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This paper contains supplementary material to our paper “Rosen meets Garicano and

Rossi-Hansberg: Stable Matchings in Knowledge Economies”. It contains:

Section 2: Proof of Corollary 1.

Section 3: The stable matchings of the market Eg, can be obtained from those

of an appropriately defined market where the distribution of problems is uni-

form.

Section 4: A detailed proof of Theorem 5 concerning the stable matchings of

the market F..

Section 5: Dispensing with an assumption used in the analysis of Rosen markets

in Carmona and Laohakunakorn (2024).

Section 6: An example of a Rosen market where all distributions are uniform.

Section 7: A comparison of the earnings function u between E, , and Eg, and

also within Fg,, for different values of h.

Section 8: The codes used to produce the figures in Section 7.
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2 Proof of Corollary 1

1 z
Recall that n(z) = m, u(z) =c(z)and d(z) = f(z )% for each z € W.
Furthermore, for each z € M, ¢/(z) = h(l—F((;ﬁe((zZ))))G(qﬁ(z))'

Hence, for each z € W,

For each z € M, u(z) = (F(z) — ¢(¢(z)))n(¢p(z)) and, hence,

u'(2) = (f(2) = d(8(2))¢' (2))n(9(2)) + n'(6(2))¢ (2)(F(2) = c(9(2))) = f(2)n(¢(2)).

Thus, for each x € F(M),

duo F(w) _ w(F(@) _ (P 1(2))) an
Puo F\(z) _ w(o(F~ (@)¢/(F () _
d? )

This shows that v o F~! is strictly convex on F(M).
For each z € F(W),
duo F~'(z) d(F'(x)) _
da JF=H(z))
PuoFie) | hle(F@)

da? ¢ (o~ (F=H () fF(F~ ()
This shows that u o F~1 is strictly convex on F'(W).

Note that wo F~! is linear in F(S). Hence, to show that uo F~! is convex on F(Z),
it suffices to show that (uo F™1) (F(z1)) < (uoF1), (F(z1)) and (uo F~1)_(F(z3)) <
(wo F71) (F(z2)) (apply Lemma 2.1 below twice).

Consider first the case where S # 0, i.e. z; < 2. For each x € F(S), uo F~!(x) =
F(F~Y(z)) = z and, hence, (uo F™1 (F(z)) = (uo F7 1) (F(2)) = 1. Using
¢(z1) = F(z), it follows by what has been shown above that

(wo F7YY (F(z)) = hu(z) = %ﬁxl) <1 and
(wo FYY, (F(z)) = n(0) = % o1



Finally, consider the case where S = (), i.e. z; = 2. Using ¢(z1) > F(z), it

follows by what has been shown above that

(o P (F(a) = hu(s) = SIS < TS

(wo FY,(F(a) = n(0) = 1 > 1.

<1 and

The following lemma on convex functions was used above.

Lemma 2.1 If f : [a,b] = R and c € (a,b) are such that both f|.q and f|y are

convex and f'(c) < fi(c), then f is convex.

Proof. We will show that, for each o, 8,z € [a, b] such that o < x < 3, f@)=fla) <

f(B8)—f(e)
B—a

concreteness, assume that x < ¢ (the case x > ¢ is analogous).

. This is clear if § < ¢ or if ¢ < «; hence, assume that a < ¢ < . For

Note first that if a < y; < yo < y3 < b are such that f(yjziil(yl) < f(yjiiiim), then

Ml Tn) < S ndeed, (f(y2) = F(u0))(ys — v2) < (F(ys) = F(12)) (g2 — 1)

and summing (f(y2) — f(v1))(y2 — y1) to both sides yields (f(y2) — f(y1))(ys —y1) <
(f(ys) = F(00)) (v — 9n), ie. L02=L0) < Jn=f)

Then
FB) =F©) _ o FW=F©) s f@ = f) _ f©) = (@)
B T v A B e R

and the above argument implies that

by letting y1 = x, y» = ¢ and y3 = [.

We have that £ (x)ffi (@) < f (Ciig @) 1y the convexity of f |la,¢) and, hence,

F@) = f@) _ fB) = fx)

r— - b—x
Then the above argument with y; = «, y» = = and y; = 3 implies that £ (miii (@ <
f(B)=f(a)
.



3 Uniform distribution of problems

We show that assuming that the distribution of problems is uniform is without loss of
generality in the sense that stable matchings of Ej; with an arbitrary distribution of
problems F' can be obtained from a market with a uniform distribution of problems.

Recall that £y is defined by (Z,v,C,C, X, (=.).cz). We define
Eu = (Zuy Vu, C, Cua Xua (>'u,a:):c6Zu)
as follows:

F0)=F'0) =0,

2= F(2) = [0, F(2)],

Vy=voF

Cyu(r,2') = C(F(z), F~!(a')), for each x € Z, and 2’ € Z,
ny(r) = n(F~(z)) for each z € Z,,

X = (@)1 ey s (2,6) € Zu % C,

and, for each (x,2',¢) € Z, x Z, x C,

Une(W, L(ar,0)) = Up-1() (W, L(p-1(a1),0)) = €,

Unz(8) = Up1(2)(5) = 2, and

_ T —c
Uno (M, 1y (2") 1 ¢)) = Up=1()(m, n(F l(x’))l(Fq(I/)’C)) =

h(1—2a')
Define X,p = X, U{lpo} and F, : Z x Xy — Z, x X, by setting, for each
(z,n(2") 1w o) € Z x Xy,

Fu(2,n(2") 1z o) = (F(2), nu(F(2") 1 .0)-

Theorem 3.1 Let p € M(Z x Xp). Then i is a stable matching of Ey, if and only

if o F! is a stable matching of E,.

Proof. (Necessity) Let u be a stable matching of £}, . For each Borel B of Z,,



we have that

po F, N (B x X,)+ poF, (B x {1pn}) +/ §(B x C)dpo F*

Zu XXy

= W(FN(B) % X) 4 u(FB) x (1)) + [ 3(FH(B) x Oy

ZxX

Let (2, (@)1 ¢)) € supp(poFy,t). In,(2) 1w e € Xup\Xu, then ny ()1 o =
1(p,0)- This and the above argument show that p o F, ' is a matching in E,,.

Note that supp(po F, ') = F ! (supp(u)) since F, is an homeomorphism. Hence,
(F~ (@), n(F~H2") L(p-1(2r),0)) € supp(p).

If ny, (2') 1 o) € Xy, then n(F~H(a'))1(p-1(2),¢) € X and supp(p) C IR(p) implies
that

Uz (M, 1, (2) L 0)) = Up—1(y(m, n(F~H(2")) L (p-1(21).0)) = Up-1(2)(8) = Uy u(s), and

C Z UF—l(x/)(S) = Uu,r/(s).

It then follows that (z,n, ()1 ) € IR(uo F ).

Thus, to complete the proof, it suffices to show that (z,n.(x')1 ) € Su(po
F1). Suppose not and, specifically, that there is (z*,¢*) € T™(u o F; ') such that
U (M, 1y (77) 1o+ o)) s bigger than Uy (m,nu(2") 1w ) if nu(2')1@ e € X, and
Uia(8) if 0 (7)1 ) = 1(0,0)-

First note that (F~1(z*),c*) € Tyts (). Indeed, if (2, ny(2*)1(2+¢)) € supp(p o
F YN (Z, x X,) for some (z,¢) € Z, x C and ¢* > ¢, then

(F (@), n(F (@) p1 o)) € supp(p) 1 (Z % X)

and ¢* > ¢é. If (2, 1¢g)) € supp(po F, ') and ¢* > Uy, .+ (s), then (F~1(z*), 1) €
supp(p) and ¢* > Up-1(,+(s). Finally, if (2*,n,(2)1) € supp(po F, ') for some
(Z,¢) € Zy x C and ¢* > Uy e (m, ny(2)1(z,9), then (F~1(2*), n(F~1(Z))1(p-13)0) €

supp(p) and ¢* > Up-1 (=) (m, n(F~(Z))1(p-1(2),9)-



Since

UF—l(m) (m, n(Fil('r*))l(F—l(a:*),c*)) = Uu,z(mu nu('r*)l(x*,c*))v
UF—l(x) (m, n(F_l(w'))l(F_l(x/),c)) = Uu,m(m, nu<l‘/)1(;p/,c)) if nu(x’)l(x/,c) S Xu and

UFfl(ac)(S) = Uyu(s) if nu(wl)l(x’ﬁ) = Lo,

it then follows that (F~'(z), n(F~'(2))1(rp-1(2),¢)) € supp(p)\Sa (1), a contradiction
to the stability of pu.

