to 1/h(1 − F (z)) ≤ 1/h(1 − F (z̄)) < ∞ for

each z ∈ Z, we may assume that {µk}∞k=1 converges. Let µ = limk µk.

We claim that µ ∈ Φ(0). This claim follows by Lemma 5 (and its proof) in

Carmona and Laohakunakorn (2024). To see this, let Ek = Ês,αk
and note that

Zk = Z, νk = ν, Ck = Ĉ, Ck(z, z
′) = Ĉ and Ck(z, ∅) = {0} for (z, z′) ∈ Z and Xk =

X̂. Conditions (a) and (b) of part 4 of Lemma 5 in Carmona and Laohakunakorn

(2024) are satisfied since {γ ∈ Xk : {zk} × supp(γ) ⊆ graph(Ck)} = X̂ for each

k ∈ N and zk ∈ Zk = Z since graph(Ck) = Z × Z∅ × C. The assumption of

Lemma 5 in Carmona and Laohakunakorn (2024) that Uk
z (m, δ) = Uz(m, δ) for each

(z, δ) ∈ Z × X̂ does not hold but the proofs of parts 3 and 4 go through provided

that sup(z,z′,c)∈Z2×C |Uk
z (m,n(z

′)1(z′,c))−Uz(m,n(z
′)1(z′,c))| → 0. This condition holds

since

∣∣Uk
z (m,n(z

′)1(z′,c))− Uz(m,n(z
′)1(z′,c))

∣∣ = |(zh(1− F (z′)))αk − 1| F (z)

h(1− F (z′))

≤ max{1− (zh(1− F (z̄)))αk , (z̄h(1− F (z)))αk − 1} F (z̄)

h(1− F (z̄))
→ 0.

Thus, it follows that µ ∈ Φ(0) and, hence, Φ is upper hemi-continuous at α = 0.

Finally, since Φ(0) is a singleton by Theorem 5, it follows that Φ is lower hemi-

continuous at α = 0. Thus, Φ is continuous at α = 0.
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