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1 Introduction

This paper contains supplementary material to our paper “Rosen meets Garicano and

Rossi-Hansberg: Stable Matchings in Knowledge Economies”. It contains:

Section 2: Proof of Corollary 1.

Section 3: The stable matchings of the market E∗
grh can be obtained from those

of an appropriately defined market where the distribution of problems is uni-

form.

Section 4: A detailed proof of Theorem 5 concerning the stable matchings of

the market Es.

Section 5: Dispensing with an assumption used in the analysis of Rosen markets

in Carmona and Laohakunakorn (2024).

Section 6: An example of a Rosen market where all distributions are uniform.

Section 7: A comparison of the earnings function u between Er,α and Egrh, and

also within Egrh for different values of h.

Section 8: The codes used to produce the figures in Section 7.
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2 Proof of Corollary 1

Recall that n(z) = 1
h(1−F (z))

, u(z) = c(z) and c′(z) = f(z)F (ϕ−1(z))−c(z)
1−F (z)

for each z ∈ W .

Furthermore, for each z ∈ M , ϕ′(z) = θ(z)
h(1−F (ϕ(z)))θ(ϕ(z))

.

Hence, for each z ∈ W ,

c′(z) = hf(z)u(ϕ−1(z)), and

n′(z) = hf(z)n(z)2.

For each z ∈ M , u(z) = (F (z)− c(ϕ(z)))n(ϕ(z)) and, hence,

u′(z) = (f(z)− c′(ϕ(z))ϕ′(z))n(ϕ(z)) + n′(ϕ(z))ϕ′(z)(F (z)− c(ϕ(z))) = f(z)n(ϕ(z)).

Thus, for each x ∈ F (M),

du ◦ F−1(x)

dx
=

u′(F−1(x))

f(F−1(x))
= n(ϕ(F−1(x))) and

d2u ◦ F−1(x)

dx2
=

n′(ϕ(F−1(x)))ϕ′(F−1(x))

f(F−1(x))
> 0.

This shows that u ◦ F−1 is strictly convex on F (M).

For each x ∈ F (W ),

du ◦ F−1(x)

dx
=

c′(F−1(x))

f(F−1(x))
= hu(ϕ−1((F−1(x)))) and

d2u ◦ F−1(x)

dx2
=

hu′(ϕ−1(F−1(x)))

ϕ′(ϕ−1(F−1(x)))f(F−1(x))
> 0.

This shows that u ◦ F−1 is strictly convex on F (W ).

Note that u◦F−1 is linear in F (S). Hence, to show that u◦F−1 is convex on F (Z),

it suffices to show that (u◦F−1)′−(F (z1)) ≤ (u◦F−1)′+(F (z1)) and (u◦F−1)′−(F (z2)) ≤

(u ◦ F−1)′+(F (z2)) (apply Lemma 2.1 below twice).

Consider first the case where S ̸= ∅, i.e. z1 < z2. For each x ∈ F (S), u◦F−1(x) =

F (F−1(x)) = x and, hence, (u ◦ F−1)′+(F (z1)) = (u ◦ F−1)′−(F (z2)) = 1. Using

c(z1) = F (z1), it follows by what has been shown above that

(u ◦ F−1)′−(F (z1)) = hu(z̄) =
F (z̄)− F (z1)

1− F (z1)
≤ 1 and

(u ◦ F−1)′+(F (z2)) = n(0) =
1

h
> 1.
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Finally, consider the case where S = ∅, i.e. z1 = z2. Using c(z1) ≥ F (z1), it

follows by what has been shown above that

(u ◦ F−1)′−(F (z1)) = hu(z̄) =
F (z̄)− c(z1)

1− F (z1)
≤ F (z̄)− F (z1)

1− F (z1)
≤ 1 and

(u ◦ F−1)′+(F (z1)) = n(0) =
1

h
> 1.

The following lemma on convex functions was used above.

Lemma 2.1 If f : [a, b] → R and c ∈ (a, b) are such that both f |[a,c] and f |[c,b] are

convex and f ′
−(c) ≤ f ′

+(c), then f is convex.

Proof. We will show that, for each α, β, x ∈ [a, b] such that α < x < β, f(x)−f(α)
x−α

≤
f(β)−f(α)

β−α
. This is clear if β ≤ c or if c ≤ α; hence, assume that α < c < β. For

concreteness, assume that x ≤ c (the case x > c is analogous).

Note first that if a ≤ y1 < y2 < y3 ≤ b are such that f(y2)−f(y1)
y2−y1

≤ f(y3)−f(y2)
y3−y2

, then

f(y2)−f(y1)
y2−y1

≤ f(y3)−f(y1)
y3−y1

. Indeed, (f(y2) − f(y1))(y3 − y2) ≤ (f(y3) − f(y2))(y2 − y1)

and summing (f(y2)− f(y1))(y2 − y1) to both sides yields (f(y2)− f(y1))(y3 − y1) ≤

(f(y3)− f(y1))(y2 − y1), i.e.
f(y2)−f(y1)

y2−y1
≤ f(y3)−f(y1)

y3−y1
.

Then

f(β)− f(c)

β − c
≥ lim

y↓c

f(y)− f(c)

y − c
= f ′

+(c) ≥ f ′
−(c) = lim

y↑c

f(c)− f(y)

c− y
≥ f(c)− f(x)

c− x

and the above argument implies that

f(c)− f(x)

c− x
≤ f(β)− f(x)

β − x

by letting y1 = x, y2 = c and y3 = β.

We have that f(x)−f(α)
x−α

≤ f(c)−f(x)
c−x

by the convexity of f |[a,c] and, hence,

f(x)− f(α)

x− α
≤ f(β)− f(x)

β − x
.

Then the above argument with y1 = α, y2 = x and y3 = β implies that f(x)−f(α)
x−α

≤
f(β)−f(α)

β−α
.
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3 Uniform distribution of problems

We show that assuming that the distribution of problems is uniform is without loss of

generality in the sense that stable matchings of E∗
grh with an arbitrary distribution of

problems F can be obtained from a market with a uniform distribution of problems.

Recall that E∗
grh is defined by (Z, ν, C,C, X, (≻z)z∈Z). We define

Eu = (Zu, νu, C,Cu, Xu, (≻u,x)x∈Zu)

as follows:

F (∅) = F−1(∅) = ∅,

Zu = F (Z) = [0, F (z̄)],

νu = ν ◦ F−1,

Cu(x, x
′) = C(F−1(x), F−1(x′)), for each x ∈ Zu and x′ ∈ Zu,∅

nu(x) = n(F−1(x)) for each x ∈ Zu,∅,

Xu = {nu(x)1(x,c) : (x, c) ∈ Zu × C},

and, for each (x, x′, c) ∈ Zu × Zu × C,

Uu,x(w, 1(x′,c)) = UF−1(x)(w, 1(F−1(x′),c)) = c,

Uu,x(s) = UF−1(x)(s) = x, and

Uu,x(m,nu(x
′)1(x′,c)) = UF−1(x)(m,n(F−1(x′))1(F−1(x′),c)) =

x− c

h(1− x′)
.

Define Xu,∅ = Xu ∪ {1(∅,0)} and Fu : Z × X∅ → Zu × Xu,∅ by setting, for each

(z, n(z′)1(z′,c)) ∈ Z ×X∅,

Fu(z, n(z
′)1(z′,c)) = (F (z), nu(F (z′))1(F (z′),c)).

Theorem 3.1 Let µ ∈ M(Z ×X∅). Then µ is a stable matching of E∗
grh if and only

if µ ◦ F−1
u is a stable matching of Eu.

Proof. (Necessity) Let µ be a stable matching of E∗
grh. For each Borel B of Zu,
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we have that

µ ◦ F−1
u (B ×Xu) + µ ◦ F−1

u (B × {1(∅,0)}) +
∫
Zu×Xu

δ(B × C)dµ ◦ F−1
u

= µ(F−1(B)×X) + µ(F−1(B)× {1(∅,0)}) +
∫
Z×X

δ(F−1(B)× C)dµ

= ν(F−1(B)) = νu(B).

Let (x, nu(x
′)1(x′,c)) ∈ supp(µ◦F−1

u ). If nu(x
′)1(x′,c) ∈ Xu,∅\Xu, then nu(x

′)1(x′,c) =

1(∅,0). This and the above argument show that µ ◦ F−1
u is a matching in Eu.

Note that supp(µ ◦ F−1
u ) = F−1

u (supp(µ)) since Fu is an homeomorphism. Hence,

(F−1(x), n(F−1(x′))1(F−1(x′),c)) ∈ supp(µ).

If nu(x
′)1(x′,c) ∈ Xu, then n(F−1(x′))1(F−1(x′),c) ∈ X and supp(µ) ⊆ IR(µ) implies

that

Uu,x(m,nu(x
′)1(x′,c)) = UF−1(x)(m,n(F−1(x′))1(F−1(x′),c)) ≥ UF−1(x)(s) = Uu,x(s), and

c ≥ UF−1(x′)(s) = Uu,x′(s).

It then follows that (x, nu(x
′)1(x′,c)) ∈ IR(µ ◦ F−1

u ).

Thus, to complete the proof, it suffices to show that (x, nu(x
′)1(x′,c)) ∈ SM(µ ◦

F−1
u ). Suppose not and, specifically, that there is (x∗, c∗) ∈ Tm

x (µ ◦ F−1
u ) such that

Uu,x(m,nu(x
∗)1(x∗,c∗)) is bigger than Uu,x(m,nu(x

′)1(x′,c)) if nu(x
′)1(x′,c) ∈ Xu and

Uu,x(s) if nu(x
′)1(x′,c) = 1(∅,0).