Then there is (z*,¢*) € T (o F ') such that U, 4 (m, n,(2*)1 (4= o)) > ¢. Then,
as above, (F~!(z%),c*) € T3ty (1) and Up—1gn (m, n(F~H(a*))1(p-1(z+)) > ¢. But
this contradicts the stability of 4. Hence, it follows that (z, n,(2') 1) € Su(poF, )
and that po F;! is a stable matching of E,,.

(Sufficiency) Let u € M(Z x Xy) be such that o F ! is a stable matching of F,,.
Note that p = (o F; ") o (F; ')  and let i = po F;* and F' = F;'. The claim is
then that if /i is a stable matching of F,, then i o ! is a stable matching of Eon
The argument is analogous to the one in the necessity part.

For each Borel B of Z, we have that

fro F7Y(B x X) 4 jio F7H(B x {1gg}) + / §(B x C)dfio F~!

ZxX

— W(F(B) x X) + G(F(B) x (Lo )+ [ 3(F(B) x C)d

ZuXXuy

Let (2,1(2")1(2r.¢) € supp(fio F~1). Tfn(2") 120 € Xp\ X, then n(2") 10 = L)
This and the above argument show that = /1o F~' is a matching in Eon

Note that supp(fi o F~1) = F,(supp(fi)) since F, is an homeomorphism. Hence,

(F(’Z)vnu(F(Z/))l(F(z’),c)> < Supp(ﬂ)'
If n(2")1r ¢ € X, then ny(F(2")1 (), € Xu and supp(jt) € IR(jt) implies that

Uz<m7n(zl)]—(z’,c)) = Uu,F(z) (m, nu(F(Z/))]-(F(z’),c)) > Uu,F(z)(S) = Uz(s)a and

c > Uyrin(s) = U.(s).
It then follows that (z,n(2")1(q)) € IR(1).
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Thus, to complete the proof, it suffices to show that (z,n(2')1./ ) € Sym(). Sup-
pose not and, specifically, that there is (z*, ¢*) € T7*(p) such that U, (m,n(2*)1x c+)
is bigger than U,(m,n(2)1 ) if n(2')1zr) € X and U.(s) if n(2')1 ) = Lig,0).-

First note that (£'(z*), c*) € Ty, (f1). Indeed, if (2,n(2*) 1) € supp(fio )N

(Z x X) for some (2,¢) € Z x C and ¢* > ¢, then

(F(2), nu( F(=))Lpy9) € supp(i) N (Z x X,)

and ¢ > ¢ If (2%, 1) € supp(jto F~1) and ¢ > U.-(s), then (F(2*),100) €
supp(j1) and ¢* > Up(.-)(s). Finally, if (2*,n(3)1zs) € supp(jt o F~') for some
(2,¢) € Z x C and ¢* > U.-(m,n(2)1z4), then (F(2*),n,(F(2))1(rz)5) € supp(ft)
and ¢* > Up(z+)(m, no(F(2))1(rz)e)-

Since
Uu,F(z)(m7nu(F(z*))l(F(z*),c*)> = Uz(m7n<2*)1(z*,c*)>a
Uu’F(z)(mynU(F(Z/))l(F(Z’),C)) = UZ(m7 n<2/>1(zl7c)) lf n(z/)l(z”c) E X and
Unrix)(s) = U.(s) if n(2") 1) = L0,0)

it then follows that (F(z),n.(F(2")1(rer).e) € supp(ft) \ Sm(ft), a contradiction to
the stability of fi.
Then there is (2*, ¢*) € T2 () such that U, (m,n(2*)1 (. =) > c. Then, as above,

~

(£'(2%), ¢*) € Trin () and Uy peery (m, nu(F(2%))1(p(2r),er)) > ¢ But this contradicts
the stability of ji. Hence, it follows that (z,n(2")1(.)) € Su(p) and that p is stable.

4 A detailed proof of Theorem 5

4.1 Existence part

The existence of stable matchings in £, = E follows by Lemmas 52 and 53.

4.2 Necessity part

Let p be a stable matching of Ej.



Lemma 4.1 u(Z x X) > 0.

Proof. It follows from Lemma 51 that supp(u) € Z x X. This then implies
that u(Z x X) > 0 since, otherwise, 0 = pu(Z x X) = u(Z x Xy) (the latter equality
because supp(p) € Z x X), [, 6(Z x X)du(z,6) = 0 and, hence, 0 = pu(Z x Xp) +
S x 0(Z x X)du(z,0) = v(Z) > 0, a contradiction. m

The following results is a simply consequence of the previous lemma and asserts

that managers of type less than Z exist.
Corollary 4.1 supp(u) N ((Z \ {z}) x X) # 0.

Proof. Suppose not; then supp(p) N (Z x X) C {z} x X. Hence,

1(Z x X) = p(supp(p) N (Z x X)) < p({z} x X) = pu({Z}) < v({z}) =0,
a contradiction to Lemma 4.1. m

Lemma 4.2 If z,2,2' € Z and ¢ € C are such that (z,n(2")1(2¢)), (2,1(2") 1 0) €

supp(u), then ¢ = ¢.

Proof. Indeed, if ¢ > ¢, then managers of type z can gain by hiring workers of
type 2z’ at wage c—e¢ for some ¢ > 0 such that c—e > ¢, a contradiction to the stability
of . Thus, ¢ < ¢ and an analogous argument shows that ¢ > ¢; hence, c=¢. =

Define ¢ : W — [0,1] by setting, for each z € W, ¢(z) = ¢, where ¢ € [0, 1]
is such that (2,7n(2)1(..)) € supp(p) for some 2 € Z. Lemma 4.2 implies that the
function c is well-defined. For convenience, let, for each z € Z and 2’ € Z, U,(m, ') =
U.(m,n(2')1(z c(-ry)); then c takes values in [0, 1] since the stability of 4 implies that
c(z) > 0 and that Uz(m, z) = (F(2) — c(2))n(z) > 0 if (2,n(2)1(..¢)) € supp(p).

Lemma 4.3 c is increasing.

Proof. Suppose not; then there is z, 2’ € W such that 2’ > z and ¢(2’) < ¢(z).
Note that n(z") > n(z) and let 2 € Z be such that (2,n(2)1.))) € supp(x). Then
Us(m,z) = (F(2) — c(2))n(z) < (F(2) — c(Z)n(z') = Us(m, 2') since Us;(m, z) > 0
by the stability of p. Thus, there is € > 0 such that (2/,¢(z") + ¢) € T2"(n) and

Uz(m,n(2") 1z c(zry4e)) > Uz(m, 2), contradicting the stability of x. m
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Lemma 4.4 ¢ is continuous.

Proof. Suppose not; then there is z € W such that ¢ is discontinuous at z. Since
c is increasing by Lemma 4.3, there are only two possible cases.
Case 1: There exists € > 0 and a sequence {z;}7°; such that z; — z and, for each

keN, z; € W, z, < zand ¢(z) > c(zx) +¢. In this case, let 2 € Z be such that

(2,1(2)1(z0(2))) € supp(p). Then

Q>
N
|
o
—~
I\
N—
_l_
|
N———
3
—
N

Bl
S~—

<F(73) — () — g) n(z) > (F(

= (F(é) ~e(2) + 5) n(z) > Us(m, 2).