First note that (F−1(x∗), c∗) ∈ Tm
F−1(x)(µ). Indeed, if (x̂, nu(x

∗)1(x∗,ĉ)) ∈ supp(µ ◦

F−1
u ) ∩ (Zu ×Xu) for some (x̂, ĉ) ∈ Zu × C and c∗ > ĉ, then

(F−1(x̂), n(F−1(x∗))1(F−1(x∗),ĉ)) ∈ supp(µ) ∩ (Z ×X)

and c∗ > ĉ. If (x∗, 1(∅,0)) ∈ supp(µ ◦ F−1
u ) and c∗ > Uu,x∗(s), then (F−1(x∗), 1(∅,0)) ∈

supp(µ) and c∗ > UF−1(x∗)(s). Finally, if (x∗, nu(x̃)1(x̃,c̃)) ∈ supp(µ ◦ F−1
u ) for some

(x̃, c̃) ∈ Zu × C and c∗ > Uu,x∗(m,nu(x̃)1(x̃,c̃)), then (F−1(x∗), n(F−1(x̃))1(F−1(x̃),c̃)) ∈

supp(µ) and c∗ > UF−1(x∗)(m,n(F−1(x̃))1(F−1(x̃),c̃)).
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Since

UF−1(x)(m,n(F−1(x∗))1(F−1(x∗),c∗)) = Uu,x(m,nu(x
∗)1(x∗,c∗)),

UF−1(x)(m,n(F−1(x′))1(F−1(x′),c)) = Uu,x(m,nu(x
′)1(x′,c)) if nu(x

′)1(x′,c) ∈ Xu and

UF−1(x)(s) = Uu,x(s) if nu(x
′)1(x′,c) = 1(∅,0),

it then follows that (F−1(x), n(F−1(x′))1(F−1(x′),c)) ∈ supp(µ)\SM(µ), a contradiction

to the stability of µ.

Then there is (x∗, c∗) ∈ Tm
x′ (µ ◦ F−1

u ) such that Uu,x′(m,nu(x
∗)1(x∗,c∗)) > c. Then,

as above, (F−1(x∗), c∗) ∈ Tm
F−1(x′)(µ) and UF−1(x′)(m,n(F−1(x∗))1(F−1(x∗),c∗)) > c. But

this contradicts the stability of µ. Hence, it follows that (x, nu(x
′)1(x′,c)) ∈ SM(µ◦F−1

u )

and that µ ◦ F−1
u is a stable matching of Eu.

(Sufficiency) Let µ ∈ M(Z ×X∅) be such that µ ◦F−1
u is a stable matching of Eu.

Note that µ = (µ ◦ F−1
u ) ◦ (F−1

u )−1 and let µ̂ = µ ◦ F−1
u and F̂ = F−1

u . The claim is

then that if µ̂ is a stable matching of Eu, then µ̂ ◦ F̂−1 is a stable matching of E∗
grh.

The argument is analogous to the one in the necessity part.

For each Borel B of Z, we have that

µ̂ ◦ F̂−1(B ×X) + µ̂ ◦ F̂−1(B × {1(∅,0)}) +
∫
Z×X

δ(B × C)dµ̂ ◦ F̂−1

= µ̂(F (B)×X) + µ̂(F (B)× {1(∅,0)}) +
∫
Zu×Xu

δ(F (B)× C)dµ̂

= νu(F (B)) = ν(B).

Let (z, n(z′)1(z′,c)) ∈ supp(µ̂◦F̂−1). If n(z′)1(z′,c) ∈ X∅\X, then n(z′)1(z′,c) = 1(∅,0).

This and the above argument show that µ = µ̂ ◦ F̂−1 is a matching in E∗
grh.

Note that supp(µ̂ ◦ F̂−1) = Fu(supp(µ̂)) since Fu is an homeomorphism. Hence,

(F (z), nu(F (z′))1(F (z′),c)) ∈ supp(µ̂).

If n(z′)1(z′,c) ∈ X, then nu(F (z′))1(F (z′),c) ∈ Xu and supp(µ̂) ⊆ IR(µ̂) implies that

Uz(m,n(z′)1(z′,c)) = Uu,F (z)(m,nu(F (z′))1(F (z′),c)) ≥ Uu,F (z)(s) = Uz(s), and

c ≥ Uu,F (z′)(s) = Uz′(s).

It then follows that (z, n(z′)1(z′,c)) ∈ IR(µ).
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Thus, to complete the proof, it suffices to show that (z, n(z′)1(z′,c)) ∈ SM(µ). Sup-

pose not and, specifically, that there is (z∗, c∗) ∈ Tm
z (µ) such that Uz(m,n(z∗)1(z∗,c∗))

is bigger than Uz(m,n(z′)1(z′,c)) if n(z
′)1(z′,c) ∈ X and Uz(s) if n(z

′)1(z′,c) = 1(∅,0).

First note that (F (z∗), c∗) ∈ Tm
F (z)(µ̂). Indeed, if (ẑ, n(z

∗)1(z∗,ĉ)) ∈ supp(µ̂◦ F̂−1)∩

(Z ×X) for some (ẑ, ĉ) ∈ Z × C and c∗ > ĉ, then

(F (ẑ), nu(F (z∗))1(F (z∗),ĉ)) ∈ supp(µ̂) ∩ (Zu ×Xu)

and c∗ > ĉ. If (z∗, 1(∅,0)) ∈ supp(µ̂ ◦ F̂−1) and c∗ > Uz∗(s), then (F (z∗), 1(∅,0)) ∈

supp(µ̂) and c∗ > UF (z∗)(s). Finally, if (z∗, n(z̃)1(z̃,c̃)) ∈ supp(µ̂ ◦ F̂−1) for some

(z̃, c̃) ∈ Z × C and c∗ > Uz∗(m,n(z̃)1(z̃,c̃)), then (F (z∗), nu(F (z̃))1(F (z̃),c̃)) ∈ supp(µ̂)

and c∗ > UF (z∗)(m,nu(F (z̃))1(F (z̃),c̃)).

Since

Uu,F (z)(m,nu(F (z∗))1(F (z∗),c∗)) = Uz(m,n(z∗)1(z∗,c∗)),

Uu,F (z)(m,nu(F (z′))1(F (z′),c)) = Uz(m,n(z′)1(z′,c)) if n(z
′)1(z′,c) ∈ X and

Uu,F (z)(s) = Uz(s) if n(z
′)1(z′,c) = 1(∅,0),

it then follows that (F (z), nu(F (z′))1(F (z′),c)) ∈ supp(µ̂) \ SM(µ̂), a contradiction to

the stability of µ̂.

Then there is (z∗, c∗) ∈ Tm
z′ (µ) such that Uz′(m,n(z∗)1(z∗,c∗)) > c. Then, as above,

(F (z∗), c∗) ∈ Tm
F (z′)(µ̂) and Uu,F (z′)(m,nu(F (z∗))1(F (z∗),c∗)) > c. But this contradicts

the stability of µ̂. Hence, it follows that (z, n(z′)1(z′,c)) ∈ SM(µ) and that µ is stable.

4 A detailed proof of Theorem 5

4.1 Existence part

The existence of stable matchings in Es = Es,0 follows by Lemmas 52 and 53.

4.2 Necessity part

Let µ be a stable matching of Es.
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Lemma 4.1 µ(Z ×X) > 0.

Proof. It follows from Lemma 51 that supp(µ) ⊆ Z × X. This then implies

that µ(Z ×X) > 0 since, otherwise, 0 = µ(Z ×X) = µ(Z ×X∅) (the latter equality

because supp(µ) ⊆ Z ×X),
∫
Z×X

δ(Z ×X)dµ(z, δ) = 0 and, hence, 0 = µ(Z ×X∅) +∫
Z×X

δ(Z ×X)dµ(z, δ) = ν(Z) > 0, a contradiction.

The following results is a simply consequence of the previous lemma and asserts

that managers of type less than z̄ exist.

Corollary 4.1 supp(µ) ∩ ((Z \ {z̄})×X) ̸= ∅.

Proof. Suppose not; then supp(µ) ∩ (Z ×X) ⊆ {z̄} ×X. Hence,

µ(Z ×X) = µ(supp(µ) ∩ (Z ×X)) ≤ µ({z̄} ×X) = µM({z̄}) ≤ ν({z̄}) = 0,

a contradiction to Lemma 4.1.

Lemma 4.2 If z, ẑ, z′ ∈ Z and c ∈ C are such that (z, n(z′)1(z′,c)), (ẑ, n(z
′)1(z′,ĉ)) ∈

supp(µ), then c = ĉ.

Proof. Indeed, if c > ĉ, then managers of type z can gain by hiring workers of

type z′ at wage c−ε for some ε > 0 such that c−ε > ĉ, a contradiction to the stability

of µ. Thus, c ≤ ĉ and an analogous argument shows that c ≥ ĉ; hence, c = ĉ.

Define c : W → [0, 1] by setting, for each z ∈ W , c(z) = c, where c ∈ [0, 1]

is such that (ẑ, n(z)1(z,c)) ∈ supp(µ) for some ẑ ∈ Z. Lemma 4.2 implies that the

function c is well-defined. For convenience, let, for each z ∈ Z and z′ ∈ Z, Uz(m, z′) =

Uz(m,n(z′)1(z′,c(z′))); then c takes values in [0, 1] since the stability of µ implies that

c(z) ≥ 0 and that Uẑ(m, z) = (F (ẑ)− c(z))n(z) ≥ 0 if (ẑ, n(z)1(z,c)) ∈ supp(µ).

Lemma 4.3 c is increasing.

Proof. Suppose not; then there is z, z′ ∈ W such that z′ > z and c(z′) < c(z).

Note that n(z′) > n(z) and let ẑ ∈ Z be such that (ẑ, n(z)1(z,c(z))) ∈ supp(µ). Then

Uẑ(m, z) = (F (ẑ) − c(z))n(z) < (F (ẑ) − c(z′))n(z′) = Uẑ(m, z′) since Uẑ(m, z) ≥ 0

by the stability of µ. Thus, there is ε > 0 such that (z′, c(z′) + ε) ∈ Tm
ẑ (µ) and

Uẑ(m,n(z′)1(z′,c(z′)+ε)) > Uẑ(m, z), contradicting the stability of µ.
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Lemma 4.4 c is continuous.