Thus, there is k sufficiently large such that (z;,c(zx) + 5) € T7"(p) and Uz(m, 2) <
Us(m, n(zk)l(%c(zk)%)), contradicting the stability of .

Case 2: There exists ¢ > 0 and a sequence {z;}32; such that z; — z and, for each
keN, z, € W, z, > zand ¢(z) < ¢(z) —e. In this case, for each k € N, let 2, € Z be
such that (2, 7(2x) 1, (2))) € supp(p). Since (2, c(z)) € Z x [0,1] for each k € N
and Z x [0,1] is compact, we may assume, taking a subsequence if necessary, that

{ (2, c(zr)) }p2, converges; let (£, c) = limy (2, ¢(2)). Then ¢(2) + 5 < ¢ — 5 and

Thus, there is & sufficiently large such that (z,c(z) + 5) € T2 (1) and Uz, (m, ) <

Uz, (m,n(2)1(ze(z)+2)), contradicting the stability of . m

Lemma 4.5 Ifz,2',2 € Z are such that (z,n(2')1 (2 c(2r))), (2,10(2)1(5,0(2))) € supp(p),
then U,(m, 2") = U,(m, 2).

Proof. If U,(m,z") > U,(m, %), then, letting € > 0 be such that (F(z) — ¢(z) —

e)n(z") > U.(m, 2), it follows that (2', ¢(2)+¢) € T7* () and U.(m, n(2") 1z e(21)4e)) >
U.(m, 2), a contradiction to the stability of p. Thus, U,(m,2") < U,(m, 2) and an
analogous argument shows that U,(m, z') > U,(m, 2); hence, U,(m,2") = U,(m, 2).
]
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Define u : M — R, by setting, for each z € M, u(z) = U,(m, 7'), where 2’ € Z
is such that (z,n(2")1( c(2ry)) € supp(p). Lemma 4.5 implies that the function u is
well-defined.

Lemma 4.6 u: M — R is strictly increasing.

Proof. Suppose not; then there is z, Z € M such that z > 2 and u(z) < u(2). Let
2" € Z be such that (2,n(2")1(2 c(.r))) € supp(p). Then F(2) < F(z) and

Thus, there is ¢ > 0 such that U,(m, n(2)1 (s c+e)) > u(z). Since (2/,¢(2') +¢) €
T (), this contradicts the stability of u. m

Lemma 4.7 v : M — R is continuous.

Proof. Suppose not; then there is z € M such that v is discontinuous at z. Since
u is increasing by Lemma 4.6, there are only two possible cases.

Case 1: There exists € > 0 and a sequence {z;}7°; such that z; — z and, for each
keN, z, € M, z, < zand u(z) > u(z) + . In this case, let 2/ € Z be such that
(2,n(2")1(2.c(2))) € supp(p). Then n(2")(F(z) — c(2')) = u(z) > u(z) —e. Thus,
there is k sufficiently large and 7 > 0 such that n(z")(F(zx) — c(2') — n) > u(z).
Then (2',¢(2') +n) € T (1) and U, (m, n(2')1 (2 e(z)4n)) > u(zr), contradicting the
stability of u.

Case 2: There exists € > 0 and a sequence {z;}7°; such that z; — z and, for each
keN, z, €M, z, >z and u(z) < u(zg) — e. In this case, for each k € N, let 2. € Z
be such that (2x,n(2})1(z e(z;))) € supp(p). Then, there is k sufficiently large such

that n(z,)(F(z) — c(z;,)) > u(zx) — e > u(z) since, using F(z) < 1,
0 < u(zk) = n(2,)(F(2) — c(z)) = n(z) (F(z) — F(2)) < n(2)(F(z) — F(z)) = 0.

Thus, there is n > 0 such that n(z;,)(F(2) —c(z;.) —n) > u(z). Then (z,c(z,) +n) €
17 () and U, (m, n(2p) (21 e(z4)+m) > u(2), contradicting the stability of 4. =

Lemma 4.8 u(z) =c(z) ifz€e MNW.

11



Proof. Let z € M NW. Suppose that u(z) > ¢(z) and let 2/ € Z be such that
(2,n(2")1 (2 o(2ry)) € supp(p) and € > 0 be such that n(2')(F(z) — c¢(2') —¢) > c(2).
Then (#/,¢(2) +¢) € T7"(p) and U,(m,n(2")1(z c(z1)4e)) > c(2), contradicting the
stability of u.

If u(z) < c(z), then let 2 € Z be such that (£,n(2)1(;))) € supp(p) and € > 0
be such that n(z)(F(2) —u(z) —e) > n(2)(F(2) — c(2)). Then (z,u(z) +¢) € T7*(u)
and Uz(m, n(2)1(zu(z)+e)) > Uz(m, 2), contradicting the stability of p. m

Let g : supp(p) — Z X Z be defined by setting, for each (z,d) € supp(u),

g(’Z? 5) = (Z7 Z/)

where 2’ € Z is such that 0 = n(2")1(z ). Let m(supp(p)) = {6 € X : (2,0) €
supp(u)} be the projection of supp(u) onto X and let gy : ma(supp(p)) — Z be
defined by setting, for each § € my(supp(p)),

g2(0) = 2’
where 2’ € Z is such that § = n(2)1( o))

Lemma 4.9 g is a homeomorphism between supp(u) and g(supp(u)) and go is an
homeomorphism between mo(supp(p)) and gs(me(supp(p))).

Proof. Let id : Z — Z be the identity. Then g = (id, g2)|supp(n)- Since id is an
homeomorphism, it suffices to show that g, is an homeomorphism.

It is clear that g5 ' : 2’ + n(2')1( ¢y is 1-1 and continuous, the latter since ¢
is continuous. Let § = n(2)1(; ) for some z € Z and {d;}32, such that, for each
k€N, 6, = n(zi)l(z,00) for some 2z, € Z and 6, — 9. Let K : Z x C — R be
defined by setting, for each (2,¢) € Z x C, k(2,¢) = |2 — z|/n(Z). Then & is bounded

and continuous, and hence
102(0) — 92(6)] = |20 — 2| = /ﬁdak R /f@d(s — =z =0.
Thus, g, is continuous. m

Lemma 4.10 M is nonempty, closed and perfect.
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Proof. The nonemptyness of M follows by Corollary 4.1 and the closedness of
M follows because X is compact and supp(u) € Z x X.

Suppose that M has an isolated point z. Then supp(p) N ({z} x X) # () and there
is € > 0 such that B.(z) N M = {z}. But this is a contradiction to the definition of

supp(u) since

u(B(2) x X) = p(supp(i) N (B(2) x X)) <
u((M 0 Bu(2)) x X) = p({z} x X) < w({z}) =0,

and supp(u) \ (B:(z) x X) is closed and strictly contained in supp(u). Thus, M has

no isolated points and is, therefore, perfect. m
Lemma 4.11 W is a nonempty, closed and perfect.

Proof. It follows by Lemma 4.10 that M is nonempty and, hence, W is nonempty.

The set W is closed since if z € Z and {z,};2, are such that z;, — z and z, € W
for each k € N, then there is, for each k € N, 2, € Z such that (2, n(zk) 1z, .c20))) €
supp(p). Since Z is compact, we may assume that {2;}72, converges; let 2 = limy, 2.
Then (Zx, n(2k) 1z 0020))) = (2,1(2)1(20(2))), implying that (2,n(2)1(c(2))) € supp(u)
and, hence, z € W.