Proof. Suppose not; then there is z ∈ W such that c is discontinuous at z. Since

c is increasing by Lemma 4.3, there are only two possible cases.

Case 1: There exists ε > 0 and a sequence {zk}∞k=1 such that zk → z and, for each

k ∈ N, zk ∈ W , zk < z and c(z) > c(zk) + ε. In this case, let ẑ ∈ Z be such that

(ẑ, n(z)1(z,c(z))) ∈ supp(µ). Then(
F (ẑ)− c(zk)−

ε

2

)
n(zk) >

(
F (ẑ)− c(z) +

ε

2

)
n(zk)

→
(
F (ẑ)− c(z) +

ε

2

)
n(z) > Uẑ(m, z).

Thus, there is k sufficiently large such that (zk, c(zk) +
ε
2
) ∈ Tm

ẑ (µ) and Uẑ(m, z) <

Uẑ(m,n(zk)1(zk,c(zk)+ ε
2
)), contradicting the stability of µ.

Case 2: There exists ε > 0 and a sequence {zk}∞k=1 such that zk → z and, for each

k ∈ N, zk ∈ W , zk > z and c(z) < c(zk)−ε. In this case, for each k ∈ N, let ẑk ∈ Z be

such that (ẑk, n(zk)1(zk,c(zk))) ∈ supp(µ). Since (ẑk, c(zk)) ∈ Z × [0, 1] for each k ∈ N

and Z × [0, 1] is compact, we may assume, taking a subsequence if necessary, that

{(ẑk, c(zk))}∞k=1 converges; let (ẑ, c) = limk(ẑk, c(zk)). Then c(z) + ε
2
≤ c− ε

2
and

(F (ẑk)− c(zk))n(zk) → (F (ẑ)− c)n(z) <
(
F (ẑ)− c+

ε

2

)
n(z)

≤
(
F (ẑ)− c(z)− ε

2

)
n(z) = lim

k

(
F (ẑk)− c(z)− ε

2

)
n(z).

Thus, there is k sufficiently large such that (z, c(z) + ε
2
) ∈ Tm

ẑk
(µ) and Uẑk(m, zk) <

Uẑk(m,n(z)1(z,c(z)+ ε
2
)), contradicting the stability of µ.

Lemma 4.5 If z, z′, ẑ ∈ Z are such that (z, n(z′)1(z′,c(z′))), (z, n(ẑ)1(ẑ,c(ẑ))) ∈ supp(µ),

then Uz(m, z′) = Uz(m, ẑ).

Proof. If Uz(m, z′) > Uz(m, ẑ), then, letting ε > 0 be such that (F (z) − c(z′) −

ε)n(z′) > Uz(m, ẑ), it follows that (z′, c(z′)+ε) ∈ Tm
z (µ) and Uz(m,n(z′)1(z′,c(z′)+ε)) >

Uz(m, ẑ), a contradiction to the stability of µ. Thus, Uz(m, z′) ≤ Uz(m, ẑ) and an

analogous argument shows that Uz(m, z′) ≥ Uz(m, ẑ); hence, Uz(m, z′) = Uz(m, ẑ).
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Define u : M → R+ by setting, for each z ∈ M , u(z) = Uz(m, z′), where z′ ∈ Z

is such that (z, n(z′)1(z′,c(z′))) ∈ supp(µ). Lemma 4.5 implies that the function u is

well-defined.

Lemma 4.6 u : M → R is strictly increasing.

Proof. Suppose not; then there is z, ẑ ∈ M such that z > ẑ and u(z) ≤ u(ẑ). Let

z′ ∈ Z be such that (ẑ, n(z′)1(z′,c(z′))) ∈ supp(µ). Then F (ẑ) < F (z) and

u(z) ≤ u(ẑ) = (F (ẑ)− c(z′))n(z′) < (F (z)− c(z′))n(z′).

Thus, there is ε > 0 such that Uz(m,n(z′)1(z′,c(z′)+ε)) > u(z). Since (z′, c(z′) + ε) ∈

Tm
z (µ), this contradicts the stability of µ.

Lemma 4.7 u : M → R is continuous.

Proof. Suppose not; then there is z ∈ M such that u is discontinuous at z. Since

u is increasing by Lemma 4.6, there are only two possible cases.

Case 1: There exists ε > 0 and a sequence {zk}∞k=1 such that zk → z and, for each

k ∈ N, zk ∈ M , zk < z and u(z) > u(zk) + ε. In this case, let z′ ∈ Z be such that

(z, n(z′)1(z′,c(z′))) ∈ supp(µ). Then n(z′)(F (zk) − c(z′)) → u(z) > u(zk) − ε. Thus,

there is k sufficiently large and η > 0 such that n(z′)(F (zk) − c(z′) − η) > u(zk).

Then (z′, c(z′) + η) ∈ Tm
zk
(µ) and Uzk(m,n(z′)1(z′,c(z′)+η)) > u(zk), contradicting the

stability of µ.

Case 2: There exists ε > 0 and a sequence {zk}∞k=1 such that zk → z and, for each

k ∈ N, zk ∈ M , zk > z and u(z) < u(zk)− ε. In this case, for each k ∈ N, let z′k ∈ Z

be such that (zk, n(z
′
k)1(z′k,c(z′k))) ∈ supp(µ). Then, there is k sufficiently large such

that n(z′k)(F (z)− c(z′k)) > u(zk)− ε > u(z) since, using F (z̄) < 1,

0 ≤ u(zk)− n(z′k)(F (z)− c(z′k)) = n(z′k)(F (zk)− F (z)) ≤ n(z̄)(F (zk)− F (z)) → 0.

Thus, there is η > 0 such that n(z′k)(F (z)− c(z′k)− η) > u(z). Then (z′k, c(z
′
k) + η) ∈

Tm
z (µ) and Uz(m,n(z′k)1(z′k,c(z′k)+η)) > u(z), contradicting the stability of µ.

Lemma 4.8 u(z) = c(z) if z ∈ M ∩W .
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Proof. Let z ∈ M ∩W . Suppose that u(z) > c(z) and let z′ ∈ Z be such that

(z, n(z′)1(z′,c(z′))) ∈ supp(µ) and ε > 0 be such that n(z′)(F (z) − c(z′) − ε) > c(z).

Then (z′, c(z′) + ε) ∈ Tm
z (µ) and Uz(m,n(z′)1(z′,c(z′)+ε)) > c(z), contradicting the

stability of µ.

If u(z) < c(z), then let ẑ ∈ Z be such that (ẑ, n(z)1(z,c(z))) ∈ supp(µ) and ε > 0

be such that n(z)(F (ẑ)− u(z)− ε) > n(z)(F (ẑ)− c(z)). Then (z, u(z) + ε) ∈ Tm
ẑ (µ)

and Uẑ(m,n(z)1(z,u(z)+ε)) > Uẑ(m, z), contradicting the stability of µ.

Let g : supp(µ) → Z × Z be defined by setting, for each (z, δ) ∈ supp(µ),

g(z, δ) = (z, z′)

where z′ ∈ Z is such that δ = n(z′)1(z′,c(z′)). Let π2(supp(µ)) = {δ ∈ X : (z, δ) ∈

supp(µ)} be the projection of supp(µ) onto X and let g2 : π2(supp(µ)) → Z be

defined by setting, for each δ ∈ π2(supp(µ)),

g2(δ) = z′

where z′ ∈ Z is such that δ = n(z′)1(z′,c(z′)).

Lemma 4.9 g is a homeomorphism between supp(µ) and g(supp(µ)) and g2 is an

homeomorphism between π2(supp(µ)) and g2(π2(supp(µ))).

Proof. Let id : Z → Z be the identity. Then g = (id, g2)|supp(µ). Since id is an

homeomorphism, it suffices to show that g2 is an homeomorphism.

It is clear that g−1
2 : z′ 7→ n(z′)1(z′,c(z′)) is 1-1 and continuous, the latter since c

is continuous. Let δ = n(z)1(z,c(z)) for some z ∈ Z and {δk}∞k=1 such that, for each

k ∈ N, δk = n(zk)1(zk,c(zk)) for some zk ∈ Z and δk → δ. Let κ : Z × C → R be

defined by setting, for each (ẑ, ĉ) ∈ Z ×C, κ(ẑ, ĉ) = |ẑ− z|/n(ẑ). Then κ is bounded

and continuous, and hence

|g2(δk)− g2(δ)| = |zk − z| =
∫

κdδk →
∫

κdδ = |z − z| = 0.

Thus, g2 is continuous.

Lemma 4.10 M is nonempty, closed and perfect.
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Proof. The nonemptyness of M follows by Corollary 4.1 and the closedness of

M follows because X is compact and supp(µ) ⊆ Z ×X.

Suppose that M has an isolated point z. Then supp(µ)∩ ({z}×X) ̸= ∅ and there

is ε > 0 such that Bε(z) ∩M = {z}. But this is a contradiction to the definition of

supp(µ) since

µ(Bε(z)×X) = µ(supp(µ) ∩ (Bε(z)×X)) ≤

µ((M ∩Bε(z))×X) = µ({z} ×X) ≤ ν({z}) = 0,

and supp(µ) \ (Bε(z)×X) is closed and strictly contained in supp(µ). Thus, M has

no isolated points and is, therefore, perfect.

Lemma 4.11 W is a nonempty, closed and perfect.

Proof. It follows by Lemma 4.10 thatM is nonempty and, hence, W is nonempty.