Suppose that W has an isolated point z. Thus, there is 7 > 0 such that B, (z) N
W = {z}. Then supp(u) N (Z x {g;'(2)}) # 0 and there exists ¢ > 0 such that
supp(p) N (Z x g3 {(B.(2) NW)) = supp(u) N (Z x {g5'(2)}). It follows by Lemma 4.9
that g, '(B.(2) N W) is open in my(supp(x)), hence supp (i) N (Z x g5 ' (B:(2) N W))
is open in supp(yu). Furthermore,

0=u({z}) > / 5({z) x C)du(<'.6)

implies that u({(z/,0) € Z x X : 6({z} x C) > 0}) = 0. Since {(z/,0) € Z x X :
§({z} x C) > 0} = Z x {g;'(2)}, it follows that
0= (2 x {g,"(2)}) = u(supp(p) N (Z x {g5"(2)}))

= p(supp (i) N (Z x B:(g5 ' (z) N W))).
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Hence, supp() \ (Z x g5 (B-(2) N W)) is closed, strictly contained in supp(u) and
such that p(supp(u) \ (Z x g5 ' (B-(2) NW))) = u(supp(p)). But this contradicts the
definition of supp(p). Thus, W has no isolated points and is, therefore, perfect. m

Lemma 4.12 Z =M UW.

Proof. Let K = M UW and note that we have that K C Z by definition.

Conversely, note first that K is closed by Lemmas 4.10 and 4.11. Furthermore,
letting m(supp(u)) be the projection of supp(u) onto Z, we have that supp(u) C
m(supp(p)) x X = M x X C K x X and, hence,

u(K x X) = p(supp(p)) = p(supp(p) N (Z x X)) = u(Z x X).

Furthermore, for each (z,d) € supp(u) N (Z x X), there is 2’ € Z such that § = go(2)
and, hence, z/ € W. Thus, 6(Z\ W) x C) =0, (W x C) = §(Z x C) and
(K x C)=0(Z x C). Hence,

UK = p(K x X) + p(K x (Xp\ X)) +/ S(K x C)dp(z, 6)

ZxX

= u(K x X) —i—/ (K x C)du(z,9)

(ZxX)Nsupp(p)

> u(Z x X) +/ 0Z x C)du(z,0) =v(Z).

(ZxX)Nsupp(w)

It then follows by the definition of supp(r) that Z = supp(v) C K. m

Lemma 4.13 There exists a continuous function u : Z — R such that
1. u(z) = U,(m, o) for each z € M and § € X such that (z,d) € supp(u),

2. u(z) = U.(w,1z) for each z € W and (2,¢) € Z x C such that (2,n(2)1(.)) €

supp(p).
Proof. Define u : Z — R by setting, for each z € Z,

u(z) if z€e M,
u(z) =
clz) ifzeW.
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It follows by Lemma 4.8 that u is well-defined and by Lemmas 4.2 and 4.5 that
conditions 1 and 2 in the statement of the lemma hold. We have that u is continuous
since M and W are closed (by Lemmas 4.10 and 4.11), Z = M U S (by Lemma 4.12)
and u|y and u|y are continuous. m

Set n() = 0 and let s : Zx Zy — R be defined by setting, for each (z,2') € Z x Z,
s(z,2') = F(2)n(?).

Define u(@)) = 0. Since ) is isolated, u : Zy — R is continuous.

1

Lemma 4.14 v = po g~ " is a stable assignment.

Proof. We first show that v is an assignment. Let B be a Borel subset of Z; then

7@x2w+/ n()dy(z, ) =

ZxB

v@xZw+/ 15()n()dy(z, ') =

ZIXZ

mw%Bx%»+/ 15(g(2 8))n(g (2 6))dp(z. 6) =

ZxX

(B x Xp) +/ (B x C)du(z,0) =v(B).

ZxX

where the last equality follows because 4 is a matching.

We next show that (y,u) is stable. Note first that supp(vy) = g(supp(u)) by
Carmona and Laohakunakorn (2024, Lemma 1) since g is an homeomorphism between
two compact spaces by Lemma 19.

Let (z,2') € supp(y) € Z x Z by Lemma 51. Since supp(y) € g(supp(u)),
(2,n(2")1 (2 e(>r))) € supp(p). Since z,2" € Z, then z € M, 2’ € W and

uw(z) + n(2u(z") = (F(z) — c(2"))n(z") + c(2')n(2') = s(z, 7).

Let (z,2") € Z x Zy. If 2/ = 0, then u(z) + n(z")u(z') = u(z) > 0 = s(z,0),
where the inequality holds since p is stable. If 2/ # ), then s(z,2') = F(z)n(2'). If
u(z) +n(2)u(z") < s(z,2'), then, letting € > 0 be such that n(z")(F(z) —u(z') —¢) >
u(z), it follows that (2',u(2’) +¢) € T7"(p) and U.(m,n(2")1 (2 ui)+e)) > u(2), a
contradiction to the stability of p. Thus, u(z) + n(z")u(z’) > s(z,2'). =

Theorems 7 and 8 imply that:

15



Lemma 4.15 v is surplus mazimizing and that supp(y) is s-monotone.

We have that

M={z€Z:(z72) €supp(y) for some 2’ € Z} and

W ={z€Z: (% z2) € supp(y) for some z € Z}
since supp(y) = g(supp(p)) by Carmona and Laohakunakorn (2024, Lemma 1).
Lemma 4.16 If (z,2),(2,%") € Z2, (2,2),(2,%') € supp(7y) and z > 2, then 2/ > 2.

Proof. Suppose that z > 2 but 2/ > 2. Let ( = 1u.y + 1z and 7 =
1(.2)+1¢:2y. Then ¢ and 7 are finitely-supported, supp(¢) C supp(y) and 7747z, =
Cz4Czn. Since s(1)—s(¢) = (n(2)—n(z')) (F(z)—F(2)) > 0, this contradicts Lemma
4.15. =

Define z; = min M.
Lemma 4.17 z; exists and z; < Z.

Proof. It follows by Lemma 4.10 that 2; exists and by Corollary 4.1 that z; < Zz.

Lemma 4.18 For each z € M\ {z}, there exists € > 0 such that (z,z+¢) C M\ W.

Proof. Suppose not; then there exists a sequence {z}32; such that, for each
keN, zp >z 2z € (M\ W) =M UW and z, — z; thus, 2z, € W by Lemma 4.12.
Let 2" € Z be such that (z,2") € supp(y).

For each k € N, let 2, € Z be such that (2, zx) € supp(vy). Since Z is compact,
we may assume that {2}, converges; let 2 = limy 2;. For each k € N, let ¢, =
122 + 1(z,,2,) and

n(z)n(z) —1
n(z)(1+n(z))

n(zx) —n(z) n(z)+1
)1+ () 0 T @I+ n(a)

Te = Lz + Ligy,z) +
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Then ¢, and 7, are finitely-supported, supp(¢x) € supp(), T,z + Tk, zn = Co.z + Ck,Zins
n(z) —n(z)
n(z )(1 +n(z))

n(z)n(z)
+- D+ n(zk))F(Zk>n(Zk) and
(2

s(G) =F(2)n(2') + F(Ze)n(z).

n(z)+1

(1) =F(zr)n(2) + n(z)(1+n(z))

Furthermore, n’(z) = hf(z)n(z)? Then,

i 507) = 8(G) _
k Zk — % k

)—F(2)
2 Fz)

F(5)-F(2)
1-F(2)

Note that & < F(Z) for each z € [0, z] since the function z

strictly decreasing as its derivative at z € [0, z] equals % < 0. It then follows

is

that

LI s() — s(Ck)

f(z) 2k — 2
1 F(z) R
h(1-F()) (1-F&)1+hrl-F(2)) 1-F()
1 B F(2) - F(z) B hF(z)
T h(I-F()  (1-FE)A+h(1-F(2) 1+l - F(z))
| (F(z) - F(2) ) |
ZE‘(1-F@)*”“”>H¢@-F@)
>%‘*ﬂ@+h“”H+nuaF@»
1 FE1+h)

“h 1+ h(1-F(2)

(to see that the strict inequality holds, consider separately the cases z = z and z < z).
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s(Tk)—

Then limy ZK_Z(C’“) > () since this is equivalent to

1 F(z)(1+h)
6 R

14+ h(1—F(2)) > hF(2) + i*F(2) &

F(2)R*+ (2F(2) - 1h-1<0 %

1
— 141+

'S T

Thus, s(7%) — s((x) > 0 for each k sufficiently large, contradicting Lemma 4.15. =
Lemma 4.19 M = [2,2] and W = [z, z1].