The set W is closed since if z ∈ Z and {zk}∞k=1 are such that zk → z and zk ∈ W

for each k ∈ N, then there is, for each k ∈ N, ẑk ∈ Z such that (ẑk, n(zk)1(zk,c(zk))) ∈

supp(µ). Since Z is compact, we may assume that {ẑk}∞k=1 converges; let ẑ = limk ẑk.

Then (ẑk, n(zk)1(zk,c(zk))) → (ẑ, n(z)1(z,c(z))), implying that (ẑ, n(z)1(z,c(z))) ∈ supp(µ)

and, hence, z ∈ W .

Suppose that W has an isolated point z. Thus, there is η > 0 such that Bη(z) ∩

W = {z}. Then supp(µ) ∩ (Z × {g−1
2 (z)}) ̸= ∅ and there exists ε > 0 such that

supp(µ)∩ (Z×g−1
2 (Bε(z)∩W )) = supp(µ)∩ (Z×{g−1

2 (z)}). It follows by Lemma 4.9

that g−1
2 (Bε(z) ∩W ) is open in π2(supp(µ)), hence supp(µ) ∩ (Z × g−1

2 (Bε(z) ∩W ))

is open in supp(µ). Furthermore,

0 = ν({z}) ≥
∫
Z×X

δ({z} × C)dµ(z′, δ)

implies that µ({(z′, δ) ∈ Z × X : δ({z} × C) > 0}) = 0. Since {(z′, δ) ∈ Z × X :

δ({z} × C) > 0} = Z × {g−1
2 (z)}, it follows that

0 = µ(Z × {g−1
2 (z)}) = µ(supp(µ) ∩ (Z × {g−1

2 (z)}))

= µ(supp(µ) ∩ (Z ×Bε(g
−1
2 (z) ∩W ))).
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Hence, supp(µ) \ (Z × g−1
2 (Bε(z) ∩W )) is closed, strictly contained in supp(µ) and

such that µ(supp(µ) \ (Z × g−1
2 (Bε(z)∩W ))) = µ(supp(µ)). But this contradicts the

definition of supp(µ). Thus, W has no isolated points and is, therefore, perfect.

Lemma 4.12 Z = M ∪W .

Proof. Let K = M ∪W and note that we have that K ⊆ Z by definition.

Conversely, note first that K is closed by Lemmas 4.10 and 4.11. Furthermore,

letting π(supp(µ)) be the projection of supp(µ) onto Z, we have that supp(µ) ⊆

π(supp(µ))×X = M ×X ⊆ K ×X and, hence,

µ(K ×X) ≥ µ(supp(µ)) = µ(supp(µ) ∩ (Z ×X)) = µ(Z ×X).

Furthermore, for each (z, δ) ∈ supp(µ)∩ (Z×X), there is z′ ∈ Z such that δ = g2(z
′)

and, hence, z′ ∈ W . Thus, δ((Z \ W ) × C) = 0, δ(W × C) = δ(Z × C) and

δ(K × C) = δ(Z × C). Hence,

ν(K) = µ(K ×X) + µ(K × (X∅ \X)) +

∫
Z×X

δ(K × C)dµ(z, δ)

= µ(K ×X) +

∫
(Z×X)∩supp(µ)

δ(K × C)dµ(z, δ)

≥ µ(Z ×X) +

∫
(Z×X)∩supp(µ)

δ(Z × C)dµ(z, δ) = ν(Z).

It then follows by the definition of supp(ν) that Z = supp(ν) ⊆ K.

Lemma 4.13 There exists a continuous function u : Z → R such that

1. u(z) = Uz(m, δ) for each z ∈ M and δ ∈ X such that (z, δ) ∈ supp(µ),

2. u(z) = Uz(w, 1(ẑ,c)) for each z ∈ W and (ẑ, c) ∈ Z×C such that (ẑ, n(z)1(z,c)) ∈

supp(µ).

Proof. Define u : Z → R by setting, for each z ∈ Z,

u(z) =

u(z) if z ∈ M,

c(z) if z ∈ W.
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It follows by Lemma 4.8 that u is well-defined and by Lemmas 4.2 and 4.5 that

conditions 1 and 2 in the statement of the lemma hold. We have that u is continuous

since M and W are closed (by Lemmas 4.10 and 4.11), Z = M ∪ S (by Lemma 4.12)

and u|M and u|W are continuous.

Set n(∅) = 0 and let s : Z×Z∅ → R be defined by setting, for each (z, z′) ∈ Z×Z∅,

s(z, z′) = F (z)n(z′).

Define u(∅) = 0. Since ∅ is isolated, u : Z∅ → R is continuous.

Lemma 4.14 γ = µ ◦ g−1 is a stable assignment.

Proof. We first show that γ is an assignment. Let B be a Borel subset of Z; then

γ(B × Z∅) +

∫
Z×B

n(z′)dγ(z, z′) =

γ(B × Z∅) +

∫
Z×Z

1B(z
′)n(z′)dγ(z, z′) =

µ(g−1(B × Z∅)) +

∫
Z×X

1B(g(z, δ))n(g(z, δ))dµ(z, δ) =

µ(B ×X∅) +

∫
Z×X

δ(B × C)dµ(z, δ) = ν(B).

where the last equality follows because µ is a matching.

We next show that (γ, u) is stable. Note first that supp(γ) = g(supp(µ)) by

Carmona and Laohakunakorn (2024, Lemma 1) since g is an homeomorphism between

two compact spaces by Lemma 19.

Let (z, z′) ∈ supp(γ) ⊆ Z × Z by Lemma 51. Since supp(γ) ⊆ g(supp(µ)),

(z, n(z′)1(z′,c(z′))) ∈ supp(µ). Since z, z′ ∈ Z, then z ∈ M , z′ ∈ W and

u(z) + n(z′)u(z′) = (F (z)− c(z′))n(z′) + c(z′)n(z′) = s(z, z′).

Let (z, z′) ∈ Z × Z∅. If z′ = ∅, then u(z) + n(z′)u(z′) = u(z) ≥ 0 = s(z, ∅),

where the inequality holds since µ is stable. If z′ ̸= ∅, then s(z, z′) = F (z)n(z′). If

u(z)+n(z′)u(z′) < s(z, z′), then, letting ε > 0 be such that n(z′)(F (z)−u(z′)− ε) >

u(z), it follows that (z′, u(z′) + ε) ∈ Tm
z (µ) and Uz(m,n(z′)1(z′,u(z′)+ε)) > u(z), a

contradiction to the stability of µ. Thus, u(z) + n(z′)u(z′) ≥ s(z, z′).

Theorems 7 and 8 imply that:
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Lemma 4.15 γ is surplus maximizing and that supp(γ) is s-monotone.

We have that

M = {z ∈ Z : (z, z′) ∈ supp(γ) for some z′ ∈ Z} and

W = {z ∈ Z : (ẑ, z) ∈ supp(γ) for some ẑ ∈ Z}

since supp(γ) = g(supp(µ)) by Carmona and Laohakunakorn (2024, Lemma 1).

Lemma 4.16 If (z, z′), (ẑ, ẑ′) ∈ Z2, (z, z′), (ẑ, ẑ′) ∈ supp(γ) and z > ẑ, then z′ ≥ ẑ′.

Proof. Suppose that z > ẑ but ẑ′ > z′. Let ζ = 1(z,z′) + 1(ẑ,ẑ′) and τ =

1(z,ẑ′)+1(ẑ,z′). Then ζ and τ are finitely-supported, supp(ζ) ⊆ supp(γ) and τZ+τZ,n =

ζZ+ζZ,n. Since s(τ)−s(ζ) =
(
n(ẑ′)−n(z′)

)(
F (z)−F (ẑ)

)
> 0, this contradicts Lemma

4.15.

Define z1 = minM .

Lemma 4.17 z1 exists and z1 < z̄.

Proof. It follows by Lemma 4.10 that z1 exists and by Corollary 4.1 that z1 < z̄.

Lemma 4.18 For each z ∈ M \{z̄}, there exists ε > 0 such that (z, z+ ε) ⊆ M \W .

Proof. Suppose not; then there exists a sequence {zk}∞k=1 such that, for each

k ∈ N, zk > z, zk ∈ (M \W )c = M c ∪W and zk → z; thus, zk ∈ W by Lemma 4.12.

Let z′ ∈ Z be such that (z, z′) ∈ supp(γ).

For each k ∈ N, let ẑk ∈ Z be such that (ẑk, zk) ∈ supp(γ). Since Z is compact,

we may assume that {ẑk}∞k=1 converges; let ẑ = limk ẑk. For each k ∈ N, let ζk =

1(z,z′) + 1(ẑk,zk) and

τk = 1(zk,z′) +
n(zk)− n(z)

n(z)(1 + n(zk))
1(zk,z) +

n(z) + 1

n(z)(1 + n(zk))
1(ẑk,z) +

n(z)n(zk)− 1

n(z)(1 + n(zk))
1(ẑk,zk).
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Then ζk and τk are finitely-supported, supp(ζk) ⊆ supp(γ), τk,Z+τk,Z,n = ζk,Z+ζk,Z,n,

s(τk) =F (zk)n(z
′) +

n(zk)− n(z)

n(z)(1 + n(zk))
F (zk)n(z) +

n(z) + 1

n(z)(1 + n(zk))
F (ẑk)n(z)

+
n(z)n(zk)− 1

n(z)(1 + n(zk))
F (ẑk)n(zk) and

s(ζk) =F (z)n(z′) + F (ẑk)n(zk).

Furthermore, n′(z) = hf(z)n(z)2. Then,

lim
k

s(τk)− s(ζk)

zk − z
= lim

k

(
F (zk)− F (z)

zk − z
n(z′) +

n(zk)− n(z)

zk − z

F (zk)

1 + n(zk)

−n(zk)− n(z)

zk − z

n(z) + 1

n(z)(1 + n(zk))
F (ẑk)

)
= f(z)

(
n(z′) +

hn(z)2

1 + n(z)
F (z)− hn(z)F (ẑ)

)
.