Proof. Let &€ = sup{e > 0 : (21,21 +¢) € M \ W}. Such ¢ exists because
{e>0: (21,21 +¢) € M\ W} is nonempty by Lemma 4.18 and is bounded above by
Z — z1. We then have that (21,2, +&) € M \ W by the definition of £. Indeed, each
z € (21,21 + &) belongs to M \ W since, letting € > 0 be such that z < z; + ¢ and
e < g, it follows that z € (21,21 +¢) C M\ W.

Furthermore, z; + & € M \ W. We have that z; + & € M since M is closed by
Lemma 4.10 and every z < z; + € belongs to M. If £ = Z — z;, then 2; + & = Z and
hence z; + & € W since otherwise Z would be an isolated point of W, a contradiction
to Lemma 4.11. Thus, consider £ < z — z; and suppose that z; +& € W. Then,
letting > 0 be such that (z; + &, 21 +&£+n) € M \ W, which exists by Lemma 4.18,
it follows that z; + € is an isolated point of W. But this contradicts Lemma 4.11.

It follows that (z1,214+&] C M\W. If £ < Z— 21, then (21 +&, 21 +&+n) C M\ W
for some > 0 by Lemma 4.18 and, hence, (21,21 +&+n) C M\ W, contradicting the
definition of &. Thus, it follows that £ = Z — z; and that M \ W = (2, z]. It follows
that W C [z, z1] and, in fact, that W = [z, z1] and M = [z, Z] since M UW = Z by
Lemma 4.12, M is closed by Lemma 4.10 and W is closed by Lemma 4.11. =

Lemma 4.20 z; > 0.

Proof. Suppose that z; = 0. Then, W = {0} by Lemma 4.19. Hence, supp(y) C

18



Z x {0}. Thus,
v(2) =v(Z\{0}) =7((Z\{0}) x 2) +/ n(2)dy(z, 2')
Zx(2\{0})
=7((Z\{0}) x 2).

Furthermore,

A(Z\{0}) x Z) < A(Z x Z) <~+(Z x Z) + / n(2)dy(z, 2') = UZ).

ZIXZ

Hence, 7(Z x Z) = v(Z). This then implies that [, ,n(z')dy(z,2") = 0, which

contradicts
| onasee = [ n(#)dy (2, #) = n(0)y(supp(y) N (Z x 2))
ZxZ supp(v)N(Zx Z)
=n(0)y(Z x Z) =n(0)v(Z) > 0.
[

Define ¢ : M = W by setting, for each z € M,

d(2) =1{z € Z:(2,7) € supp(n)}.

Then ¢ is nonempty-valued by the definition of M, ¢(M) = W by the definition of
W and ¢ has a closed graph since supp(y) is closed.
Let Q ={z € M : ¢(2) is not a singleton}.

Lemma 4.21 () is countable.

Proof. For each z € @, let 7(z) € Q be such that min ¢(z) < r(z) < max¢(z).
This defines a function r : ) — Q which, as we now claim, is strictly increasing.
Indeed, if z, 2 € @ are such that z < Z, then (z, max ¢(z)) € supp(y), (2, min¢(2)) €
supp(y) and, hence, max ¢(z) < min ¢(2) by Lemma 4.16. Thus, 7(2) < max ¢(z) <
min ¢(2) < r(2). Thus, r maps @ in a one-to-one way to a subset of Q, implying that

() is countable. m

Lemma 4.22 For each z € W, there exists z* € Z such that {2 € Z : (2,z) €
supp(7)} = {z"}.
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Proof. The definition of W implies that {Z € Z : (%, z) € supp(y)} is nonempty.
Suppose that the conclusion of the lemma fails; then let 2/ € W and 2*,Z € Z be
such that 2*,Z2 € {£ € Z : (2,7') € supp(7)} and 2* < Z. Since z*,Z € M by the
definition of M and M is an interval by Lemma 4.19, [z*, 2] C M. Let z € (2%, Z) and
Z' € Z be such that (z,2') € supp(y). Lemma 4.16 implies that 2’ < 2’ < 2| hence
Z' =2 Thus, z € {£ € Z : (2,2') € supp(7)}; since z is arbitrary, it follows that
[z",2] € {2 € Z: (2 7) € supp(7)}.

We have that (2*,2) \ @ € M \ W by Lemma 4.19 and ¢(z) = {z'} for each
z € (25 2)\ Q. Thus,

v([z5 2\ @) = v((%,2)\ Q) = 7(((z%,2) \ Q) x Z2) =1(((z",2) \ Q) x {z'}).

Since 0 = v({z'}) > fZX{z’} n(z)dy(z, 2), it follows that fZX{z’} n(z)dy(z,2) = 0.
Thus,

0

n()(((z7 2)\ Q) x {='}) = n(z")v([z", 21\ Q) = n(z")v([2", 2]) > O,

I
S
X

x
N
—

3
—~
O

oL
=
“(\2
a3

I

3
—~

N\
=

N

X
—

N\
sy

Vi

a contradiction. m
Lemma 4.23 If (2,2'),(3,%) € Z2, (2,7),(2,2') € supp(y) and z > 2, then 2’ > 2.

Proof. We have that 2z’ > Z’ by Lemma 4.16 and that 2z’ # Z’ by Lemma 4.22.

Thus, 2/ > Z%. =

Lemma 4.24 ¢ is a continuous and strictly increasing function, ¢(z1) = 0 and

qb(,?) = 21.

Proof. We first show that ¢(z) is a singleton for each z € M, i.e. Q = ). Suppose
not; then let z € M and 2%, Z € ¢(z) be such that z* < Z. Since W is an interval by
Lemma 4.19, [z*, 2] C W. Let 2’ € (2*,2) and Z € M be such that z’ € ¢(Z). Lemma
4.23 then implies that 2/ > Z if Z > z and that 2’ < z* if 2 < z. Thus, 2 = z and

2" € ¢(2); since 2’ is arbitrary, it follows that [2*, 2] C ¢(z).
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We have that [2*, 2] N ¢(x) = () for each 2 € M \ {z}. Indeed, Lemma 4.23 implies
that min ¢(x) > Z for each # > z and that max ¢(x) < z* for each z < z. Since
(z*,2) C W\ M, it follows that

(2", 2]) = 1((=" 2 x 2) + /

Z x|z*,Z]

n(z)dy(z,2') = 0+/ n(z")dy(z,2") =0,
(2\{z})x[*,2]

a contradiction to v([z*, Z]) > 0. This contradiction shows that ¢(z) is a singleton for
each z € M.

It then follows that ¢ is a function. Since the graph of ¢ is closed, it follows that
¢ is continuous. Lemma 4.23 implies that ¢ is strictly increasing.

It follows from ¢(M) = W that ¢ is onto. This then implies that ¢(z;) = 0 and

¢(Z) = z since ¢ is strictly increasing. m
Lemma 4.25 If z € M, then u(z) > 0.

Proof. Suppose not; then let z € M be such that u(z) = 0. Since z > z; > 0, it
follows that F'(z)n(z) > 0. Then let € > 0 be such that (F(z) —e)n(z) > 0. Then
(z,€) € T7"(p) and U.(m,n(2)1.¢)) = (F(2) —€)n(z) > 0 = u(z), a contradiction to
the stability of p. m

Lemma 4.26 c is strictly increasing.

Proof. Suppose not; then there is z, 2" € W such that 2’ > z and ¢(2’) < ¢(z).
Since n(z') > n(z), it follows that u(¢=1(2)) = (F(¢7(2)) —c(2))n(z) < (F(¢7'(2) —
c(2))n(2) = Up-1(z)(m, 2') since u(¢~'(2)) > 0 by Lemma 4.25. Thus, there is ¢ > 0
such that (2/,c(2') +¢) € Tjh (1) and Ug-1(o)(m, n(2) 1z c(z)4e)) > u(¢(2)),
contradicting the stability of y. m

Lemma 4.27 c is differentiable and, for each z € W, (z) = f(z)%)(gc(z)

Proof. Let z € W = [0, z1] and {z}32; be such that, for each k € N, 2z, € W,
2r # 2z and 2z — 2. Let {2}, be such that 2, = ¢~'(2;) for each k € N. We have

that ¢~! exists and is continuous by Lemma 4.24 and since M is compact. Thus,

Zr = ¢ (2).
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aF : : F(¢~'(2))=c(2) F(o~ ' (2))—c(2k)
The stability of p implies that, for each k£ € N, aE) > S IE

Thus, a simple manipulation of this expression implies that

c(zr) —c(z) | Flan) = F(2) F(9~(2) = ).
2L — 2 2K — %2 1 — F(z) ’

hence, lim infy, % > f (Z)M since ¢ is continuous by Lemma 4.4.

z 1-F(z)
F(2k)—c(2k) F(2g)—c(2)
» h(1-F(zx)) — h(1-F(2)) *

Analogously, the stability of  implies that, for each k£ € N
Thus,

c(z) — c(2) < F(z) — F(2) F(%) — c(z)
2 —2 2k — 2 1— F(z)

hence, lim sup, M:z(z) <f (z)%)(gc(z) It thus follows that

2k
lim —C(zk) — () = f(z
ko oz — 2 1—F(2)

Hence, c is differentiable and, for each z € W, d(z) = f(z)%)(gc(z) n

Lemma 4.28 y=voo L.

Proof. Let B be a Borel subset of Z x Xy. Then
voo '(B)=v({z€ Z:0(z) € B}) =v({z € [21,2] : 0(2) € B}).
Furthermore,

p1(B) = p(supp(p) N B) = p(supp(p) N BN (Z x X))

=u({z € [21,2] : 0(2) € B} x X).
Let D ={z € (z1,2] : 0(z) € B} and note that

v({z € |z1,2] 1 0(2) € B}) =v(D) = u(D x X) + (D x C)du(z,9)

ZxX

=u(DxX)+0=u{z €2,z :0(z2) € B} x X).

Thus v oo~ *(B) = p(B). Since B is arbitrary, voo™' = pu. =

Let v(2") = v([0, 2']) for each 2’ € Z.

Lemma 4.29 For each z € [21, 2], v(¢(2)) = [ %dx.
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Proof. Let z € [z1,z] and let 7 : Z x X — R be defined by setting, for each
(2,0) € Z x X, 7(2,0) = 6([0, ¢(2)] x C). It follows by Lemma 4.28 that

| 800,003 % Coau(z.) = /[ o)) = /[ i e
Thus,

/[ w1~ Pl )

since v([0,¢(2)]) = v([0,¢(2))) and [0, $(z)
[0, ¢(2)

o(z
density 0, it follows that v(¢(2)) = v([0, ¢(z

) C W \ M. Since v has a continuous

0
D= de for each 2 € [z, 2.

Y

Lemma 4.30 ¢ is differentiable and, for each z € [z, Z],
0(2)
h(1 = F(6(2)))0(¢(2))

Proof. The function 2’ — v(2’) is strictly increasing; let A : [0,v(2)] — Z be its

¢'(z) =

inverse. It then follows by Lemma 4.29 that, for each z € [z, Z],

?(z) = A ( / (i —ef(ﬂ?m)))dl") |

We have that z — v(z) is differentiable and that its derivative at z € Z is 6(z).

Then A is differentiable and \'(x) = 9()\ oy for each = € [0,v(2)]. Let ¢ : [z1,2] —
R be defined by setting, for each z € [zl,z], ((z) = fzzl mdx Then ( is
differentiable with ('(z) = % for each z € [z, Z]. Since ¢ = Ao (, it follows

0(2)
h(1=F(¢(2)))0(A(¢(2)))

Since ((z) = v(¢(z)) by Lemma 4.29, we obtain that A(((z)) = ¢(z) and, hence,

that ¢ is differentiable and that, for each z € [z1,Z], ¢'(2) =

— 0(2)
¥2) = et ey ™
Lemma 4.31 ¢(z1) = (F(z1) — ¢(0))n(0) > 0.
Proof. We have that ¢(z) = z1, ¢(z1) = 0 and 2y € W N M. It follows from
Lemma 4.25 that U,,(m,0) = (F(2z1) — ¢(0))n(0) > 0.

Suppose that ¢(z;1) > (F(2z1) — ¢(0))n(0) and let € > 0 be such that ¢(z;) — e >
(F(z1) — ¢(0))n(0). Then (z1,c(z1) —e) € T (n) (since 2 € M) and

U2<m7n(zl)1(zl,c(21)—6)) > Uf(m721)'
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But this contradicts the stability of u since z € M. Hence ¢(z1) < (F(2z1) —¢(0))n(0).
Suppose that (F(z1) —¢(0))n(0) > ¢(z1) and let € > 0 be such that (F(z;) —c(0) —
e)n(0) > ¢(z1). Then (0,c(0)+¢) € T (i) (since 0 € W) and U, (m, n(0)1(0,c(0)+¢)) >

U, (w, 1(z¢(z))). But this contradicts the stability of u since z; € W. Hence ( ( 1) —
c(0))n(0) < ¢(z1) and, thus, (F(z1) —¢(0))n(0) = c(z1). =

The necessity part of the characterization of the stable matchings of the economy
E; in Theorem 5 then follows by Lemmas 4.17, 4.19, 4.20, 4.24, 4.26-4.28, 4.30 and
4.31.

4.3 Sufficiency part

Lemma 4.32 If (z1,¢,¢) and (31,0,¢) satisfy conditions 1-6 in Theorem 5, then
(217¢7 C) = (217§5a é)

Proof. Let (z, ¢, c) and (21 o, ¢) satisfy conditions 1-6 in Theorem 5.
Recall that v(z) = = [, 0(x)dz for each z € Z. Thus, /(z) = 0(z) for

each z € Z.

Claim 1 For each z € [21, 2], v(¢(2)) = f;l %dx.

Proof. For each z € [z,Z], v o ¢/(2) = 0(¢(2))d(2) = %. Since

v(d(21)) = v(0) = 0, it follows that v(p(2)) = [Jve d(x)de = [} rpomyde

for each z € [21,2]. m
Claim 2 If z; = %1, then ¢ = ¢ and ¢ = ¢.

Proof. Let G : [z1,2] x [0, 2] — R be such that G(z,z) = % for each
(z,2) € [21,2] x [0,2]. Then the conditions of Lemma 44 hold with ¢ and ¢ being
solutions to the initial value problems and zy = 21, the latter since ¢(z) = ¢(z1) = 0.
Then ¢ = ¢.

We next show that ¢ = ¢ and start by establishing that {z € [0,2] : ¢(z) =

¢(z)} # 0. Suppose not; then {z € [0,21] : ¢(z) = é(2)} = 0. Then ¢(0) # ¢(0) and,
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since ¢ and ¢ are arbitrary, we may assume that ¢(0) > ¢(0). Then ¢(z1) > ¢(z1) by
the intermediate value theorem since ¢ and ¢ are continuous. But then

(1) > (1) = (F(z1) — 0))n(0) > (F(2) — c(0))n(0) = e(z1),
a contradiction. This contradiction then shows that {z € [0, z1] : ¢(z) = ¢(2)} # 0.

Let G : [0, z1] x [0,1] — R be such that G(z,z) = f(z)%(g*x for each (z,z) €
[0, 21] x [0,1]. Then the conditions of Lemma 44 hold with ¢ and ¢ being solutions to
the initial value problems and zp € {z € [0, 2] : ¢(2) = ¢é(2)}. Hence, c=¢. =

It follows by Claim 2 that it suffices to show that z; = Z;. Suppose not; then
21 # 2, and, since z; and Z; are arbitrary, we may assume that z; > 2.

The function ¢ : [21,2] — [0, 2] is strictly increasing (condition 3). Hence, let
¢ : [0, z1] = [21, 2] be the inverse of ¢. Then ¢ is strictly increasing.