Note that F (z̄)−F (z)
1−F (z)

≤ F (z̄) for each z ∈ [0, z̄] since the function z 7→ F (z̄)−F (z)
1−F (z)

is

strictly decreasing as its derivative at z ∈ [0, z̄] equals f(z)(F (z̄)−1)
(1−F (z))2

< 0. It then follows

that

1

f(z)
lim
k

s(τk)− s(ζk)

zk − z
=

=
1

h(1− F (z′))
+

F (z)

(1− F (z))(1 + h(1− F (z)))
− F (ẑ)

1− F (z)

=
1

h(1− F (z′))
− F (ẑ)− F (z)

(1− F (z))(1 + h(1− F (z)))
− hF (ẑ)

1 + h(1− F (z))

≥ 1

h
−

(
F (z̄)− F (z)

1− F (z)
+ hF (z̄)

)
1

1 + h(1− F (z))

>
1

h
− (F (z̄) + hF (z̄))

1

1 + h(1− F (z̄))

=
1

h
− F (z̄)(1 + h)

1 + h(1− F (z̄))

(to see that the strict inequality holds, consider separately the cases z = z̄ and z < z̄).
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Then limk
s(τk)−s(ζk)

zk−z
> 0 since this is equivalent to

1

h
− F (z̄)(1 + h)

1 + h(1− F (z̄))
≥ 0 ⇔

1 + h(1− F (z̄)) ≥ hF (z̄) + h2F (z̄) ⇔

F (z̄)h2 + (2F (z̄)− 1)h− 1 ≤ 0 ⇔

h ≤ 1

2F (z̄)
− 1 +

√
1 +

1

4F (z̄)2
.

Thus, s(τk)− s(ζk) > 0 for each k sufficiently large, contradicting Lemma 4.15.

Lemma 4.19 M = [z1, z̄] and W = [z, z1].

Proof. Let ε̄ = sup{ε > 0 : (z1, z1 + ε) ⊆ M \ W}. Such ε̄ exists because

{ε > 0 : (z1, z1 + ε) ⊆ M \W} is nonempty by Lemma 4.18 and is bounded above by

z̄ − z1. We then have that (z1, z1 + ε̄) ⊆ M \W by the definition of ε̄. Indeed, each

z ∈ (z1, z1 + ε̄) belongs to M \ W since, letting ε > 0 be such that z < z1 + ε and

ε < ε̄, it follows that z ∈ (z1, z1 + ε) ⊆ M \W .

Furthermore, z1 + ε̄ ∈ M \ W . We have that z1 + ε̄ ∈ M since M is closed by

Lemma 4.10 and every z < z1 + ε belongs to M . If ε̄ = z̄ − z1, then z1 + ε̄ = z̄ and

hence z1 + ε̄ ̸∈ W since otherwise z̄ would be an isolated point of W , a contradiction

to Lemma 4.11. Thus, consider ε̄ < z̄ − z1 and suppose that z1 + ε̄ ∈ W . Then,

letting η > 0 be such that (z1 + ε̄, z1 + ε̄+ η) ⊆ M \W , which exists by Lemma 4.18,

it follows that z1 + ε̄ is an isolated point of W . But this contradicts Lemma 4.11.

It follows that (z1, z1+ ε̄] ⊆ M \W . If ε̄ < z̄−z1, then (z1+ ε̄, z1+ ε̄+η) ⊆ M \W

for some η > 0 by Lemma 4.18 and, hence, (z1, z1+ ε̄+η) ⊆ M \W , contradicting the

definition of ε̄. Thus, it follows that ε̄ = z̄ − z1 and that M \W = (z1, z̄]. It follows

that W ⊆ [z, z1] and, in fact, that W = [z, z1] and M = [z1, z̄] since M ∪W = Z by

Lemma 4.12, M is closed by Lemma 4.10 and W is closed by Lemma 4.11.

Lemma 4.20 z1 > 0.

Proof. Suppose that z1 = 0. Then, W = {0} by Lemma 4.19. Hence, supp(γ) ⊆
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Z × {0}. Thus,

ν(Z) = ν(Z \ {0}) = γ((Z \ {0})× Z) +

∫
Z×(Z\{0})

n(z′)dγ(z, z′)

= γ((Z \ {0})× Z).

Furthermore,

γ((Z \ {0})× Z) ≤ γ(Z × Z) ≤ γ(Z × Z) +

∫
Z×Z

n(z′)dγ(z, z′) = ν(Z).

Hence, γ(Z × Z) = ν(Z). This then implies that
∫
Z×Z

n(z′)dγ(z, z′) = 0, which

contradicts∫
Z×Z

n(z′)dγ(z, z′) =

∫
supp(γ)∩(Z×Z)

n(z′)dγ(z, z′) = n(0)γ(supp(γ) ∩ (Z × Z))

= n(0)γ(Z × Z) = n(0)ν(Z) > 0.

Define ϕ : M ⇒ W by setting, for each z ∈ M ,

ϕ(z) = {z′ ∈ Z : (z, z′) ∈ supp(γ)}.

Then ϕ is nonempty-valued by the definition of M , ϕ(M) = W by the definition of

W and ϕ has a closed graph since supp(γ) is closed.

Let Q = {z ∈ M : ϕ(z) is not a singleton}.

Lemma 4.21 Q is countable.

Proof. For each z ∈ Q, let r(z) ∈ Q be such that minϕ(z) < r(z) < maxϕ(z).

This defines a function r : Q → Q which, as we now claim, is strictly increasing.

Indeed, if z, ẑ ∈ Q are such that z < ẑ, then (z,maxϕ(z)) ∈ supp(γ), (ẑ,minϕ(ẑ)) ∈

supp(γ) and, hence, maxϕ(z) ≤ minϕ(ẑ) by Lemma 4.16. Thus, r(z) < maxϕ(z) ≤

minϕ(ẑ) < r(ẑ). Thus, r maps Q in a one-to-one way to a subset of Q, implying that

Q is countable.

Lemma 4.22 For each z ∈ W , there exists z∗ ∈ Z such that {ẑ ∈ Z : (ẑ, z) ∈

supp(γ)} = {z∗}.
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Proof. The definition of W implies that {ẑ ∈ Z : (ẑ, z) ∈ supp(γ)} is nonempty.

Suppose that the conclusion of the lemma fails; then let z′ ∈ W and z∗, z̃ ∈ Z be

such that z∗, z̃ ∈ {ẑ ∈ Z : (ẑ, z′) ∈ supp(γ)} and z∗ < z̃. Since z∗, z̃ ∈ M by the

definition of M and M is an interval by Lemma 4.19, [z∗, z̃] ⊆ M . Let z ∈ (z∗, z̃) and

z̃′ ∈ Z be such that (z, z̃′) ∈ supp(γ). Lemma 4.16 implies that z′ ≤ z̃′ ≤ z′, hence

z̃′ = z′. Thus, z ∈ {ẑ ∈ Z : (ẑ, z′) ∈ supp(γ)}; since z is arbitrary, it follows that

[z∗, z̃] ⊆ {ẑ ∈ Z : (ẑ, z′) ∈ supp(γ)}.

We have that (z∗, z̃) \ Q ⊆ M \ W by Lemma 4.19 and ϕ(z) = {z′} for each

z ∈ (z∗, z̃) \Q. Thus,

ν([z∗, z̃] \Q) = ν((z∗, z̃) \Q) = γ(((z∗, z̃) \Q)× Z) = γ(((z∗, z̃) \Q)× {z′}).

Since 0 = ν({z′}) ≥
∫
Z×{z′} n(ẑ)dγ(z, ẑ), it follows that

∫
Z×{z′} n(ẑ)dγ(z, ẑ) = 0.

Thus,

0 =

∫
Z×{z′}

n(ẑ)dγ(z, ẑ) = n(z′)γ(Z × {z′}) ≥

n(z′)γ(((z∗, z̃) \Q)× {z′}) = n(z′)ν([z∗, z̃] \Q) = n(z′)ν([z∗, z̃]) > 0,

a contradiction.

Lemma 4.23 If (z, z′), (ẑ, ẑ′) ∈ Z2, (z, z′), (ẑ, ẑ′) ∈ supp(γ) and z > ẑ, then z′ > ẑ′.

Proof. We have that z′ ≥ ẑ′ by Lemma 4.16 and that z′ ̸= ẑ′ by Lemma 4.22.

Thus, z′ > ẑ′.

Lemma 4.24 ϕ is a continuous and strictly increasing function, ϕ(z1) = 0 and

ϕ(z̄) = z1.

Proof. We first show that ϕ(z) is a singleton for each z ∈ M , i.e. Q = ∅. Suppose

not; then let z ∈ M and z∗, z̃ ∈ ϕ(z) be such that z∗ < z̃. Since W is an interval by

Lemma 4.19, [z∗, z̃] ⊆ W . Let z′ ∈ (z∗, z̃) and ẑ ∈ M be such that z′ ∈ ϕ(ẑ). Lemma

4.23 then implies that z′ > z̃ if ẑ > z and that z′ < z∗ if ẑ < z. Thus, ẑ = z and

z′ ∈ ϕ(z); since z′ is arbitrary, it follows that [z∗, z̃] ⊆ ϕ(z).
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We have that [z∗, z̃]∩ϕ(x) = ∅ for each x ∈ M \{z}. Indeed, Lemma 4.23 implies

that minϕ(x) > z̃ for each x > z and that maxϕ(x) < z∗ for each x < z. Since

(z∗, z̃) ⊆ W \M , it follows that

ν([z∗, z̃]) = γ([z∗, z̃]×Z)+

∫
Z×[z∗,z̃]

n(z′)dγ(z, z′) = 0+

∫
(Z\{z})×[z∗,z̃]

n(z′)dγ(z, z′) = 0,

a contradiction to ν([z∗, z̃]) > 0. This contradiction shows that ϕ(z) is a singleton for

each z ∈ M .

It then follows that ϕ is a function. Since the graph of ϕ is closed, it follows that

ϕ is continuous. Lemma 4.23 implies that ϕ is strictly increasing.

It follows from ϕ(M) = W that ϕ is onto. This then implies that ϕ(z1) = 0 and

ϕ(z̄) = z1 since ϕ is strictly increasing.

Lemma 4.25 If z ∈ M , then u(z) > 0.

Proof. Suppose not; then let z ∈ M be such that u(z) = 0. Since z ≥ z1 > 0, it

follows that F (z)n(z) > 0. Then let ε > 0 be such that (F (z) − ε)n(z) > 0. Then

(z, ε) ∈ Tm
z (µ) and Uz(m,n(z)1(z,ε)) = (F (z)− ε)n(z) > 0 = u(z), a contradiction to

the stability of µ.

Lemma 4.26 c is strictly increasing.

Proof. Suppose not; then there is z, z′ ∈ W such that z′ > z and c(z′) ≤ c(z).

Since n(z′) > n(z), it follows that u(ϕ−1(z)) = (F (ϕ−1(z))− c(z))n(z) < (F (ϕ−1(z)−

c(z′))n(z′) = Uϕ−1(z)(m, z′) since u(ϕ−1(z)) > 0 by Lemma 4.25. Thus, there is ε > 0

such that (z′, c(z′) + ε) ∈ Tm
ϕ−1(z)(µ) and Uϕ−1(z)(m,n(z′)1(z′,c(z′)+ε)) > u(ϕ−1(z)),

contradicting the stability of µ.

Lemma 4.27 c is differentiable and, for each z ∈ W , c′(z) = f(z)F (ϕ−1(z))−c(z)
1−F (z)

.

Proof. Let z ∈ W = [0, z1] and {zk}∞k=1 be such that, for each k ∈ N, zk ∈ W ,

zk ̸= z and zk → z. Let {ẑk}∞k=1 be such that ẑk = ϕ−1(zk) for each k ∈ N. We have

that ϕ−1 exists and is continuous by Lemma 4.24 and since M is compact. Thus,

ẑk → ϕ−1(z).
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The stability of µ implies that, for each k ∈ N, F (ϕ−1(z))−c(z)
h(1−F (z))

≥ F (ϕ−1(z))−c(zk)
h(1−F (zk))

.

Thus, a simple manipulation of this expression implies that

c(zk)− c(z)

zk − z
≥ F (zk)− F (z)

zk − z

F (ϕ−1(z))− c(zk)

1− F (zk)
;

hence, lim infk
c(zk)−c(z)

zk−z
≥ f(z)F (ϕ−1(z))−c(z)

1−F (z)
since c is continuous by Lemma 4.4.

Analogously, the stability of µ implies that, for each k ∈ N, F (ẑk)−c(zk)
h(1−F (zk))

≥ F (ẑk)−c(z)
h(1−F (z))

.

Thus,
c(zk)− c(z)

zk − z
≤ F (zk)− F (z)

zk − z

F (ẑk)− c(zk)

1− F (zk)
;

hence, lim supk
c(zk)−c(z)

zk−z
≤ f(z)F (ϕ−1(z))−c(z)

1−F (z)
. It thus follows that

lim
k

c(zk)− c(z)

zk − z
= f(z)

F (ϕ−1(z))− c(z)

1− F (z)
.

Hence, c is differentiable and, for each z ∈ W , c′(z) = f(z)F (ϕ−1(z))−c(z)
1−F (z)

.

Lemma 4.28 µ = ν ◦ σ−1.

Proof. Let B be a Borel subset of Z ×X∅. Then

ν ◦ σ−1(B) = ν({z ∈ Z : σ(z) ∈ B}) = ν({z ∈ [z1, z̄] : σ(z) ∈ B}).

Furthermore,

µ(B) = µ(supp(µ) ∩B) = µ(supp(µ) ∩B ∩ (Z ×X))

= µ({z ∈ [z1, z̄] : σ(z) ∈ B} ×X).

Let D = {z ∈ (z1, z̄] : σ(z) ∈ B} and note that

ν({z ∈ [z1, z̄] : σ(z) ∈ B}) = ν(D) = µ(D ×X) +

∫
Z×X

δ(D × C)dµ(z, δ)

= µ(D ×X) + 0 = µ({z ∈ [z1, z̄] : σ(z) ∈ B} ×X).

Thus ν ◦ σ−1(B) = µ(B). Since B is arbitrary, ν ◦ σ−1 = µ.

Let ν(z′) = ν([0, z′]) for each z′ ∈ Z.

Lemma 4.29 For each z ∈ [z1, z̄], ν(ϕ(z)) =
∫ z

z1

θ(x)
h(1−F (ϕ(x)))

dx.
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Proof. Let z ∈ [z1, z̄] and let τ : Z × X → R be defined by setting, for each

(z, δ) ∈ Z ×X, τ(z, δ) = δ([0, ϕ(z)]× C). It follows by Lemma 4.28 that∫
Z×X

δ([0, ϕ(z)]× C)dµ(x, δ) =

∫
[z1,z̄]

τ(σ(x))dν(x) =

∫
[z1,z]

1

h(1− F (ϕ(x)))
dν(x).

Thus,

ν([0, ϕ(z)]) =

∫
[z1,z]

1

h(1− F (ϕ(x)))
dν(x)

since ν([0, ϕ(z)]) = ν([0, ϕ(z))) and [0, ϕ(z)) ⊆ W \ M . Since ν has a continuous

density θ, it follows that ν(ϕ(z)) = ν([0, ϕ(z)]) =
∫ z

z1

θ(x)
h(1−F (ϕ(x)))

dx for each z ∈ [z1, z̄].

Lemma 4.30 ϕ is differentiable and, for each z ∈ [z1, z̄],

ϕ′(z) =
θ(z)

h(1− F (ϕ(z)))θ(ϕ(z))
.

Proof. The function z′ 7→ ν(z′) is strictly increasing; let λ : [0, ν(z̄)] → Z be its

inverse. It then follows by Lemma 4.29 that, for each z ∈ [z1, z̄],

ϕ(z) = λ

(∫ z

z1

θ(x)

h(1− F (ϕ(x)))
dx

)
.

We have that z 7→ ν(z) is differentiable and that its derivative at z ∈ Z is θ(z).

Then λ is differentiable and λ′(x) = 1
θ(λ(x))

for each x ∈ [0, ν(z̄)]. Let ζ : [z1, z̄] →

R be defined by setting, for each z ∈ [z1, z̄], ζ(z) =
∫ z

z1

θ(x)
h(1−F (ϕ(x)))

dx. Then ζ is

differentiable with ζ ′(z) = θ(z)
h(1−F (ϕ(z)))

for each z ∈ [z1, z̄]. Since ϕ = λ ◦ ζ, it follows

that ϕ is differentiable and that, for each z ∈ [z1, z̄], ϕ′(z) = θ(z)
h(1−F (ϕ(z)))θ(λ(ζ(z)))

.

Since ζ(z) = ν(ϕ(z)) by Lemma 4.29, we obtain that λ(ζ(z)) = ϕ(z) and, hence,

ϕ′(z) = θ(z)
h(1−F (ϕ(z)))θ(ϕ(z))

.

Lemma 4.31 c(z1) = (F (z1)− c(0))n(0) > 0.

Proof. We have that ϕ(z̄) = z1, ϕ(z1) = 0 and z1 ∈ W ∩ M . It follows from

Lemma 4.25 that Uz1(m, 0) = (F (z1)− c(0))n(0) > 0.

Suppose that c(z1) > (F (z1) − c(0))n(0) and let ε > 0 be such that c(z1) − ε >

(F (z1)− c(0))n(0). Then (z1, c(z1)− ε) ∈ Tm
z̄ (µ) (since z1 ∈ M) and

Uz̄(m,n(z1)1(z1,c(z1)−ε)) > Uz̄(m, z1).
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But this contradicts the stability of µ since z̄ ∈ M . Hence c(z1) ≤ (F (z1)− c(0))n(0).

Suppose that (F (z1)−c(0))n(0) > c(z1) and let ε > 0 be such that (F (z1)−c(0)−

ε)n(0) > c(z1). Then (0, c(0)+ε) ∈ Tm
z1
(µ) (since 0 ∈ W ) and Uz1(m,n(0)1(0,c(0)+ε)) >

Uz1(w, 1(z̄,c(z1))). But this contradicts the stability of µ since z1 ∈ W . Hence (F (z1)−

c(0))n(0) ≤ c(z1) and, thus, (F (z1)− c(0))n(0) = c(z1).

The necessity part of the characterization of the stable matchings of the economy

Es in Theorem 5 then follows by Lemmas 4.17, 4.19, 4.20, 4.24, 4.26–4.28, 4.30 and

4.31.

4.3 Sufficiency part

Lemma 4.32 If (z1, ϕ, c) and (ẑ1, ϕ̂, ĉ) satisfy conditions 1–6 in Theorem 5, then

(z1, ϕ, c) = (ẑ1, ϕ̂, ĉ).

Proof. Let (z1, ϕ, c) and (ẑ1, ϕ̂, ĉ) satisfy conditions 1–6 in Theorem 5.

Recall that ν(z) = ν([0, z]) =
∫ z

0
θ(x)dx for each z ∈ Z. Thus, ν ′(z) = θ(z) for

each z ∈ Z.

Claim 1 For each z ∈ [z1, z̄], ν(ϕ(z)) =
∫ z

z1

θ(x)
h(1−F (ϕ(x)))

dx.

Proof. For each z ∈ [z1, z̄], ν ◦ ϕ′(z) = θ(ϕ(z))ϕ′(z) = θ(z)
h(1−F (ϕ(z)))

. Since

ν(ϕ(z1)) = ν(0) = 0, it follows that ν(ϕ(z)) =
∫ z

z1
ν ◦ ϕ′(x)dx =

∫ z

z1

θ(x)
h(1−F (ϕ(x)))

dx

for each z ∈ [z1, z̄].