We have that p(0) = 21 > 2; = ¢(0). Assume first that {z € [0, 2] : p(z) =
P(2)} £ 0. Let zg = inf{z € [0,21] : p(2) = ¢(2)}. Then ¢(zy) = H(zp) since ¢ and
¢ are continuous. Thus, zg > 0.

The definition of zj, the continuity of both ¢ and ¢ and the intermediate value
theorem imply that ¢(z) > ¢(z) for each z € [0, zp). This then implies that ¢(z) <
¢(z) for each z € [z, 0(2)). Indeed, ¢(z) = 0 < ¢(z1) since otherwise $(0) = z and,
hence, 21 = ¢(0) = z;. Let z € (21, p(20)) and let x, 2’ be such that z = p(x) = $(2').
Since ¢(z) > ¢(z), it follows that ¢(z') > ¢(x). Then 2’ > x since ¢ is strictly
increasing and, thus, ¢(z) = 2’/ > z = ¢(z).

It then follows by the above that, for each z € [z, ¢(2)),

o o)
h1=F(6(2)))  h(1-F(d(2)

Thus, by Claim 1,




a contradiction. This contradiction shows that {z € [0, 2] : ¢(2) = ¢(2)} = 0.

It then follows from {z € [0, %] : ¢(2) = ¢(2)} = 0, together with the continuity
of ¢ and ¢ and ¢(0) > $(0), that (z) > ¢(z) for each z € [0, 21] by the intermediate
value theorem. Hence, ¢(21) > ¢(21) = z, a contradiction. This contradiction shows
that z; = Z; and completes the proof of Lemma 4.32. =

Suppose that there exists (21, ¢, ¢) such that the conditions 1-6 in the theorem hold
and let = voo~!. Let, by the existence part of Theorem 5, i be a stable matching
and, by the necessity part of Theorem 5, (Z1, QAﬁ, ¢) be such that the conditions 1-6 in
the theorem hold and such that 4 = v o671 where 6 : [21,2] = Z x X is defined
as o is but with (Z, P, ¢) in place of (z1,¢,c). It then follows by Lemma 4.32 that
(z1,0,¢) = (él,é, ¢) and, hence, ¢ = 6. Thus y = voo ! = ji and p is a stable

matching.

4.4 Uniqueness part

Let 1 and [ be stable matchings of Es and, by Theorem 5, let i be represented by

1

(z1,¢,¢) and 1 by (Z, gg,é); in particular, y = voo~! and i = v o6, where ¢ is

defined as o is but with (21, o, ¢) in place of (21, ¢, c). It then follows by Lemma 4.32

~

that (21,6, c) = (41,6, ¢) and, hence, 0 = 6. Thus pu=voo ! = fi.

5 Allowing r(0) = 0 in Rosen markets

The assumption that r(0) = 0 is used only in the proof of Corollary 3 in Carmona
and Laohakunakorn (2024). Without this assumption, Claim 11 still goes through by
noting that it is sufficient to show supp(ux) N ((Z \ {0}) x Xy) € Z x X when v is
atomless.

Claim 12 uses 7(0) > 0 to show that if (24, 0x;) € supp(us;), (21 ;, ck;) € SUpp(dy, ),
and ¢, — 0, then (2, ;, ¢, +¢) € Tj,}:j(ukj) and z; ; has a profitable deviation to hire
z.; if (2, ;) > 0. This argument (ioes not work if z; ; = 0 and r(0) = 0. But it
is easy to see that, given the specification of E, ,, the wage must be the same for

all types of workers in any stable matching; hence, if ¢z, — 0, then we can pick any
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worker z' > 0 and show that 2z’ has a profitable deviation to hire z’.

Letting ¢ be the common wage in u, the above argument also implies that there
is ¢ > 0 such that ¢, > ¢ for all k sufficiently large. Then c is also a lower bound on
the manager’s payoff, since if there is a manager making less than ¢, he could be hired
at a lower cost than any existing worker. Thus, in defining the element of M that is

the (inverse) of the lower bound of the manager’s payoff, we can use 1/c instead of

2
9(r(0))0(r(0)) "

6 An example of a Rosen market

We consider the example of E, , in which # = 1 and F(z) = z for each z € Z. In this

case, for each w > 0 and z € Z,

w
wn(z,w) = (1 —a)z"Tn(z,w)'
This implies that
Pz, w) = — wn(zw) = 2 ) = 2y, ).
-« -«

It then follows by condition 4 in Theorem 4 that

1 —
- wn(zla U)) =W <= n(zla U)) - a

PN = a%(1 = 1-a 1+a.
T - w=a"(l—a) %z

Recall from the proof of Theorem 4 that v ([0, z]) = f[ZI 3 n(z,w)dr(z). Since
v([0, z1]) = 21 and

1 _ 1
1-— o % 144 1-— 3 a 1+2a
/ n(z,w)dv(z) = ( a) / 2atdr = ( a) a <Z% —z > ,
[2172] w zZ1 w ]- + 20{

it follows that
1—« (6] 142 14+2a
_ S ) 6.1
- ( w ) 1+2a<z “ ) (6.1)

By substituting w = a®(1 —a)'~®2; 7 in (6.1) and then solving it, we obtain that

1—a)\ ™= _
27 \25a =

27

Q=




The payment u for each individual is

w if 2 < 2z,
l—a) o> lta .
a(—)o‘za if z > 2.

The expression for u(z) when z > z; is obtained by noting that, if z > 2,

u(z) = 27 (2, w) ™ —wn(z,w) = az' T n(z, w) .

It follows that, as « — 0, 2y — z and w — Zz. Furthermore, by substituting

w=a*(1 —a)' 72 in u(Z2), it follows that
1ta

w(z) = a(1 — a) (i) "t

21

Using 2z, = (;—g)”ﬁ Z to substitute for 2—21, it follows that

14«

9 Tiza
u(z) = a*(1 — oz)l_o‘ ( + a) Z}J’O‘.

l—«o

Hence, u(z) — 2z as o — 0.

7 Earnings in the different markets

We plot the earning function for Eg, £ and F, , to illustrate their differences in the
case where f = 0 =1 and 7z is arbitrary. Then the unique stable matching in Fg,y, is
represented by (21, 22, ¢, ¢) such that
2(z — 29)
h
hz?
c(z) = ¢(0) + (22 — ¢(0))z + 58 for each z € [0, 2],

for each z € [z, Z],

d(z)=1—4/1—

with
21 = 22,
1 1 2(1-2)
=14+ = — 14+ = N 7T
29 + A \/ + 12 + 3 ,
1 — h2th
C(O) _ 22 ( 2 ’22)
1+ h(l — 22)
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Earnings: Rosen vs GRH

Earnings
o o o = = =
N o)) [o%) o N o
1 1 1 1 1 1

©
N
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Knowledge

Figure 1: FEarning function of E,, and Eg, with 2 = 0.8, a = 0.05 and h €
{0.1,0.2,0.8}.

if0<h§85i_4and

21_1_ I _ Z—ZQ

3_(4—2(1—2)h+ 12
E ’

ZQZ

c(0) = (1 — h)zy

if 82%4 < h < 1. Furthermore, the unique stable matching in F; is represented by
(21, 22, ¢, ¢) in the z; = zy case for each h satisfying (7).

We consider z = 0.8 and A < 0.8. This implies that (7) is satisfied and that the
stable matching of Eg1, equals that of E. Figure 1 plots the earning function u for
E, , with o = 0.05 and that of Egy, (and E,) when h € {0.1,0.2,0.8}.

We also consider the case z = 1. Figure 2 plots the stable matching of Eg, for

h € {0.5,0.65,0.8,0.95}.
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Earnings: GRH

Earnings
A L e e
Ea) (@)] (o0} o N £y (@)]
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0.0 0.2 0.4 0.6 0.8 1.0
Knowledge

Figure 2: Earning function of E,), with 2 =1 and h € {0.5,0.65,0.8,0.95}.