Claim 2 If z1 = ẑ1, then ϕ = ϕ̂ and c = ĉ.

Proof. Let G : [z1, z̄] × [0, z1] → R be such that G(z, x) = θ(z)
h(1−F (x))θ(x)

for each

(z, x) ∈ [z1, z̄] × [0, z1]. Then the conditions of Lemma 44 hold with ϕ and ϕ̂ being

solutions to the initial value problems and z0 = z1, the latter since ϕ(z1) = ϕ̂(z1) = 0.

Then ϕ = ϕ̂.

We next show that c = ĉ and start by establishing that {z ∈ [0, z1] : c(z) =

ĉ(z)} ̸= ∅. Suppose not; then {z ∈ [0, z1] : c(z) = ĉ(z)} = ∅. Then c(0) ̸= ĉ(0) and,
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since c and ĉ are arbitrary, we may assume that c(0) > ĉ(0). Then c(z1) > ĉ(z1) by

the intermediate value theorem since c and ĉ are continuous. But then

c(z1) > ĉ(z1) = (F (z1)− ĉ(0))n(0) > (F (z1)− c(0))n(0) = c(z1),

a contradiction. This contradiction then shows that {z ∈ [0, z1] : c(z) = ĉ(z)} ≠ ∅.

Let G : [0, z1]× [0, 1] → R be such that G(z, x) = f(z)F (ϕ−1(z))−x
1−F (z)

for each (z, x) ∈

[0, z1]× [0, 1]. Then the conditions of Lemma 44 hold with c and ĉ being solutions to

the initial value problems and z0 ∈ {z ∈ [0, z1] : c(z) = ĉ(z)}. Hence, c = ĉ.

It follows by Claim 2 that it suffices to show that z1 = ẑ1. Suppose not; then

z1 ̸= ẑ1 and, since z1 and ẑ1 are arbitrary, we may assume that z1 > ẑ1.

The function ϕ : [z1, z̄] → [0, z1] is strictly increasing (condition 3). Hence, let

φ : [0, z1] → [z1, z̄] be the inverse of ϕ. Then φ is strictly increasing.

We have that φ(0) = z1 > ẑ1 = φ̂(0). Assume first that {z ∈ [0, ẑ1] : φ(z) =

φ̂(z)} ̸= ∅. Let z0 = inf{z ∈ [0, ẑ1] : φ(z) = φ̂(z)}. Then φ(z0) = φ̂(z0) since φ and

φ̂ are continuous. Thus, z0 > 0.

The definition of z0, the continuity of both φ and φ̂ and the intermediate value

theorem imply that φ(z) > φ̂(z) for each z ∈ [0, z0). This then implies that ϕ(z) <

ϕ̂(z) for each z ∈ [z1, φ(z0)). Indeed, ϕ(z1) = 0 < ϕ̂(z1) since otherwise φ̂(0) = z1 and,

hence, ẑ1 = φ̂(0) = z1. Let z ∈ (z1, φ(z0)) and let x, x′ be such that z = φ(x) = φ̂(x′).

Since φ(x) > φ̂(x), it follows that φ̂(x′) > φ̂(x). Then x′ > x since φ̂ is strictly

increasing and, thus, ϕ̂(z) = x′ > x = ϕ(z).

It then follows by the above that, for each z ∈ [z1, φ(z0)),

θ(z)

h(1− F (ϕ(z)))
<

θ(z)

h(1− F (ϕ̂(z)))
.

Thus, by Claim 1,

ν(z0) = ν(ϕ(φ(z0))) =

∫ φ(z0)

z1

θ(x)

h(1− F (ϕ(x)))
dx

<

∫ z1

ẑ1

θ(x)

h(1− F (ϕ̂(x)))
dx+

∫ φ(z0)

z1

θ(x)

h(1− F (ϕ̂(x)))
dx

=

∫ φ̂(z0)

ẑ1

θ(x)

h(1− F (ϕ̂(x)))
dx

= ν(ϕ̂(φ̂(z0))) = ν(z0),

25



a contradiction. This contradiction shows that {z ∈ [0, ẑ1] : φ(z) = φ̂(z)} = ∅.

It then follows from {z ∈ [0, ẑ1] : φ(z) = φ̂(z)} = ∅, together with the continuity

of φ and φ̂ and φ(0) > φ̂(0), that φ(z) > φ̂(z) for each z ∈ [0, ẑ1] by the intermediate

value theorem. Hence, φ(ẑ1) > φ̂(ẑ1) = z̄, a contradiction. This contradiction shows

that z1 = ẑ1 and completes the proof of Lemma 4.32.

Suppose that there exists (z1, ϕ, c) such that the conditions 1–6 in the theorem hold

and let µ = ν ◦ σ−1. Let, by the existence part of Theorem 5, µ̂ be a stable matching

and, by the necessity part of Theorem 5, (ẑ1, ϕ̂, ĉ) be such that the conditions 1–6 in

the theorem hold and such that µ̂ = ν ◦ σ̂−1, where σ̂ : [ẑ1, z̄] → Z × X is defined

as σ is but with (ẑ1, ϕ̂, ĉ) in place of (z1, ϕ, c). It then follows by Lemma 4.32 that

(z1, ϕ, c) = (ẑ1, ϕ̂, ĉ) and, hence, σ = σ̂. Thus µ = ν ◦ σ−1 = µ̂ and µ is a stable

matching.

4.4 Uniqueness part

Let µ and µ̂ be stable matchings of Es and, by Theorem 5, let µ be represented by

(z1, ϕ, c) and µ̂ by (ẑ1, ϕ̂, ĉ); in particular, µ = ν ◦ σ−1 and µ̂ = ν ◦ σ̂−1, where σ̂ is

defined as σ is but with (ẑ1, ϕ̂, ĉ) in place of (z1, ϕ, c). It then follows by Lemma 4.32

that (z1, ϕ, c) = (ẑ1, ϕ̂, ĉ) and, hence, σ = σ̂. Thus µ = ν ◦ σ−1 = µ̂.

5 Allowing r(0) = 0 in Rosen markets

The assumption that r(0) = 0 is used only in the proof of Corollary 3 in Carmona

and Laohakunakorn (2024). Without this assumption, Claim 11 still goes through by

noting that it is sufficient to show supp(µk) ∩ ((Z \ {0}) × X∅) ⊆ Z × X when ν is

atomless.

Claim 12 uses r(0) > 0 to show that if (zkj , δkj) ∈ supp(µkj), (z
′
k,j, ckj) ∈ supp(δkj),

and ckj → 0, then (z′k,j, ckj + ε) ∈ Tm
z′k,j

(µkj) and z′k,j has a profitable deviation to hire

z′k,j if r(z′k,j) > 0. This argument does not work if z′k,j = 0 and r(0) = 0. But it

is easy to see that, given the specification of Er,α, the wage must be the same for

all types of workers in any stable matching; hence, if ckj → 0, then we can pick any
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worker z′ > 0 and show that z′ has a profitable deviation to hire z′.

Letting ck be the common wage in µk, the above argument also implies that there

is c > 0 such that ck ≥ c for all k sufficiently large. Then c is also a lower bound on

the manager’s payoff, since if there is a manager making less than c, he could be hired

at a lower cost than any existing worker. Thus, in defining the element of M̄ that is

the (inverse) of the lower bound of the manager’s payoff, we can use 1/c instead of

2
g(r(0))θ(r(0))

.

6 An example of a Rosen market

We consider the example of Er,α in which θ ≡ 1 and F (z) = z for each z ∈ Z. In this

case, for each w > 0 and z ∈ Z,

n(z, w) =

(
1− α

w

) 1
α

z
1+α
α , and

wn(z, w) = (1− α)z1+αn(z, w)1−α.

This implies that

F (z1)z
α
1 n(z1, w)

1−α − wn(z1, w) =
wn(z1, w)

1− α
− wn1(z1, w) =

α

1− α
wn(z1, w).

It then follows by condition 4 in Theorem 4 that

α

1− α
wn(z1, w) = w ⇔ n(z1, w) =

1− α

α
⇔ w = αα(1− α)1−αz1+α

1 .

Recall from the proof of Theorem 4 that ν([0, z1]) =
∫
[z1,z̄]

n(z, w)dν(z). Since

ν([0, z1]) = z1 and∫
[z1,z̄]

n(z, w)dν(z) =

(
1− α

w

) 1
α
∫ z̄

z1

z
1+α
α dz =

(
1− α

w

) 1
α α

1 + 2α

(
z̄

1+2α
α − z

1+2α
α

1

)
,

it follows that

z1 =

(
1− α

w

) 1
α α

1 + 2α

(
z̄

1+2α
α − z

1+2α
α

1

)
. (6.1)

By substituting w = αα(1−α)1−αz1+α
1 in (6.1) and then solving it, we obtain that

z1 =

(
1− α

2 + α

) α
1+2α

z̄.
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The payment u for each individual is

u(z) =

w if z < z1,

α
(
1−α
w

) 1−α
α z

1+α
α if z ≥ z1.

The expression for u(z) when z ≥ z1 is obtained by noting that, if z ≥ z1,

u(z) = z1+αn(z, w)1−α − wn(z, w) = αz1+αn(z, w)1−α.

It follows that, as α → 0, z1 → z̄ and w → z̄. Furthermore, by substituting

w = αα(1− α)1−αz1+α
1 in u(z̄), it follows that

u(z̄) = αα(1− α)1−α

(
z̄

z1

) 1+α
α

z1+α
1 .

Using z1 =
(
1−α
2+α

) α
1+2α z̄ to substitute for z̄

z1
, it follows that

u(z̄) = αα(1− α)1−α

(
2 + α

1− α

) 1+α
1+2α

z1+α
1 .

Hence, u(z̄) → 2z̄ as α → 0.

7 Earnings in the different markets

We plot the earning function for Egrh, Es and Er,α to illustrate their differences in the

case where f = θ ≡ 1 and z̄ is arbitrary. Then the unique stable matching in Egrh is

represented by (z1, z2, ϕ, c) such that

ϕ(z) = 1−
√

1− 2(z − z2)

h
for each z ∈ [z2, z̄],

c(z) = c(0) + (z2 − c(0))z +
hz2

2
for each z ∈ [0, z1],

with

z1 = z2,

z2 = 1 +
1

h
−

√
1 +

1

h2
+

2(1− z̄)

h
,

c(0) =
z2

(
1− h2+h

2
z2
)

1 + h(1− z2)
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Figure 1: Earning function of Er,α and Egrh with z̄ = 0.8, α = 0.05 and h ∈

{0.1, 0.2, 0.8}.

if 0 < h ≤ 3
8z̄−4

and

z1 = 1−
√

1− 2(z̄ − z2)

h
,

z2 =
2− h

h
−
√

3− (4− 2(1− z̄))h+ h2

h2
,

c(0) = (1− h)z2

if 3
8z̄−4

< h < 1. Furthermore, the unique stable matching in Es is represented by

(z1, z2, ϕ, c) in the z1 = z2 case for each h satisfying (7).

We consider z̄ = 0.8 and h ≤ 0.8. This implies that (7) is satisfied and that the

stable matching of Egrh equals that of Es. Figure 1 plots the earning function u for

Er,α with α = 0.05 and that of Egrh (and Es) when h ∈ {0.1, 0.2, 0.8}.

We also consider the case z̄ = 1. Figure 2 plots the stable matching of Egrh for

h ∈ {0.5, 0.65, 0.8, 0.95}.
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Figure 2: Earning function of Egrh with z̄ = 1 and h ∈ {0.5, 0.65, 0.8, 0.95}.

8 Codes

Figures 1 and 2 were produced with earnings.py and earningsgrh.py respectively.

These files use rosenfunction.py, agrhfunction.py and grhfunction.py.

8.1 rosenfunction.py

def rosen(a,b):

z1=b*(((1-a)/(2+a))**(a/(1+2*a)))

w=(a**a)*((1-a)**(1-a))*(z1**(1+a))

return [z1,w]

def rosenpay(a,b,z):
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z1=rosen(a,b)[0]

w=rosen(a,b)[1]

if z <= z1:

return w

else:

return a*(((1-a)/w)**((1-a)/a))*(z**((1+a)/a))

def rosenpayw(a,b,z):

return rosen(a,b)[1]

def rosenpaym(a,b,z):

w=rosen(a,b)[1]

return a*(((1-a)/w)**((1-a)/a))*(z**((1+a)/a))

def rosenn(a,b,z):

z1=rosen(a,b)[0]

w=rosen(a,b)[1]

if z <= z1:

return 0

else:

return (((1-a)/w)**(1/a))*(z**((1+a)/a))

8.2 agrhfunction.py

import numpy as np

def agrh(h,b):

z1=1+1/h-np.sqrt(1+1/(h**2)+(2*(1-b))/h)

c0=(z1*(1-h*(2+h)*z1/2))/(1+h*(1-z1))

return [z1,c0]
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def agrhphi(h,b,z):

z1=agrh(h,b)[0]

return 1-np.sqrt(1-2*(z-z1)/h)

def agrhc(h,b,z):

z1=agrh(h,b)[0]

c0=agrh(h,b)[1]

return c0+(z1-c0)*z+(h*(z**2))/2

def agrhpay(h,b,z):

z1=agrh(h,b)[0]

if z <= z1:

return agrhc(h,b,z)

else:

x=agrhphi(h,b,z)

c=agrhc(h,b,x)

n=1/(h*(1-x))

return (z-c)*n

def agrhpaym(h,b,z):

x=agrhphi(h,b,z)

c=agrhc(h,b,x)

n=1/(h*(1-x))

return (z-c)*n

def agrhn(h,b,z):

z1=agrh(h,b)[0]

if z <= z1:

return 0

else:
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return 1/(h*(1-agrhphi(h,b,z)))

8.3 grhfunction.py

import numpy as np

def grh(h,b):

z2=(2-h)/h-np.sqrt(3-4*h+2*(1-b)*h+h**2)/h

z1=1-np.sqrt(1-(2*(b-z2))/h)

c0=(1-h)*z2

return [z1,z2,c0]

def grhphi(h,b,z):

z2=grh(h,b)[1]

return 1-np.sqrt(1-2*(z-z2)/h)

def grhc(h,b,z):

z2=grh(h,b)[1]

c0=grh(h,b)[2]

return c0+(z2-c0)*z+(h*(z**2))/2

def grhpaym(h,b,z):

x=grhphi(h,b,z)

c=grhc(h,b,x)

n=1/(h*(1-x))

return (z-c)*n

def grhpay(h,b,z):

z1=grh(h,b)[0]

z2=grh(h,b)[1]

if z <= z1:

33



return grhc(h,b,z)

elif z< z2:

return z

else:

x=grhphi(h,b,z)

c=grhc(h,b,x)

n=1/(h*(1-x))

return (z-c)*n

def grhn(h,b,z):

z2=grh(h,b)[1]

if z <= z2:

return 0

else:

return 1/(h*(1-grhphi(h,b,z)))

8.4 earnings.py

import pylab

import numpy as np

import rosenfunction as r, agrhfunction as s

m=0.0001

a=0.05

b=0.8

h1=0.8

h2=0.4

h3=0.1

zr1=np.arange(0,r.rosen(a,b)[0],m)

zr2=np.arange(r.rosen(a,b)[0],b,m)
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zs1=np.arange(0,s.agrh(h1,b)[0],m)

zs2=np.arange(s.agrh(h1,b)[0],b,m)

zs3=np.arange(0,s.agrh(h2,b)[0],m)

zs4=np.arange(s.agrh(h2,b)[0],b,m)

zs5=np.arange(0,s.agrh(h3,b)[0],m)

zs6=np.arange(s.agrh(h3,b)[0],b,m)

def rw(z):

return r.rosenpayw(a,b,z)

def rm(z):

return r.rosenpaym(a,b,z)

def sw1(z):

return s.agrhc(h1,b,z)

def sm1(z):

return s.agrhpaym(h1,b,z)

def sw2(z):

return s.agrhc(h2,b,z)

def sm2(z):

return s.agrhpaym(h2,b,z)

def sw3(z):

return s.agrhc(h3,b,z)

def sm3(z):

return s.agrhpaym(h3,b,z)
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pylab.figure(1)

pylab.plot(zr1,rw(zr1)+zr1-zr1,’k:’)

pylab.plot(zr2,rm(zr2),’k:’,label=’a=0.05’)

pylab.plot(zs1,sw1(zs1),’k-’)

pylab.plot(zs2,sm1(zs2),’k-’,label=’h=0.8’)

pylab.plot(zs3,sw2(zs3),’k--’)

pylab.plot(zs4,sm2(zs4),’k--’,label=’h=0.4’)

pylab.plot(zs5,sw3(zs5),’k-.’)

pylab.plot(zs6,sm3(zs6),’k-.’,label=’h=0.1’)

pylab.title(’Earnings: Rosen vs GRH’)

pylab.xlabel(’Knowledge’)

pylab.ylabel(’Earnings’)

pylab.legend()

pylab.savefig(’earnings.pdf’)

pylab.show()

8.5 earningsgrh.py

import pylab

import numpy as np

import agrhfunction as s, grhfunction as g

m=0.0001

b=1

h0=0.95

h1=0.8

h2=0.65

h3=0.5

xa0=np.arange(0,g.grh(h0,b)[0],m)

xb0=np.arange(g.grh(h0,b)[0],g.grh(h0,b)[1],m)
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xc0=np.arange(g.grh(h0,b)[1],b,m)

xa1=np.arange(0,g.grh(h1,b)[0],m)

xb1=np.arange(g.grh(h1,b)[0],g.grh(h1,b)[1],m)

xc1=np.arange(g.grh(h1,b)[1],b,m)

xa2=np.arange(0,s.agrh(h2,b)[0],m)

xb2=np.arange(s.agrh(h2,b)[0],b,m)

xa3=np.arange(0,s.agrh(h3,b)[0],m)

xb3=np.arange(s.agrh(h3,b)[0],b,m)

def w0(z):

return g.grhc(h0,b,z)

def m0(z):

return g.grhpaym(h0,b,z)

def w1(z):

return g.grhc(h1,b,z)

def m1(z):

return g.grhpaym(h1,b,z)

def w2(z):

return s.agrhc(h2,b,z)

def m2(z):

return s.agrhpaym(h2,b,z)

def w3(z):

return s.agrhc(h3,b,z)

def m3(z):
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return s.agrhpaym(h3,b,z)

pylab.figure(1)

pylab.plot(xa3,w3(xa3),’k-.’)

pylab.plot(xb3,m3(xb3),’k-.’,label=’h=0.5’)

pylab.plot(xa2,w2(xa2),’k--’)

pylab.plot(xb2,m2(xb2),’k--’,label=’h=0.65’)

pylab.plot(xa1,w1(xa1),’k:’)

pylab.plot(xb1,xb1,’k:’)

pylab.plot(xc1,m1(xc1),’k:’,label=’h=0.8’)

pylab.plot(xa0,w0(xa0),’k-’)

pylab.plot(xb0,xb0,’k-’)

pylab.plot(xc0,m0(xc0),’k-’,label=’h=0.95’)

pylab.title(’Earnings: GRH’)

pylab.xlabel(’Knowledge’)

pylab.ylabel(’Earnings’)

pylab.legend()

pylab.savefig(’earnings4h.pdf’)

pylab.show()
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