8 Codes

Figures 1 and 2 were produced with earnings.py and earningsgrh.py respectively.

These files use rosenfunction.py, agrhfunction.py and grhfunction.py.

8.1 rosenfunction.py

def rosen(a,b):

z1=bx(((1-a)/(2+a))**(a/(1+2%a)))
w=(ax*a)*((1-a)**x(1-a))*(zl*x(1+a))

return [z1,w]

def rosenpay(a,b,z):
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def

def

def

zl=rosen(a,b) [0]

w=rosen(a,b) [1]

if z <= z1:
return w

else:

return ax(((1-a)/w)**x((1-a)/a))*(zxx((1+a)/a))

rosenpayw(a,b,z):

return rosen(a,b) [1]

rosenpaym(a,b,z):
w=rosen(a,b) [1]

return ax(((1-a)/w)**((1-a)/a))*(zxx((1+a)/a))

rosenn(a,b,z):
zl=rosen(a,b) [0]
w=rosen(a,b) [1]
if z <= z1:

return O
else:

return (((1-a)/w)**(1/a))*(z*x((1+a)/a))

8.2 agrhfunction.py

import numpy as np

def

agrh(h,b):
z1=1+1/h-np.sqrt (1+1/ (h**2)+ (2% (1-b)) /h)
c0=(z1*(1-h*(2+h) *z1/2) )/ (1+h*x(1-z1))

return [z1,c0]
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def

def

def

def

def

agrhphi(h,b,z):
zl=agrh(h,b) [0]
return 1-np.sqrt(1-2x(z-z1)/h)

agrhc(h,b,z):
zl=agrh(h,b) [0]
cO=agrh(h,b) [1]

return c0+(z1-c0)*xz+(h*x(zx*2)) /2

agrhpay(h,b,z):
zl=agrh(h,b) [0]
if z <= z1:
return agrhc(h,b,z)
else:
x=agrhphi(h,b,z)
c=agrhc(h,b,x)
n=1/(h*(1-x))

return (z-c)*n

agrhpaym(h,b,z):
x=agrhphi (h,b,z)
c=agrhc(h,b,x)
n=1/(h*(1-x))

return (z-c)*n

agrhn(h,b,z):

zl=agrh(h,Db) [0]

if z <= z1:
return O

else:
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return 1/(h*(1-agrhphi(h,b,z)))

8.3 grhfunction.py

import numpy as np

def grh(h,b):
z2=(2-h) /h-np.sqrt (3-4*h+2* (1-b) *h+h**2) /h
z1=1-np.sqrt (1-(2%(b-z2)) /h)
c0=(1-h) *z2

return [z1,z2,c0]

def grhphi(h,b,z):
z2=grh(h,b) [1]
return 1-np.sqrt(1-2x(z-z2)/h)

def grhc(h,b,z):
z2=grh(h,b) [1]
cO=grh(h,b) [2]

return cO+(z2-c0)*z+(h*(z**2))/2

def grhpaym(h,b,z):
x=grhphi (h,b,z)
c=grhc(h,b,x)
n=1/(h*(1-x))

return (z-c)x*n

def grhpay(h,b,z):
z1=grh(h,b) [0]
z2=grh(h,b) [1]

if z <= z1:
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return grhc(h,b,z)
elif z< z2:
return z
else:
x=grhphi (h,b,z)
c=grhc(h,b,x)
n=1/(h*(1-x))

return (z-c)*n

def grhn(h,b,z):
z2=grh(h,b) [1]
if z <= z2:
return O
else:

return 1/(hx(1-grhphi(h,b,z)))

8.4 earnings.py

import pylab
import numpy as np

import rosenfunction as r, agrhfunction as s

m=0.0001
a=0.05
b=0.8
h1=0.8
h2=0.4
h3=0.1

zrl=np.arange(0,r.rosen(a,b) [0] ,m)

zr2=np.arange(r.rosen(a,b) [0] ,b,m)
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zsl=np.arange(0,s.agrh(hl,b) [0] ,m)

zs2=np.arange(s.agrh(h1,b) [0],b,m)

zs3=np.arange(0,s.agrh(h2,b) [0] ,m)

zs4=np.arange(s.agrh(h2,b) [0] ,b,m)

zsb=np.arange(0,s.agrh(h3,b) [0] ,m)

Zs6=

def

def

def

def

def

def

def

def

np.arange(s.agrh(h3,b) [0] ,,b,m)

rw(z):
return r.rosenpayw(a,b,z)
rm(z):

return r.rosenpaym(a,b,z)

swl(z):
return s.agrhc(hl,b,z)
smi(z):

return s.agrhpaym(hl,b,z)

sw2(z):
return s.agrhc(h2,b,z)
sm2(z) :

return s.agrhpaym(h2,b,z)

sw3(z):
return s.agrhc(h3,b,z)
sm3(z) :

return s.agrhpaym(h3,b,z)
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pylab.figure(1)
pylab.plot(zrl,rw(zrl)+zri-zril, ’k:’)
pylab.plot(zr2,rm(zr2),’k:’,label="a=0.05")
pylab.plot(zsl,swl(zsl),’k-")
pylab.plot(zs2,sml(zs2),’k-’,label="h=0.8")
pylab.plot(zs3,sw2(zs3),’k--")
pylab.plot(zs4,sm2(zs4),’k--’,label="h=0.4")
pylab.plot(zsb5,sw3(zs5),’k-.")
pylab.plot(zs6,sm3(zs6),’k-.’,label="h=0.1")
pylab.title(’Earnings: Rosen vs GRH’)
pylab.xlabel (’Knowledge’)
pylab.ylabel(’Earnings’)

pylab.legend()

pylab.savefig(’earnings.pdf’)

pylab.show()

8.5 earningsgrh.py

import pylab
import numpy as np

import agrhfunction as s, grhfunction as g

m=0.0001
b=1
h0=0.95
h1=0.8
h2=0.65
h3=0.5

xa0=np.arange(0,g.grh(h0,b) [0] ,m)
xb0=np.arange(g.grh(h0,b) [0] ,g.grh(h0,b) [1],m)
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xcO=np.arange(g.grh(h0,b) [1],b,m)

xal=np.arange(0,g.grh(hl,b) [0],m)
xbl=np.arange(g.grh(hl,b) [0],g.grh(hl,b) [1],m)

xcl=np.arange(g.grh(hl,b) [1],b,m)

xa2=np.arange(0,s.agrh(h2,b) [0] ,m)
xb2=np.arange(s.agrh(h2,b) [0] ,b,m)

xa3=np.arange(0,s.agrh(h3,b) [0] ,m)
xb3=np.arange(s.agrh(h3,b) [0] ,b,m)

def w0(z):
return g.grhc(h0,b,z)
def m0(z):

return g.grhpaym(hO,b,z)

def wi(z):
return g.grhc(hl,b,z)
def m1(z):

return g.grhpaym(hl,b,z)

def w2(z):
return s.agrhc(h2,b,z)
def m2(z):

return s.agrhpaym(h2,b,z)

def w3(z):
return s.agrhc(h3,b,z)
def m3(z):
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return s.agrhpaym(h3,b,z)

pylab.figure(1)

pylab.plot(xa3,w3(xa3),’k-.")

pylab.plot (xb3,m3(xb3),’k-.’,label="h=0.5")
pylab.plot(xa2,w2(xa2),’k--")
pylab.plot(xb2,m2(xb2),’k--’,label="h=0.65")
pylab.plot(xal,wl(xal),’k:’)
pylab.plot(xbl,xbl,’k:’)
pylab.plot(xcl,ml(xcl),’k:’,label="h=0.8")
pylab.plot(xa0,w0(xa0), ’k-")
pylab.plot(xb0,xb0, k-")
pylab.plot(xc0,m0(xc0),’k-’,label="h=0.95")
pylab.title(’Earnings: GRH’)

pylab.xlabel (’Knowledge’)

pylab.ylabel (’Earnings’)

pylab.legend ()
pylab.savefig(’earnings4h.pdf’)
pylab.show()
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